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T. Hambye, G. O. Köhler, E. A. Paschos, and P. H. Soldan

Institut für Physik, Universität Dortmund, D-44221 Dortmund, Germany

W. A. Bardeen

Fermilab, P.O. Box 500, Batavia, IL 60510

PACS numbers: 13.25. Es, 11.15. Pg, 12.39. Fe

Abstract
We calculate long-distance contributions to the amplitudes A(K0 → 2π, I) in-

duced by the gluon and the electroweak penguin operators Q6 and Q8, respectively.
We use the 1/Nc expansion within the effective chiral lagrangian for pseudoscalar
mesons. In addition, we adopt a modified prescription for the identification of meson
momenta in the chiral loop corrections in order to achieve a consistent matching to
the short-distance part. Our approach leads to an explicit classification of the loop
diagrams into non-factorizable and factorizable, the scale dependence of the latter
being absorbed in the low-energy coefficients of the effective theory. Along these lines
we calculate the one-loop corrections to the O(p0) term in the chiral expansion of
both operators. In the numerical results, we obtain moderate corrections to B(1/2)

6

and a substantial reduction of B(3/2)
8 .
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1 Introduction

In this article we study long-distance contributions to the K → ππ decay amplitudes using

the 1/Nc expansion (Nc being the number of colors) within the framework of the chiral

effective lagrangian for pseudoscalar mesons.

The calculation of chiral loop effects motivated by the 1/Nc expansion was introduced

in Ref. [1] to investigate the ∆I = 1/2 selection rule. These articles considered loop

corrections to the current×current operators Q1 and Q2. The gluon penguin operator Q6

was included at the tree level, consistent with the 1/Nc expansion since the short-distance

(Wilson) coefficient is subleading in Nc. Following the same lines of thought the authors

of Ref. [2] performed a detailed analysis of the ratio ε′/ε, which measures the direct CP

violation in K → ππ decays. They included the matrix elements of Q6 and Q8 at the tree

level in the 1/Nc expansion, arguing that their quadratic dependence on the running mass

ms cancels, in the large-Nc limit, the evolution of the coefficient functions in the absence

of chiral loops.

In contrast with the ∆I = 1/2 rule, which is governed by Q1 and Q2, ε′/ε is dominated

by the density×density operators Q6 and Q8. Therefore it is important to investigate the

1/Nc corrections to the matrix elements of the last two operators. In particular, it must be

examined whether the 1/Nc corrections significantly affect the large cancellation between

the gluon and the electroweak penguin contributions obtained at the tree level in Ref. [2].

In Ref. [3] the analysis of ε′/ε was extended by incorporating in part chiral loops for the

density×density operators, i.e., 1/Nc corrections to the matrix elements of Q6 and Q8. The

final result was an enhancement of 〈Q6〉I=0 and a decrease for 〈Q8〉I=2, which introduces a

smaller cancellation between these two operators. As a consequence, the authors found a

large positive value for ε′/ε [4].

In this paper we present a new analysis of the hadronic matrix elements of the gluon

and the electroweak penguin operators in which we include, in the isospin limit, the first

order corrections in the twofold expansion in powers of external momenta, p, and the

ratio 1/Nc, i.e., we present a complete investigation of the matrix elements up to the or-

ders p2 and p0/Nc.1 One improvement concerns the matching of short- and long-distance

contributions to the decay amplitudes, by adopting a modified identification of virtual mo-

menta in the integrals of the chiral loops. To be explicit, we consider the two densities

in density×density operators to be connected to each other through the exchange of an

effective color singlet boson, and identify its momentum with the loop integration variable.

1A comprehensive analysis of chiral loop corrections to the O(p2) matrix elements will be presented
elsewhere.
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The effect of this procedure is to modify the loop integrals, which introduces noticeable

effects in the final results. More important it provides an unambiguous matching of the

1/Nc expansion in terms of mesons to the QCD expansion in terms of quarks and glu-

ons. The approach followed here leads to an explicit classification of the diagrams into

factorizable and non-factorizable. Factorizable loop diagrams refer to the strong sector

of the theory and give corrections whose scale dependence is absorbed in the renormal-

ization of the chiral effective lagrangian. The non-factorizable loop diagrams have to be

matched to the Wilson coefficients and should cancel scale dependences which arise from

the short-distance expansion.

The disentanglement of factorizable and non-factorizable contributions is especially

important for the calculation of the O(p0/Nc) matrix elements of Q6: although the O(p0)

term vanishes for Q6, the non-factorizable loop corrections to this term remain and have to

be matched to the short-distance part of the amplitudes. These O(p0/Nc) non-factorizable

corrections must be considered at the same level, in the twofold expansion, as the O(p2)

tree contribution and have not previously been calculated. The same procedure is followed

for investigating the matrix elements of Q8. As a final result, we present the numerical

values for the matrix elements 〈Q6〉0 and 〈Q8〉2 to orders p2 and p0/Nc.

Another improvement is the enlargement of the lagrangian, that is to say, we use the

complete chiral effective lagrangian up to O(p4). Finally, we include effects of the singlet

η0, which is necessary for the investigation of isospin breaking terms. The latter generate

the matrix element 〈Q6〉2 which is important for ε′/ε [5]. Isospin violating terms will be

studied in the future. For consistency, and to introduce the general lines of thought, we

include here the η0 also for the computation of the matrix elements 〈Q6〉0 and 〈Q8〉2 in the

isospin limit, where its effect is expected to be small.

This paper includes several improvements which are necessary for a complete calcula-

tion to orders p2 and p0/Nc, as was defined above. It is still necessary to include these

improvements for the isospin violating terms, but this will not affect the results for 〈Q6〉0
and 〈Q8〉2 presented here. Furthermore, we can contemplate still higher order corrections

which, at present, are beyond the scope of this analysis.

The paper is organized as follows. In Section 2 we review the general framework of

the effective low-energy calculation. In Section 3 we discuss the matching of short- and

long-distance contributions to the decay amplitudes. Then, in Section 4 we investigate the

factorizable 1/Nc corrections to the hadronic matrix elements of Q6 and Q8, where we show

explicitly that the scale dependence resulting from the chiral loop corrections is absorbed

in the renormalization of the bare couplings, the mesonic wave functions and masses. This

we do on the particle level, as well as, on the level of the operator evolution for which
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we apply the background field method. In Section 5 we calculate the non-factorizable

loop corrections to the hadronic matrix elements and the corresponding non-factorizable

evolution of the density×density operators. In Section 6 we give the numerical values for the

matrix elements and the parameters B
(1/2)
6 and B(3/2)

8 . The latter quantify the deviation of

the matrix elements from those obtained in the vacuum saturation approximation. Finally,

we summarize and compare our results with those of the existing analyses.

2 General Framework

Within the standard model the calculation of the K → ππ decay amplitudes is based on

the effective low-energy hamiltonian for ∆S = 1 transitions [6],

H∆S=1

eff =
GF√

2
ξu

8∑
i=1

ci(µ)Qi(µ) (µ < mc ) , (1)

ci(µ) = zi(µ) + τyi(µ) , τ = −ξt/ξu , ξq = V ∗qsVqd , (2)

where the Wilson coefficient functions ci(µ) of the local four-fermion operators Qi(µ) are

obtained by means of the renormalization group equation. They were computed in an

extensive next-to-leading logarithm analysis by two groups [7, 8]. Long-distance contribu-

tions to the isospin amplitudes AI are contained in the hadronic matrix elements of the

bosonized operators,

〈Qi(µ)〉I ≡ 〈ππ, I |Qi(µ)|K0〉 , (3)

which are related to the π+π− and π0π0 final states through the isospin decomposition

〈Qi(µ)〉0 =
1√
6

(
2〈π+π−|Qi(µ)|K0〉 + 〈π0π0|Qi(µ)|K0〉

)
, (4)

〈Qi(µ)〉2 =
1√
3

(
〈π+π−|Qi(µ)|K0〉 − 〈π0π0|Qi(µ)|K0〉

)
. (5)

Direct CP violation in K → ππ decays is dominated by the gluon and the electroweak

penguin operators, i.e., by 〈Q6〉0 and 〈Q8〉2, respectively, where

Q6 = −2
∑

q=u,d,s

s̄(1 + γ5)q q̄(1− γ5)d , Q8 = −3
∑

q=u,d,s

eq s̄(1 + γ5)q q̄(1− γ5)d , (6)

and eq = (2/3, −1/3, −1/3). This property follows from the large imaginary parts of their

coefficient functions. It is the cancellation between the two penguin contributions which

gives rise to a small value of the ratio ε′/ε. Consequently, it is important to investigate
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whether the degree of cancellation is affected by corrections to the hadronic matrix elements

beyond the vacuum saturation approximation (VSA) [9].

There are several realizations of non-perturbative QCD [1, 10, 11, 12]. A recent de-

velopment is the calculation of K → ππ from off-shell K → π amplitudes within chiral

perturbation theory [13]. We will perform our analysis using the 1/Nc approach. To this

end we start from the chiral effective lagrangian for pseudoscalar mesons which involves

an expansion in momenta where terms up to O(p4) are included [14],

Leff =
f2

4

(
〈∂µU †∂µU〉+

α

4Nc

〈lnU † − lnU〉2 + r〈MU † + UM†〉
)

+ r2H2〈M†M〉

+rL5〈∂µU †∂µU(M†U + U †M)〉 + rL8〈M†UM†U +MU †MU †〉 , (7)

with 〈A〉 denoting the trace of A andM = diag(mu, md, ms). f and r are free parameters

related to the pion decay constant Fπ and to the quark condensate, respectively, with

r = −2〈q̄q〉/f2. In obtaining Eq. (7) we used the general form of the lagrangian [14] and

omitted terms of O(p4) which do not contribute to the K → ππ matrix elements of Q6

and Q8 or are subleading in the 1/Nc expansion.2 The fields of the complex matrix U are

identified with the pseudoscalar meson nonet defined in a non-linear representation:

U = exp
i

f
Π , Π = πaλa , 〈λaλb〉 = 2δab , (8)

where, in terms of the physical states,

Π =


π0 + 1√

3
aη +

√
2
3
bη′

√
2π+

√
2K+

√
2π− −π0 + 1√

3
aη +

√
2
3
bη′

√
2K0

√
2K−

√
2K̄0 − 2√

3
bη +

√
2
3
aη′

 , (9)

and

a = cos θ −
√

2 sin θ ,
√

2b = sin θ +
√

2 cos θ . (10)

θ is the η − η′ mixing angle. Note that we treat the singlet as a dynamical degree of

freedom and include in Eq. (7) a term for the strong anomaly proportional to the instanton

parameter α. This term gives a non-vanishing mass of the η0 in the chiral limit (mq = 0)

reflecting the explicit breaking of the axial U(1) symmetry. We shall keep the singlet term

throughout the calculation and will discuss its effects in Section 6.

2In addition, one might note that the contribution of the contact term ∝ 〈M†M〉 vanishes in the isospin
limit (mu = md).
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The bosonic representation of the quark densities is defined in terms of (functional)

derivatives:

(DL)ij = q̄i
1

2
(1− γ5)qj

≡ −δLeff
δMij

= −r
(f2

4
U † + L5∂µU

†∂µUU † + 2rL8U
†MU † + rH2M†

)
ji

, (11)

and the right-handed density (DR)ij is obtained by hermitian conjugation. Eq. (11) allows

us to express the operators Q6 and Q8 in terms of the meson fields:

Q6 = −2f2r2
∑
q

[
1

4
f2(U †)dq(U)qs + (U †)dq(L5U∂µU

†∂µU + 2rL8UM†U

+rH2M)qs + (L5U
†∂µU∂µU † + 2rL8U

†MU † + rH2M†)dq(U)qs

]
+O(p4) , (12)

Q8 = −3f2r2
∑
q

eq

[
1

4
f2(U †)dq(U)qs + (U †)dq(L5U∂µU

†∂µU + 2rL8UM†U

+rH2M)qs + (L5U
†∂µU∂µU † + 2rL8U

†MU † + rH2M†)dq(U)qs

]
+O(p4). (13)

For the operator Q6 the (U †)dq(U)qs term which is of O(p0) vanishes at the tree level. This

property follows from the unitarity of U . However, when investigating off-shell corrections

it must be included. This important aspect, which was not studied previously, will be

discussed in detail in the following sections.

The 1/Nc corrections to the matrix elements 〈Qi〉I are calculated by chiral loop dia-

grams. The diagrams are ultraviolet divergent and are regularized by a finite cutoff. This

procedure, which was introduced in Ref. [1], is necessary in order to restrict the chiral la-

grangian to the low-energy domain. Since we truncate the effective theory to pseudoscalar

mesons, the cutoff has to be taken at or, preferably, below the O(1 GeV). This limitation

is a common feature of the various phenomenological approaches, which at present do not

include higher resonances.

The loop expansion of the matrix elements is a series in 1/f2 ∼ 1/Nc, which is in direct

correspondence with the short-distance expansion in terms of αs/π ∼ 1/Nc: the large-Nc

behaviour of SU(Nc) quantum chromodynamics is represented by diagrams which have a

planar gluon structure. Subleading terms in the 1/Nc expansion are included by means of

internal fermion loops (suppressed by a factor 1/Nc) or non-planar gluon interactions (sup-

pressed by 1/N2
c ) [15]. These corrections actually generate the multimeson intermediate

states which constitute the loop diagrams of the effective theory.3

3A pedagogical introduction to the 1/Nc expansion in terms of mesonic degrees of freedom can be found
in Ref. [16].
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Finally, we note that the meson loop corrections are needed not only for improving

the matching of the matrix elements to the short-distance coefficient functions but also

for obtaining the correct infrared structure, which is required to maintain the unitarity

relations at low energy [17, 18].

3 Matching of Long and Short Distance

To calculate the amplitudes we follow the lines of Ref. [1] and identify the ultraviolet cutoff

of the long-distance terms with the short-distance renormalization scale µ. In carrying out

this matching we pay special attention to the definition of the momenta inside the loop.

This question must be addressed because the loop integrals, within the cutoff regularization,

are not momentum translation invariant.

In the existing studies of the hadronic matrix elements the color singlet boson connect-

ing the two densities (or currents) was integrated out from the beginning [1, 2, 3, 4]. Thus

the integration variable was taken to be the momentum of the meson in the loop, and the

cutoff was the upper limit of its momentum. As there is no corresponding quantity in the

short-distance part, in this treatment of the integrals there is no clear matching with QCD.

The ambiguity is removed, for non-factorizable diagrams, by considering the two den-

sities to be connected to each other through the exchange of the color singlet boson, as

was already discussed in Ref. [18]. A consistent matching is then obtained by assigning the

same momentum to the color singlet boson at long and short distances and by identifying

this momentum with the loop integration variable. This important feature of the modified

approach is illustrated in Fig. 1. The momentum of the virtual meson is shifted by the

external momentum, which affects both the ultraviolet, as well as, the infrared structure of

the 1/Nc corrections. The same method was used in studies of the KL−KS mass difference

[19] and the evolution of current×current operators in the chiral limit [20].

Obviously, the modified procedure described above is not applicable to the factorizable

part of the interaction. However, in the next section we will show explicitly that all fac-

torizable terms quadratic and logarithmic in the cutoff are independent of the momentum

prescription in the loop. Moreover, they are absorbed in the renormalization of the bare

low-energy coefficients, as well as the mesonic wave functions and masses. Consequently,

the factorizable 1/Nc corrections are not to be matched to any short-distance contribu-

tion, i.e., they refer to the strong sector of the theory. Therefore there is no need for a

momentum cutoff, and we will calculate the remaining finite corrections using dimensional

regularization, which constitutes a momentum invariant procedure.
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4 Factorizable 1/Nc Corrections

Since factorizable and non-factorizable corrections refer to disconnected sectors of the the-

ory (strong and weak sectors), we introduce two different scales: λc is the cutoff for the

factorizable diagrams and Λc for the non-factorizable. We will refer to them as the fac-

torizable and the non-factorizable scales, respectively. A similar analysis of chiral loop

corrections was performed to determine the BK parameter [21].

We shall prove in this section, within the cutoff regularization, that the quadratic and

logarithmic dependence on λc which arises from the factorizable loop diagrams is absorbed

in the renormalization of the low-energy lagrangian. Consequently, in the factorizable

sector the chiral loop corrections do not induce ultraviolet divergent terms, i.e., the only

remaining ultraviolet structure of the matrix elements is contained in the overall factor

∼ 1/m2
s. This is to be expected as the evolution of ms, which already appears at leading

Nc, is the inverse of the evolution of a quark density. Therefore, except for the scale of 1/m2
s

which exactly cancels the factorizable evolution of the density×density operators at short

distances, the only scale remaining in the matrix elements is the non-factorizable scale

Λc. It represents the non-trivial part of the factorization scale in the operator product

expansion. Since the cutoff λc disappears through renormalization, the only matching

between long- and short-distance contributions is obtained by identifying the cutoff scale

Λc of the non-factorizable diagrams with the QCD renormalization scale µ.

The proof of the absorption of the factorizable scale λc will be carried out in the isospin

limit. This explicit demonstration is instructive for several reasons. First, we verify the

validity of the general concept in the case of bosonized densities which, contrary to the

currents, do not obey conservation laws. Second, we check, within the cutoff formalism,

whether there is a dependence on a given momentum shift (q → q± p). Thirdly, including

the η0 as a dynamical degree of freedom we examine the corresponding modifications in

the renormalization procedure. Finally, there remain finite terms from the factorizable

1/Nc corrections which explicitly enter the numerical analysis of the matrix elements. This

point will be discussed at the end of this section.

4.1 Calculation of the Matrix Elements

Due to the unitarity of the matrix field U the tree level expansion of Q6 starts at the O(p2).

Consequently, including only the first order corrections in the twofold expansion in external

momenta and the ratio 1/Nc, no additional terms arise from the renormalization of the

wave functions and masses, as well as, the bare decay constant f since these corrections

8



will be of higher order. This statement does not hold for the electroweak operator Q8

which, for K0 → π+π−, induces a non-vanishing tree matrix element at the O(p0).

The wave function and mass renormalizations can be deduced from the pion and kaon

self-energies, i.e., from a calculation of the propagators at next-to-leading order in the

double series expansion. For the wave functions we obtain (defining πr ≡ Z1/2
π π0)

Zπ = 1 +
8L5

f2
m2
π −

λ2
c

(4π)2f2
+

m2
K

3(4π)2f2
log

(
1 +

λ2
c

m2
K

)
+

2m2
π

3(4π)2f2
log

(
1 +

λ2
c

m2
π

)
(14)

= 1 +
8L5

f2
m2
π −

λ2
c

(4π)2f2
+

log λ2
c

(4π)2f2

1

3
(m2

K + 2m2
π) + · · · , (15)

ZK = 1 +
8L5

f2
m2
K −

λ2
c

(4π)2f2
+

1

4(4π)2f2

[
m2
π log

(
1 +

λ2
c

m2
π

)
+ 2m2

K log

(
1 +

λ2
c

m2
K

)

+cos2θ m2
η log

(
1 +

λ2
c

m2
η

)
+ sin2θ m2

η′ log

(
1 +

λ2
c

m2
η′

)]
(16)

= 1 +
8L5

f2
m2
K −

λ2
c

(4π)2f2
+

log λ2
c

(4π)2f2

1

6
(5m2

K + m2
π) + · · · , (17)

where the ellipses denote finite terms we omit here for the analysis of the ultraviolet

behaviour. One might note that Eqs. (14) and (16) are exact only if the cutoff is associated

to the virtual meson. However, any momentum shift (q → q ± p) modifies only the finite

corrections (compare Eq. (69) of Appendix B).

In specifying Eq. (17) we applied the octet-singlet squared mass matrix,

m2 =
1

3

 4m2
K −m2

π −2
√

2(m2
K −m2

π)

−2
√

2(m2
K −m2

π) 2m2
K + m2

π + 3α

 , (18)

with α = m2
η + m2

η′ − 2m2
K and the corresponding mixing angle [22]

tan 2θ =
2m2

80

m2
00 −m2

88

= 2
√

2

[
1− 3α

2(m2
K −m2

π)

]−1

. (19)

The mass renormalization is found to be

m2
π = rm̂

[
1− 8m2

π

f2
(L5 − 2L8) +

1

3
α

log λ2
c

(4π)2f2

]
+ · · · , (20)

m2
K = r

m̂ + ms

2

[
1− 8m2

K

f2
(L5 − 2L8) +

1

3
α

log λ2
c

(4π)2f2

]
+ · · · , (21)

9



where m̂ = (mu + md)/2. The ratio of Eqs. (20) and (21), to one-loop order, determines

the difference L5 − 2L8 of the low-energy couplings:

m2
K

m2
π

=
m̂ + ms

2m̂

[
1− 8(m2

K −m2
π)

f2
(L5 − 2L8)

]
+ · · · , (22)

≡ m̂ + ms

2m̂

[
1− 8(m2

K −m2
π)

F 2
π

(L̂r5 − 2L̂r8)

]
. (23)

Note that Eq. (22) exhibits no explicit dependence on the scale λc; i.e., the chiral loop

corrections of Eqs. (20) and (21) do not contribute to the SU(3) breaking in the masses

and, consequently, can be absorbed in r. This implies (modulo finite terms)

L5 − 2L8 = L̂r5 − 2L̂r8 . (24)

Finally, f and L5 are obtained from the decay constants of pions and kaons [1],

Fπ = f

[
1 +

4L5

f2
m2
π −

3

2

λ2
c

(4π)2f2
+

log λ2
c

(4π)2f2

1

2
(m2

K + 2m2
π)

]
+ · · · , (25)

FK = f

[
1 +

4L5

f2
m2
K −

3

2

λ2
c

(4π)2f2
+

log λ2
c

(4π)2f2

1

4
(5m2

K + m2
π)

]
+ · · · . (26)

Defining the constant L̂r5 through the relation

FK
Fπ
≡ 1 +

4L̂r5
F 2
π

(m2
K −m2

π) , (27)

from Eqs. (25) and (26) we find, to one-loop order,

L5 = L̂r5 −
3

16

log λ2
c

(4π)2
+ · · · , (28)

which is in accordance with the result from chiral perturbation theory [14]. Then, from

Eq. (24) we get

L8 = L̂r8 −
3

32

log λ2
c

(4π)2
+ · · · . (29)

One might note that the coefficient in front of the logarithm in Eq. (29) differs from the

one given in Ref. [14]. This property follows from the presence of the singlet η0 in the

calculation. Eqs. (22) and (23) define the renormalization conditions because the term

L̂r5 − 2L̂r8 plus the constant terms which appear in the ratio of the masses in Eq. (22)

determine the bare constant L5 − 2L8. Similarly Eqs. (25)–(27) with the associated finite

terms determine the coupling constant L5. As we focus in this section on the ultraviolet
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behaviour we omit the finite contributions. Full expressions relevant for the numerical

analysis are given in terms of integrals in Appendix A.

Next we investigate the (bare) tree level of the K0 → ππ matrix elements, up to O(p2)

in the chiral expansion, as well as, the factorizable 1/Nc corrections to the O(p0). The

latter corrections refer to the first term on the right-hand side of Eqs. (12) and (13). Both

contributions can be calculated from the diagrams depicted in Fig. 2. From the sum of

these diagrams we obtain

i〈π0 π0 |Q6|K0〉F(0) = −4
√

2

f
r2(m2

K −m2
π)

[
L5 +

3

16

log λ2
c

(4π)2

]
+ · · · , (30)

i〈π+π−|Q6|K0〉F(0) = −4
√

2

f
r2(m2

K −m2
π)

[
L5 +

3

16

log λ2
c

(4π)2

]
+ · · · , (31)

i〈π0 π0 |Q8|K0〉F(0) =
2
√

2

f
r2(m2

K −m2
π)

[
L5 +

3

16

log λ2
c

(4π)2

]
+ · · · , (32)

i〈π+π−|Q8|K0〉F(0) =
3

4

√
2r2f

[
1− 4

3f2
(m2

K + 2m2
π)(L5 − 12L8)−

3λ2
c

(4π)2f2

+
1

12

log λ2
c

(4π)2f2
(21m2

K + 24m2
π + 8α)

]
+ · · · . (33)

The structure of Eqs. (30)–(32) guarantees that the renormalization of L5 renders them

finite. The situation is more complicated for the matrix element in Eq. (33) as we will

remark below.

If we use Eqs. (15)–(29), including only the first order corrections in the parameter

expansion, we arrive at the renormalized (factorizable) matrix elements of the Q6 and Q8

operators:4

i〈π0 π0 |Q6|K0〉F(r) = −4
√

2

Fπ

(
2m2

K

m̂ + ms

)2

(m2
K −m2

π)L̂
r
5 + · · · , (34)

i〈π+π−|Q6|K0〉F(r) = −4
√

2

Fπ

(
2m2

K

m̂ + ms

)2

(m2
K −m2

π)L̂
r
5 + · · · , (35)

i〈π0 π0 |Q8|K0〉F(r) =
2
√

2

Fπ

(
2m2

K

m̂ + ms

)2

(m2
K −m2

π)L̂
r
5 + · · · , (36)

i〈π+π−|Q8|K0〉F(r) =
3

4

√
2

(
2m2

K

m̂ + ms

)2 [
Fπ +

4

3Fπ
(8m2

K − 11m2
π)L̂

r
5

4L8 does not appear in the matrix elements of Q6 because its contributions to the first and second
diagram of Fig. 2 are canceled by a tadpole (third diagram of Fig. 2).
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− 16

Fπ
(m2

K − 2m2
π)L̂

r
8

]
+ · · · . (37)

Eqs. (34)–(37) are unambiguous, as the quadratic and logarithmic terms in Eqs. (15)–(33)

were found to be independent of the momentum prescription inside the loops.

Note that the factorizable scale λc is absent in Eqs. (34)–(37) [except for the running of

1/(m̂ + ms)2 ' 1/m2
s ]. Residual scale dependences could nevertheless unfold at the orders

p0/N2
c or p2/Nc. The latter would arise, e.g., if we used f rather than Fπ in the O(p2) tree

level expressions of Eqs. (23) and (27) or Eqs. (34)–(37). This would be consistent at the

level of the first order corrections in the twofold series expansion, as the difference concerns

higher order effects. However, the scale dependence of f (which is mainly quadratic) will

be absorbed by factorizable loop corrections to the matrix elements at the next order in

the parameter expansion and has not to be matched to any short-distance contribution.

Consequently, it is a more adequate choice to use the physical decay constant in the

expressions under consideration. Instead of Fπ the kaon decay constant FK could be used

as well. Both choices will be considered in the numerical analysis, which gives a rough

estimate of higher order corrections. At the same level of accuracy, in the O(p2) terms of

Eqs. (34)–(37) the prefactor [2m2
K/(m̂ + ms)]2 could be replaced by (m2

π/m̂)2. However,

this choice is unsuitable as m̂ suffers from larger uncertainties.

We note that the coefficients in front of L̂r5 and L̂r8 in the matrix element of Eq. (37)

are different from those of the bare couplings L5 and L8 in Eq. (33). The change of

the coefficients comes about as the quantities in Eq. (33) are replaced by renormalized

quantities. In particular, the quadratic term in λc is absorbed in the renormalization of

the decay constant f and the mesonic wave functions. Finally, omitting the constant terms

which refer to the factorizable loop corrections, Eqs. (36) and (37) are combined to obtain

the isospin-two tree level matrix element of Q8 up to O(p2) in the chiral expansion:

i〈Q8〉tree2 =

√
3

2
√

2

(
2m2

K

m̂ + ms

)2 [
Fπ +

4

Fπ
(2m2

K − 3m2
π)L̂

r
5 −

16

Fπ
(m2

K − 2m2
π)L̂

r
8

]
. (38)

The numerical value for this term is given in Table 1. In Ref. [23] only the bare matrix

elements were included in the corresponding tree level analysis of 〈Q8〉2. Consequently, the

new contribution of Ref. [23], i.e., the contribution of the L8 coupling, was found with a

sign opposite to that in Eq. (38). This was corrected in Ref. [24] in the framework of the

chiral quark model.
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4.2 Operator Evolution

The results of the previous section can also be seen directly at the operator level, in par-

ticular at the level of the density operator. To demonstrate this we apply the background

field method as used in Refs. [20] and [25] for current×current operators. This approach is

powerful as it keeps track of the chiral structure in the loop corrections. It is particularly

useful to study the ultraviolet behaviour of the theory.

In order to calculate the evolution of the density operator we decompose the matrix U

in the classical field Ū and the quantum fluctuation ξ,

U = exp(iξ/f) Ū , ξ = ξaλa , (39)

with Ū satisfying the equation of motion

Ū∂2Ū † − ∂2ŪŪ † + rŪM† − rMŪ † =
α

Nc

〈ln Ū − ln Ū †〉 · 1 , Ū = exp(iπaλa/f) . (40)

The lagrangian of Eq. (7) thus reads

L = L̄+
1

2
(∂µξ

a∂µξa)+
1

4
〈[∂µξ, ξ]∂µŪŪ †〉− r

8
〈ξ2ŪM†+ Ū †ξ2M〉− 1

2
αξ0ξ0 +O(ξ3) . (41)

The corresponding expansion of the meson density around the classical field yields

(DL)ij = (D̄L)ij + if
r

4
(Ū †ξ)ji +

r

8
(Ū †ξ2)ji +O(ξ3) . (42)

The evolution of (DL)ij is determined by the diagrams of Fig. 4, and we obtain

(DL)ij(λc) = −f2

4
r(Ū †)ji(0) +

3

4
r(Ū †)ji(0)

λ2
c

(4π)2
− r

12
(Ū †)ji(0)α

log λ2
c

(4π)2

−r2(M†)ji(0)

[
H2 +

3

16

log λ2
c

(4π)2

]
− 2r2(Ū †MŪ †)ji(0)

[
L8 +

3

32

log λ2
c

(4π)2

]
−r(∂µŪ

†∂µŪ Ū †)ji(0)

[
L5 +

3

16

log λ2
c

(4π)2

]
. (43)

The quadratic and logarithmic terms for the wave function and mass renormalizations can

be calculated from the diagrams of Figs. 6 and 7, i.e., from the off-shell corrections to

the kinetic and the mass operator, respectively, second and third term of Eq. (41). The

resulting expressions for m2
π and m2

K turn out to be identical to those found in the explicit

calculation of the pion and kaon self-energies, Eqs. (20) and (21). For the wave functions

we get

Zπ = 1 +
8L5

f2
m2
π − 3

λ2
c

(4π)2f2
+

3

2
m2
π

log λ2
c

(4π)2f2
, (44)

ZK = 1 +
8L5

f2
m2
K − 3

λ2
c

(4π)2f2
+

3

2
m2
K

log λ2
c

(4π)2f2
. (45)
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Along the same lines Fπ and FK can be calculated, to one-loop order, from the diagrams

of Fig. 5, and we obtain5

Fπ = f

[
1 +

4L5

f2
m2
π −

3

2

λ2
c

(4π)2f2
+

3

4
m2
π

log λ2
c

(4π)2f2

]
, (46)

FK = f

[
1 +

4L5

f2
m2
K −

3

2

λ2
c

(4π)2f2
+

3

4
m2
K

log λ2
c

(4π)2f2

]
. (47)

In accordance with Eqs. (15)–(33) both the quadratic and the logarithmic terms of

Eqs. (43)–(47) prove to be independent of the way we define the integration variable inside

the loops. This is due to the fact that the quadratically divergent integrals resulting from

the diagrams of Figs. 4-7 [ i.e., those of the form d4q/(q±p)2 ] do not induce subleading log-

arithms, that is to say, all quadratic and logarithmic dependence on the scale λc originates

from the leading divergence of a given integral.

Now looking at Eqs. (44)–(47) we observe that the ratio Π/f and, consequently, the

matrix field U are not renormalized (i.e., π0/f = πr/Fπ and K0/f = Kr/FK). Then, by

means of Eqs. (21) and (46), we can rewrite the density of Eq. (43) as

(DL)ij(λc) = − 2m2
K

(m̂ + ms)

[
F 2
π

4

(
1 +

8L̂r5
F 2
π

(
m2
K −m2

π

)
− 16L̂r8

F 2
π

m2
K

)
(Ū †)ji

+(∂µŪ
†∂µŪŪ †)jiL̂

r
5 + 2(Ū †χŪ †)jiL̂

r
8 + (χ†)jiĤ

r
2

]
, (48)

with χ = diag(m2
π, m2

π, 2m2
K − m2

π). In obtaining Eq. (48) we used the renormalized

couplings of Eqs. (28) and (29). In addition, we introduced

Ĥr
2 = H2 +

3

16

log λ2
c

(4π)2
+ · · · . (49)

Note that the renormalized density exhibits no dependence on the scale λc, except for

the scale of 1/(m̂+ms). Note also that in Eqs. (43) and (48) we did not specify logarithmic

terms induced at the one-loop order which correspond to the L4, L6 and L7 operators in

the chiral effective lagrangian of Ref. [14]. An explicit calculation of these terms shows

that they give no contribution to the K → ππ matrix elements of Q6 and Q8.

In conclusion, using a cutoff regularization the factorizable contributions to the Q6 and

Q8 operators up to the orders p2 and p0/Nc are given, modulo finite loop corrections, in

terms of the K → ππ matrix elements by Eqs. (34)–(37) or in terms of a single density by

Eq. (48). Our results exhibit no explicit scale dependence. Moreover, they do not depend

5The representation of the bosonized current in terms of the background field can be found in Ref. [20].
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on the momentum prescription inside the loops. The finite terms, on the other hand, will

not be absorbed completely in the renormalization of the various parameters. This can be

seen, e.g., from the fact that the rescattering diagrams of Fig. 2 contain a non-vanishing

imaginary part. As the renormalized parameters are defined to be real, the latter will

remain.

In addition, the real part of the finite corrections carries a dependence on the momentum

prescription used to define the cutoff. However, we proved that the chiral loop diagrams do

not induce ultraviolet divergent terms. Therefore we are allowed to calculate the remaining

finite corrections in dimensional regularization, which is momentum translation invariant

(i.e., we are allowed to take the limit λc →∞). This procedure implies an extrapolation of

the low-energy effective theory for terms of O(m2
π,K/λ2

c ; m4
π,K/λ4

c ; . . .) up to scales where

these terms are negligible. This is the usual assumption made in chiral perturbation theory

for three flavors.

5 Non-factorizable 1/Nc Corrections

The non-factorizable 1/Nc corrections to the hadronic matrix elements constitute the part

to be matched to the short-distance Wilson coefficient functions; i.e., the corresponding

scale Λc has to be identified with the renormalization scale µ of QCD. We perform this

identification, as we argued in Section 3, by associating the cutoff to the effective color

singlet boson. Then, at the O(p0) in the chiral expansion of the Q6 and Q8 operators, from

the diagrams of Fig. 3 we obtain

i〈π0 π0 |Q6|K0〉NF =
√

2
3

4

(
2m2

K

m̂ + ms

)2
1

Fπ

log Λ2
c

(4π)2
(m2

K −m2
π) + · · · , (50)

i〈π+π−|Q6|K0〉NF =
√

2
3

4

(
2m2

K

m̂ + ms

)2
1

Fπ

log Λ2
c

(4π)2
(m2

K −m2
π) + · · · , (51)

i〈π0 π0 |Q8|K0〉NF =
√

2
3

4

(
2m2

K

m̂ + ms

)2
1

Fπ

log Λ2
c

(4π)2
(m2

K −m2
π) + · · · , (52)

i〈π+π−|Q8|K0〉NF = −
√

2

2

(
2m2

K

m̂ + ms

)2
1

Fπ

log Λ2
c

(4π)2
α + · · · . (53)

Again, for the reason of brevity in Eqs. (50)–(53) we did not specify the finite terms which

must be included in the numerical analysis (in particular, they provide the reference scale

for the logarithms). In addition, we replaced m2
η, m2

η′ and the mixing angle θ by m2
π, m2

K

and the instanton parameter α using the octet-singlet mass matrix of Eq. (18).
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Note that in Eqs. (50)–(53) we used 1/Fπ and 2m2
K/(m̂ + ms) rather than the bare

parameters 1/f and r. Again the difference represents higher order effects. However, the

appearance of f or r in Eqs. (50)–(53) would induce a dependence on the factorizable scale

λc, which has no counterpart in the short-distance domain (compare the discussion at the

end of Section 4.1). As for the factorizable contributions the choice of FK instead of Fπ

would be also appropriate.

The results presented above are in accordance with the non-factorizable evolution of Q6

and Q8 we obtain in the background field approach by calculating the diagrams of Fig. 8:

QNF
6 (Λ2

c) = F 2
π

(
2m2

K

m̂ + ms

)2
log Λ2

c

(4π)2

[
3

4
(∂µŪ

†∂µŪ)ds

+
1

2
(∂µŪ

†Ū)ds
∑
q

(Ū∂µŪ †)qq +
3

4
(Ū †χ + χ†Ū)ds

]
, (54)

QNF
8 (Λ2

c) =
3

2
F 2
π

(
2m2

K

m̂ + ms

)2
log Λ2

c

(4π)2

∑
q

eq

[
1

4
(∂µŪ

†∂µŪ)dsδqq

+
1

2
(∂µŪ

†Ū)ds(Ū∂µŪ †)qq +
1

4
(Ū †χ + χ†Ū )dsδqq +

1

3
α(Ū †)dq(Ū)qs

]
. (55)

Only the diagonal evolution of Q6, i.e., the first term on the right-hand side of Eq. (54),

gives a non-zero contribution to the matrix elements of Eqs. (50) and (51). In particular,

the mass term which is of the L8 and H2 form vanishes for K → ππ decays, as do the

L8 and H2 contributions at the tree level (see Section 4). In Eq. (55) for completeness we

kept the terms proportional to δqq which, however, cancel through the summation over the

flavor index.

Note that Eqs. (54) and (55) are given in terms of operators and, consequently, can

be applied to K → 3π decays, too. Note also that our results, Eqs. (50)–(55), exhibit no

quadratic dependence on the scale Λc; i.e., up to the first order corrections in the twofold

series expansion the matching involves only logarithmic terms from both the short- and

the long-distance evolution of the four-quark operators. This is due to the fact that there

is no quadratically divergent diagram in Fig. 8 apart from the first one which vanishes for

the Q6 and Q8 operators. Moreover, for a general density×density operator there are no

logarithms which are the subleading logs of quadratically divergent terms. Therefore, all

the logarithms appearing in Eqs. (50)–(55) are leading divergences, which are independent

of the momentum prescription. The finite terms calculated along with these logarithms

depend on the momentum prescription. They are, however, uniquely determined through

the matching condition with QCD (see Fig. 1).
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One might note that the statements we made above do not hold for current×current

operators: the 1/Nc corrections to these operators, performed in the first non-vanishing

order of their chiral expansion, exhibit terms which are quadratic in Λc. Furthermore,

already these terms were shown to depend on the momentum prescription [20].

We close this section by giving the long-distance evolution, at the O(p0), of a general

density×density operator Qabcd
D ≡ −8(DR)ab(DL)cd. As we showed in Section 4.2, the

factorizable 1/Nc corrections do not affect its ultraviolet behaviour. Then, from the non-

factorizable diagrams of Fig. 8 we find

Qabcd
D (Λ2

c) = Qabcd
D (0)

[
1− 2

3

α

F 2
π

log Λ2
c

(4π)2

]
− F 2

π

(
2m2

K

m̂ + ms

)2
Λ2
c

(4π)2
δdaδbc

+
F 2
π

4

(
2m2

K

m̂ + ms

)2
log Λ2

c

(4π)2

[
(Ū †χ + χ†Ū)daδbc + δda(χŪ † + Ūχ†)bc

+(∂µŪ
†∂µŪ )daδbc + δda(∂µŪ∂µŪ †)bc + 2(∂µŪ

†Ū)da(Ū∂µŪ †)bc
]
. (56)

The corresponding expressions for the non-factorizable loop corrections to operators Q6

and Q8, Eqs. (54) and (55), can be obtained directly from Eq. (56).

6 Numerical Analysis and Discussion of Results

To compute the hadronic matrix elements of Q6 and Q8 we pursued the following strategy.

First, the non-factorizable contributions were calculated, in the isospin limit, from the

diagrams of Fig. 3. In this part of the analysis the finite terms, which are systematically

determined by the momentum prescription of Fig. 1, are completely taken into account. By

using algebraic relations all integrals resulting from the diagrams of Fig. 3 can be reduced to

three basic integrals which are given explicitly, in the framework of the cutoff regularization,

in Appendix B. They were computed up to terms of the order p4 and p6, respectively, that

is to say, to a relative precision of approximately 10−2. Second, the finite terms arising

from the factorizable loop diagrams of Fig. 2, as well as, from the renormalization of the

wave functions, the masses and the low-energy couplings were estimated using dimensional

regularization, as discussed at the end of Section 4.2.

We use the following numerical values for the parameters:

mπ ≡ (mπ0 + mπ+)/2 = 137.3 MeV , Fπ = 92.4 MeV ,

mK ≡ (mK0 + mK+)/2 = 495.7 MeV , FK = 113 MeV ,

mη = 547.5 MeV , θ = −19◦ ,

mη′ = 957.8 MeV .
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Substituting them in Eqs. (23) and (27) we compute L̂r5 = 2.07×10−3 and L̂r8 = 1.09×10−3.

For the numerical values given above, L̂r5 is close to 2L̂r8, and we find the O(p2) tree

level contribution to 〈Q8〉2 to be small, because the term proportional to m2
K in Eq. (38)

approximately vanishes. This result is different from the statements made in Ref. [23]. The

full expressions needed for the renormalization of the parameters f , L5 and L8 in terms of

integrals are presented in Appendix A. In the octet limit the results in the appendix are

the same as in Refs. [14] and [26].6 Finally, we used the ratio ms/m̂ = 24.4±1.5 [27] which

enters in the calculation of L̂r8.

The values we obtain for the matrix elements of Q6 and Q8 are presented in Table 1,

where we also specify the various contributions coming from the factorizable and the non-

factorizable diagrams, respectively. In these matrix elements we have extracted the factor

R2 = [2m2
K/(m̂ + ms)]2, whose dependence on the factorizable scale will be canceled ex-

actly, for a general density×density operator, by the diagonal evolution of the Wilson

coefficients. Finally, for comparison, we present in Table 1 also the numerical values ob-

tained by replacing Fπ by FK in the O(p2) and O(p0/Nc) factorizable and non-factorizable

contributions, that is to say, in the corresponding terms of Eqs. (23), (27) [or Eqs. (60)–(63)

of Appendix A], (34)–(37) and (50)–(53), and in the finite terms. The difference gives a

rough estimate of the higher order corrections.

In Table 2 we list the corresponding values for the Bi factors, which quantify the

deviation of the hadronic matrix elements from the VSA results:

B
(1/2)
6 = |〈Q6〉0/〈Q6〉VSA

0 | , B
(3/2)
8 = |〈Q8〉2/〈Q8〉VSA

2 | . (57)

The VSA expressions for the matrix elements were taken from Eqs. (XIX.16) and (XIX.24)

of Ref. [28]. Numerically, they are |〈Q6〉0| = 35.2 ·R2 MeV and |〈Q8〉2| = 56.6MeV · [R2 −
(0.389GeV)2]. The second term in the expression for Q8 contributes at the 2% level and

has been neglected in Table 2.

We discuss next the corrections to the matrix elements 〈Q6〉0 and 〈Q8〉2. As already

mentioned, the operator Q6 is special because the O(p0) tree level matrix element is zero

due to the unitarity of the matrix U . Nevertheless the one-loop corrections to this matrix

element must be computed. These corrections are of O(p0/Nc) and are non-vanishing.

We have shown in Eqs. (50) and (51) that the explicit calculation of the loops yields a

cutoff dependence (i.e., a non-trivial scale dependence) from the non-factorizable diagrams

which has to be matched to the short-distance contribution. In addition, the logarithms

6Note that our constants L̂r5 and L̂r8 should not be confused with the scale dependent coefficients Lr5
and Lr8 in Refs. [14] and [26].

18



Λc = 0.6 GeV Λc = 0.7 GeV Λc = 0.8 GeV Λc = 0.9 GeV

i〈Q6〉 tree0 −35.2 −35.2 −35.2 −35.2

i〈Q6〉 tree + F loops
0 −68.4− 37.0i −68.4− 37.0i −68.4− 37.0i −68.4− 37.0i

i〈Q6〉NF loops
0 29.8 + 37.0i 34.6 + 37.0i 39.0 + 37.0i 42.9 + 37.0i

|〈Q6〉0| total 38.6 33.7 29.4 25.5

(45.8) (41.8) (38.2) (35.0)

i〈Q8〉 tree2 56.4 56.4 56.4 56.4

i〈Q8〉 tree + F loops
2 56.0− 0.1i 56.0− 0.1i 56.0− 0.1i 56.0− 0.1i

i〈Q8〉NF loops
2 −20.7− 11.5i −24.8− 11.5i −28.8− 11.5i −32.8− 11.5i

|〈Q8〉2| total 37.2 33.2 29.5 25.9

(40.2) (37.0) (33.8) (30.7)

Table 1: Hadronic matrix elements of Q6 and Q8 (in units of R2 ·MeV), shown for various

values of Λc. The numbers in the parentheses are obtained by replacing Fπ by FK in the

next-to-leading order expressions.

of Eqs. (34) and (35) are needed in order to cancel the scale dependence of various bare

parameters in the tree level expressions, as was checked explicitly in Section 4. We note

that in the twofold expansion in p2 and p0/Nc the contribution of the loops over the

O(p0) matrix element must be treated at the same level as the leading non-vanishing tree

contribution proportional to L5. This is revealed by the large size of the non-factorizable

O(p0/Nc) corrections presented in Table 1. It is the sum of both, the factorizable and the

non-factorizable contributions, which renders the numerical values for 〈Q6〉0 close to the

VSA value. For the imaginary part, which is due to on-shell rescattering effects and does

not depend on the matching condition with QCD (see Fig. 1), the cancellation is complete.

This property follows from the (U†)dq(U)qs structure of the operator. The main effect of

the loop corrections is to change the dependence of 〈Q6〉0 on Λc, from a flat behaviour at

the tree level to the dependence presented in Tables 1 and 2, which is important for the

matching. We note that at Λc ' 700 MeV the value for the matrix element of Q6 is very

close to the VSA result leading to B6 ' 1.
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Λc = 0.6 GeV Λc = 0.7 GeV Λc = 0.8 GeV Λc = 0.9 GeV

B(1/2)
6 1.10 0.96 0.84 0.72

(1.30) (1.19) (1.09) (0.99)

B
(3/2)
8 0.66 0.59 0.52 0.46

(0.71) (0.65) (0.60) (0.54)

Table 2: B6 and B8 factors for various values of the cutoff Λc.

The Q8 operator is not chirally suppressed, i.e., its O(p0) tree level matrix element is

non-zero. In this article we include the tree level contribution up to O(p2), as well as,

the loop corrections of O(p0/Nc), that is to say, corrections to the first term of Eq. (13).

This is a full leading plus next-to-leading order analysis of the Q8 matrix element. The

one-loop corrections, even though suppressed by a factor 1/Nc with respect to the leading

tree level, are found to be large and negative, leading to the small values for B8 presented

in Table 2. These large corrections persist in the octet limit [i.e, in the absence of the η0,

with a = b = 1 and m2
η = (4m2

K −m2
π)/3 ]. Therefore, they are not due to the presence of

the η0 which brings in a small change. One might note that the numbers in Table 2 are

specified for the central value of ms/m̂ = 24.4± 1.5 [27]. Including the error of this mass

ratio changes the B8 parameter by ± 0.06.

In comparison with 〈Q6〉0, the non-factorizable corrections to 〈Q8〉2 are less pronounced,

as expected from the power counting scheme in p2 and 1/Nc. However, because the fac-

torizable O(p2) and O(p0/Nc) corrections are small (and negative), the non-factorizable

terms produce a significant reduction of 〈Q8〉2. The size of the higher order terms indicates

that the leading-Nc calculation or the closely related VSA are not sufficient for the matrix

elements of the Q8 operator.7

In view of the large corrections one might question the convergence of the 1/Nc ex-

pansion. However, there is no strong reason for such doubts because the non-factorizable

contribution we consider in this paper represents the first term in a new type of a series

absent in the large-Nc limit. It is reasonable to assume that this leading non-factorizable

term carries a large fraction of the whole contribution.

As a general result, we note that our study indicates a significant reduction of B(3/2)
8 . By

comparison the corrections to B
(1/2)
6 are moderate, i.e., there is no clear tendency for values

7This has already been observed for the matrix elements of Q1 and Q2 which are relevant for the
∆I = 1/2 selection rule [1].
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much larger or smaller than one. Our results for 〈Q6〉0 and 〈Q8〉2 can still be improved by

calculating higher order terms in p2 and 1/Nc, like for instance those of O(p2/Nc) which

will be along the lines of this work. The O(p2/Nc) will bring in a quadratic dependence

on Λc [29] and even though suppressed by a factor of p2 relative to the O(p0/Nc) may

compensate, to a large extent, the scale dependence of the logarithmic terms of this paper.

Another improvement would be to include the vector mesons which is a new calculation

beyond the scope of this work.

It is interesting to compare our results with those of other calculations. Refs. [3] and

[4] investigated 1/Nc corrections to the matrix elements of Q6 and Q8. This calculation

considered the product of the two densities without the color singlet boson and the match-

ing of short- and long-distance contributions was not explicit as in the present article. The

O(p0/Nc) contribution to Q6 was not included, but terms of O(p2/Nc) were included in

Q6 and Q8. In this study the parametrization of the O(p4) lagrangian was not general

as only one coupling constant was introduced. The numerical results showed also a ten-

dency of reducing 〈Q8〉2 substantially, whereas 〈Q6〉0 was found to be enhanced compared

to the VSA result. Calculations in lattice QCD obtain values for B6 close to the VSA,

B(1/2)
6 (2GeV) = 1.0± 0.2 [30, 31] and 0.76(3)(5) [32]. Recent values reported for B8 are

B(3/2)
8 (2GeV) = 0.81(3)(3) [33], 0.77(4)(4) [34], and 1.03(3) [35]. These studies use tree

level chiral perturbation theory to relate the matrix elements 〈ππ|Qi|K〉 to 〈π|Qi|K〉 which

are calculated on the lattice. The chiral quark model [24] yields a range for B6 which is

above the VSA value, B(1/2)
6 (0.8GeV) = 1.2−1.9, and predicts a small reduction of the B8

factor, B(3/2)
8 (0.8GeV) = 0.91− 0.94. Although the scales used in the lattice calculations

and the phenomenological approaches are different, the various results can be compared as

the B6 and B8 parameters were shown in QCD to depend only very weakly on the renor-

malization scale for values above 1GeV [7]. Finally, in their analysis of ε′/ε the authors

of Ref. [36] considered B6 and B8 as free parameters to be varied around the VSA values

B(1/2)
6 = B(3/2)

8 = 1.

We note that our result for B
(1/2)
6 is in rough agreement with those of the various

studies quoted above, whereas the value we obtain for B
(3/2)
8 lies below the values reported

previously. It is desirable to investigate whether this substantial reduction of 〈Q8〉2, which

is due to the non-factorizable 1/Nc corrections to the leading term in the chiral expansion

of Q8, will be affected by higher order corrections. This point is of great phenomenological

interest because a less effective cancellation between the Q6 and Q8 operators, in the range

obtained in the present analysis, will lead to a large value of ε′/ε in the ball park of

∼ 10−3. This can be confirmed or disproved by the forthcoming experiments at CERN

(NA48), Fermilab (E832) and Frascati (KLOE).
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7 Summary

It was recognized, long ago, that the operators Q6 and Q8 are of central importance for

the determination of the CP parameter ε′/ε. This makes the calculation of their matrix

elements imperative as the Wilson coefficients are known to a good degree of accuracy.

We carried out this calculation in the 1/Nc expansion, where we included terms up to

O(p2) and O(p0/Nc). In doing so we introduced several improvements. First we used

the complete pseudoscalar lagrangian relevant to these orders and included effects of the

singlet η0, which we found to be small. At the same time we paid special attention on

the definition of the momenta in the chiral loop corrections. To this end, we considered

the exchange of a bosonic field between the quark densities whose momentum is taken to

be the same at long and short distances. In this approach we set up the identification

of the ultraviolet cutoff of the long-distance terms with the QCD renormalization scale.

This procedure leads naturally to the classification of the diagrams into factorizable and

non-factorizable.

We showed explicitly, to O(p0/Nc), that the factorizable scale of the chiral loop cor-

rections is absorbed in the renormalization of the low-energy lagrangian. Thus for the

factorizable terms the matching of long- and short-distance contributions is between the

running quark masses and quark densities where the matching is exact, i.e., the scale de-

pendence drops out. There remain the non-factorizable terms where we showed explicitly

that the dependence on the cutoff, to the order of our calculation, is only logarithmic. Our

analysis was carried through using two different techniques. The first one is an explicit

calculation of the matrix elements at the particle level which involves a large number of

diagrams. The second is the background field method. It leads to operator relations which

can be applied also to K → 3π decays. We verified that both techniques give the same

results for the quadratic and logarithmic terms. The full finite corrections were calculated

at the particle level.

Finally, we determined the numerical values of the matrix elements. We obtained

moderate corrections to 〈Q6〉0 and a large decrease of 〈Q8〉2. Each of these matrix elements

depends on the renormalization scale, but it is significant to emphasize that their ratio is

fairly stable. The numerical results indicate that loop corrections are important and must

be included. We note that the terms of O(p0/Nc) we calculated here are lowest order

corrections to the well established O(p2) chiral lagrangian and do not contain any large

ambiguity. It remains to be seen whether the results of Tables 1 and 2 will be affected by

higher order corrections. This point is important because a cancellation between the gluon

and the electroweak penguins in the range obtained in the present analysis will lead to a
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large value of ε′/ε ∼ 10−3.
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A Bare Parameters

In terms of the basic integrals the full expressions needed for the renormalization procedure

read

Zπ = 1 +
8L5

f2
m2
π −

1

3f2

(
2I1[mπ] + I1[mK ]

)
, (58)

ZK = 1 +
8L5

f2
m2
K −

1

4f2

(
I1[mπ] + 2I1[mK] + cos2θ I1[mη] + sin2θ I1[mη′]

)
, (59)

m2
π = rm̂

[
1− 8m2

π

f2
(L5 − 2L8) +

1

6f2

(
3I1[mπ]− a2I1[mη]− 2b2I1[mη′]

)]
, (60)

m2
K = r

m̂ + ms

2

[
1− 8m2

K

f2
(L5 − 2L8)

− 1

36f2m2
K

[
I1[mη]

(
m2
π(a

2 − 4b2)− 8m2
K(a− b)b−m2

η(a + 2b)2
)

+2I1[mη′]
(
2m2

Ka(a + 2b)−m2
π(a

2 − b2)−m2
η′(a− b)2

)]]
, (61)

Fπ = f

[
1 +

4L5

f2
m2
π −

1

2f2

(
2I1[mπ] + I1[mK ]

)]
, (62)

FK = f

[
1 +

4L5

f2
m2
K −

3

8f2

(
I1[mπ] + 2I1[mK] + cos2θ I1[mη] + sin2θ I1[mη′]

)]
. (63)

a, b and θ are defined in Eqs. (10) and (19), the integral I1[m] in Eq. (64) of Appendix B.

Eqs. (59)–(61) and (63) differ from the corresponding expressions in Ref. [14] on account

of the presence of the η0 state. In the octet limit [θ = 0, m2
η = (4m2

K −m2
π)/3 ] Eqs. (58)–

(63) are in agreement with Ref. [14].8 We note that the η0 state modifies the logarithmic

dependence of the L8 coefficient on the renormalization scale, whereas it does not affect

the corresponding term in L5.

In the cutoff regularization scheme Eqs. (58)–(63) together with the explicit form of

the integral I1 given in Eq. (67) of Appendix B lead to the formulas listed in Section 4.1,

in which the finite terms have been omitted.

In the numerical analysis of the matrix elements dimensional regularization has been

used for the factorizable part, as argued at the end of Section 4.2, and the integral I1 has

been calculated in the standard way. The full expressions for the (renormalized) parameters

8The comparison is carried out by omitting the L4 and L6 terms which are subleading in Nc.
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f , L5 and L8 have been obtained from Eqs. (60)–(63) by replacing f byFπ (or FK) in the

O(p2) and O(p0/Nc) terms, as discussed at the end of Section 4.1.

B Basic Integrals

Using algebraic relations the complex structures of the four-dimensional integration can

be reduced to three basic components:

I1[m] =
i

(2π)4

∫
d4q

1

q2 −m2
, (64)

I2[m, p] =
i

(2π)4

∫
d4q

1

(q − p)2 −m2
, (65)

I3[m1, m2, p] =
i

(2π)4

∫
d4q

1

(q2 −m2
1)[(q − p)2 −m2

2]
. (66)

Performing a Wick-rotation to Euclidian space-time the ultraviolet cutoff may be imple-

mented through the step-function θ(Λ2
c − q2

E). A straightforward calculation then yields

I1[m] =
1

16π2

[
Λ2
c −m2 log

(
1 +

Λ2
c

m2

)]
. (67)

In order to determine I2 and I3 analytically we shift the variable q by the external mo-

mentum. Properly taking into account the resulting modification of the upper bound we

introduce an angular-dependent argument of the step-function. However, we omit the

explicit angular-integration writing the latter function in terms of a Taylor-series:

θ(Λ2
c − q′2E + a) = θ(Λ2

c − q′2E ) +
∞∑
m=0

(−1)m
dmδ(Λ2

c − q′2
E

)

d(q′2
E

)m
am+1

(m + 1)!
. (68)

The corresponding solution of the integral I2 reads

I2[m, p] =
1

16π2

{
Λ2
c −m2 log

(
1 +

Λ2
c

m2

)
+

p2Λ4
c

2(Λ2
c + m2)2

+
p4Λ4

cm
2

2(Λ2
c + m2)4

− p6Λ4
cm

2

3(Λ2
c + m2)6

(
Λ2
c −

3

2
m2

)}
+O(p8) . (69)

The computation of I3 requires a Feynman-parametrization:

I3[m1, m2, p] =

∫ 1

0

dx

∫
id4q

16π2

{
(q − xp)2 −

[
x2p2 − x(p2 + m2

1 −m2
2) + m2

1

]}−2
. (70)

Performing the Wick-rotation and introducing the variable q′E = qE − xpE we obtain

I3[m1, m2, pE] = − 1

16π2

∫ 1

0

dx

∫
d4q′

E

1

[q′2E + M2(x)]2
θ
[
Λ2
c − q′2

E
− 2x(q′p)E − x2p2

E

]
, (71)
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with

M2(x) = −x2p2
E + x(p2

E −m2
1 + m2

2) + m2
1 . (72)

For distinct masses m1 and m2 Eq. (71) yields

I3[m1, m2, p] =
1

16π2

{√
−w

p2

(
arctan

[
m2

1 −m2
2 + p2

√
−w

]
+ arctan

[
m2

2 −m2
1 + p2

√
−w

])

+
1

p2
(m2

2 −m2
1) log

(
m2

m1

)
− 1 + log

(
m1m2

Λ2
c + m2

2

)
+

m2
1

m2
1 −m2

2

log

(
Λ2
c + m2

2

Λ2
c + m2

1

)

+
p2m2

2

2(m2
1 −m2

2)
2

[
1

(Λ2
c + m2

2)
2
(2Λ2

cm
2
1 + m2

1m
2
2 + m4

2) +
2m2

1

m2
1 −m2

2

log

(
Λ2
c + m2

2

Λ2
c + m2

1

)]

+
p4m2

2

(m2
1 −m2

2)
4

[
1

6(Λ2
c + m2

2)
4

(
6Λ6

cm
2
1(m

2
1 + m2

2) + 3Λ4
cm

2
1(−m4

1 + 6m2
1m

2
2 + 7m4

2)

+2Λ2
cm

2
2(2m

4
1m

2
2 + 17m2

1m
4
2 −m6

2) + m6
2(m

4
1 + 10m2

1m
2
2 + m4

2)
)

+
m2

1(m
2
1 + m2

2)

(m2
1 −m2

2)
log

(
Λ2
c + m2

2

Λ2
c + m2

1

)]}
+O(p6) , (73)

where we defined

w =
(
m2

1 + m2
2 − p2

)2 − 4m2
1m

2
2 . (74)

As I3 starts only logarithmically in the cutoff dependence, in Eq. (73) we truncated the

series including only terms up to the order p4.

In the case of equal masses we perform a power series expansion with respect to the

parameter δm2 = m2
1 −m2

2. Then putting δm2 to zero we find

I3[m1 = m2, p] =
1

16π2

{
2
√
−w

p2
arctan

(
p2

√
−w

)
− 1− m2

1

Λ2
c + m2

1

+ log

(
m2

1

Λ2
c + m2

1

)
+p2 (3Λ2

c + m2
1)m

2
1

6(Λ2
c + m2

1)
3

+ p4 (−20Λ4
c + 5Λ2

cm
2
1 + m4

1)m
2
1

60(Λ2
c + m2

1)
5

}
+O(p6) . (75)

with w being reduced to w = p4 − 4p2m2
1.

Through analytic continuation, Eqs. (73) and (75) provide complex solutions. These

appear for
√

p2 > m1+m2. In the process under consideration, the latter relation can only

be satisfied for m1 = m2 = mπ, p = pK . Thus our analysis gives the physical threshold

condition for π − π rescattering, the imaginary part of I3 being attributed to the strong

final state interaction phase.
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Figure Captions

Fig. 1 Matching of short- and long-distance contributions.

Fig. 2 Tree plus factorizable loop diagrams for the K → ππ matrix elements of Q6 and

Q8; the crossed circles denote the bosonized densities, the black circles the strong

interaction vertices. The external lines represent all possible configurations of the

kaon and pion fields.

Fig. 3 Same as in Fig. 2, now for the non-factorizable loop diagrams.

Fig. 4 Evolution of the density operator; the black circle, square and triangle denote the

kinetic, mass and UA(1) breaking terms in Eq. (41), the crossed circle the density of

Eq. (42). The lines represent the ξ propagators.

Fig. 5 Evolution of the current operator. The crossed circle here denotes the bosonized

current.

Fig. 6 Evolution of the kinetic operator (wave function renormalization).

Fig. 7 Evolution of the mass operator (mass renormalization).

Fig. 8 Non-factorizable loop diagrams for the evolution of a density×density operator.
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