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Particle dynamics in storage rings with barrier rf systems 
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Abstract 

The stability of particle motion in a barrier rf system is studied. Paramet- 

ric resonance strength functions for the barrier rf system with rf phase and 

voltage modulations are derived. We find that higher order parametric res- 

onances of the barrier rf system are important. Tolerance of the rf phase 

modulational errors in the barrier rf system in the Fermilab Recycler is ana- 

lyzed. A constraint on the rate of bunch compression utilizing the barrier rf 

system is derived. 
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I. INTRODUCTION 

Bunch beam gymnastics have become a routine operational practice in antiproton pro- 
duction, beam coalescence, multi-turn injection, accumulation, etc. The demand of higher 
beam brightness in storage rings and higher luminosity in high energy colliders requires 
intricate beam manipulations. In particular, a flattened rf wave form has been commonly 
employed to shape the bunch distribution in order to alleviate space charge problems in low 
energy proton synchrotrons and to increase the tune spread in electron storage rings. 

For achieving high luminosity in the Fermilab TeV collider Tevatron, a Recycler has been 
proposed to recycle unused antiprotons from the Tevatron [l]. The recycled antiprotons can 
be cooled by stochastic cooling or electron cooling to attain a high phase space density. At 
the same time, the Recycler accumulates also newly produced, cooled antiprotons from the 
antiproton Accumulator. To maintain the antiproton bunch structure, a barrier rf wave form 
[2] is generated to confine the beam bunch and shape the bunch distribution waiting for the 
next collider refill. The required bunch length and the momentum spread of the beam can 
be adjusted more easily by gymnastics with barrier rf waves than the usual rf cavities. 

The barrier rf wave is normally generated by solid state power amplifier, which has in- 
trinsic wide bandwidth characteristics. An arbitrary voltage wave form can be generated 
across a wideband cavity gap. Figure 1 shows some possible barrier rf waves with half sines, 
triangular and square function forms. These wave forms are characterized by a voltage am- 
plitude V(T), a pulse duration Ti, a pulse gap T2 between the positive and the negative 
voltage pulses and an integrated pulse strength J V(T)&. F or example, the integrated pulse 

strength for a square wave form is VOT,. The rf wave form is applied to a wideband cavity 
with a frequency hfrev, where h is an integer, frev is the revolution frequency of synchronous 
particles, whose revolution frequency synchronize with the rf frequency. The effect on the 
beam is determined mainly by the integrated voltage of the rf pulse. Acceleration or de- 
celeration of the beam can be achieved by employing a biased voltage wave on top of the 

bunch-confining positive and negative voltage pulses. 
Most of the time, orbiting particles see no cavity field in passing through the cavity gap. 

When a particle travels in the time range where the rf voltage is not zero, the energy of 
the particle can increase or decrease depending on the sign of the voltage it sees. In this 
way, the accelerator is divided into stable and unstable regions. Thus the wide bandwidth 
rf wave can create barrier bucket to confine orbiting particles. 

Because solid state amplifiers are normally low power devices, the voltage across the rf 
gap is usually limited. The resulting bunch area may nearly fill the bzlclcet area, which is 
the maximum stable area that can normally confine the beam particles. Since the bucket is 
almost full, timing jitter in the rf wave may cause problems in beam stability. In particular, 
when the frequency spectrum of these perturbation is near a harmonic of the synchrotron 

frequency, beam particles can be coherently excited to escape the bucket [3-81. 
This paper studies the beam dynamics associated with a barrier bucket. We analyze the 

stability of the particle motion in a barrier bucket under the perturbative force of rf phase 
and voltage modulations. Furthermore, if the dipole field in the accelerator is modulated, 
the resulting circumference of the orbiting particles will be changed as well. This results in 
a synchrotron phase dependence on the modulating dipole field error, i.e., a kind of synchro- 
betatron coupling [4,5]. S ec t ion II gives fundamental properties of particle motion in the 
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barrier bucket. Section III analyzes the stability of the barrier bucket in the presence of 
rf phase modulation. Section IV analyzes the effects of rf voltage modulation. Section V 

discusses the tolerance of the barrier rf cavity in the Recycler, the tolerance of the orbit 
stability due to synchro-betatron coupling, and the rate of bunch compression with the 
preservation of the bunch area. The conclusion is given in Sec. VI. 

II. PROPERTIES OF THE BARRIER BUCKET 

The fractional change of the orbiting time AT/T, for a particle with an energy deviation 
AE is given by 

AT AE 
- = 532&’ TO 

(24 

where 7 is the phase slip factor, and PC and Eo are respectively the speed and the energy 
of the synchronous particle, and To its revolution period. Without loss of generality, we 
consider synchrotron motion with 11 < 0 in this paper. For 7 > 0, the wave form of the 
barrier bucket is reversed. Let -7 be the relative time between an off-momentum particle 
and the synchronous particle at the center of the bucket. The equation of motion for the 
phase space coordinate ‘T is 

dr AE 
dt = -532& ’ 

Passing through a barrier wave, the particle gains energy at the rate of 

WE) ew -= 
dt To 

(2.2) 

(2.3) 

Equations (2.2) and (2.3) constitute the equations of motion of a particle in a barrier rf 
wave. 

Since the effect of the barrier rf wave on particle motion depends essentially on the 
integrated rf voltage wave (see Appendix A), we consider only the square wave forms with 
voltage heights *V-, and a pulse width Tl in time, separated by a gap of T2. At a proper 
passage time, the particle gains/loses equal amount of energy eVo i.e., d(AE)/dt = e&/To 
every turn. The number of cavity passages before the particle loses all its off-energy value A 
AE is 

N = IKEI 
eVi ’ (2.4) 

Thus the phase space trajectory for a particle with a maximum off-energy n^E is given by 

(AE)2 if 171 5 

(AE)2 

2, 

= (kE)2 - (1~1 - s) wop~~e’ if % 5 171 5 9 + Ti, (2.5) 
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where wa = 2rfrev is the angular revolution frequency of the beam. The phase space ellipse 
is composed of a straight line in the rf gap region and a parabola in the square rf wave 
region. The phase space area of the invariant phase space ellipse is 

A = 2T,n^E + 3wo;~;evo (A% w > 

The maximum energy deviation or the barrier height that the barrier rf wave can sustain 
is given by 

(2.7) 

where Tl is the pulse width of the rf voltage wave, and To is the revolution period of the 
beam. The bucket height depends on VOTI, which is the integrated rf voltage strength 
J V(T)dT. The synchrotron period is given by 

(2.8) 

for a particle inside the bucket. The mathematical minimum synchrotron period of Eq. (2.8) 
is given by 

and the corresponding maximum synchrotron tune is given by 

us,max = (g;;;o)“’ * (2.10) 

Note here that nTe/(16Tz) plays the role of harmonic number “h” of a regular rf system. 
The synchrotron tune is a function of the off-energy parameter AAE given by 

(2.11) 

Note that when the rf pulse gap width decreases to T2/Tl < 4, the synchrotron tune becomes 
peaked at an amplitude within the bucket height. This feature is similar to that of a double 
rf system [7]. F’g 1 ure 2 shows v, vs AE with the Fermilab Recycler’s parameters E. = 8.9 

GeV, yT = 20.7, frev = 89.8 kHz, Tl = 0.5~s, Vo = 2 kV, and T2/Tl = 1,2,4, and 8 
respectively. For example, v,,,,, = 3.7 x 10m5 for T2 = Tl, i.e., the synchrotron frequency is 
3.3 Hz. 

The Hamiltonian for the phase space coordinates (r, BE) is given by 

Ho = w0;7T1 fo(7, L T2) (2.12) 
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where 

fo(~ TI, Tz) = + [( 
1 

T + Tl + ;)S(r + Tl + ;) - (7 + g)B(r + +) 

T2 -(T - ;)ql - T) + (7 - Tl - ;)e(T - r, - p,] - 1. (2.13) 

Here 0(z) is the standard step function with e(z) = 1 for 2 > 0 and 6(z) = 0 for z < 0. The 
top plot of Fig. 3 shows a schematic drawing of the f. function. 

For a constant Tl, T2 and Vi, the Hamiltonian Ho is a constant of motion. The action 
of a Hamiltonian torus is given by 

J=+-~AEdr=~\wo~~~e~#~W+,(~,Tl,T2)d~. (2.14) 

The parameter W with a dimension of time is related to the Hamiltonian value by 

woeI& 
Ho = --$4f = 77 (KE)‘. 

W2Eo 
(2.15) 

For a given Hamiltonian torus, W has the physical meaning that it is equal to the maximum 
phase excursion 171 in the rf wave region. Therefore W = 0 corresponds to an on-momentum 
particle, and W = Tl is associated with particles on the bucket boundary. 

The action for a particle torus inside the bucket is given by 

(2.16) 

The bucket area is related to the maximum action with W = Tr, i.e., 

t3=27rj= (2T2+iT,)AEb. (2.17) 

Again, the bucket area depends only on the integrated rf voltage strength J V(T)dT = VoTl. 
Canonical transformation from the phase space coordinates (r, AE) to the action-angle 

variable can be achieved by using the generating function 

F2(J, 7) = IT AEd7-, 
-i 

(2.18) 

where + = W + %. The angle variable $I is given by 

aF2 

“=aJ= 

rfl 7 

J 
dr 

T,+dw -Q/m’ 
(2.19) 

The integral can be evaluated easily to obtain 
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where 

if-W-$<r<-?$,AE>O, 

if-$2<r<F,AE>O, 

if$<r<W+$,AE<O, 

if-?<r<$,AE<O, 

E<T<-$,AE<O, 

$c = 
,‘$W’ ” = T2;tT;M; 

(2.20) 

(2.21) 

are the synchrotron phase advance for a half orbit in the rf wave region and the synchrotron 
phase advance in the region between two rf pulses respectively. Note that 2q!~~ + $a = 7r for 
one half of the synchrotron orbit; and the motion of a stable particle orbit in the barrier 
bucket with v < 0 is clockwise. We choose the convention of 4 > 0 corresponding to a 
clockwise motion in synchrotron phase space. 

III. RF PHASE MODULATIONS 

Noise in the rf system and ground vibration are inherent in all realistic storage rings. 
The timing jitter of the rf pulse introduces rf phase modulation, and the variation of the 
rf voltage gives rise to amplitude modulation. Furthermore, ground vibration can result in 
orbit length modulation, which leads to rf phase modulation. This section studies the effects 
of rf phase errors on stability of the barrier rf system. Possible forms of rf phase error are 
listed as follows: 

1. Breathing rf phase modulation with T2 + T2 + al cos w,t 
2. RF phase modulation with r --f r + a2cos w,t, 
3. RF pulse width modulation with Tl + Tl + a3 cos wmt7 

A. Breathing rf phase modulation 

For the case (l), the Hamiltonian can be expressed as 

H=Ho+~ T ‘I1 Tfl(,, T,, T2) cosw,t + -a., (3.1) 

where higher order perturbation terms involving S-function are neglected, and 
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j-i@, T,, G) = O(T + Tl + :) - O(7 + F) + 0(-r - :) - O(T - Tl - ;) (3.2) 

is also schematically shown in Fig. 3. Note that the effective perturbation is proportional to 

ul/Tl. We expand the function fr in action-angle variables, i.e. 

(3.3) 

where 

9m = p& 1’” fl(T, T,, Tz)e-‘“$d$. (34 

Since fr is a real even function of 7, all odd harmonics vanish with g--m = 9;. The strength 
function gm is given by 

0 if m = odd: 

gm = A- sin rnGl, if m = even, 
m7r 

(3.5) 

where 11, is the phase advance of synchrotron motion across the rf wave region given by 
Eq. (2.21). Note that the resonance strength function decreases slowly with the mode number 
m. For a larger T2 parameter, the resonance strength function also becomes smaller. The 
resonance strength function satisfy the sum rule theorem 

Iz lszn(J)12 = 2wT2 
7L=l (7’2 + 4w)2’ 

The sum rule vanishes for on-momentum particles with W 
is maximum at orbits with W = T2/4 provided that T2 5 
T2 > 4T1, the sum rule is a monotonic increasing function 

The perturbation term in the Hamiltonian becomes 

AH= 
2ul We& 

To(T2 + 4W) CoSW,t 

(3.6) 

= 0. Since W 5 Tl, the sum rule 
4T1. For barrier rf systems with 
of the synchrotron amplitude. 

O” aleVi 
+c ~ sin (2n$C) [cos(2n$ + 

n=l 2n~To 
wmt) + cos(2n$ - wmt)] (3.7) 

Note here that when the modulation frequency is equal to an even harmonic of the syn- 
chrotron frequency, the rf phase modulation can coherently perturb particle motion. Fig- 

ure 4 shows the Poincare surface of section [9] for a particle with al/T1 = 0.05, T2/Tl = 2 and 
a modulation frequency w,/w,,,,~ = 1.95, where w,,,,, = wnv,,,,, is the maximum angular 
synchrotron frequency of the rf system. Note that the 2:l parametric resonance plays an 
important role in determining the orbit stability, where orbits outside the last torus shown 
in Fig. 4 are unstable. 

To estimate the tolerance of the rf phase breathing modulation, we calculate the maxi- 
mum stable bunch area of the rf system. We randomly and uniformly populate 1000 particles 
inside the bucket area and track the beam bunch for more than 50 synchrotron periods. The 
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stable phase space area (in unit of the bucket area) is defined as the ratio between the num- 
ber of survival particles and the number of initial particles. Figure 5 shows the maximum 
stable bunch area (in ratio to the bucket area) vs the rf phase modulation frequency (in 

ratio to the maximum synchrotron frequency) with ai = O.lOTi, T2/Tl = 4, where we have 
g4 = 0, g8 = 0 etc. for th e particle orbit on the bucket boundary with W = Tl. This fact is 
reflected in a weak 4:l parametric resonance shown in Fig. 5. Because the driving amplitude 

is large in this example, the 8:l and 12:l resonances are found to be not small. 
In general, a 5% timing jitter gives a stable bunch area of about 95% of the bucket area 

provided that parametric resonances are avoided. On the other hand, if the modulation 
frequency is near a synchrotron sideband, the stable phase space area becomes very small. 
Figure 6 shows the stable phase space area (in ratio to the bucket area) vs the modulation 
frequency (in ratio to the maximum synchrotron frequency) with T2 = Tl and al/T1 = 
0.04,0.08, . . . ,0.20 in the steps of 0.04. In order to eliminate high order modes and retain 
about 90% of stable phase space area near the 2:l parametric resonance, the modulation 
amplitude must be al/T1 5 0.005. 

B. Phase modulation of the rf wave 

If the entire rf wave timing and/or the particle orbit length are modulated, the effect 
gives rise to a modulation of the phase variable r. In this case: the Hamiltonian can be 
expressed as 

H=Ho+,- u2 e:T1 f2(r, T,, T,) cos w,t + . + . , 

where higher order perturbation terms involving &function are neglected, and 

f2(~,Tl,T2) = d(~ + Tl + $) - O(T + :) - O(T - $) + O(T - Tl - +) P-9) 

is an odd function of 7 shown in Fig. 3. The effective phase modulation strength is propor- 
tional to Q/T,. We expand the function f2 in action-angle variables, i.e., 

f2(~, Tl: T2) = 2 h,(J)e”“‘. 
--co 

(3.10) 

Since f2 is an odd function of 7, we obtain 

if m = even, 

sin rntic if m = odd. 

The resonance strength function satisfy the sum rule theorem 

5 Ihzn+dJ)12 = 2w 
n=l Tz+‘iw’ 

(3.11) 

(3.12) 

The sum rule strength for the rf phase modulation is slightly larger than that of r-f breathing 
phase modulation of Eq. (3.6). Th is means that the rf phase modulation can cause more 
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particle orbit distortion than the rf breathing phase modulation. The sum rule is a monotonic 
function of the synchrotron amplitude. At the maximum synchrotron amplitude with W = 
Tl, the sum rule decreases with increasing T,/Tl. 

The perturbation term in the Hamiltonian becomes 

a2eVo 

AH = ncl (zn + +To sin ((2n + ‘k) 

[cos((2n + l)$ + wmt) + cos((2n + I)$ - WTd)] (3.13) 

When the modulation frequency is equal to an odd harmonic of the synchrotron frequency, 
particle motion will be strongly perturbed. The resulting effects on particle motion are 
similar to that discussed in Sec. IIIA. Figure 7 shows the stable phase space area (in 
unit of the bucket area) vs the modulation frequency (in unit of the maximum synchrotron 
frequency) for u2/Tl = 0.10. The reduction of stable bunch area by the excitation of odd 

order modes is clearly visible. 
Figure 8 shows the stable phase space area near the 1:l parametric resonance for az/Tl = 

0.01,0.02, * * * , 0.10 respectively. In comparison with the result of Fig. 6, the loss of phase 
space area due to the shaking phase modulation is more severe than that of breathing phase 
modulation. 

The top plot of Fig. 9 shows the stable phase area (in unit of the bucket area) as a function 
of the breathing phase modulation amplitude (ul/Tl) at the 2:l parametric resonance. The 
bottom plot shows the stable phase space area vs the shaking phase modulation amplitude 
q/T1 at the 1:l parametric resonance. The circles (connected by a solid line) and rectangles 
are obtained from the parameter Tz/Tl = 1 and 4 respectively. Thus our estimated tolerable 
phase modulation amplitude is uz/Tl 5 2.5 x 10m3 in order to eliminate higher order mode 
and retain a stable phase space area of about 90% of the bucket area at the 1:l parametric 
resonance. The cusp in the bottom plot of Fig. 9 arises from the fact that the synchrotron 
tune is peaked at a synchrotron amplitude inside the bucket for T2/Tl < 4 (see Fig. 2). 

C. RF pulse width modulation 

The Hamiltonian for the rf pulse width modulation is given by 

H=Ho+- e:“3f3(~: T,: Tz) + AHt2), 
10 

where 

f3(Qi,Tz) = [e(~ + TI + :) - O(7 - Tl - %) - 11 , (3.15) 

AH(z) - ';', 
0 

[6( Y- + Tl t ;) + S(7. - Tl - :)] + . . . . 

Since the resonance strength function of fs shown in Fig. 3 is zero within the bucket re- 
gion, parametric resonance will not be excited by the perturbation. Thus the pulse width 
modulation affects only particles at the bucket boundary without any resonance structure. 
This can be understood from the total energy variation for particle orbit near the top of the 
bucket driven by the AHc2) term. It will not affect particles inside the bucket. 
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IV. RF VOLTAGE MODULATION 

When the rf pulse amplitude is modulated, the Hamiltonian for the particle motion 
becomes 

H=H,- “;fvfo(~; T,, G), (4-l) 

where AV is the rf voltage modulation amplitude, and the function fc is given by Eq. (2.13). 
We expand fe in action-angle variables, i.e. 

~o(T, T17 T2) = 5 G,(J)ei”$. 
m=--33 

Since fa is an even function of 7, we obtain 

if m = odd, 

COSm~:, _ 1 - sin rnGc 
m$, 1 if m = even. 

The resonance strength functions satisfy the sum rule theorem 

2 IG2n12 = 

16W3(3T, $2W) 

n=l 45Tl(T2 t 4W)2 * 

(4.2) 

(4.3) 

(44 

The effect of rf voltage modulation is concentrated at low harmonics of the synchrotron 
sidebands because terms in G, are proportional to rnT2 and mm3 respectively. 

Figure 10 shows the survival bunch area (in ratio to the bucket area) as a function 

of wn /ws,lnax with AV/Va = 0.05 and T2/TI = 4. Since the cosine term in Gs,Gra, ..a 
vanishes for particles with the maximum synchrotron amplitude at the bucket, the effective 
parametric resonance excitation is much smaller at w,/w, = 6,lO:. .+ shown in Fig. 10. 

Although the cosine term in G2 is also zero, a large resonance strength at the 2:l resonance 
arises mainly from the sine term. 

Figure 11 shows the stable phase space area (in ratio to the bucket area) vs the mod- 

ulation frequency (in ratio to the maximum synchrotron frequency) with T2 = Tl and 
AV/Vo = 0.02,0.04,. . . ,0.20. Results of many similar simulations show that the tolerable 
voltage modulation is about AV/Va 5 0.01 in order to attain a minimum of 90% stable 
phase space area at the 2:l parametric resonance. 

V. TOLERANCE FOR APPLICATIONS 

Since the barrier rf system can provide much lower voltage than an ordinary rf cavity 
system, it is important to evaluate its tolerance in any applications. In the following, we 

study an example of the Fermilab Recycler which is a fixed energy synchrotron with kinetic 
energy 8 GeV, circumference 3319.4 m, transition gamma yT = 20.7, and a momentum 
aperture of about 1%. The rms energy spread of entire recycled antiprotons is about 2.7 
MeV filled up the whole ring. As the beam is cooled, the resulting 95% momentum spread 
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is about 2 MeV. Allowing a factor of 7 in bunch compression for the newly accumulated 
antiprotons from the accumulator, the resulting 95% bunch height is 14 MeV. The bucket 
height for the Recycler is: according to Eq. (2.7), 

AEb = 13.5 (I/,Tl [kV-ps])“’ [MeV]. (54 

Thus an integrated field strength of about 2 kV-ps is needed to manipulate the recycled 
antiprotons. 

In the conceptual design of this low level rf system, barrier rf waves are generated by 
digital rf synthesizer [lo]. S ince the timing jitter in digital frequency synthesizer is small, rf 
phase modulation due to hardware is negligible. Furthermore, a typical propagation delay 
time in digital logic circuits is of the order of 10 ns (see for example Ref. [ll]). If we assume 
a typical pulse duration of about 0.5 N 1~s and a pessimistic 5% modulational error in the 
propagation delay time; the actual timing jitter is expected to be about At/T1 5 1 x 10m3. 
Comparing with the constraint for 90% bucket survival derived in the previous section, the 
timing jitter resulting from the barrier rf wave is negligible even when it is at a parametric 
resonance. 

A. Tolerance of phase modulation resulting from synchro-betatron coupling 

In the following we analyze the tolerance of orbit length modulation due to the synchro- 
betatron coupling. In the linear approximation, the orbit length change of the orbiting 

particle due to an angular kick is equal to D,B, where D, is the dispersion function, and 0 
is the dipole kick angle. When low frequency modulational angular kicks are applied to the 
beam, the resulting orbit length change is the integrated orbit variation, i.e. AC = $ D,d0. 
The resulting timing error in the rf cavity gap is given by 

At To f D&J -=- 
TI Tl 27rv,C’ (5.2) 

where C is the circumference of the machine, and u, = w,/wa is the modulation tune. Due 
to the synchro-betatron coupling, the rf synchronous phase slips in one direction and accu- 
mulates for half of the modulation period before it reverses in the other direction. Because 
the synchrotron frequency is much smaller than the revolution frequency, the phase error of 
each term accumulates. The phase modulation amplitude is enhanced by a factor wa/27rw,. 
Using the constraint At/T, 5 0.0025 in order to avoid harmful parametric resonances, the 

tolerable path length error is given by 

AC = 
f 

D,d0 x 2rvsCg$ 5 3 x 10m5 m 
1 0 

(5.3) 

for the Recycler, where parameters used are u, z 3 x 10m5 (see Fig. 2), Tl/To M 0.02, and 
C = 3319.4 m. Ground vibration at the frequency of a few Hz is the most important source 

of the orbit length modulation. Fortunately, ground vibration is mainly vertical, where 
the corresponding dispersion function is small. However, because of the tight constraint 
of Eq. (5.3), active feedback system, e.g., by using a feedback dipole at a high dispersion 
location, may be needed to eliminate harmful effects of parametric resonances. 
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B. Constraint on bunch compression 

The Recycler storage ring was proposed to recycle the unused antiprotons from the 

Fermilab Tevatron. .4t the end of a collider run: unused antiprotons can be decelerated 
in the Tevatron to 150 GeV. Antiprotons can then be transferred and decelerated in the 
Main-Injector in about 9 pulses and injected into the Recycler for accumulation. After 
each injection, the recycled antiproton batch must be compressed using the barrier rf wave 
to make space for the next recycled batch injection as well as the later injection of fresh 

antiprotons from the Accumulator. The compression rate must be properly determined to 
eliminate unnecessary particle loss and bunch-area increase. Besides the applications in the 
antiproton recycling project, barrier rf wave has been considered for creating a gap in a 
coasting beam for multi-pulse injections. The rate at which particles should be pushed by 
the barrier rf wave is crucial in order not to blow up the longitudinal emittance. 

Let ?‘2 < 0 be the compression rate of the barrier rf wave. The change of energy deviation 
from the synchronous beam energy Eo after traversing through the barrier rf field region is 
given by 

A”E,, + A*EiGt = -2l?“4e , 

A A 

where AEhd and AEiGt are the final and the initial energy deviation. It is clear from 
Eq. (5.4) that the energy deviation of a particle with 

will move at the same speed as the barrier rf wave. This particle will not be affected by 
the moving barrier. Therefore, in order not to produce empty spaces inside the beam, it is 
necessary for the barrier rf wave to move with a velocity slower than the drift velocity of 

particles having the maximum energy spread of the beam aLEbeam, i.e., 

li;,maxl = +kun 
0 

It is clear that this result does not depend on the shape of the barrier wave, and it can in 
fact be used to infer Eq. (5.4). 

Even if this condition of Eq. (5.6) is satisfied, empty spaces can still exist if the total 

compression time for particles with A*Ebeam does not complete full synchrotron periods. 
This is because at the time when the compression stops, part of the beam can have uneven 
distribution in the phase space. To minimize this effect, the condition that the incremental 
change of beam energy spread should only be a small fraction of the total beam spread, i.e.: 

~(~&eam) < ~&xm , cw 

where 6( a*E, eam) is the increase of energy spread in one complete synchrotron period. Using 
Eq. (5.4), this requirement becomes 

IT A 
I7’2,maxl K P2Eo~Ebeam , (5.8) 
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which supersedes Eq. (5.6). .4g ain, it is obvious that this constraint is independent of the 
shape of the barrier wave pulse. If Eq. (5.8) is satisfied, the phase space area should be 
nearly conserved during the synchrotron phase space manipulations. The phase space area 
conservation property can be proved as follows. 

The amount of compression dT2 in dN,,, synchrotron periods is given by 

T2 
dT2 = -dNs,, , 

f 
WI 

3Yn 

where fsyn is the synchrotron frequency. Using the synchrotron tune of Eq. (2.11), Eqs. (5.4) 
and (5.9) can be combined to obtain 

(5.10) 

When the second term in the round bracket of Eq. (5.10) is small, i.e., a small bunch or a 
small Tl/T2 approximation, the equation can be integrated to obtain 

(Tza^E)i,, = (Tza^E),, . (5.11) 

Thus the rectangular part of the phase space is conserved during the compression. The final 
energy spread of the beam depends only on the amount of compression provided that the 
condition (5.8) is satisfied. 

There is another constraint to the compression rate in order to avoid beam loss. If the 
largest excursion of the beam bunch into the barrier pulse is W, the barrier should not 
advance by more than Tl - W in each revolution period. From this, we obtain 

l?21<~[l-(~)2] . (5.12) 

This condition indicates that the bunch compression does not work for a full bucket. 
A preliminary experiment has been carried out at the Brookhaven AGS [12], where an 

empty gap of about 1 ps was created in 1.3 s using a pair of sinusoidal rf barrier waves. This 
amounts to ]P2] w 1.6 x 10m6. Using Eq. (5.8), the constraint of rf compression rate is 

]1;2,max] 5 2.7 x 10-4, 

where we have used the beam parameters of the AGS with an injection kinetic energy of 
1.5 GeV, transition gamma yT = 8.5, and a 0.2% beam momentum spread. Thus the 
condition given in Eq. (5.8) was well satisfied, and as expected, no phase space area increase 
was observed. 

Similar bunch beam manipulation for the Recycler at the Fermilab has been contem- 
plated. When antiprotons in the Recycler are cooled to have a small momentum spread, 
the beam is compressed to accept beam pulses from the antiproton Accumulator. The 
maximum compression speed is important in preserving the phase space area. Actual exper- 
imental tests of beam gymnastics are needed in achieving a successful operation of avoiding 
a hollow beam. Since actual scenarios of beam gymnastics are machine dependent, we will 
not present it here. 
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VI. CONCLUSION 

In conclusion, we analyzed the effect of rf phase and voltage errors on the particle motion 

in the barrier rf system. We prove analytically that the dynamics of the barrier wave 
depends only on the total voltage integral in the barrier wave, and is independent of the 
actual barrier rf wave form. The resonance strength functions and their associated sum rules 

are derived. We find that the resonance strength function decreases slowly with the mode 
number. Tolerance of rf phase and voltage modulation is discussed. We analyze stability 
of synchrotron motion for the Fermilab Recycler. The rf phase modulation due to orbit 
length modulation resulting from ground vibration can be important. Active compensation 
may be used to compensate the effect of rf phase modulation. Some constraints of bunch 
compression schemes are discussed. 
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APPENDIX A: SYNCHROTRON HAMILTONIAN FOR GENERAL BARRIER 
RF WAVE FORM 

From the equations of motion of Eqs. (2.2 and (2.3) , th e g eneral synchrotron Hamiltonian 
for an arbitrary barrier rf wave from is given by 

H=- --&q* - so’ ydT. 

Thus the maximum off-energy bucket height can be easily derived to be 

(4 

where Tl is the width of the barrier rf wave form. Since the barrier rf Hamiltonian is time 
independent, an invariant torus has a constant Hamiltonian value. The IV parameter for a 

torus is defined by 

&$A@* = IJT2J2 To T2’2+w eV(7-)d7 1 . 
The synchrotron period of a Hamiltonian torus can be written as 

W) 

(4 

14 



where T, is given by 

T, = “;vT 
0 w 

i; 

d7 

0 (a*E)* - w Jz/,f+, eV(?)d+ ’ 

Clearly, all physical quantities depend essentially on J V(T)&-. Thus, the essential physics 
is independent of the exact shape of the barrier rf wave. 
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FIGURES 

FIG. 1. Possible wave forms for the barrier bucket. The barrier rf wave is characterized by a 

voltage height VO, a pulse width Zj and a pulse gap T2. Below the transition energy with 77 < 0, 

particles are confined within the positive and negative pulses region. Above the transition energy, 

the sign of the voltage wave should be reversed. 

E^$ T2/TT;> 

“0 2.5 5 7.5 10 12.5 

AE (MeV) 

FIG. 2. The synchrotron tune vs the off-energy parameter AE. The parameters used in this 

plot are Eo = 8.9 GeV, jr,=.. = 89.8 kHz, V, = 2 kV, yr = 20.7, and Tr = 0.5~s. Note that if 

T2 > 4T1, the synchrotron tune is a monotonic function of AE. On the other hand, if T2 < 4T1, 
the synchrotron tune is peaked at an off-energy AE smaller than the bucket height A&. . 
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FIG. 3. Schematic drawing of the form factors fn, fr, f2 and fs used in this paper for the barrier 

rf system. 
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FIG. 4. The Poincare surface of section at w, = 1.95w,,,,,. The 2:l parametric resonance 

generated by the rf breathing phase modulation with ar/Tr = 0.05, and Tz/Tl = 2. Note that the 

last torus is about 60% of the bucket height shown as solid lines. Orbits outside the last torus are 

not bounded by the barrier bucket. 
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FIG. 5. The stable rf bunch area (in ratio to the bucket area) is plotted as a function of the 

rf breathing phase modulation frequency (in ratio to the maximum rf frequency). The modulation 

amplitude is 5% of rf pulse width, i.e. al/T1 = 0.05. The ratio between the rf pulse gap and the 

pulse width is Tz/Tl = 4. In this example, a smaller resonance excitation at 4:1, 8:1, . * * parametric 

resonances is due to the vanishing g4, gg, - . - on the barrier orbits. 
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FIG. 6. The stable phase space area (in unit of the bucket area) vs the modulation frequency (in 

unit of the maximum synchrotron frequency) for the breathing rf phase modulation with T2 = Tl 
and al/T1 = 0.04,0.08,-..,0.20. 
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FIG. 7. The stable rf bunch area (in ratio to the bucket area) is plotted as a function of the 

rf shaking phase modulation frequency (in ratio to the maximum rf frequency). The modulation 

amplitude is 5% of rf pulse width, i.e. al/T1 = 0.10. The ratio of rf pulse gap to pulse width is 

TX/T1 = 4. 
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FIG. 8. The stable phase space area (in unit of the bucket area) near 1:l parametric resonance 

due to the rf phase modulation for Tz/Tl = 4. The modulation frequency is in unit of the maximum 

rf frequency. The modulation amplitudes are az/Tl = 0.01,0.02,. . . , 0.10 respectively. 
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FIG. 9. The stable phase space area (in unit of the bucket area) vs the modulation amplitude 

at 1:l parametric resonance for the shaking phase modulation (bottom plot) and 2:l parametric 

resonance for the breathing phase modulation (top plot). Circular symbols (connected with a line) 

and rectangular symbols are obtained from the rf parameters with T2/Tl = 1 and 4 respectively. 

The cusp in the rf phase modulation is due to a peaked characteristic of the synchrotron tune. 
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FIG. 10. The stable bucket area (in ratio to the bucket area) vs the rf voltage modulation 

frequency (in ratio to the maximum synchrotron frequency). The modulation amplitude is 5% of 

the rf voltage amplitude, i.e., a4/Vo = 0.05. The ratio of the rf pulse gap to the pulse width is 

Tz/Tl = 4. A small excitation at the 6:1, lO:l, -.- is due to the vanishing cosine term in Gs, Gru, e . . 

for synchrotron orbits at the barrier height. 
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FIG. 11. The stable phase space area (in unit of the bucket area) vs the modulation frequency 

(in unit of the maximum synchrotron frequency) for the breathing rf phase modulation with Tz = Tl 
and al/T1 = 0.02,0.04,.--,0.20. 
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