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The iuflationary prediction of a flat Universe is at odds with current determinations of the matter density (0~ N 0.2 - 0.4). 
This dilemma can be resolved if a smooth component contributes the remaining energy density (nx = 1-0~). We parameterize 
the smooth component by its equation of state, px = wpx, and show that zCDM with w N -0.6, 0~ E 0.3 and h N 0.7 is 
the best fit to ah present cosmological data. Together, the position of the peak in the CMB angular power spectrum and the 
Type Ia supernova magnitude-redshift diagram provide a crucial test of zCDM. 

Introduction. Inflation is a bold and expansive cosmo- 
logical paradigm which makes three firm and testable 

, predictions: flat Universe; nearly scale-invariant spec- 
trum of density perturbations; and nearly scale-invariant 
spectrum of gravitational waves [l]. (The first predic- 
tion can be relaxed at the expense of more complicated 
models and tuning the amount of inflation [2].) Flatness 
implies that the total energy density is equal to the criti- 
cal density (S&OT = 1). However, it makes no prediction 
about the form(s) that the critical energy takes. 

Together, the first and second predictions lead to the 
cold dark matter (CDM) scenario of structure formation 
which holds that most of the matter consists of slowly 
moving elementary particles such as axions or neutrali- 
nos and that structure in the Universe developed hier- 
archically, from galaxies to clusters of galaxies to super- 
clusters. Both the density perturbations and the grav- 
itational waves lead to characteristic signatures in the 
anisotropy of the Cosmic Microwave Background Radia- 
tion (CMB) [3]. 

The CDM picture is generally consistent with a wide 
array of cosmological observations: CMB anisotropy, 
determinations of the power spectrum of inhomogene- 
ity from redshift surveys and peculiar-velocity measure- 
ments, the evolution of galaxies as recently revealed by 
the Hubble Space Telescope and the Keck telescope, x- 
ray studies of clusters of galaxies and more. Actually, 
there are several CDM models, distinguished by their 
“invisible” matter content (e.g. Ref. [4] and references 
therein): baryons + CDM only (sCDM, s for simple); 
baryons + CDM + neutrinos with f12, - 0.15 (vCDM); 
baryons + CDM + cosmological constant (ACDM); 
baryons + CDM + larger energy density in relativis- 
tic particles (rCDM). Cosmological parameters also af- 
fect the predictions of each model: Hubble parameter 
Ho = 1OOh km s-l Mpc-‘, baryon density ilBh2, power- 
law index characterizing the spectrum of density pertur- 
bations n, and gravitational radiation described by the its 

contribution to the quadrupole CMB anisotropy relative 
to that of density perturbations (T/S) and the power-law 
index characterizing its spectrum (nT). For each CDM 
variant there are values of the cosmological parameters 
for which the model is consistent with most - but possi- 
bly not all - of the data. 

Flatness problem. From the very beginning, the predic- 
tion of a flat Universe has been troublesome: Put sim- 
ply there has never been strong evidence for flM = 1. 
Today, almost all determinations of the matter density 
are consistent with sly = 0.2 - 0.4 [5]. (This does 
provide general support for the existence of CDM since 
big-bang nucleosynthesis (BBN) constrains 0.007hm2 5 
Qn 5 0.024hm2 < 0.1 for h > 0.5 [6].) Strong sup 
port for flM N 0.3 comes from measurements of pecu- 
liar velocities and the cluster baryon fraction. Relating 
galactic peculiar velocities to the distribution of galaxies 
allows the mean density to be sampled in a very-large 
volume, about (30h-‘Mpc)3, and several studies indi- 
cate that fiM is at least 0.25, but probably significantly 
less than 1 [7]. X- ra 0 y b servations of clusters of galaxies 
determine the baryon-to-total mass ratio in a system of 
sufficient size to be representative of the universal value 
(fin/a,). This, together with the BBN value for an, 
implies fiM(hlO.7) l/2 = (0.3 f 0.2) [8]. Indirect support 
for sly < 1 comes from the fact that a flat, matter- 
dominated universe (age to = $H,‘) may be too young 
to be consistent with determinations of the age of the old- 
est stars (to = 15 f 2 Gyr) [9] and the Hubble parameter 
(h = 0.7 f 0.1) [lo]. 

In defense of a flat, matter-dominated Universe it 
should be said that there has yet to be a convincing mea- 
surement of the matter density in a sufficiently large vol- 
ume to provide a definitive determination of fiM - impor- 
tant systematic and interpretational uncertainties remain 
even in the peculiar-velocity and cluster-baryon-fraotion 
methods. While the age of the Universe coupled with 
large values of the Hubble parameter argue for fiM < 1, 
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the errors in to and h are still significant. Finally, some 
methods continue to favor higher values of QM: veloc- 
ity power-spectrum measurements, redshift-space distor- 
tions, void outflow, linear vs. non-linear power-spectrum 
measurements, galaxy counts and the problem of galaxy 
anti-biasing (see e.g. Ref. [ll]). 

A cosmological constant can resolve the flatness 
dilemma [12,13]. Since it corresponds to a uniform en- 
ergy density (vacuum energy) that does not clump, its 
presence is not detected in determinations of the matter 
density. Because of the accelerated expansion associated 
with a cosmological constant, the expansion age is larger 
for a given Hubble parameter (see Fig. 1). Until very 
recently, ACDM was the model preferred by the obser- 
vations [14]. 

Two problems now loom for ACDM: The limits to 0~ 
from (1) the frequency of gravitational lensing of distant 
&SOS, RA < 0.66(95%CL) [15], and (2) the magnitude- 
redshift (Hubble) diagram of Type Ia supernovae (SNe- 
Ia) 0~ < 0.51 (95%) [16]. Neither deals a death blow 
to ACDM - s1~ as low as 0.5 still retains many of the 
beneficial features and several systematic uncertainties 
associated with the SNe-Ia determination remain - but 
a dark shadow has been cast. 

xCDM. Though ACDM is the “best fit” CDM model, 
the theoretical motivation is weak. The best argu- 
ment for considering the tiny vacuum energy required, 
PVAC N 10m8eV4, is the absence of a reliable calculation 
of the quantum vacuum energy [17]. (Naive estimates of 
the vacuum energy range from 50 to 125 orders of mag- 
nitude larger than this!). Given the weak motivation for 
a cosmological constant and the apparent observational 
evidence against one, as well as the strong motivation for 
inflation and the evidence against fiM = 1, we think it 
worthwhile to take a broader view. 

Other possibilities have been suggested for a smooth 
component [18]: relativistic particles [12]; a tangled net- 
work of light strings [19]; texture [20]; and a decaying 
cosmological constant (i.e., scalar-field energy) [21,22,23]. 
For definiteness, as well as to facilitate a comprehensive 
analysis, we parameterize the effective equation of state 
of the unknown, smooth component by w E px/px with 
w < 0 [24]. The energy density of the smooth compo- 
nent px decrease8 as R -3(1+w) where R(t) is the cosmic 
scale factor; vacuum energy corresponds to w = -1 and 
texture or tangled strings correspond to w = -4. 

For the reasons described above, we insist that X mat- 
ter remain approximately smooth on all scales. Naively 
a component with w < 0 should be highly unstable to 
the growth of small-scale perturbations. However, vac- 
uum energy, by definition, is constant in space and time. 
Tangled strings, relativistic particles, and scalar-field en- 
ergy are all relativistic by nature and hence very “stiff;” 
thus, in spite of the clumping of matter around them, 
they should remain (nearly) smooth. (In fact, it has 
been shown [22,23] that scalar-field energy remains ap- 
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FIG. 1. The age in Hubble units as a function of w for 
0~ = 0.2, 0.3 and 0.4. Horizontal lines indicate the value of 
Hoto required for to = 12 Gyr with h = 0.6, 0.7 and 0.8. Note 
that the “age constraint” is strongly w dependent. 

proximately smooth.) Relativistic particles, by virtue 
of their high speeds, do not clump 1121. Likewise, it is 
easy to show that the effect of clumpy matter on an oth- 
erwise straight string segment is to bend it (similar to 
the bending of light) by an angle of order 6@/c2, where 
S@ N U(10S5) is the typical magnitude of the large-scale 
perturbed gravitational potential in the Universe. Thus, 
a tangled string network should remain approximately 
smooth. We consider our smoothness (or stiff X com- 
ponent) approximation to be a reasonable starting point 

[251. 
We note that there are reasons for only considering 

w < 0. The first is the age problem, which is even more 
severe for w 2 0 (see Fig. 1). The second is that for 
w > 0 the energy density in the smooth component de- 
creases faster than Rm3, implying that the ratio of the 
energy density in the smooth component to the matter 
component was even larger at earlier times. This sup- 
presses the growth of density perturbations, and when 
the spectrum of density perturbations is fixed on large 
scales by COBE, this leads to too little inhomogeneity on 
small scales (see Fig. 2) [26]. The case w = 0 corresponds 
to the smooth component behaving like pressureless mat- 
ter; if the smooth component clumped, but only on large 
enough scales to evade detection (> 50hM1Mpc), the flat- 
ness problem could be solved and the COBE normaliza- 
tion would be the same as sCDM because the growth 
of density perturbations on large scales would be unaf- 
fected. However, the growth of perturbations on small 
scales would be affected and the problem of producing 
sufficient small scale structure would be similar to that 
of hot dark matter. Thus, we dismiss this possibility. 

The formation of cosmic structure in a CDM model 
is dictated by the power spectrum of density perturba- 
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FIG. 2. Power-spectrum normalization 1056~ as deter- 
mined by the four-year COBE DMR results. The COBE la 
error is approximately 10%. 

tions. There are two important changes brought about by 
the presence of a smooth component: the normalization 
of the power spectrum based upon the accurate COBE 
determination of CMB anisotropy on angular scales of 
around 10’ and the transfer function that describes the 
growth of density perturbations from the inflationary 
epoch to the present. For fixed inflationary perturba- 
tions, CMB anisotropy on COBE scales is larger (due 
to the integrated Sachs-Wolfe effect [27]); because of the 
smooth component there is less growth of density pertur- 
bations from the inflationary period until the present. 

We use the COBE four-year results [28] to normalize 
the power spectrum (assuming negligible gravity waves 
and n = 1) using the method of Ref. [29]. Writing the 
(linear) power spectrum today as 

P(k ) q  (I& l�) = g5& (k ,Ho )-T2(k ) 
0 

T(q) = 
In (1 + 2.34q) 

2.34q x 

[l + 3.89q + (16.1q)2 + (5.46q)3 + (6.71q)4]-1’4 , 

where Sk is the Fourier transform of the density field, 
q = k/hF and F 1: aMh is the “shape” parameter [30,31]. 
The quantity S,, which corresponds to the amplitude 
of density perturbations on the Hubble scale today, is 
a convenient normalization whose value is shown as a 
function of fix and w in Fig. 2. The transfer function, 
T(k), is well fit by the form quoted for w < 0, with more 
small-scale power than this form predicts when w + 0. 

There are many constraints on CDM models. The two 
most stringent for the power spectrum in 10~42~ models 
are: the shape parameter F = 0.25f0.05 (for n = 1) [32] 
and the abundance of rich clusters. The latter can be 
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FIG. 3. ug as a function of w with F = 0.25 and n = 1. 
Points with 2u error bars on the curves show ug from clus- 
ter abundance for that v&e of 0~. Note, ug scales as 
(J?/O.25)'.3 exp[-3.l(n - l)]. 

reduced to a constraint on u8 (the rms mass fluctuation 
in spheres of radius 8hU1Mpc), 

(3) 

with r = 8 h-lMpc. There is no consensus on the pre- 
cise value of bs or its scaling with a~; differences arise 
due to different input data and calculational schemes 
[33]. Further, the scaling with fiM depends slightly upon 
w, through the relation between virial mass and cluster 
temperature. Nevertheless, there is a general consensus 
about this important constraint and as a middle-of-the- 
road estimate we use (T8 = (0.55 f 0.06)s2&e,o.5 which is 
consistent with most published estimates [33] and slightly 
conservative (low 08) near fin - 0.3. 

There are two nice features of xCDM: The shape con- 
straint can be satisfied with h - 0.7 and Rx N 0.6 
for which the b8 constraint can be readily satisfied with 
w N -l/2 (see Fig. 3). For ACDM (w = -1) tilt 
(i.e. n < 1) and/or gravity waves are needed to reduce 
b8 and for an open Universe (closely approximated by 
w = -i) us i8 too small unless fl&f is large or n > 1 [34]. 

Next, we turn to the two worries of ACDM - the fre- 
quency of QSO lensing and the SNe-Ia constraint. Both 
involve the increased distance to a given redshift that 
comes with A. The proper distance today is given by the 
Robertson-Walker radial coordinate [35] 

r(2) = s * d.3 - 0 H(4 = Ho z - ;(l+ qo)z2 +. . . 1 , (4 
H2(z) = H,2 [(I + %)3fiM + (1 + z)~(‘+“)&] , (5) 

and the deceleration parameter qo = -&/RoHz = i + 
$wRx. Note, r(.z) increases with decreasing w; this leads 
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FIG. 4. Constraints from the SNeIa magnitude-redshift 
diagram. Contours are of Hsr(z = 0.4) from 0.31 to 0.39 in 
steps of 0.01. The thick contours are the current 95%CL and 
68%CL limits, and arrows indicate that values to the upper 
right of these curves are favored. (For w = -1 the constraint 
shown here is less stringent than that in Ref. [16] because we 
have two free parameters rather than one.) 

to more volume and more lenses between us and a QSO 
at redshift z and a higher frequency of lensing. 

While the SNe-Ia limits on the distance redshift re- 
lation [16] are quoted for a flat universe with cosmo- 
logical constant, they are readily translated into a con- 
straint on r. Since the seven distant SNe-Ia have red- 
shifts % N 0.4, that constraint can be expressed as 
0.287(0.271) < Hor(z = 0.4) < 0.342(0.362) at 68%CL 
(95%CL) [36]. Th eir results constrain fiM and w (see 
Fig. 4). Soon, Perlmutter’s group should have results 
based on nearly four times as many SNe-Ia’s and an- 
other group (The High-z Supernova Team) should have 
results based on a comparable number of SNe-Ia’s. This 
will sharpen this important constraint to w significantly. 

Concluding remarks. Inflation is a bold and compelling 
idea. It predicts a flat Universe, but not the form which 
the critical energy density takes. Because of increasing 
evidence that the matter density is significantly less than 
the critical density, as well as the attractiveness of infla- 
tion and the successes of CDM, we have explored the 
possibility that most of the critical energy density re- 
sides in a smooth component of unknown nature, with 
equation of state px = wpx (w < 0). Increasing w to 
around -0.6 retains the attractive features of ACDM and 
resolves the conflict with the SNe-Ia constraint; further 
tilt and/or gravity waves are not required to obtain the 
correct number of rich clusters observed at present. 

For the sake of illustration we have used the following 
cosmological data to find the best fit xCDM model: to = 
15f2Gyr, h = 0.7f0.07, flBh2 = 0.02, r = 0.25f0.1, 
f18flb5 = 0.55 f 0.1, [Hor(z = 0.4)12 = 0.10 f 0.015 and 
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h 

0.8 0.9 

FIG. 5. The likelihood, marginahzed over nM. Contours 
are in units of $r. (See text for the cosmological data and 
conservative error bars used.) 

the COBE four-year data set. (For several constraints we 
have inflated the error bars to be conservative.) We have 
marginalized over flM with prior 0~ = 0.3 f 0.05. For 
n = 1, an xCDM model with w = -0.6 and h = 0.7 has 
maximum likelihood (see Fig. 5). (The unmarginalized 
likelihood prefers fiM N 0.4, h = 0.7 and w = -0.4 but 
is quite broad.) In passing, we note that a “tangled” 
network of walls or a wall wrapped around the Universe 
(supposing space is S2 x 5”) would lead to a smooth 
component with w = -$. 

Introducing w to the list of CDM parameters brings the 
total to at least ten (w, n, h, flBh2, nT, T/S, fll-0~~ fi2,, 
fix, and finAD). While this is a daunting number, the 
flood of cosmological data coming - larger redshift sur- 
veys, accurate measurements of the expansion rate and 
deceleration rate of the Universe, high resolution obser- 
vations of clusters with X-rays, the Sunyaev-Zel’dovich 
effect and weak lensing, studies of galactic evolution by 
HST and Keck, and especially measurements of CMB 
anisotropy on angular scales from arcminutes to tens of 
degrees - should eventually overdetermine the parame- 
ters of CDM + inflation. Then the data will not only 
sharply test inflation, but also discriminate between dif- 
ferent CDM models and even provide information about 
the underlying inflationary potential [37]. 

In the near term, the SNe-Ia magnitude-redshift dia- 
gram and CMB angular power spectrum will provide an 
important test of xCDM: the position of features (e.g., 
the first peak) in the angular power spectrum tests flat- 
ness, but is less sensitive to w, and given floor (and 
RM), SNe-Ia can determine w (see Fig. 4). 
Acknowledgments. This work was supported by the DOE 
(at Chicago and Fermilab) and by the NASA (at Fermi- 
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