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Perturbation of the Periodic Dispersion Under Beam Crossing Optics in LHC

F. M�eot �

FNAL, Batavia, IL 60510-500, USA

Abstract

Beam crossing and separation schemes in the LHC inter-

action regions impose non-zero closed orbit in the low-�

triplets. The related perturbative dispersion is derived ;

propagation, multi-crossing interference, perturbative ef-

fects around the ring are investigated and quanti�ed. Hor-

izontal and vertical compensation schemes are presented.

I. Introduction

Crossing angle and orbit o�-centering schemes at the in-

teraction points (IP) in the LHC ring are foreseen [1][2],

for the purpose of early separation of the beams so as to

reduce harmful e�ects related to beam-beam interactions

in that region where they share a common vacuum pipe.

Such closed orbit (c.o.) geometry imposes horizontal and

vertical o�-centering in the low-� triplets, which has sen-

sible e�ect on dispersion in collision optics when betatron

functions reach very large values. This report provides an

understanding and study of the building-up and e�ects of

the anomalous dispersion in the LHC ring (Version 4.2),

and investigates compensation schemes.

II. Anomalous dispersion
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A. Equation of the anomalous dispersion

The perturbative dispersion dy(s) due to yco(s) c.o. in

the low-� triplets is the closed solution of [3]

d2dy=ds
2 +K(s)dy = ��B(s)=B�+K(s)yco (1)

with y � x or z, B� = particle rigidity, K(s) = quadrupole

strength, and the �eld term �B(s)=B� is introduced by

the c.o. dipoles. Eq. (1) can be solved in the elementary

kick approximationK(s)yco(s) =
R
K(s)yco(s)�(s� sq )dsq

which yields the periodic solution (Fig. 1)

dy(s)+yco(s)=

p
�(s)

2 sin��

X
(KL)qyco(sq)

p
�(sq) cos�[��j�(s)��(sq)j]

(2)

�On leave from CEA/DSM-Saclay, France.

where �(s) = 1=�
R
ds=� = normalized betatron phase,

�(sq) = phase at the kick, � = betatron function, � =

machine tune. The closed orbit yco(sq) at the kick can be

expressed in terms of its transport from the IP (optical

functions ��; �� while �� � 0 is assumed). This yields

dy(s) = �yco(s) + f

p
�(s)=��

2 sin��
(3)

+y�
P

(KL)q�(sq) cos�[�(sq)���] cos�[��j�(s)��(sq)j]

+y0���
P

(KL)q�(sq) sin�[�(sq)���] cos �[��j�(s)��(sq)j] g

B. Upper limits of the perturbation

Beyond the low-� triplets associated with the non-zero

c.o. Eq. (2) can be written under the form dy(s)=
p
�(s) =

�yco(s)=
p
�(s) + �Dy cos �[�(s) + 
], with

�Dy = f [
X

(KL)qyco(sq)
p

�(sq) cos�(� + ��(sq))]
2 (4)

+[
X

(KL)qyco(sq)
p

�(sq) sin�(� + ��(sq))]
2 g1=2=(2 sin��)

(� = �1 for �(s)><�(sq), 8q). Numerical calculation of the

sums from �rst order optics yields [3]-[6]

�Dxjx�=0

x0�
� 170 ;

�Dzjz�=0

z0�
� 158;

�Dxjx0�=0
x�

�
�Dzjz0�=0

z�
� 2 (5)

Since �x and �z have similar shapes Eq. (5) tells that the

perturbation due to 10�4rad c.o. angle (\dx" plot in Fig. 1)

is about ten times that due to 10�3m c.o. o�-centering

(\dz" plot in Fig. 1) . Extrema of dy(s) = �Dy

p
�(s) can

be derived, this is studied in more details in Section III.

C. Comparison with the e�ects of D1=D2 dipoles

Dispersive e�ects due to crossing can be compared to

those due to the separator/recombiner dipoles D1=D2, in

particular in view of simultaneous compensation by an op-

tical assembly such as proposed in [7]. A single dipole (D1

or D2) with bend �D excites a dispersion of closed form

Ddx(s)p
�(s)

=
�D

2 sin��
<
p

�(sD)> cos�[� � j�(s)� �(sD)j] (6)

with <
p
�(sD)> = mean value of

p
�(sD ) and assuming

�(sD) � Cste, over a dipole. The overall perturbation is

obtained by superposing the e�ects of the two pairsD1=D2,

which, with �(sD1) � �(sD2), leads to

D1=D2dx(s)p
�(s)

=D1=D2 �Dx cos �[�(s) + � ] (7)

�
�D

2 sin��
[<
p

�(sD1)> � <
p

�(sD2)>]

Given<
p
�(sD1)>�

p
<�(sD1)> and �D=2:17 10�3rad,

it comes out D1=D2�Dx � 460 10�4, which yields about

�0:6m modulation at �(s) = 180m. This can be read-

ily compared to the analogous coe�cients due to x0� =

10�4rad c.o. angle (Eq. 5), namely
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Crossing�Dx =
D1=D2�Dx � 170=460 � 35% (8)

In other words, the modulation in the arcs due to x0� is

�0:35 � 0:6 � �0:2m (Fig. 1). It also means that a cor-

rection scheme intended to compensate the dispersion due

to D1=D2 can take care in addition of 10�4rad c.o. angle

by changing its strength (increase or decrease depending

on the crossing sign) by about 35%.

III. Typical e�ects of crossing angle geometry

We consider the sole crossing scheme (y� = 0; y0� 6= 0),

which has the major perturbative e�ect as shown above

(Eq. 5). Beyond the crossing region Eq. (3) leads to [3]

dy(s < sqLeft; s > sqRight) = �yco(s) (9)

�y0
�
p

�(s)��=(2 sin��) sin�[� � j�(s)� ��j]
P

(KL)q�(sq)

(�1 for resp: �(s)>< �(sq);8q)

Extrema in the arcs

These are attained when sin �[��j�(s)���j] � 1. Consid-

ering that �max(s) � 180m while
P
(KL)q�(sq) � 370 in

odd-type IR's [3], it comes for x0� or z0� = 10�4rad c.o. an-

gle, dx;extr < 0:228m (�x = 63:28), i.e., about 10% of the

�rst order dispersion ; or dz;extr < 0:212m (�z = 63:31).

Extrema in low-� triplets

The phase in triplets is �(s) � �(IP )��=2� while �max �
4430m at IP1=5, � 4020m at IP2=8. Given the c.o. an-

gle x0� = 10�4rad at IP5 and betatron phases �(IP1) =

0; �(IP2) = 2�8:985=�x; �(IP5) = �� = �; �(IP8) =

2�55:745=�x, � � �x = 63:28 and �� = 0:5m, Eq.(9) yields

dx;extr at IR1; 2; 5; 8 = 1:13m; 1:07m; �0:71m; �1:05m
(10)

Dispersion at IP's

Eq. (9) with �(s)=�(IP ) and phase values above yield

dx(IP1; 2; 5; 8) = 0; 1:08 10�3m; 1:38 10�3m; �2:58 10�3m

(11)

which gives negligible beam size increase for �p=p = 10�4.
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 FIGURE 2: INTERFERENCES 
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Interferences

By virtue of the superposition principle interferences oc-

cur under crossings at several IP's. Two-IP interference

for instance, in the case of a pair of inclined crossing ge-

ometries, or in the case of four alternating crossings [8].

Consider z0� = �10�4rad vertical c.o. angle at IP1 and

IP5. Given �(IP1) = 0; �(IP5) = �; � � �z = 63:31, the

resulting extremum in IP5 low-� triplets is (Eq. 9)

dz;extr=�z0�

p
�max��

2 sin��
(1+� cos��)

X
(KL)q�(sq) (�=�1) (12)

yielding, dz;extr � 0:46m for identical sign crossings (�=1),

dz;extr � 1:64m for opposite signs (�=�1) (Fig. 2).
Strong e�ects may arise from four-IP interference (non-

alternating crossing con�guration [8]). Consider c.o. angles

x0� = �IP 10�4rad with signs either identical, �1 = �2 =

�5 = �8 = 1 or alternate, �1 = �2 = 1 and �5 = �8 = �1.
The perturbation at IP5 low-� triplet reaches

dx;extr = �x0�
p

�max��=(2 sin��) (13)
P

IP=1�8
�IP cos�[� � j�(IP )� �(IP5)j]

P
(KL)q�(sq)

yielding, dx;extr � 0:42m if all crossings have identical

signs, dx;extr � 4:1m in the second case.

IV. Correction schemes

A. Self-absorption within regular IR tuning procedures

The simplest way to compensate the anomalous disper-

sion is by re-tuning the IR. As expected from dx(s) �
10%Dx(s) under �10�4rad c.o. angle (after Eq. 5), do-

ing so leads to very limited changes in the Q1-Q10 IR

quadrupole strengths. As to the optical functions, there

is no meaningful di�erence with the unperturbed ones [3].

B. Quadrupole correction of the horizontal dispersion

Corrector strength

Quadrupole correctors wake a perturbative dispersion

which superposes with that due to c.o. in the low-� triplets.

This translates to additional term
R
KQ(s)dx(s)�(s �

sQ)dsQ in Eq. (1) (index Q stands for the correctors). Be-

sides, minimizing the corrector strength imposes on the

one hand �(sQ) = �(sq) + �=� [modulo �=�], on the other

hand maximizing Dx(sQ)
p
�x(sQ) (which also minimizes

e�ects on the orthogonal plane). Considering that �(sq)

and Dx(sQ)
p
�x(sQ) � Cste the correction strength writes

X

Q

(KL)Q=�
X

q

(KL)qxco(sq)
p

�x(sq) = Dx(sQ)
p

�x(sQ) (14)

Numerical calculations for odd IR give
P
(KL)q xco(sq)p

�x(sq)jLeft=Right = �1:12 10�2 / 1:50 10�2 for respec-

tively the left and right low-� triplets. Hence the integrated

strengths that independently close the left and right disper-

sion bumps : j(KL)QjLeft=Rightj � 3:9 10�4 / 5:2 10�4m�1.

Correction with a single quadrupole

A single quadrupole with strength 9 10�4m�1 (after Eq.

above) is su�cient to cure the anomalous dispersion, since

the two �=� apart low-� triplets sources of the defect excite

independent perturbations that add in phase. It may be

placed close to MSCBH multipole and would excite a de-

fect in phase opposition thus canceling the anomalous dis-

persion beyond the local chromatic bump so determined.

Fig. (3) shows the resulting second order dispersion at Oc-

tant 5, prior to any re-tuning of the IR, to be compared

to the uncorrected situation (curve \(Dx + dx)" in Fig. 1).

Yet a single quadrupole has sensible e�ect on the tune and

� mismatch, namely, ��x = �x(sQ)(KL)Q=4� � 1:3 10�2

(�x(sQ) = 178m), ��z = 0:23 10�2 (�z(sQ) = 32m),

and ��x=�x < �x(sQ)j(KL)Qj=2 sin(2��x) � �8:5%,
��z=�z � �1:5% (with �x; �z � 63.3).
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FIGURE 3 : SINGLE QUADRUPOLE CORRECTION
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Correction with two quadrupoles

These e�ects can be taken care of to good level (< 1%

dispersion beating, < 3% �-beat and at worst .0018 tune

shift, prior to any re-tuning of the IR) by using two

quadrupoles ; this could constitute a minimal correction

scheme, yet there are several possibilities more or less ben-

e�cial w.r.t. residual dispersion, tune shift and �-beat : the

two quadrupoles can be placed one at each end of the IR,

or both at the same end, with each one half the strength

j(KL)Q=2j � 4:5 10�4m�1 ; this has the e�ect of avoiding

tune-shift and �-beats. They can be placed one at each end

of the IR, with strengths 3:9 10�4=5:2 10�4m�1 to balance

the opposite low-� triplet ; this brings quasi-zero dispersion

and derivative at the IP.

Correction with four interlaced quadrupole pairs

Following a correction scheme proposed for SSC [9],

the method above has been extended to four pairs of

quadrupoles. Such correction scheme is also assimilable

within the modular LHC IR tuning scheme [7] and other Q-

shift system [10]. As expected from the discussions above,

the correction is very e�cient in terms of tune-shift, �-beta

and dispersion. More details can be found in [3].
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FIGURE 4 : SINGLE SKEW QUADRUPOLE CORRECTION
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C. Correction of the vertical dispersion

The vertical anomalous dispersion can be compensated

by skew quadrupoles (as proposed at SSC [9]) located at

arc ends close to MSCBV correctors and maxima ofDx

p
�z

and low �x. Their role is to couple the horizontal dispersion

into the vertical plane.

Corrector strength

The vertical dispersion veri�es d2dz=ds
2 + K(s)dz =

R(s)Dz . The closed solution is (after Eq. 2)

dz(s)=

p
�z(s)

2 sin��z

X
(RL)SQDx(sSQ)

p
�z(sSQ) cos�[��j�(s)��(sSQ)j]

(15)

where index SQ denotes the correctors, R = skew quad

strength. Taking �(sSQ) = �(sq) + �=�[�=�] while �(sq)

andDx(sSQ)
p
�z(sSQ)�Cste gives the correction strength

P
(RL)SQ=

P
(KL)qzco(sq)

p
�z(sq) = Dx(sSQ)

p
�z(sSQ)

(RL)SQjLeft=Right � 10:6 10�4=7:9 10�4m�1 is necessary

for balancing the e�ects of the left and right low-� triplets

under z0� = 10�4rad c.o. angle at IP [3]-[6].

Correction with a single skew quadrupole

The corrector is placed at an arc end next to a MSCBV

multipoles with the strength 18:2 10�4m�1 (Eq. above).

Dispersion does not exceed 0.32 m in the crossing octant

(Fig. 4), it is less than 0.05 m everywhere else in the ring

(see the uncorrected situation, curve \dx" in Fig. (1)).

Interlaced correction scheme

Residual e�ects on the �rst order focusing are weak ;

however they can be improved by using quadrupole pairs ;

doing so damps the dispersion to 0.2 m in the crossing low-

� triplet. The philosophy is the same as above, for the

horizontal plane ; more details can be found in [3].

Interferences

If no correction of the vertical dispersion is foreseen, yet

some bene�t may be drawn from interference, as long as

adequate phase relation is ful�lled between IP's of concern.

Fig. 5 shows such self-cancellation in the range IR2/IR8

when setting z0� = 10�4rad c.o. angle at IP2 and IP8

simultaneously. This plot can be readily compared to the

situation due to a single crossing (curve \dx" in Fig. 1, and

extrema at all IP's, Eq. (10)).
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FIGURE 5 : VERTICAL INTERFERENCE BETWEEN IP2 AND IP8
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