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Abstract

A structure is proposed for the mass matrices of the quarks and leptons

that arises in a natural way from the assumption that the breaking of SO(10)

gauge symmetry is achieved by the smallest possible set of vacuum expectation

values. This structure explains well many features of the observed spectrum

of quarks and leptons. It reproduces the Georgi-Jarlskog mass relations and

postdicts the charm quark mass in reasonable agreement with data. It also

predicts a large mixing angle between �� and �� , as suggested by atmospheric

neutrino data. The mixing angles of the electron neutrino are predicted to be

small.
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In this Letter we propose a structure for the quark and lepton mass matrices that arises

naturally in supersymmetric SO(10) from the simple assumption that SO(10) is broken

to the Standard Model by the smallest possible set of vacuum expectation values (VEVs).

This structure reproduces many of the features of the known fermion mass spectrum. It

also predicts a large value for the �� � �� mixing angle, as is suggested by the atmospheric

neutrino data [1]. Usually this angle is small (or not predicted) in grand uni�ed theories,

but in the present model its large value has a simple group-theoretical explanation.

The smallest set of vacuum expectation values that can break SO(10) to the Standard

Model consists of one adjoint (45) and one spinor (16) [2]. The spinor plays two necessary

roles: it breaks the rank of the group from 5 to 4, and provides superlarge masses for

the right-handed neutrinos. The adjoint also plays two roles: it completes the breaking of

SO(10) to the Standard Model (SM) group SU(3)�SU(2)�U(1) and produces without �ne-

tuning the \doublet-triplet splitting" | that is, gives superlarge mass to the color-triplet

partners of the SM Higgs doublets, while leaving those doublets light.

Our assumption of minimality requires that there is only one adjoint Higgs. It has

recently been shown that this is enough to break SO(10) with no �ne-tuning, while preserv-

ing gauge-coupling uni�cation [3]. Besides its economy, the postulate of having only one

adjoint seems to be desirable in the context of perturbative heterotic string theory where

there are limitations on multiple adjoints [4]. With only one adjoint, its VEV is �xed to

be in the B � L direction, as this is required by the Dimopoulos-Wilczek mechanism for

doublet-triplet splitting [5,3]. The superlarge VEV of the spinor is, of course, also �xed: it

must point in the SU(5) singlet direction. With SO(10) broken to the SM group by only

these two de�nite VEVs, the possibilities for constructing realistic quark and lepton masses

are quite constrained. This should be contrasted with other approaches that generate mass

matrix textures in SO(10) utilizing extended Higgs sector [6].

In \minimal SO(10)" the quark and lepton masses come from the operators 16i16j10H ,

where i and j are family indices, and subscript H denotes a Higgs �eld. This leads to the

\naive SO(10) relations": N = U / D = L, with all these matrices being symmetric. (U ,
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D, L, and N denote, respectively, the mass matrices for the up quarks, down quarks, and

charged leptons, and the Dirac mass matrix of the neutrinos.)

These relations, as is well known, lead to bad predictions: U / D gives vanishing

Cabibbo-Kobayashi-Maskawa angles and the relationm0
c=m

0
t = m0

s=m
0
b , which is o� by about

an order of magnitude. (Superscript zero refers to parameters evaluated at the uni�cation

scale.) One way that U / D can be avoided is by the quark and lepton mass matrices

depending on h16Hi, which breaks SO(10). (h45Hi does not help here, as up and down

quarks have the same B�L.) However, h16Hi by itself leaves SU(5) unbroken, which would

still imply the \naive SU(5) relation" D = LT . This contains both the good prediction

m0
b = m0

� , and the bad predictions m
0
s = m0

�, and m
0
d = m0

e. Therefore, the quark and lepton

mass matrices must also depend directly or indirectly on h45Hi, which is the only SU(5)-

breaking VEV. Empirically, one �nds the so-called Georgi-Jarlskog relations [7], m0
s
�= m0

�=3

and m0
d
�= 3m0

e. Since h45Hi / B � L, a natural explanation of the Georgi-Jarlskog factors

of 3 and 1=3 is possible, as will be shown.

The assumption of minimal VEVs for SO(10)-breaking leads naturally, as will be seen, to

the following forms for the quark and lepton mass matrices at the uni�cation scale (with the

convention that the left-handed fermions multiply them from the right, and the left-handed

antifermions from the left):

U0 =

0
BBBB@

0 0 0

0 0 �=3

0 ��=3 1

1
CCCCA
mU ; N0 =

0
BBBB@

0 0 0

0 0 ��

0 � 1

1
CCCCA
mU ;

D0 =

0
BBBB@

0 0 0

0 0 �+ �=3

0 ��=3 1

1
CCCCA
mD; L0 =

0
BBBB@

0 0 0

0 0 ��

0 �+ � 1

1
CCCCA
mD:

(1)

These matrices, since they leave u, d, and e� massless, are obviously not the whole story.

At the end of this Letter, we will discuss extending the model to include the �rst generation.
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However, since me � m�, md � ms, and mu � mc, the e�ects of such �rst-generation

physics should be quite small on the second and third generation parameters that we wish

to �t. It turns out that with only two parameters, � and �, one can get a good �t for �ve

quantities that involve the second and third generations: mc=mt, ms=mb, m�=m� , mb=m� ,

and Vcb. (The other mass ratio, mb=mt depends on an unknown ratio of VEVs.)

To give some insight into the structure of the matrices of Eq. (1), and why they arise

naturally from the assumption of minimal VEVs, it will help to explain how they are built

up logically, layer by layer, from the heaviest generation to the lightest. Because the third

generation is by far the heaviest, and approximately satis�es the SU(5) relation m0
b = m0

� ,

we take the �rst layer to come from the simple term 16316310H , giving the \1" entries in

Eq. (1).

The second-generation masses, because of the Georgi-Jarlskog factors, must depend on

h45Hi. The simplest choice is 16216310H45H . This gives the \�" entries in Eq. (1), the

factors of 1=3 just re
ecting the fact that h45Hi / B � L and that a quark has B � L =

1=3. It can be shown that h45Hi / B � L also implies that this term contributes anti-

symmetrically in 
avor. (For this reason the terms 16216210H45H and 16316310H45H

would not contribute.)

The matrices with only the \1" and \�" entries, but without \�", would still not be

realistic: the matrices U and D would be proportional, giving Vcb = 0 and m0
c=m

0
t = m0

s=m
0
b ,

and the Georgi-Jarlskog factor would be 9 instead of 3. (The \see-saw" formula would give

m0
�=m

0
�
�= �2, and m0

s=m
0
b
�= �2=9.)

It turns out that all three of these unrealistic features are cured in a single stroke by

introducing a third layer that involves h16Hi. The simplest term, group theoretically, that

can be written down is of the form 16216316H16
0
H . 16

0
H is some spinor Higgs, distinct from

16H , which breaks the electroweak symmetry but does not participate in the breaking of

SO(10) down to the Standard Model group [8]. (That is, the components that get VEVs

are 1(16H), and 5(160H), where p(q) denotes a p of SU(5) contained in a q of SO(10).)

This term arises most naturally from \integrating out" 10's of SO(10), as shown in
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Figure 1. The resulting operator is 5(162)10(163)h5(16
0
H)ih1(16H)i. Note that this con-

tributes to L and D, but not to U and N , and that it lopsidedly contributes to D23 and L32

but not to D32 and L23. This is the origin of the \�" entries in Eq. (1). This lopsidedness,

which has a group-theoretical origin, explains, as will be seen, why the 2-3 mixing is small

for the quarks (Vcb � 1) but large for the leptons (sin2 2��� � 1).

There can be a relative phase, which we will call �, between the parameters � and �. As

is apparent from Eq. (1), this phase only enters at order �=�, which will presently be seen

to be a small parameter. (Henceforth the symbols � and � will denote j�j and j�j, and the

phase will appear explicitly as �.) Diagonalizing the matrices in Eq. (1), one �nds:

m0
b=m

0
�
�= 1� 2

3
�

�2+1(� cos�);

m0
�=m

0
�
�= � �

�2+1

�
1� �2�1

�(�2+1)(� cos�)
�
;

m0
s=m

0
b
�= 1

3�
�

�2+1

�
1� 1

3
�2�1

�(�2+1)(� cos�)
�
;

m0
c=m

0
t
�= �2=9;

V 0
cb
�= 1

3�
�2

�2+1

�
1 + 2

3
1

�(�2+1)(� cos�)
�
:

(2)

In these expressions terms that are down by order O(�2) have been dropped. (They a�ect

the results at the fraction of a percent level.) Because � is a small parameter, the following

features of the observed masses and mixings have been reproduced by the model: the ap-

proximate equality of m0
b and m

0
� ; the fact that V

0
cb, m

0
�=m

0
� , and m

0
s=m

0
b are all comparable,

because O(�), while m0
c=m

0
t is very much smaller, because O(�2); and the fact that m0

�=m
0
�

is about 3 times m0
s=m

0
b (one of the the Georgi-Jarlskog relations). Also explained is the hi-

erarchy among generations, which arises from the smallness of � and from the rank-2 nature

of the matrices.

Since there are �ve observables in terms of the two parameters � and � in Eq. (2), the
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model predicts three relations among charged fermions. To study them we use the following

input parameters: m� = 105:66 MeV, m� = 1:777 GeV, ms(1 GeV) = (180 � 50) MeV,

mb(mb) = (4:26 � 0:11) GeV, mc(mc) = (1:27 � 0:1) GeV [9], Mt = 174:1 � 5:4 GeV and

Vcb = 0:0395�0:0017 [10]. The value ofMt quoted above corresponds to the running masses

mt(mt) = 165� 5 GeV .

To �t the data, various renormalization factors are needed. The factors, that will be

denoted by �i, that run the masses from the low scales up to the supersymmetry scale,

MSUSY (taken to be at mt) are computed using 3-loop QCD and 1-loop QED or electroweak

renormalization group equations (RGE), with inputs �s(MZ) = 0:118, �(MZ) = 1=127:9

and sin2 �W (MZ) = 0:2315. The relevant RGE can be found for instance in [11]. The results

are (��; �� ; �s; �b; �c; �t) = (0:982; 0:984; 0:426; 0:654; 0:473; 1:0).

The renormalization factors from MSUSY up to the uni�cation scale, MG, are calcu-

lated using the 2-loop MSSM beta functions for all parameters [11], with MG = 2 � 1016

GeV, and all SUSY thresholds taken to be at MSUSY . These factors also depend on the

value of tan�, which is allowed a priori (by the perturbativity of the Yukawa couplings

up to MG) to be anywhere in the range 1:5 � tan� � 65. However, as will be seen,

within our scheme the �ts constrain tan� to be between 10 and 40. Results will be pre-

sented for a \central" value of 30, and where signi�cant the dependence on tan� will be

discussed. (In this model, since the light doublet, H 0 is a linear combination of 5(10)

and 5(160), tan� 6= mt=mb. It is also not expected to be very small, since the same

Yukawa coupling contributes to both the top and bottom quark masses.) The running fac-

tors for tan� = 30 are (��=� ; �s=b; �c=t; �b=� ; �cb) = (0:956; 0:840; 0:691; 0:514; 0:873), where

�i=j � (m0
i =m

0
j)=(mi=mj)MSUSY

, and �cb � V 0
cb=(Vcb)MSUSY

.

Aside from the running of the couplings described by the �'s, there are �nite correc-

tions [12] to ms;mb and Vcb from gluino and chargino loops, which are proportional to

tan� and thus sizable for moderate to large tan�. These will be denoted by the fac-

tors (1 + �s), (1 + �b), and (1 + �cb), which depend on the supersymmetric spectrum:
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�b ' tan�f2�33�
�M~g

m2

~bL
�m2

~bR

[f(m2
~bL
=M2

~g )� f(m2
~bR
=M2

~g )]+
�2t

16�2
�At

m2

~tL
�m2

~tR

[f(m2
~tL
=�2)� f(m2

~tR
=�2)]g,

where f(x) � lnx=(1 � x). �s is given by the same expression but without the chargino

contribution (the second term) and with ~b ! ~s. �cb = ��chargino
b . One sees that even for

tan� � 10, these corrections are of order 10%. The analogous corrections to m� and m�

arise only from Bino loops, while those to mc and mt lack the tan� enhancement, and so

these are all negligible.

To �t for � and � it is convenient to use the second and �fth relations of Eq.

(2), since there is very little experimental uncertainty in m�, m� , and Vcb. This gives

� = [3Vcb=(m�=m� )](
�� �cb
����=�

) (1 � � cos�
3

3�2�1
�(�2+1))(1 � �cb), and � = [�

2+1
� (m�=m� )](

����=�
��

)

(1 + � cos� �2�1
�(�2+1)). One �nds, for cos� = 1, that

� = 1:73 (1��cb); � = 0:136 (1� 0:5�cb): (3)

The dependence on cos�, arising only at order �=�, is rather weak: for cos� = �1, � =

1:92 (1 � �cb) and � = 0:134 (1 � 0:5�cb). The dependence on tan�, because it is only

through the renormalization factors, is also fairly weak for 10 � tan� � 40. For example,

increasing tan� to 40 increases � by 0:7% and decreases � by 3%. Similarly, changingMSUSY

from mt to 500 GeV only increases � by 3% and increases � by 2%. Henceforth, all results

will be stated for tan� = 30, MSUSY = mt, and cos� = 1. Whenever results are very

sensitive to these parameters, the dependence on them will be explicitly discussed.

Now that � and � have been determined from Vcb and m�=m� , there are four other

quantities that can be predicted, namely mb, ms, mc, and sin2 2��� .

(i) mb prediction:

The �rst relation of Eq. (2) implies mb(mb) = m� (m� )(
��

�b�b=�
)(1� 2

3
�

�2+1� cos�) (1+�b).

For cos� = 1, this gives mb(mb) = 5:0 (1+�b) GeV. Comparing this with the experimental

value 4:26 � 0:11 GeV, one sees that �b
�= �0:15. This is quite a reasonable value if

tan� � 30. (With supergravity boundary conditions and a generic sparticle spectrum, the

gluino loops contribute � �0:2 to �b, while the charginos contribute roughly a quarter as

much and with the opposite sign [13]. We shall keep these numbers as a rough guide to
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estimate the corrections.) It should be noted that if tan� is close to 1:6 or near 60, mb(mb)

will be in the acceptable range even with �b = 0. However, these extreme values of tan�

lead to wrong predictions of the charm mass (mc(mc) ' 1:57 GeV when tan� ' 1:6) and

are thus disfavored within the model. An interesting consequence is that the model predicts

the sign of � (and At) to be such that it decreases the b{quark mass through the gluino and

chargino graphs.

(ii) ms prediction:

The �rst and third relation of Eq.(2) yield ms(1 GeV ) = m� (m� )
1
3�

�
�2+1(

��
�s�s=b�b=�

) (1 �

1
3� cos�

3�2�1
�(�2+1))(1 + �s). For cos� = 1 this gives ms(1 GeV ) = 176 (1 + �s) MeV. Taking

�s ' �b
�= �0:15, which is justi�ed if the gluino contribution dominates and ~s and ~b

are nearly degenerate, we �nd ms(1 GeV ) = 150 MeV, in excellent agreement with the

experimental value of 180� 50 MeV.

(iii) mc prediction:

The fourth relation of Eq. (2) implies mc(mc) = mt(mt)
1
9�

2( �t
�c�c=t

). For cos� = 1,

this gives mc = (1:05 � 0:11)(1 � �cb) GeV. The error re
ects the 1� uncertainties in the

experimental values of mt, �s (= 0:118 � 0:004), and Vcb. (These lead, respectively, to

6:5%, 7%, and 4% uncertainties for mc(mc). It should also be noted that changing tan�

by �10 changes the mc prediction by �4%, changing MSUSY to 500 GeV has less than

a 2% e�ect, and changing cos� to 0 reduces mc by 3%.) Since �cb ' ��bj
chargino, it is

reasonable to take �cb ' �0:05, using the supergravity{like spectrum as a guideline. This

gives mc = 1:10 � 0:11 GeV. This is in quite reasonable agreement with the experimental

value mc(mc) = (1:27� 0:1) GeV. It is interesting that the sign of the correction term �cb

suggested by the supergravity spectrum is such that it improves the agreement of mc(mc)

with the experimental value.

It should also be emphasized that, whereas the predictions for mb and ms were, in a

sense, group-theoretically built into the forms given in Eq. (1), it could not be known in

advance that the prediction for mc would come close.
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(iv) sin2 2��� prediction:

The neutrino-mixing matrix U� is de�ned by �f =
P

m(U�)fm�m, where, �f and �m are

the 
avor and mass eigenstates, respectively. f = e; �; � , and m = 1; 2; 3. U� = U (L)yU (N),

where U (L) and U (N) are the unitary transformations of the left-handed fermions required to

diagonalize, respectively, L and M� = �NTM�1
R N . (MR is the superheavy Majorana mass

matrix of the right-handed neutrinos.)

The crucial point, easily seen from an inspection of Eq. (1), is that a large rotation in

the 2-3 plane will be required to diagonalize the charged-lepton mass matrix, L. Calling this

rotation angle �
(L)
23 , one has that tan �

(L)
23

�= jL32=L33j �= �+� cos �. The actual ����� mixing

angle is the di�erence between �
(L)
23 and the corresponding rotation angle, �

(N)
23 , required to

diagonalize M� .

It might appear that one can know nothing about M� , and therefore about �
(N)
23 , with-

out knowing the precise form of MR. However, this is not the case. From Eq. (1) it is

apparent that in the limit � �! 0 both N and M� = �NTM�1
R N are proportional to

diag(0; 0; 1), so that �
(N)
23 �! 0. Thus, formally, �

(N)
23 = O(�). If M�1

R is parametrized by

(M�1
R )22 = (M�1

R )33Y=�
2, and (M�1

R )23 = (M�1
R )32 = (M�1

R )33X=�, one �nds (ignoring the

�rst generation) that tan 2�
(N)
23

�= 2� j(1�X)=(1� 2X + Y )j. UnlessX and Y are �ne-tuned,

this is indeed of order �. Let � be de�ned by Re(U
(N)
23 ) = �� cos�, in a phase convention

where U
(L)
23 is real. If it is required that m��=m�� � 0:05, as suggested by the atmospheric

and solar neutrino data, then j�j <� 2. The �� � mixing angle at the uni�cation scale is then

given by

tan ��� =
�+ (1� �)� cos�

1 + ��� cos�
: (4)

The one-loop renormalization group equation for this quantity [14] has the simple form

d(ln tan ��� )=d(ln�) = �h2�=16�
2. Integrating yields the result that (for tan� = 30) tan ���

is increased by a factor of 1:03 in running down to the weak scale from the uni�cation scale.

Unlike the quark masses, the ����� mixing angle is very sensitive to cos�, and therefore

sin2 2��� can be in a large range, from 1 down to about 1=4. Values > 0:7 obtain for most

of the parameter range. For example, if cos� = 0, Eq. (4) simpli�es to tan ��� = �, giving
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sin2 2��� = 0:78, independent of �. If � = 0, then sin2 2��� > 0:7 for all cos�. sin2 2���

reaches 1 for cos� = 1 and � = 2, and reaches � 1=4 for cos� = 1 and � = �2. (For recent

attempts to generate large (�� � �� ) mixing in other ways see Ref. [15].)

There is not a unique way to extend this model to include the �rst generation. A

simple possibility that gives a reasonable �t to the �rst-generation masses and mixings

is to add (12) and (21) entries symmetrically to all the mass matrices. This would give

several new predictions: (i)
m0

d

m0
e
= 3(1 + 2

3��cos�) (one of the Georgi{Jarlskog relations),

(ii) jV 0
usj = j

q
m0

d

m0
s

1
(�2+1)1=4

�
q

m0
u

m0
c
ei�j, (iii) jV 0

ubj ' j
q

m0

d

m0
s

m0
s

m0

b

�
(�2+1)1=4

�
q

m0
u

m0
c
ei�(
q

m0
c

m0
t
� m0

s

m0

b

1
�)j.

If the phase parameter � is near �, acceptable jVusj and jVubj result. The leptonic mixing

angles involving the electron are given by j(U�)
0
e2j ' j

q
m0
e

m0
�
(�2+1)1=4+O(�)j, and j(U�)

0
e3j '

j
q

m0
e

m0
�

m0
�

m0
�

(�2+1)3=4

� + O(�2)j where the O(�) and O(�2) terms represent corrections from the

neutrino sector. Since these mixing angles are both small, their precise values are sensitive

to the structure of MR. These values are consistent with the small angle MSW oscillations

for the solar neutrinos.

The model presented here can be tested in future experiments in several ways. (i) The

prediction of tan� = 10 � 40 can be tested once supersymmetric particles are discovered.

(ii) The spectrum of the sparticles is predicted to be such that the gluino and the chargino

corrections to mb decrease its value by about 15 %. (iii) More precise determinations of

mt; �3(MZ) and Vcb and information about the sparticle spectrum will sharpen the model's

prediction of mc(mc). (iv) Large angle (�� � �� ) oscillations should be seen in long baseline

experiments, but not in the ongoing accelerator experiments. The interpretation of the

atmospheric neutrino anomaly in terms of (�� � �� ) oscillations should be con�rmed. (v)

There are also speci�c predictions in the model for proton decay branching ratios [16] and

rare decays such as �! e
 [17].

In this Letter we have studied a simple form for the mass matrices that is motivated by

general group-theoretical considerations, without examining a particular underlying uni�ed

model in great detail. That has been done in [18], where it is found that fermion mass

matrices of the type discussed here can arise in realistic models.
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FIG. 1. A diagram that shows how vectors of fermions may be integrated out to produce the \�"

terms in the mass matrices in (1). For group-theoretical reasons these produce lopsided contributions

to the charged-lepton and down-quark mass matrices, that explain why Vcb is small while sin2 2���

is large.
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