Chapter 7 Accelerator Radiation Protection Program Elements

I. Introduction

This chapter summarizes, in outline form, the author's view of the elements needed for a radiation protection program to succeed at an accelerator facility and also gives a short synopsis of some of the important "regulatory" considerations.

II. Accelerator radiation protection program elements

A Establishment of technical design and siting criteria to address radiation protection concerns

1. off-site dose considerations:
 - direct radiation
 - skyshine
 - air activation
 - water activation
 - groundwater/hydrogeology
 - storage and transportation considerations
 - radiation buffer zones

2. regulatory considerations
 - state/local regulations on groundwater protection
 - state/local regulations and requirements for radiation sources
 - environmental permits for radiological emissions
 - environmental permits for discharges
 - environmental monitoring requirements

B. Quantification of radiation source terms

1. primary source terms
 - particle type (protons, heavy ions, electrons)
 - beam power
 - beam energy
 - utilization factors

2. secondary radiation sources
 - hadrons-through shielding, secondary beams
 - electrons-primary beams at electron beams, secondary beams elsewhere
 - photons-from electron beams and activated components
 - muons (at high energies)

3. incidental radiation sources
 - RF sources (e.g., klystrons, RF cavities)
 - electrostatic septa
 - radiography devices
 - calibration sources
Chapter 7 Accelerator Radiation Protection Program Elements

C. Specification of shielding design criteria

usually some fraction of regulatory limits
must consider "worst case" (so-called "accident") conditions
must address normal losses of beam
should consider dose to personnel maintaining the accelerator
calculations should be verified by measurement to extent possible

D. Provision for accelerator access control-interlocks and warning devices
Such systems are of paramount importance. Accidental exposure to the
accelerated beam can be the most significant radiation hazard, especially at high
energies.

1. functional features of the access control system

 emergency off ("scram") switches
 emergency exit provisions
 warning lights/alarms/signs
 search and secure provisions
 "controlled access"
 accommodation to experimental program needs-flexibility
 beam containment devices
 fences, gates, and locks
 hierarchy of access precautions based upon potential dose rates
 exclusion areas should be both locked and interlocked

2. design features of the access control system

 use "fail-safe" radiation damage resistant components
 {area should be rendered safe in the event that a
 component fails or power is lost}
 "redundancy" is the general rule
 in circuitry
 in methods of disabling beam
 protection of cabling and any function switches
 from damage (including radiation damage)
 from tampering
 use solid state devices in such systems with "caution"
 questions about software reliability
 need for self-checking features (more tricky than simple
 "loop" circuits with relays)-see Ref. 2
 system must be designed to be tested
 written testing procedures must be followed
 all inputs to be tested
 periodic testing must be done

2. Radiation alarm system

measure radiation fields in occupied areas and set off alarms/turn off
beams if preset limits are exceeded (may be related to the safety
envelope)
long-term logging of radiation levels to provide occupational and
environmental radiation "documentation"
instrumentation should be calibrated and regularly verified to be functional
visible/audible alarms should be used in some situations

E. Provision for the control of radioactivation and contamination (removable radioactivity)

1. Control of residual activation in beamline enclosures
 - surveys upon entry after operations
 - marking/labeling of activated components
 - checking of personnel and equipment leaving enclosures for "contamination" ("removable" radioactivity)
 - entry control/restrictions

2. Control of activated materials outside of beamline enclosures
 - labeling system
 - exclusion for areas frequented by the general public/nonradiation workers
 - exclusion from lunchrooms, etc.
 - procedures/criteria for checking materials being shipped for radioactivity work
 - procedures for activities which might generate removable radioactivity (e.g., welding, grinding, fine wires, dust)
 - liquids containing tritium (e.g., cooling water, pump oil, etc.)
 - targets (sometimes made with hazardous materials; e.g., lithium, beryllium)

F. Provision for the proper management of radioactive waste

 - identification of radioactive waste
 - characterization of radioactive waste
 - avoidance of waste types for which disposal is difficult/impossible
 - waste minimization
 - proper shipment and disposal

G. Program for the control of radioactive sources

 - high intensity calibration sources
 - sources mounted on experimental apparatus
 - labeling/inventory considerations
 - periodic wipes
 - procedures for issuing sources
 - monitoring the inventory and proper usage of sources
 - transporting sources
 - collecting sources no longer needed

H. Program for meeting transportation requirements for radioactive materials and sources

 - U. S. Dept. of Transportation regulations (Code of Federal Regulations Chapter 49-denoted 49 CFR)
 - procedures for shipments to/from universities and commercial entities
 - air transport
Chapter 7 Accelerator Radiation Protection Program Elements

I. ALARA program

must keep exposures "as low as reasonably achievable"
usually have ALARA committee
review jobs, plan jobs based on estimated exposures
should be embedded in job planning process where radiation exposures are possible
involves job supervision where significant exposures are probable

J. Decontamination and decommissioning program-planning for the demise of the accelerator

documentation of activated components, especially structures, groundwater, and soil
documentation of contaminated components, structures, etc.
accurate drawings of all structures and components associated with the accelerator
documentation of the operational history

K. Development and maintenance of a safety envelope for accelerator operations

the set of physical and administrative conditions that define the bounding conditions for safe operation at an accelerator facility

L. Audit program

must arrange for objective assessments of program performance
DOE requires complete radiation protection assessment every 3 years
audits are needed to establish that requirements are being met

M. Training program

qualification of radiation workers
radiological control technicians
professional radiation protection personnel
training of experimenters
addressing the needs of visitors

N. Configuration control program

maintenance of drawings of shielding and components
prevention of unauthorized removal of protective features

 shielding
 beam containment devices
 interlocked detectors
 alarms
 beam intensity measurement devices
Chapter 7 Accelerator Radiation Protection Program Elements

O. Dosimetry program

must meet designated standards, either National Voluntary Laboratory
Accreditation Program (non-DOE) or DOE Laboratory
Accreditation Program (DOELAP) (DOE facilities)

dosimeters must be worn, collected on time, read out, and actions must be
taken to correct unnecessarily high exposures

dosimetry records must be retained essentially forever

P. Provision for record keeping program

design calculations
dosimetry results
job planning records
log books of accelerator and beamline operation
survey records
release of radioactive material into the environment
prompt environmental radiation exposures
access control system test results
decontamination and decommissioning program
all written procedures
training records
configuration control program
ALARA analysis
III. Summary of regulatory requirements

In the United States the regulation of the manufacture, distribution and operation of particle accelerators in a manner that does not jeopardize public health and safety is a complex matter shared by several government agencies.

A. International and national advisory bodies have a role chiefly in developing standards and recommendations applicable to general radiation protection (not specific to accelerators) for adoption by individual nations. These standards include:

- recommended dose limits and their technical basis in radiobiology and epidemiology
- standards on measuring/calculating external exposure
- standards on measuring/calculating internal exposure
- standards on instrumentation
- program recommendations

These bodies are:

1. The International Atomic Energy Agency (IAEA)-In addition to regulatory advice, IAEA has issued three reports on radiation safety at electron linacs, neutron generators, and proton accelerators.

2. The International Commission on Radiological Protection (ICRP) -In addition to regulatory advice, ICRP has issued Publication 51 which contains particle fluence to dose equivalent conversion coefficients that are most useful at accelerators.

3. The International Commission on Radiation Units and Measurements (ICRU)-In addition to regulatory advice, ICRP has issued Report 28, "Basis Aspects of High-Energy Particle Interactions and Radiation Dosimetry" which presents a good summary of the subject.

4. The National Council on Radiation Protection and Measurements (NCRP) -independently charted by the U. S. Congress. This body has issued a number of reports of interest in accelerator radiation protection.

5. The American National Standards Institute (ANSI) -has standards on instrument calibration requirements

6. The American Society for Testing Materials (ASTM) - has some standards of interest on performance of materials.

7. The Institute of Electrical and electronic Engineers (IEEE) - hosts symposia on instrumentation and issues publications of great utility (nuclear science section).
8. Professional organizations promote this field:

- The Health Physics Society
- The American Academy of Health Physics
- The American Association of Physicist in Medicine

B. Promulgation of Regulations in the United States pertinent to radiation protection programs at particle accelerators

1. **U. S. Environmental Protection Agency (USEPA)** has responsibility for developing guidance on radiological protection for all Federal agencies—usually, but not always, based on ICRP and NCRP recommendations. Promulgation requires presidential approval. The last modifications were approved by President Reagan. "Ancestors" to this system date back to the Eisenhower administration.

USEPA also has considerable **direct regulatory authority with enforcement authority** which affects accelerators (which may be delegated to the state "environmental" organizations):

 a. EPA has issued regulations (40 CFR) on airborne radioactivity emissions (Clean Air Act) from DOE-owned facilities (10 mrem/year dose equivalent to offsite personnel).

 b. EPA has issued regulations (40 CFR) on concentrations of radioactivity in drinking water used by community water systems (Safe Drinking Water Act).

2. The **U. S. Department of Transportation (DOT)** issues regulations on transportation of shipments of radioactive materials (49 CFR). In some states these regulations are enforced by state police forces.

3. **U. S. Department of Energy** has regulatory authority over the accelerators it owns and exercises some authority over institutions to which it issues grants.

 a. has issued, and continues to issue many "Orders" on radiological protection, noteworthy are:

 - 5480.11-"Radiation Protection for Occupational Workers"
 - sets dose limit of 5 rem per year to occupational workers
 - sets dose limit of 100 mrem per year to members of the public
 - requires notification of off-site dose > 10 mrem/year
 - many other program requirements

 This Order is largely replaced, effectively, in Regulation 10 CFR 835 which became effective in December 1993.
Chapter 7 Accelerator Radiation Protection Program Elements

5400.5-"Radiation Protection of the Public and the Environment"

sets environmental release limits
institutes USEPA requirements
sets forth environmental monitoring program

This Order will be largely replaced by Regulation 10 CFR 834, when the latter is issued.

Many other orders on virtually every facet of radiation protection program

5480.25- "Safety of Accelerator Facilities" has been issued. This Order extensively regulates the entirety of safety at DOE-owned accelerators.

DOE Notice N 5480.6 "DOE Radiological Control Manual" places stringent requirements on all radiological control programs at DOE facilities.

b. As of this writing, May 1995, the Department of Energy was extensively reevaluating its directive system so that many changes can be expected in the near term future.

3. 36 states have regulations concerning accelerators (may or may not apply to federally owned accelerators)

uniformity is encouraged by the Conference of Radiation Control Program Directors which has issued recommendations

often the requirements are patterned after U. S. Nuclear Regulatory Requirements (USNRC) specified in 10 CFR

usually state regulations are incorporated into other state programs for controls of radioactive materials in accord with "agreement state" licensing status with USNRC (USNRC does not explicitly regulate accelerators)

4. Some local governments (cities, counties) etc., may have additional requirements. New York City is a well-known example
Chapter 7 Accelerator Radiation Protection Program Elements

Bibliography

