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Abstract

We measure the top quark massmt using t�t pairs produced in the D� detector

by
p
s = 1.8 TeV p�p collisions in a 125 pb�1 exposure at the Fermilab Teva-

tron. We make a two constraint �t to mt in t�t ! bW+ �bW� �nal states with

oneW decaying to q�q and the other to e� or ��. Events are binned in �t mass

versus a measure of probability for events to be signal rather than background.

Likelihood �ts to the data yield mt = 173:3� 5:6 (stat)� 6:2 (syst) GeV=c2.
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The top quark has a large mass mt that can be determined to greater fractional precision
than is possible for the lighter quarks, which decay after they form hadrons. Sincemt is large,
it controls the strength of quark-loop corrections to tree-level relations among electroweak
parameters. If these parameters and mt are measured precisely, the Standard Model Higgs
boson mass can be constrained.

Direct measurements of mt have been published as part of the initial observations [1] of
t�t production in

p
s = 1:8 TeV p�p collisions. At present, the best accuracy in mt is achieved

for lepton + jets (`+jets) �nal states in which one W boson (from t ! bW ) decays to e�

or �� and the other W decays to a q�q pair that forms jets. We report a measurement of mt

in the `+jets channel using the �125 pb�1 exposure of the D� detector during the 1992{96
Fermilab Tevatron runs. Since Ref. [1] appeared, our data sample has doubled, and for a
�xed sample size our error on mt has halved.

The D� detector and our basic methods for triggering, reconstructing events, and identi-
fying particles are described elsewhere [2]. Recent advances include enhanced triggering and
reconstruction e�ciency for �+jets events, due in part to better use of calorimeter data. As
a signature of W ! `�, we require missing energy transverse to the beam ( 6ET ) > 20 GeV,
and one isolated e or � (`) with E`

T > 20 GeV and pseudorapidity j�ej < 2 or j��j < 1:7.
We also demand 6Ecal

T > 25 (20) GeV for e+jets (�+jets) events, where 6Ecal
T is 6ET measured

only in the calorimeter. As signatures of the q�q from W decay and the b and �b from t and �t
decay, we require�4 jets reconstructed with cones of half-angle �R � (��2+��2)1=2 = 0:5,
having ET > 15 GeV and j�j < 2.

Within �R = 0:5 of a jet axis, additional muons (� tags) satisfying p�T > 4 GeV/c and
j��j < 1:7 arise mainly from b and c quark semileptonic decay. These occur in �20% of t�t
events but only �2% of background events [2]. In untagged events, to suppress background
we require EL

T (� jE`
T j + j6ET j) > 60 GeV and j�W j < 2 for the W ! `�. The latter cut,

exhibited in Fig. 1(a), reduces the di�erence in �W distributions between data and Monte
Carlo (MC) simulated background. We use the herwig MC [3] to simulate top signal,
and the vecbos MC [4] (with herwig fragmentation of partons into jets) to simulate (but
not to normalize) the dominant W+multijet background. The �20% of background events
from non-W sources are modeled by multijet data that barely fail the lepton identi�cation
criteria.

To each event passing the above cuts, we make a two constraint (2C) kinematic �t [5]
to the t�t ! `+jets hypothesis by minimizing a �2 = (v � v

�)TG(v � v
�), where v (v�) is

the vector of measured (�t) variables and G�1 is its error matrix. Both reconstructed W

masses are constrained to equal the W pole mass, and the same �t mass m�t is assigned
to both the t and �t quarks. If the event contains >4 accepted jets, only the four jets with
highest ET are used. In �50% of MC top events, these jets correspond to the b, �b, q, and �q.
With (without) a � tag in the event, there are 6 (12) possible �t assignments of these jets
to the quarks, each having two solutions to the � longitudinal momentum p�z . We use m�t

only from the permutation with lowest �2, the correct choice for �20% of MC top events.
Because of the ambiguities, m�t is not the same as mt, though they are strongly correlated.
Our best estimate of mt is obtained from the best match between MC samples and the data.

From the 90-event distribution shown in Fig. 1(b) we select 77 events with a 2C �t
satisfying �2 < 10. Of these, 5 are � tagged and �65% are background. Further separation
of signal and background events is based on four kinematic variables x � fx1; x2; x3; x4g

5



chosen to have small correlation with m�t. On average, all are larger for MC top events than
for background events, selected to have the same hm�ti as the top events [6]. The simpler
variables are x1 � 6ET and x2 � A, where aplanarity A is 3

2
� the least eigenvalue of the

normalized laboratory momentum tensor of the jets and the W boson. The third variable
x3 � HT2=Hz measures the event's centrality, where Hz is the sum of jpzj of `, �, and the
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FIG. 1. Events per bin vs. event selection variables de�ned in the text, plotted for (a{b, g{h)

top quark mass analysis samples, and (c{f) W+3 jet control samples. Histograms are data, �lled

circles are expected top + background mixture, and open triangles are expected background only.

Solid arrows in (a{b) show cuts applied to all events; the open arrow in (g) illustrates the LB cut.

The nonuniform bin widths in (g{h) are chosen to yield uniform bin populations.
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jets, and HT2 is the sum of all jet jET j except the highest. Finally, x4 � �Rmin
jj Emin

T =EL
T

measures the extent to which jets are clustered together, where �Rmin
jj is the minimum�R

of the six pairs of four jets, and Emin
T is the smaller jet ET from the minimum�R pair. As

shown for the background dominated W+3 jet sample in Fig. 1(c{f), x1{x4 are reasonably
well modeled by MC; this is true also for the W+2 jet and top mass samples (not shown).

We bin events in a two-dimensional array with abscissa m�t and ordinate D(x), where
D is a multivariate discriminant. To show that our results are robust, we use two methods
for which the de�nition of D, the granularity with which it is binned, and the additional
requirements are di�erent. In our \low bias" (LB) method, we �rst parametrize Li(xi) �
si(xi)=bi(xi), where si and bi are the top signal and background densities in each variable,
integrating over the others. We form the log likelihood lnL � P

i !i lnLi, where the weights
!i are adjusted slightly away from unity to nullify the average correlation (\bias") of L with
m�t, and for each event we set DLB = L=(1 + L). Finally, we divide the ordinate coarsely
into signal- and background-rich bins according to whether the LB cut is passed. This cut is
satis�ed if a � tag exists; otherwise it is not satis�ed if DLB < 0:43 (Fig. 1(g)) or if HT2 < 90
GeV.

Our neural network (NN) method is sensitive to the correlations among the xi as well as
to their individual densities. We use a three layer feed-forward NN with 4 input nodes fed by
x, 5 hidden nodes, and 1 output node, trained on samples of top signal (background) with
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N

FIG. 2. Events per bin (/ areas of boxes) vs.DNN (ordinate) andm�t (abscissa) for (a) expected

172 GeV/c2 top signal, (b) expected background, and (c) data. DNN is binned as in Fig. 1(h).
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density s(x) (b(x)) [7]. For a given event, the network output DNN approximates the ratio
s(x)=(s(x)+b(x)). We divide the ordinate �nely into ten bins inDNN, independent ofHT2 or
� tagging. Figure 1(g{h) shows that DLB and DNN are distributed as predicted and provide
comparable discrimination, as we expect when the !i are close to unity and the Li are not
strongly correlated. Figure 2 exhibits the arrays for the NN method. Little correlation
between DNN and m�t is evident in the expected signal or background distributions, which
are distinct; the data clearly reveal contributions from both sources. Figure 3 shows the
distributions of m�t for data (a) passing and (b) failing the LB cut.

To each mt for which we have generated MC, we assign a likelihood L which assumes

0

1

2

3

4

5

6

7

8

9

Fit top quark mass (GeV/c
2
)

data

fit

bkgd

(a)

0

10

0

2

4

6
∆ 

ln
 L

80 120 160 200 240 280

(b)

Fit mass100 260

LB
NN

(c)

150 200True mass

FIG. 3. (a{b) Events per bin vs.m�t for events (a) passing or (b) failing the LB cut. Histograms

are data, �lled circles are the predicted mixture of top and background, and open triangles are

predicted background only. The circles and triangles are the average of the LB and NN �t pre-

dictions, which di�er by <10%. (c) Log of arbitrarily normalized likelihood L vs. true top quark

mass mt for the LB (�lled triangles) and NN (open squares) �ts, with errors due to �nite top MC

statistics. The curves are quadratic �ts to the lowest point and its 8 nearest neighbors. In MC

studies, 7% (27%) of simulated experiments yield a smaller LB (NN) maximum likelihood.
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TABLE I. Results of �ts to data and MC events. Fits to data yield values and errors �(stat) for

mt, ns, and nb (described in the text). Systematic errors are combined in quadrature. The resulting

mt and its statistical error �m are the combined LB and NN values. Fits to MC use ensembles of

10,000 simulated experiments composed of top + background, with mt, hnsi, and hnbi as listed.
They yield a mean result hmti, a mean statistical error h�mi, and a range ��m within which 68%

of the results fall. Using the LB (NN) method, 6% (25%) of the simulated experiments produce

a �m which is smaller than we obtain. For an \accurate subset" of the MC ensembles with mean

�m=mt that matches our value, �m is smaller.

Fits to data  ---LB fit---     ---NN fit---
Quantity fit value    σ(stat) value    σ(stat)

m t (GeV/c2) 174.0  ±  5.6 171.3 ±  6.0

n s 23.8 +8.3 −7.8 28.8 +8.4 −9.1

n b 53.2+10.7 −9.3 48.2+11.4 −8.7

Systematic error on m t energy scale  ±  4.0

   generator   ±  4.1

       other   ±  2.2

Resulting m t (GeV/c2) 173.3 ± 5.6 (stat) ± 6.2 (syst)

Fits to MC type    ----input----       ----output----  
(top + background) of fit m t 〈n s 〉 〈n b 〉 〈σm 〉   〈m t 〉    δm

full ensemble LB 175 24 53 9.9 175.0    8.7
   " NN 172 29 48 8.5 171.6    8.0
accurate subset LB 175 24 53 5.5 175.3    4.6
   " NN 172 29 48 5.8 172.0    6.0

that all samples obey Poisson statistics. Bayesian integration [8] over possible true signal
and background populations in each bin yields

L(mt; ns; nb) =
MY
i=1

niX
j=0

 
nsi + j

j

! 
nbi + k

k

!
pjs(1 + ps)

�nsi�j�1 pkb (1 + pb)
�nbi�k�1 ;

where ns (nb) is the expected number of signal (background) events in the data; ni, nsi, and
nbi are the actual number of data, MC signal, and MC background events in bin i; k � ni�j;
ps;b � ns;b=(M +

P
i nsi;bi); and M = 40 (200) bins for the LB (NN) methods. Maximizing L

for each mt gives the best estimates n�s(mt) and n�b(mt) for ns and nb. Figure 3(c) displays
lnL(mt; n

�
s(mt); n�b(mt)) vs. mt, where the curves determine the best �t mt and its statistical

error �m.
Table I presents the �t results, which are consistent with Ref. [1] and with recent re-

ports [9]. The LB and NN results mLB
t and mNN

t are mutually consistent; in 21% of MC
experiments they are further apart. Nevertheless we include half of mLB

t �mNN
t in the sys-

tematic error. To obtain our result, shown in Table I, we combine mLB
t and mNN

t allowing
for their (88� 4)% correlation (determined by MC experiments). Figures 3(a{b) show that
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this result represents the data well. From the MC experiments summarized in Table I we
measure the interval ��m within which 68% of the MC estimates fall. For the full ensemble,
�m is larger than �m from our data. However, for \accurate subsets" of the ensemble for
which the average �m=mt is the same as we observe, �m is close to �m [10].

A principal systematic error in mt arises from uncertainty in the jet energy scale, which
is calibrated in three steps. In step 1, applied before events are selected, the summed energy
Ejet of particles emitted within the jet cone is related [11] to the measured energy Em by
Ejet = (Em � O)=R(1 � S). Here the calorimeter response R is calibrated using Z ! ee

decays and ET balance in 
+jet events, the fractional shower leakage S out of the jet cone
is set by test beam data, and the energy o�set O due to noise and the underlying event is
determined using events with multiple interactions. Steps 2 and 3 are applied only to jet
energies used to �nd m�t. In step 2, top MC is used to correct Ejet to the parton energy
in both data and MC. This sharpens the resolution in m�t. Step 3 is a �nal adjustment
based on more detailed study of 
+jet events in data and MC, particularly focused on the
dependence of the ET balance upon � of the jet. We assign a jet-scale error of �(2.5% + 0.5
GeV) based on the internal consistency of step 3, on variations of the 
+jet cuts and the
model for the underlying event, and on an independent check of the ET balance in Z+jet
events. This leads to an error on mt of �4.0 GeV/c2.

We estimate the uncertainties in modeling of QCD by substituting the isajet MC gen-
erator [12] for herwig, independently for top MC and for vecbos fragmentation, and by
changing the vecbos QCD scale from jet hpT i2 to M2

W . The resulting systematic error due
to the generator is �4.1 GeV/c2. Other e�ects including noise, multiple p�p interactions,
and di�erences in �ts to lnL contribute �2.2 GeV/c2. All systematic errors (Table I) sum
in quadrature to �6.2 GeV/c2. Therefore our direct measurement of the top quark mass is
mt = 173:3 � 5:6 (stat) � 6:2 (syst) GeV/c2.
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