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1 Introduction

There has been great interest recently in the topic of parameter reconstruction from

the Cosmic Microwave Background (CMB). Most of the emphasis in the literature is on

the question of determining cosmological parameters such as the density 
0, the Hubble

constant H0, or the value of the cosmological constant �. The purpose of this talk is

to take a di�erent approach and apply the machinery of CMB parameter estimation to

the subject of in
ationary model building.[1] We assume generic features of the universe

consistent with in
ation (a 
at universe, vanishing �), but allow parameters sensitive

to in
ation to vary. The goal is to determine how well we will be able to distinguish

between popular in
ation models using upcoming CMB experiments, in particular the

all-sky satellite missions MAP and Planck.

The parameters that are of interest for in
ation are the ratio of tensor to scalar


uctuation amplitudes measured at the quadrupole r � Ctensor
2 =Cscalar

2 , and the spectral

index of scalar 
uctuations n. Fixed parameters are the density of the universe 
0 = 1,

and the present vacuum energy � = 0. Other parameters are allowed to vary, and we plot

the expected sensitivity of NASA's MAP satellite[2] and the ESA's Planck Surveyor[3]

as ellipses projected onto the r � n plane.

2 Parameterizing In
ation

In
ation in its most general sense can be de�ned to be a period of accelerated expansion

of the universe, during which the universe evolves toward homogeneity and 
atness. This

acceleration is typically due to the energy density of the universe being dominated by

vacuum energy, with equation of state p ' ��. Within this broad framework, many

speci�c models for in
ation have been proposed. We limit ourselves here to models with

\normal" gravity (i.e., general relativity) and a single order parameter for the vacuum,
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described by a slowly rolling scalar �eld � (the in
aton). These assumptions are not

overly restrictive { most widely studied in
ation models fall within this category, includ-

ing Linde's \chaotic" in
ation scenario, in
ation from pseudo Nambu-Goldstone bosons

(\natural" in
ation), dilaton-like models involving exponential potentials (power-law in-


ation), hybrid in
ation, and so forth. Other models, such as Starobinsky's R2 model

and verions of extended in
ation, can, through a suitable transformation, be viewed in

terms of equivalent single-�eld models.

The slow-roll approximation, in which the �eld evolution is dominated by drag from

the cosmological expansion, is consistent if both the slope and curvature of the potential

are small, V 0; V 00 � V . This condition is conventionally expressed in terms of the

\slow-roll parameters" � and �
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P l
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Slow-roll is then a consistent approximation for �; � � 1. The parameter � can in fact be

shown to directly parameterize the equation of state of the scalar �eld, p = �� (1� 2=3�),

so that the condition for in
ation of accelerating expansion is exactly equivalent to � < 1.

To match the observed degree of 
atness and homogeneity is the universe, we require

many e-folds of in
ation, typically N ' 50.

In
ation not only explains the high degree of large-scale homogeneity in the universe,

but also provides a mechanism for explaining the observed inhomogeneity as well. The

metric perturbations created during in
ation are of two types: scalar, or curvature pertur-

bations, which couple to the stress-energy of matter in the universe and form the \seeds"

for structure formation, and tensor, or gravitational wave perturbations, which do not
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couple to matter. Both scalar and tensor perturbations contribute to CMB anisotropy.

Scalar 
uctuations can be quantitatively described by perturbations PR in the intrinsic

curvature scalar

P
1=2
R (k) =

1p
�

H

MP l

p
�

����
k�1=dH

: (3)

The 
uctuation power is in general a function of wavenumber k, and is evaluated when a

given mode crosses outside the horizon during in
ation k�1 = dH. Outside the horizon,

modes do not evolve, so the amplitude of the mode when it crosses back inside the horizon

during a later radiation or matter dominated epoch is just its value when it left the horizon

during in
ation. The spectral index n is de�ned by assuming an approximately power-law

form for PR with

n� 1 � d ln (PR)

d ln (k)
' 1� 4�+ 2�; (4)

so that a scale-invariant spectrum, in which modes have constant amplitude at horizon

crossing, is characterized by n = 1. Instead of specifying the 
uctuation amplitude

directly as a function of k, it is often convenient to specify it as a function of the number

of e-foldsN before the end of in
ation at which a mode crossed outside the horizon. Scales

of interest for current measurements of CMB anisotropy crossed outside the horizon at

N ' 50, so that PR is conventionally evaluated at PR (N = 50). Similarly, the power

spectrum of tensor 
uctuation modes is given by

P
1=2
T (kN) =

1p
�

H

MP l

����
N=50

: (5)

The tensor spectral index is

nT = �2� = �2PT
PR

: (6)

Note that nT is not independent of the other parameters PR, PT , and n. Equation (6) is

known as the consistency condition, and is true only for single-�eld models. (In models
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with multiple degrees of freedom, Eq. (6) weakens to an inequality.) We then have three

independent parameters for describing in
ation models: PR, PT , and n. Equivalently,

we can use normalization PR and the two slow-roll parameters � and �. This will prove

to be the more convenient choice for categorizing models. For comparing to observation,

it proves convenient to use a di�erent set of three parameters: normalization at the

quadrupole Qrms�PS (equivalent to PR), spectral index n, and tensor-to-scalar ratio r.

The ratio r of tensor to scalar modes measured at the quadrupole is[4]

r � CTensor
2

CScalar
2

= 13:7�; (7)

so that tensor modes are negligible for �� 1. It is a simple matter to transform between

slow-roll parameters �, � and the parameters n and r.

3 In
ationary Zoology

Even with the restriction to single-�eld, slow-roll in
ation, the number of models in the

literature is large. It is convenient to de�ne a general classi�cation scheme, or \zoology"

for models of in
ation. we divide models into three general types: large-�eld, small-�eld,

and hybrid, with a fourth classi�cation, linear models, serving as a boundary between

large- and small-�eld. A generic single-�eld potential can be characterized by two inde-

pendent mass scales: a \height" �4, corresponding to the characteristic vacuum energy

density during in
ation, and a \width" �, corresponding to the characteristic change in

the �eld value �� during in
ation. The height � is �xed by normalization, so the only

remaining free parameter is the width �. Di�erent classes of model are distinguished by

the value of the second derivative of the potential, or, equivalently, by the relationship

between the values of the slow-roll parameters � and �. These di�erent classes of models

have readily distinguishable consequences for the CMB. Figure 1 shows the r � n plane

divided up into regions representing the large-�eld, small-�eld and hybrid cases, describe
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Figure 1: The parameter space divided into regions for small-�eld, large-�eld and hybrid
models. The linear case is the dividing line between large- and small-�eld.

in detail below.

3.1 Large-�eld models: 0 < � � �

Large-�eld models are potentials typical of \chaotic" in
ation scenarios, in which the

scalar �eld is displaced from the minimum of the potential by an amount usually of order

the Planck mass. Such models are characterized by V 00 (�) > 0, and 0 < � � �. The

generic large-�eld potentials we consider are polynomial potentials V (�) = �4 (�=�)p,

and exponential potentials, V (�) = �4 exp (�=�). For the case of power-law in
ation,

V (�) / exp (�=�), the slow-roll parameters are

� = � / (MP l=�)
2 ; (8)

and r = 7(1� n). This result is often incorrectly generalized to all slow-roll models, but

is in fact characteristic only of power-law in
ation. Note that we have a one-parameter

family of models, parameterized by the width �. For chaotic in
ation with a polynomial
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potential V (�) / �p, the slow-roll parameters are

� =
p

p+ 200
=

�
p

p� 2

�
�: (9)

Again we have r / 1� n, so that tensor modes are large for signi�cantly tilted spectra.

Unlike the case of the exponential potential, the scale � drops out of the expressions for

the observables, and the models are parameterized by the discrete exponent p.

3.2 Small-�eld models: � < 0 < �

Small-�eld models are the type of potentials that arise naturally from spontaneous sym-

metry breaking. The �eld starts from near an unstable equilibrium and rolls down the

potential to a stable minimum. Small �eld models are characterized by V 00 (�) < 0

and � < 0 < �. The generic small-�eld potentials we consider are of the form V (�) =

�4 [1� (�=�)p]. In all cases, the slow-roll parameter � is very small, so that tensor modes

are negligible. The cases p = 2 and p > 2 have very di�erent behavior. For p = 2, the

slow-roll parameter � is

� / �(MP l=�)
2; (10)

so that the width of the potential �� � � must be of order MP l for the spectral index

n ' 1+2� to satisfy observational constraints. As in the case of the exponential potential,

the p = 2 small-�eld case is a one-parameter family of models. For p > 2,

� / �
�
p� 1

p� 2

�
(11)

is independent ofMP l=�, so that �� � ��MP l is consistent with a nearly scale-invariant

scalar 
uctuation spectrum.

3.3 Hybrid models: 0 < � < �

The hybrid scenario frequently appears in models which incorporate in
ation into super-

symmetry. In a hybrid in
ation scenario, the scalar �eld responsible for in
ation evolves
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toward a minimum with nonzero vacuum energy. The end of in
ation arises as a result of

instability in a second �eld. Hybrid models are characterized by V 00 (�) > 0 and 0 < � < �.

We consider generic potentials for hybrid in
ation of the form V (�) = �4 [1 + (�=�)p] :

The �eld value at the end of in
ation (and hence �N=50) is determined by some other

physics, and we treat �N=50 in this case as a freely adjustable parameter. The slow-roll

parameters are then related as

�

�
=

2 (p� 1)

p

�
�

�N=50

�p

(12)

The distinguishing feature of many hybrid models is a blue scalar spectral index, n > 1.

This corresponds to the case � >> �, or �N=50 � �. Because of the extra freedom to

choose the �eld value at the end of in
ation, hybrid models form a two-parameter family.

There is, however, no overlap in the r � n plane between hybrid in
ation and other

models.

3.4 Linear models: � = ��

Linear models, V (�) / �, live on the boundary between large-�eld and small-�eldmodels,

with V 00 (�) = 0 and � = ��.

4 Parameter Estimation from the CMB

Observations of the CMB don't directly measure r and n. What is actually measured is

anisotropy in the temperature of the CMB as a function of angular scale. It is convenient

to expand the temperature anisotropy on the sky in spherical harmonics:

�T (�; �)

T0
=

1X
l=0

lX
m=�l

almYlm(�; �) (13)

where T0 = 2:726�K is the average temperature of the CMB today. In
ation predicts

that each alm will be Gaussian distributed with mean zero and variance Cl � hjalmj2i.

8



For Gaussian 
uctuations, the set of Cl's completely characterizes the 
uctuations. The

spectrum of the Cl's is in turn dependent on cosmological parameters { 
0, H0, 
B, and

so forth. The dependence on parameters is complicated, and a spectrum of Cl's for a

given set of cosmological parameters is calculated by numerically evaluating a Boltzmann

equation[6]. Given a set of observational uncertainties �Cl in the CMB spectrum, the

goal is to determine observational uncertainties in n and r. Given a set of parameters

f�ig, assume a true set of values �true. The Fisher information matrix, given by

�ij =
X
l

�
@Cl

@�i

�
�=�true

1

(�Cl)
2

�
@Cl

@�j

�
�=�true

; (14)

characterizes the accuracy with which the parameters �i can be measured, with the

typical error in the ith parameter being of order
p
(��1)ii. The parameters we marginalize

over are the spectral index n, the tensor to scalar ratio r, the normalization Qrms�PS,

baryon fraction 
B, and the Hubble constant H0. Fixed parameters are the matter

fraction 
0 = 1 and the cosmological constant 
� = 0. We consider central values for

the parameters

�
�true

	
= fn; r;Qrms�PS;
B;H0g = f0:9; 0:7; 18�K; 0:08; 50g : (15)

The expected uncertainty in the Cl's for a given experiment can be estimated as[7]

�Cl =

r
2

2l + 1

�
Cl + �2pixel
pixel exp

�
l2�2beam

��
; (16)

where �2pixel is the rms pixel nose, 
pixel is the area of a pixel in steradians, and �2beam

is the width of the beam, which is assumed to be gaussian. For MAP, we take �beam =

0:425�0:3� and �2pixel
pixel = (35�K)2 (0:3�)2. For Planck, we take �beam = 0:425�0:167�

and �2pixel
pixel = (3�K)2 (0:167�)2. Figure 2 shows the generic in
ation models plotted

in the r � n plane with typical 2� error ellipses from MAP and Planck.
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Figure 2: In
ation models plotted in the r � n plane, with 2� error ellipses from MAP
and Planck.

5 Conclusions

It is evident from Figure 2 that MAP will allow at least rough distinction between

large-�eld, small-�eld, and hybrid models. Planck, on the other hand, will allow for

the beginnings of real precision work in constraining in
ation models. Planck will be

capable, for instance, of distinguishing the exponent p in a chaotic in
ation model V (�) /
�p. David Lyth has presented arguments that an appreciably large r is theoretically

disfavored.[5] We �nish by noting that these arguments will be put to observational test

within the next few years!
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