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We investigate the masses of the light quarks with lattice 
QCD. We show that most of the large dependence on the 
lattice spacing a observed in previous determinations using 
Ii’ilson fermions is removed with the use of an O(a) corrected 
action. In the quenched approximation. we obtain for the 
strange quark MS mass X.(2 GeV) = ‘X(16) Me\‘. and for 
the average of the up and down quark masses E&(2 GeV) = 
3.6(6) MeV. Short distance arguments and existing staggered 
fermion calculations make it likely that the answers includ- 
ing the effects of quark loops lie 20% to 40% below this: 
?iiii,( 2 GeV) in the range 34-92 MeV. and iFir( 2 GeV) in the 
range 2.1-3.5 MeV. M’e argue that almost all lattice deter- 
minations of the light quark masses are consistent with these 
values. These low values are outside the range usually given 
by conventional phenomenologv. 

PACS numbers: 14.65.Bt. 12.13.Ff. 12.38.G~ 

Among the most important applications of lattice 
gauge theory to particle physics are the calculations re- 
quired to determine the fundamental parameters of the 
quark sector of the standard model. One of the most 
important of these is the overall scale of the light quark 
masses. It is one of the least well known of the funda- 
mental parameters of the standard model. (Estimates for 
the strange quark mass range from 100 to 300 SIC\’ for 
the .tfS masses renormalized at a high” energy scale. 
1 Gc\-! and for the average light quark ma.s~ from 3.5 

to 11.5 UeV [l].) It is al. 50 one for which lattice meth- 
ods are almost uniquely reliable, unlike quark mass ra- 
tios or the strong coupling constant u,, for which other 
powerful methods exist. Values for quark masses have 
been obtained since almost the beginning of lattice phe- 
nomenology [2,3]. H owever. improved understanding of 
perturbation theory and finite lattice spacing errors has 
been required to make sense of the various lattice deter- 
minations, which initially ranged over a factor of three. 

Lattice determinations of standard model parameters 
consist of two pieces. Calculations of experimentally 
measurable quantities such as hadron masses arc used 
to fix the bare coupling constant and quark masses in 
the lattice Lagrangian. Short distance calculations are 
used to relate the bare parameters in the lattice theory 
to renormalized, running coupling constants and masses, 
such as those of the JfS scheme. -- 

Quark masses are most easily obtained in lattice cal- 
culations by matching pseudoscalar meson masses with 
experiment. These are among the easiest lattice calcu- 
lations, having small statistical and finite volume errors. 
Experimental uncertainties are also negligible. I;ncer- 
tainties are dominated by truncation of perturbation the- 
ory and discretization errors? and by errors arising from 
the omission of light quark loops (the &quenched” ap- 
proximation). 

The short distance calculations relating the parameters 
in various regulators may be performed by demanding 
that short distance quantities such as the heavy-quark 
potential or current correlation functions be the sarne in 
both regulators. It is desirable to do the lattice part 
of such calculations nonperturbatively as much as pos- 
sible, to test for the presence of nonperturbative short 
distance effects and possible poor convergence of pertur- 
bation theory. Such nonperturbative short distance anal- 
ysis for quark masses is currently less advanced than the 
analogous investigations for the strong coupling constant. 

Perturbative relations between the lattice bare mass, 
mo, and the -11s mass, iZ, may be obtained by demand- 
ing that on-shell Green’s functions calculated with both 
regulators be equal. Xnalogous perturbative expressions 
for the renormalization of a, were initially rendered al- 
most useless by sick behavior in the lattice perturbation 
series. In Ref. [4] t i was shown that such behavior could 
be understood and mostly eliminated by a mean field the- 
ory resummation of large “tadpole” graphs. The effects 
of such large tadpoles are much less important for quark 
mass renormalizations than for U, [5]. 

To reduce the effects of such graphs further, the ex- 
pression giving ?i? from mo may be rewritten in terms of 
a mean field improved mass fi, 

FE(p) = rk 1 + a,-,0 
[ ( 

lnC, - ln (UP))] ? (1) 

where -,o = 2/~ is the leading quark mass anomalous di- 

mension, and In C, is the result of a one loop calculation. 
Here we use fi = rng/ m for the mean-field-improved 
bare mass ~71. The nonperturbative value of the plaquette 
expectation value (cp) is used in the expression for fi to 
incorporate an estimate for higher order tadpole graphs. 
The one loop term In C, is then ad’usted to remove the 
one loop part of this expression * (c’,.) = ( 1 - (7r/3)06). v+- 
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FIG. 1. Previous lattice results for the .‘1IS masses of the 
light quarks. renormalized at 1 GeV. with the lattice spacing 
set by the rho mass. Lattice spacing dependence is large for 
quenched rvilson fermions (diamonds) and small for quenched 
staggered fermions (filled squares). Results from two-flavor 
staggered fermion QCD (open squares) lie below those from 
quenched approximation staggered fermions by a reasonable 
amount. Data from Ukawa [2]. 

In Fig. 1 we show a compilation of previous results 
given by Ukawa [2]. (2 uenchcd results obtained with 
staggered fermions are almost cut-off independent for lat- 
tice spacings less than 1 GeV-‘. HoJvever, for staggered 
fermions the constant in Eq. (1) is C, = 132.9 [6]. This 
leads to correction factors of 50-100X, most of which 
is unexplained by mean field theory, casting doubt on 
the reliability of the perturbative relation between the 
staggered-fermion quark mass and the -iIS quark mass. 

For UYlson fermions, we have C, = 1.67 (61, and thus 
a well-behaved perturbation series. However. the numer- 
ical results for the UYlson action show large cut-off de- 
pendence. They lie far above the results for staggered 
fcrmions but show a downward trend as the lattice spac- 
ing is reduced. The N’ilson fermion action contains an 
error of 0(u), which is absent in the staggered fermion 
action. If the results are extrapolated in a, one obtains 
a result ~nuch closer to the results of staggered fermions. 
(See, for example, Ref. [S].) H owevcr, remaining sources 
of cut-off dependence are an unknown combination of 
C?(at), #(a,~), c3(az), etc. They cannot be estimatedor 
removed by simple extrapolation. since we do not have a 
quantitative theory of their functional form. One there- 
fore needs to investigate the removal of the dominant 
c?(u) error from the \Yilson action. 

.A convenient action for doing this has been pro- 
posed by Sheikholeslami and 1Yohlert [9]. Their im- 
proved action incorporates an extra dimension five term 
$pvFpv~, the so-called “clover7 term. The one-loop 
correction to the coefficient of the clover term is large [lo], 
as suggested by mean field theory [-I]. It is a three-tadpole 
correction and can be approximated by c z (C’P)-~/“, 
where the tree level coefficient is normalized to be one. 
For the improved action, c,,, = 4.72 [ll]. Thus, Ey. (1) 

is still well-behaved. 
\Ve use this action to determine the overall scale of the 

light quark masses. (Or equivalently, the coefficient of ml 

in the expression -If: = Cm, + . . . . FVe do not see devia- 
tions from the leading order of this equation. see below.) 
Our lattice spacings range from (the coarse) 1.26 Ge\--’ 
(at which uncertainties due to perturbation theory are 
starting to approach 50’s), down to 0.39 GeV-’ (where 
perturbation theory appears well behaved). \Ve have per- 
formed the calculation at the largest lattice spacing to 
investigate its behavior where it is beginning to break 
down. but we omit it from our final results. The lattice 
spacings have been obtained from the lP-1s splitting of 
the charmonium system, -llhh, - (%MJ;~ + .Mqc)/l. for 
which the uncertainties of lattice calculations are partic- 
ularly small and easy to understand. This means that nu- 
merical uncertainties in our results for the quark masses 
arise from a combination of uncertainties in the charmo- 
mum and pion calculations. 

\Ye USC improved lattice perturbation theory to convert 
to the .\IS mass at renormalization scale ~1 = 2 GeV and 
charmonium splittings to determine the lattice spacing. 
whereas previous determinations typically used bare per- 
turbation theory at scale /J = 1 GeV and the rho meson 
mass to determine the lattice spacing. Although renor- 
malization at 1 GeV is conventional in nonlattice results, 
renormalizing down to such a low scale introduces addi- 
tional pcrturbative uncertainty into the results which is 
not present in the underlying lattice results. 

Discussions of our charmonium calculations have ap- 
peared in Ref. [12]. S ome technical details and results 
of our pion calculations are given in Table I. For our 
most significant data point, the improved clover action 
at 3 = 6.1, we have used 100 configurations separated by 
4000 heat bath gauge sweeps. Pion correlation functions 
were calculated using * 2 x 2 correlated fits (fitting two 
states using two operators for the pions). Contributions 
from excited states were checked further on the smaller 
lattices by comparing with 1 x 1 and 3 x 3 fits. Statisti- 
cal errors were calculated using 1000 bootstrap samples. 
Longer descriptions of our analyses for the charmonium 
system and for the light quark masses are in prepara- 
tion (131. 

In Fig. 2 and in Table I we show our results for the light 
quark masses in the quenched approximation. The errors 
shown are statistical only. The diamonds are our results 
for unimproved LVilson fermions. They are consistent 
with the existing determinations (diamonds in Fig. 1). 
The triangles are our results for the mean-field-improved 
clover action. Most of the cut-off dependence has been 
removed. 

Remaining sources of such cut-off dependence could in- 
clude large (13 corrections to the mass relation. Eq. (l)? 
further corrections to the clover coefficient in the pion nu- 
merical calculations, and O(u*) corrections to the char- 
monium lP-1S splitting. 0(u) corrections are expected 
to be negligible for this splitting, but (3(o*p*) corrections 
could be larger since quark momenta are larger in char- 
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monium than in pions. LVe estimate o(u*p*) corrections 
in the charmonium splitting to range from 4% to 20% on 
our three finest lattice spacings. The perturbative one- 
loop result for the coefficient of the O(u) clover correc- 
tion agrees with the mean field estimate [lo]. However. 
a nonperturbative determination appears indeed to favor 
a further significant correction [l-1]. Purely perturbativc 
errors in the relation between the lattice and m masses 
should be of order crf N 5% at our finest lattice spacing. 
Other smaller uncertainties include finite volume effects. 
which are expected to be a couple of per cent or less. and 
statistical errors, which are 4% and arise mostly from the 
lattice spacing derived from the charmonium system. 
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FIG. 2. Our results for the masses of the light quarks. 
Most of the lattice spacing dependence of unimproved LL’il- 
son fermions (diamonds) is removed by the use of an 0(a) 
corrected action (triangles) with a tadpole improved toe% 
cient. The lattice spacing is set by the charmonium lP-1S 
splitting. Errors are statistical only. 

LVe have examined the pseudoscalar meson mass 
squared as a function of the quark mass, which should 
be linear plus small corrections in the small quark mass 
limit. Our numerical data are for quark masses in the 
range 0.4m, to m,. In this range. we find no statistically 
significant evidence for quadratic terms in -12: vs. mr. 
much less the very large quadratic terms that have been 
postulated to make m, = 0 consistent with experiment. 
Therefore, our results for the ratio of the strange to light 
quark masses agree with lowest order chiral perturbation 
theory: (m, + m,)/(2ml) = J&/-ll$ z 13.6. The val- 
ues for ml are obtained by linear extrapolation from the 
lowest masses at which we have performed simulations 
down to the physical mass value. 

At present. the uncertainty associated with the remain- 
ing cut-off dependence is the least reliably understood 
uncertainty in the quenched approximation. Pending 
further understanding of this error, we take our result 
at the smallest lattice spacing as the top of our lattice 
spacing error bar. \Ve take a linearly extrapolated re- 
sult (the lower of two plausible extrapolation methods) 
through the three finest lattice spacings as the bottom. 

This gives a range of 0.8 MeV for the cut-off dependence 
uncertainty. and we take the center of this range as our 
continuum limit, quenched approximation result: 

7’771(2 GcV) = 3.6(6) SIeY. (2) 

YZ,(2 GeV) = 95(16) SIeV. (3) 

The perturbative and cut-off dependence uncertainties 
were added linearly in the total error, since they are re- 
lated. -411 other uncertainties were added in quadrature. 

Another determination of the strange quark mass with 
an 0(u) improved action has been reported [15]. This 
determination used a tree-level. rather than a mean-held 
improved, estimate for the clover coefficient. They ob- 
tained Zsi,(2 GcV) = 128( 18) MeV. They did not attempt 
to correct for the effects of the remaining lattice spacing 
dependence or the effects of the quenched approximation. 
Most of the discrepancy with our results arises from fact 
that we have used much larger clover coefficients, and 
make an allowance for the fact that we continue to find 
significant cut-off dependence even so. 

In the quenched approximation, QCD couplings run 
slightly incorrectly. Tl ie strong coupling constant. for 
example, runs too fast without the effects of light quark 
loops [12]. To leading logarithmic accuracy, a,(r/a) is 

too small by a factor of about 9i31/3io), where 3:) and 

,3@’ are the leading quenched and unquenched 3 func- 
&is. respectively. This means that the running of the 
quark mass in the perturbative momentum region around 
rr/a is too slow, by about the same factor. In Ref. (161, 
the ratio of quenched and unquenched quark masses aris- 
ing from the perturbative region was estimated, to lcad- 
ing logarithmic accuracy, to be 

=z 1.15 to 1.20, (5) 

for us(7r/a) E l/6 to l/8. There is. of course, an ad- 
ditional contribution from the nonpcrturbative region. 
which is unknown. However, a correction due to light 
quark loops of tens of per cent in the downward direc- 
tion from the perturbative region at least would not be 
unexpected. 

Some quenched and unquenched staggered results sum- 
marized in Ref. [ 21 are shown in Fig. 1. (Unquenched Evil- 
son fermion calculations appear to be much more difficult 
to perform and harder to interpret.) The unquenched re- 
sults indeed lie below the quenched results by roughly the 
expected amount. and we take them seriously enough to 
use them to estimate the effects of quenching. ne argued 
above that quenched staggered quark mass determina- 
tions look good in most ways, but arc unreliable because 
of the poor convergence of perturbation theory. How- 
ever, the large corrections cancel out in the ratio of the 
quenched and unquenched determinations, making this 
a useful quantity to examine. To minimize effects due 
to differences in analysis methods, we estimate the ratio 
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from the results of a single group. at similar volumes and 
lattice spacings (about 0.4 Ge\--‘) [lT.lS], and obtain 

=,(l.O GeV),,,o 2.61(9) 

m,( 1.0 GeV),,=z Yiqiq 

= 1.21(T). (7) 

Since there are, in fact, three flavors of light quarks in the 
world and not two, we will use this ratio as a lower bound 
on the actual ratio and use the square (corresponding to 
four light quarks) as an upper bound. 

In summary, after making some plausible cuts. existing 
determinations are reasonably consistent. or have plausi- 
ble explanations for discrepancies. 1Ve omit results with 
very small physical volumes (smaller than 1.5 fm) and 
very large lattice spacings (larger than 0.2 fm, or 1.0 
GeV-‘). LVe also do not attempt to interpret the re- 
sults with unquenched Wilson fermions, which are in a 
more primitive state than those with staggered fermions. 
Of the remaining determinations. we have shown that 
the cut-off dependence and large size of determinations 
with quenched Wilson fermions arise mostly from the 
well-known O(a) error. The remaining discrepancy be- 
tween the quenched clover-improved fermion results and 
the quenched staggered fermion results is plausibly at- 
tributed to the apparent poor convergence of staggered 
fermion perturbation theory and the remaining cut-off 
dependence in the improved fermion results. The small 
difference between quenched and unquenched staggered 
fermion results is roughly what is expected. Putting all 
this together, we arrive at the following estimates for the 
light quark masses including effects of light quark loops, 
which we believe are consistent with all known facts: 

l ~~(2 GeV) in the range 54-W Ale\-. 

l FFir(2 GeV) in the range 2.1-3.5 SIC\-. 

for the -MS masses renormalized at 2 GeV. These 
estimates arise from combining our quenched result. 
Eq. (2), with the correction ratio obtained from stag- 
gered fermions? Eq. (7). R enormalizing down to the 
scale 1 GeV, where conventional mass estimates are often 
quoted. the estimates are raised by lo%, to fil,(l GeV) 
in the range 59-101 SieV, and E/(1 Ge\-) in the range 
2.3-3.9 SleV. 
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T.i\BLE I. Our results for fiir(2 GeV), the average of the u 
and d quark masses. renormalized at 2 GeV c is the coefficient 
of the 0(a) improvement operator. 
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