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1 Introduction and Summary.

1.1 Motivation.

The past two years have seen dramatic progress in the study of the non-perturbative behavior

of supersymmetric (SUSY) gauge theories. Duality, which relates the strongly coupled behav-

ior of one gauge theory to the weakly coupled behavior of another, has emerged as a key idea

in this study [1], [2], [3], [4]. Most of the work in this context has focused on gauge theories

with simple gauge groups. While some work has been done involving theories with non-simple

groups [5], one would like to understand them in more detail. There are several reasons for

this:

1. Such an investigation will serve as a non-trivial check of simple-group duality. Gauging

a global symmetry in two theories related by Seiberg duality is often a relevant pertur-

bation, and the equivalence of the resulting two theories will give further evidence for

duality.

2. Product groups often arise in the course of dualizing theories with simple groups, once

one goes beyond the simplest matter representations [6], [7], [8], [9].

3. Many phenomenologically interesting chiral gauge theories consist of product gauge

groups.

4. Several classes of product group theories exhibit dynamical SUSY breaking.

In this paper we focus on a relatively simple product-group theory: an SU(2) � SU(2)

gauge theory. We construct duals to this theory and study its non-perturbative behavior. We

expect that the insights obtained are applicable to more complicated product-group theories.

In particular, we extend some of our analysis to SU(N) � SU(M) theories.

Since we will closely follow Seiberg's original work [2] it is useful to brie
y review his main

results here. Seiberg studied SUSY SU(N) gauge theories with Nf 
avors of fundamental

matter �elds. He found that when Nf � Nc + 1 the theory con�nes and its superpotential is

determined by holomorphy and symmetries. When Nf > Nc+1, there are points in the moduli

space where extra particles become light. In this regime Seiberg constructed an SU(Nf �Nc)

theory and gave strong arguments showing that it has the same low-energy behavior as the

SU(Nc) theory. Moreover, in a sense, as the original theory becomes more strongly coupled

the SU(Nf � Nc) theory becomes more weakly coupled. Thus, one could regard it as being

dual to the SU(Nc) theory.
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1.2 The SU(2)� SU(2) Theories.

In the �rst part of this paper, (sections 2 - 4), we extend Seiberg's results to the SU(2)1 �
SU(2)2 theory. The theory we study has 2n SU(2)1 fundamentals, 2m SU(2)2 fundamentals,

and one �eld transforming as a fundamental under both groups. We will refer to this theory as

the [n;m] model. We will analyze the theory as n, m are varied1. As in the case of SUSY QCD,

we will �nd that for small values of n and m, (n;m � 2), the theory is con�ning. For larger

values of n and m the theory can be in the non-Abelian Coulomb phase, and we construct dual

descriptions for it. The analysis in this case is qualitatively di�erent depending on whether

n;m > 2, or only one of them is greater than 2. We discuss these di�erent possibilities below.

1.2.1 The Duality Regime.

We begin our study of duality in section 2 by considering the [n;m] models with both n;m � 3.

In this case, each SU(2), considered separately, has Nf > Nc+1 = 3 
avors, and one expects

a dual theory to exist. In fact, with some thought, several theories can be constructed which

could, potentially, have the same low-energy behavior as the original [n;m] theory (we will

sometimes refer to this theory as the electric theory). For example, one can turn o�, at �rst,

the gauge coupling of the second gauge group. The resulting SU(2) gauge theory has a well

known dual which has a global symmetry corresponding to the second SU(2). It is natural

to guess that on gauging this symmetry one gets a theory which agrees with the electric one

in the infra-red. One can now carry this process one step further and dualize the second

SU(2) symmetry as well, thereby getting another dual theory. Note that by construction

these theories have the same global symmetries as the original electric one, and the 't Hooft

anomaly matching conditions for these symmetries are satis�ed.

Dualizing SU(2)1 �rst, we construct two dual theories. One with gauge group SP (2n �
4) � SU(2)2, and the other with gauge group SP (2n � 4) � SP (4n + 2m � 10)2. Dualizing

SP (2)2 �rst, one would obtain similar duals, with n and m exchanged.

The question we investigate is this: do these dual theories really have the same infra-red

physics as the original electric theory? To analyze this, the low energy behavior is probed in

two di�erent ways:

First, in section 2.2, mass terms are added for some of the �elds in the electric theory. The

electric theory then 
ows to a new low-energy theory. As we show, the dual theories 
ow to

the duals of this low-energy theory, and the relations between the strong coupling scales of

the electric and dual theories change consistently in the process.

1One simplifying feature of this theory is that it is non-chiral. The ability to add mass terms for all �elds
provides better control on its infra-red behavior.

2We use SP (N ) duals rather than SU (N ) duals, as the global symmetries are more manifest in them.
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Second, in section 2.3, the moduli spaces of the electric and dual theories are shown to

agree by comparing various 
at directions in them. We �nd that along these 
at directions,

the two theories are related by simple-group duality. In particular, we establish that the chiral

rings in the two theories are the same.

Taken together, these checks strongly suggest that the dual theories have the same low

energy behavior as the electric theory. Thus, while these duals arise naturally when one

gauge coupling is much bigger than the other, they are in fact valid for arbitrary ratios of the

couplings.

1.2.2 The \Partially Con�ning" Models.

In section 3 we study the \partially con�ning" models, in which one of the groups, say SU(2)1,

is con�ning, when the other gauge coupling is turned o�. This class includes the [2;m] and

[1;m] models. A convenient starting point for studying the electric theory is the limit �1 � �2,

where �1, �2 are the strong coupling scales of SU(2)1, SU(2)2 respectively. In this limit

the �rst gauge group con�nes at the scale �1, generating a non-perturbative superpotential.

Below this scale one can use an e�ective theory in terms of the SU(2)1 mesons, some of which

transform under SU(2)2. The low energy theory is therefore an SU(2) gauge theory.

One can use SP duality to construct an SP (2m� 2) dual of this theory. It is interesting,

however, to see whether the same theory is obtained by 
owing down from the [n;m] duals

we discussed above. We analyze this question in section 3.1. The relevant dual to consider is

the [3;m] dual with gauge group SU(2) � SP (2m + 2). On 
owing to the [2;m] theory, the

SU(2)�SP (2m+2) dual theory is indeed broken to an SP (2m�2) subgroup. One can show

that the non-perturbative superpotential of the electric theory must arise in the dual theory

from instanton-like con�gurations with winding in both the SU(2) and the partially broken

SP (2m + 2) subgroups. This makes this case somewhat di�erent from the non-perturbative

e�ects in simple-group theories which arise only when the dual group is completely broken.

We expect the non-perturbative con�gurations in the present case to include, but not be

restricted to instantons lying in the diagonal SU(2) subgroup of SU(2)� SP (2m+ 2). With

the non-perturbative superpotential in place, this dual theory has the same infra-red behavior

as the electric one.

We then turn to the [1;m] models considered in section 3.2. Here the electric theory itself

is intriguing. In the limit �1 � �2 SU(2)1 has a quantum modi�ed moduli space. Symmetry

considerations show that an axion-dilaton �eld must arise in the low-energy e�ective theory

in order to cancel anomalies via the Green-Schwarz mechanism. However, since this �eld

is generated dynamically and symmetries do not �x it uniquely, it is not straightforward to

determine it. Duality provides a convenient way to do so. Starting with the SP (2m� 2) dual

3



theory described above and 
owing to the [1;m] case, one �nds that the theory is higgsed, as

usual, but the scale at which it is broken depends on a modulus. This modulus is the required

dilaton in the electric theory. With this identi�cation, the electric theory and the resulting

dual once again agree in the infra-red.

There is another dual theory for the [1;m] case obtained by 
owing down from the [3;m]

dual with gauge group SP (2m�4)�SP (4m�4). While we have not analyzed it in generality,

we show in section 3.3 that for m = 3, this dual too reproduces the infra-red behavior of the

electric theory. This already is quite remarkable since the electric theory has a quantum

modi�ed moduli space.

Note that while we analyze the electric theory in the limit �1 � �2, the dual descriptions

we use are valid more generally. Their equivalence to the electric theory indicates that the

electric description too is valid for all values of �1=�2.

1.2.3 Conclusions From the Study of the Duality Regime.

The central lessons that emerge from this study of duality are as follows:

First, as mentioned in the very beginning, from the point of view of duality in simple-group

theory, gauging an additional group provides a highly non-trivial consistency check of duality.

Second, we have established that dual theories can be constructed by alternately dualizing

the various factors in a product group. This reduces the problem of constructing dual theories

for the product group cases to the simpler problem of constructing duals for each of the

individual groups. The infra-red equivalence of the electric and dual theories follows from

simple-group duality in the limit when one gauge coupling is much bigger than the other. But

to establish this in general requires the detailed tests described above.

Finally, all the evidence obtained is consistent with the behavior of the product-group

theory changing smoothly as the ratio of the two gauge couplings is varied. In particular there

is no evidence for a phase transition, which would drastically alter the infra-red behavior3.

While we have only studied in detail the SU(2)�SU(2) case, we expect most of our results

to hold in general for product-group theories.

1.3 The Con�ning Models.

We end our study of the SU(2) � SU(2) theories by considering the con�ning models in

section 4. By analyzing the theory in the two limits, �1 � �2 and �2 � �1 we �nd the exact

superpotentials and the massless particles in these models. We show that the descriptions

obtained in these two limits agree and in fact argue that they should be valid more generally,

3 There is some lore to the e�ect that such transitions cannot occur in supersymmetric theories [1], [10].
Our results are in accord with this.
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for all values of �1=�2. Again, this is in agreement with the picture emerging from studying

the dual models, as the con�ning models can be obtained by 
owing down from the dual

theories.

We derive the superpotentials of the con�ning models by adding the contributions gener-

ated by the two groups. We expect this to be true quite generally as well.

Finally, we note that our discussion dealt with theories which were driven into the con�ning

regime by adding suitable mass terms. One can also go into this regime by adding Yukawa

terms, without accompanying mass terms (we give an example of this in Sect. 2.4). The

exploration of such theories, especially from the point of view of supersymmetry breaking, is

left for the future.

1.4 The SU(N)� SU(M) Theories and Supersymmetry Breaking.

We conclude in section 5 by studying some features of the more general SU(N) � SU(M)

theories.

First, in section 5.1 we study the renormalization group 
ows in the space of the two gauge

couplings. We do this in the vicinity of the two �xed points obtained by turning o� one or

the other gauge coupling. We �nd a simple criterion to decide when the gauge coupling that

is initially turned o�, is a relevant perturbation. We then use this criterion to argue that the


ows are consistent locally with the absence of a phase transition.

Second, in section 5.2, we extend our results for the SU(2)1�SU(2)2 theories and construct
a set of duals for the SU(N) � SU(M) theories.

Finally, in section 5.3, as an illustration of the richness of this class of theories, we analyze

a subset consisting of SU(N)�SU(N �1) theories and show that they break supersymmetry

after adding appropriate matter �elds and Yukawa couplings.

The presentation in the paper follows the order outlined in the introduction.

2 The SU(2)1 � SU(2)2 Models.

In this section we study the non-perturbative dynamics of an SU(2)1 � SU(2)2 gauge theory

with matter �elds in the fundamental representation. We explore the di�erent phases of the

theory as its matter content is varied. We note that the SU(2)1�SU(2)2 theory is non-chiral

{ all its matter �elds can be given mass terms. This allows for a variety of probes of the

infrared physics.

The theory we consider has one �eld, Q� _�, transforming as a fundamental under both

groups, 2n �elds transforming as fundamentals of the �rst group, L�i, and 2m �elds trans-

forming as fundamentals of the second group, R _�a. Here � = 1; 2, _� = 1; 2 are the gauge

5



Table 1: Field Content of Electric Theory

SU(2)1 SU(2)2 SU(2n) SU(2m) U(1) U(1)R

Q� _� 1 1 �mn m� 1
L�i 1 1 m 1�m=n
R _�a 1 1 n 0

indices of SU(2)1, SU(2)2 respectively and i = 1 : : : 2n, a = 1 : : : 2m. We will refer to this

theory as the [n;m] theory, or the [n;m] model. The �eld content of the [n;m] theory is

summarized in Table 1.

In analogy to QCD we sometimes refer to SU - and SP -fundamentals as \quarks", and

to a pair of fundamentals as one \
avor". The [n;m] theory has the non-anomalous global

symmetry group SU(2n) � SU(2m) � U(1) � U(1)R. For n;m � 0 there is a one-parameter

family of U(1)R symmetries. As a result, U(1)R charges of �elds and their dimensions at

superconformal infra-red �xed points are not uniquely determined. The charges of the �elds

under the nonanomalous global symmetries are also given in Table 1. Our conventions and

notations are summarized in Appendix A. We denote the strong coupling scales of the two

factors in SU(2)1�SU(2)2 by �1 and �2 respectively. The charges of the �elds and the strong

coupling scales under the various anomalous symmetries are given in Appendix B.

2.1 The Duals of the [n;m] Models.

In this section we will construct theories dual to the [n;m] models. Our basic building block

will be the dual of an SP (N) gauge theory with fundamental matter �rst constructed in [2]

and subsequently studied in [11]. By applying this SP duality to one or both of the SU(2)

groups we will construct two kinds of dual theories4. The dual theories, by construction, will

have the same global symmetries as the original electric theory and the 't Hooft anomalies for

these symmetries will match with those in the electric theory. In the following sections we will

subject the dual theories to other non-trivial checks of duality. In Section 2.2 we will change

the infra-red behavior of the electric theory by adding mass terms and show that the dual

theories 
ow to new ones in a consistent way. In Section 2.3 we will study the consistency

of duality with deformations along 
at directions. This test is crucial in verifying that the

moduli spaces and chiral rings of the electric and magnetic theories are the same. Some

relevant information regarding duality in SP groups is summarized in Appendix A.

4Other dual theories can also be constructed involving SU (N ) groups. We focus on the SP duals here
since the global symmetries are more manifest in them.
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As mentioned above, two kinds of theories dual to the [n;m] models will be constructed.

We discuss them in turn below. In constructing the �rst dual to the SU(2) � SU(2) theory

it is useful to consider the theory in the limit in which the SU(2)2 strong coupling scale, �2,

is negligible compared to the SU(2)1 scale, �1. In this limit one has an SU(2)1 theory with

n + 1 
avors. For n � 3, it has an equivalent infra-red description in terms of a dual theory

with gauge group SP (2n � 4) [11]. The dual theory has n + 1 
avors of \dual quarks", q _�
�

and li�, transforming as fundamentals of SP (2n � 4), and � = 1:::2n � 4 is the SP (2n � 4)

gauge index. In addition, the theory contains SP (2n � 4) singlet �elds which are mapped to

the mesons of the original SU(2)1:

X � 1

2
"�1�2" _�1 _�2Q�1 _�1Q�2 _�2 ; Lij � Li � Lj ; V _�i � Q _� � Li ; (2.1)

where the product denotes SU(2)1 contraction (our conventions are also given in Appendix

A). The dual theory has a superpotential [11]:

W =
1

4�1

�
�X q _�1 � q _�2" _�1 _�2 + 2 V _�i q

_� � li + Lij li � lj
�
: (2.2)

The dimension-one parameter �1 is introduced in order to match the dimensions of the electric

and magnetic mesons in the ultraviolet [2]. The parameter �1 and the strong coupling scales

�1 of SU(2)1, and �01 of SP (2n� 4) satisfy the scale matching relation (A.6) [11]:

�5�n
1 �02n�41 = 16 (�1)n�1 �n+1

1 : (2.3)

We note in particular, that this SP (2n � 4) theory has a global SU(2) symmetry corre-

sponding to SU(2)2 in the electric theory. By gauging it in the SP (2n�4) theory one expects

to get a dual to the SU(2)1� SU(2)2 theory. The resulting SP (2n� 4)�SU(2)20 theory will

be referred to as the �rst dual. Its �eld content is summarized in Table 2 (in order to avoid

confusion we refer to the SU(2)2 symmetry in the dual as SU(2)20).

The SU(2)20 gauge group has 2(2n+m� 2) fundamentals5:

" _� _�1q
_�1
� ;

1

�1
V _�i ; R _�a : (2.4)

The Wilsonian gauge coupling (strong coupling scale) of SU(2)20 is uniquely determined, by

its charges under the various anomalous symmetries, given in Table 6 of Appendix B, to be:

�02
8�2n�m

= (�1)n 2n�2 �
5�n
1 �5�m

2

�2+n1

: (2.5)

5We use the antisymmetric tensor to lower the SU (2)20 index of q, to conform with our de�nition of SP
doublets as having lower gauge indices.
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Table 2: Field Content of First Dual

SP (2n� 4) SU(2)20 SU(2n) SU(2m) U(1) U(1)R

q _�
� 1 1 mn 2�m
li� 1 1 �m m=n
R _�a 1 1 n 0
V _�i 1 1 m�mn m�m=n
X 1 1 1 1 �2mn 2(m� 1)
Lij 1 1 1 2m 2(1 �m=n)

The numerical coeÆcient above is derived at the end of this section by requiring consistency

of this dual with deformations along the X 6= 0 
at direction.

Although the construction of the SP (2n � 4) � SU(2)20 dual above was motivated by

considering the electric theory in the limit �1 � �2, we will �nd through several checks

in the subsequent sections that the electric and dual theory in fact agree in the infra-red

regardless of the value of �1=�2. As a �rst test we note here that the 't Hooft anomalies in

the electric theory and the dual are guaranteed to match by construction (this can also be

checked explicitly by using Tables 1 and 2). It is also worth mentioning that one can clearly

repeat the above mentioned procedure to dualize SU(2)2 instead of SU(2)1 thereby obtaining

an SU(2)10 � SP (2m� 4) dual theory. The analysis of this dual is very analogous to that of

the SP (2n � 4) � SU(2)20 theory; consequently we focus on the latter in this paper.

We now extend this process one step further by dualizing SU(2)20 in the �rst dual thereby

giving another dual theory which we will call the second dual. The dual of SU(2)20 with

2n+m� 2 
avors (2.4) is an SP (4n+ 2m� 10) gauge theory with 2n+m� 2 
avors p�_�, v
i
_�

and ra_�, where
_� = 1 : : : 4n + 2m� 10 is the SP (4n+ 2m� 10) gauge index. In addition, the

SU(2)20 mesons constructed from (2.4) appear as basic �elds:

A�1�2 � q�2 � q�1 ; D�i � q� � Vi ; G�a � q� �Ra ;
Wij � Vi � Vj ; Yia � V

i
�Ra ; Rab � Ra �Rb ;

(2.6)

where for conciseness we have omitted in eq. (2.6) the various powers of �1 from (2.4) that

are needed to correctly match the dimensions. The full gauge symmetry in the theory is then

SP (2n � 4) � SP (4n+ 2m� 10). The theory has the superpotential:

W =
1

4�1

�
X A�1�2 J

�1�2 � 2 D�1i l
i
�2
J�1�2 + Lij li�1 lj�2 J�1�2

�

+
1

4�2

 
Rab r

a � rb + 2 G�a p
� � ra + 2

�1
Yia v

i � ra (2.7)
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+ A�1�2 p
�1 � p�2 + 2

�1
D�i p

� � vi + 1

�21
Wij v

i � vj
!

;

where the �rst three terms come from the superpotential (2.2) expressed in terms of the �elds

of the second dual, and �2 is a dimension-one parameter needed to relate the ultraviolet

dimensions of the mesons (2.6) in the electric and magnetic theories. As in eq. (2.3), the

parameter �2 and the scales �02 of SU(2)20 and ��2 of SP (4n + 2m � 10) obey the scale

matching relation (A.6):

�02
8�2n�m ��4n+2m�10

2 = 16 (�1)m �2n+m�22 : (2.8)

Substituting �02
8�2n�m from (2.5) we �nd the scale matching relation for the scale ��2 of

SP (4n + 2m� 10):

��4n+2m�10
2 = 26�n (�1)n+m �2n+m�22 �2+n1

�5�n
1 �5�m

2

: (2.9)

It follows from the superpotential (2.7) that the �elds X, A�1�2J
�1�2, D�i and li� are heavy

in the second dual. Their equations of motion are:

A�1�2 J
�2�1 = 0 ;

X =
1

2n � 4

�1
�2

J�1�2 p
�1 � p�2 ; (2.10)

li�1 =
1

�2
J�1�2 p

�2 � vi ;
D�i = �Lij lj� :

The �rst equation in (2.10) sets the trace part of the anti-symmetric �eld A�1�2 to zero.

The remaining light �elds (see Table 3) are therefore the traceless part of the anti-symmetric

�eld, A0
�1�2

, which transforms under SP (2n� 4) only, p�_�, which is a fundamental under both

groups, vi_� and r
a
�, which are SP (4n+2m�10) fundamentals, and G�a, which are SP (2n�4)

fundamentals. The theory also contains a number of singlets under both groups: Lij, Rab, Yia

and Wij. Together, these �elds saturate the `t Hooft anomalies of the original [n;m] theory.

To summarize, the second dual has an SP (2n � 4) � SP (4n + 2m � 10) gauge group

with an antisymmetric tensor and 2n + 2m � 5 
avors of SP (2n � 4), 2n � 2 +m 
avors of

SP (4n + 2m� 10), and has a superpotential:

W = � 1

4�1�22
Lij vi � p�1J�1�2vj � p�2 + (2.11)

+
1

4�2
(Rab r

a � rb + 2G�a p
� � ra + 2

�1
Yia v

i � ra +A0
�1�2

p�1 � p�2 + 1

�21
Wij v

i � vj) :

The scale ��1 of SP (2n � 4) in the second dual can be found by using the various anomalous

symmetries of Table 6 (Appendix B)

��5�2m
1 = c(n;m)

�5�m
2

�1 �
m�1
2

; (2.12)
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Table 3: Field Content of Second Dual

SP (2n � 4) SP (4n+ SU(2n) SU(2m) U(1) U(1)R
2m � 10)

p�_� 1 1 �mn m� 1
vi_� 1 1 mn�m 1�m+ m

n

ra_� 1 1 �n 1
A0
�1�2

1 1 1 2mn 2(2 �m)
G�a 1 1 mn+ n 2 �m
Lij 1 1 1 2m 2(1 � m

n
)

Rab 1 1 1 2n 0
Yia 1 1 m+ n�mn m� m

n

Wij 1 1 1 2m� 2mn 2m� 2m
n

up to a constant. We will show in Section 2.2.2 that consistency of duality with the mass


ows implies recursion relations on c(m;n) as m and n are varied, eqs. (2.24) and (2.29).

Furthermore, in Section 3.3, consistency of duality in the [n; 1] models will �x c(3; 1) = �2,
eq. (3.26). Together with the recursion relations (2.24) and (2.29) this will allow us to

determine the constant in eq. (2.12):

c(n;m) = (�)m 2m+n�3 : (2.13)

Symmetry considerations do allow some �eld dependence in eq. (2.12), since there is one

combination of �elds and scales that is invariant under all global symmetries. However, such

a �eld dependence cannot occur. For example, it would introduce unphysical singularities in

the Wilsonian gauge coupling. Also, it would not be consistent with the mass 
ows considered

in the next section.

We should note that by repeating the procedure described above in the opposite order and

dualizing SU(2)2 �rst followed by SU(2)1 we would obtain another dual theory of the second

kind with gauge group SP (2n+ 4m� 10)�SP (2m� 4). Additional duals could in principle

be obtained by continuing to alternatingly dualize the two groups. However, SP (2n� 4) now

contains an antisymmetric tensor, and its dual is still unknown.

We complete the construction of the [n;m] duals by determining the constant in the scale

matching relation (2.5) for �02 { the scale of SU(2)20 in the �rst dual. As was mentioned in

the discussion preceding eq.(2.5) symmetries determine that

�02
8�2n�m

= C
�5�n
1 �5�m

2

�2+n1

: (2.14)
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We �nd the constant C below by going along an X 
at direction and demanding consistency

of this deformation with the �rst dual. Along the X 6= 0 
at direction, the electric theory

breaks to the diagonal SU(2)D with the 2n + 2m doublets Li and Ra, with scale �6�n�m
D =

�5�n
1 �5�m

2 =X2. In the �rst dual (2.2), one 
avor of the dual quarks (q) becomes heavy and can

be integrated out. The SP (2n�4) theory then has n 
avors and con�nes, thereby generating

a nonperturbative superpotential (A.4). Adding this superpotential to (2.2) (with the �elds q

integrated out and the result rewritten in terms of the SP (2n�4) mesons), it is easy to see that

the only �elds that remain light are the SU(2)20 -quarks V _�i=�1, and that the superpotential

for the light �elds vanishes. The scale of the SU(2)20 after integrating out the heavy �elds will

be denoted by �02L. Requiring that this scale coincide with the scale of the diagonal SU(2)D

in the electric theory we �nd:

�02L
6�n�m

=

 �X
2�1

!n�2
C

�5�n
1 �5�m

2

�n+21

=
�5�n
1 �5�m

2

X2
; (2.15)

where the X dependence of the middle term arises since we integrate out the �elds q at the

mass scale �X=2�1, and use the scale matching relation (A.7). To complete the identi�cation

of SU(2)0 with SU(2)D we further note that the �elds Vi=�1 should be identi�ed with Li. This

�xes �1 =
p
X . Solving for C in eq. (2.15) now we �nd that

C = (�1)n 2n�2 ; (2.16)

thereby obtaining the coeÆcient in eq. (2.5).

2.2 Mass Flows and Scale Matching.

In this section we subject the above proposed duality to a strict consistency check. First we

change the infra-red behavior of the electric theory by adding mass terms for some of its �elds.

We then show that the �rst and second dual theories described above 
ow in the infra-red to

the appropriate duals of the low-energy electric theory. This constitutes a non-trivial check on

the equivalence of the low energy behavior of the electric and dual theories. In the subsequent

discussion we refer to the renormalization group 
ow from the original infra-red theory to the

new one, obtained after adding mass terms, as a \mass 
ow".

There are three basic mass 
ows to consider. First, upon giving a mass to one 
avor of

SU(2)1, such as Li=1;2, the [n;m] theory 
ows to the [n � 1;m] theory. Similarly, giving a

mass to one 
avor of SU(2)2, such as Ra=1;2, one obtains the [n;m� 1] model. Finally, one

can give a mass to the �eld Q, which transforms under both groups, and integrate it out.

The resulting low energy electric theory then has two decoupled SU(2) gauge groups. In the

following we discuss these three di�erent 
ows, �rst in the �rst dual (Section 2.2.1), and then

in the second dual (Section 2.2.2).
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We will also demonstrate the consistency of the scale matching relations (2.3), (2.5), (2.9)

and (2.12) with the mass 
ows. The meaning of the scale matching relations is that the

parameters �1;2, the scales �1;2 of the electric theory and the scales ��1;2 of the dual theory

have to obey (2.9), (2.12), in order for the correlation functions of the electric and magnetic

theories to agree, including normalization. Similarly, in the �rst dual, �01, �
0
2 and �1 have

to obey (2.3), (2.5). For any given value of [n;m] the parameters �; �� and � in the scale

matching relations can be absorbed by rede�ning the various operators. It may thus seem

that the scale matching relations are trivial. It is nontrivial, however (see ref. [12]), that the

scale matching relations, as we show below, are consistent with the various 
ows. In Section

3, we provide additional nontrivial checks on the scale matching relations when we consider

the properties of the partially con�ning models.

2.2.1 Mass Flows in the First Dual.

Since the �rst dual was obtained by dualizing SU(2)1 only, it is not a�ected by the [n;m� 1]


ow6. We therefore turn to the [n � 1;m] 
ow. Adding a mass term ML12 for one 
avor

of SU(2)1 in the electric theory, the theory 
ows to the [n � 1;m] model, with the scale of

SU(2)1 given by �
5�(n�1)
1L = M �5�n

1 .

The �rst dual is higgsed to SP (2n � 6) � SU(2)20 much like in the case of a single SP

group. We therefore do not discuss it further except to note the change in the SU(2)20

scale. Adding the term ML12 to the superpotential (2.2), the �elds l1 and l2 get vevs with

l1 � l2 = �2M �1 � v2. Plugging their D-
at vevs

li� =

(
Æi�
p�2�1M if � = 1; 2

0 otherwise,
(2.17)

into the superpotential (2.2), the SU(2)2 doublets q1 _�, q2 _�, V _�1=�1 and V _�2=�1 become heavy,

with mass v=2. SU(2)2 now has 2(n � 1) +m� 2 
avors, and its scale is, using (A.7):

�02L
8�2(n�1)�m

=
v2

4
�02

8�2n�m
= (�1)n�1 2n�3 �1L

5�(n�1) �5�m
2

�
2+(n�1)
1

; (2.18)

in agreement with equation (2.5) written in terms of �1L;�
0
2L
.

The last mass 
ow to consider in the �rst dual is the decoupling of the common �eld Q.

Upon adding a mass term M X, the electric theory consists of two disjoint SU(2) groups,

with n, m 
avors respectively, and scales �1L
6�n = M �5�n

1 and �2L
6�m = M �5�m

1 . Corre-

spondingly, in the �rst dual, upon adding the termM X to the superpotential (2.2) the �elds

q acquire vevs:

q _�
� =

(
Æ _�
�

p�2�1M if � = 1; 2
0 otherwise,

(2.19)

6Except for the scale �0
2
; its change is given by m! m � 1 in eq. (2.5).
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such that SP (2n � 4) � SU(2)20 breaks to SP (2n � 6) � SU(2)D, where SU(2)D is the

diagonal group. Plugging the vevs (2.19) into (2.2), we see that V _�i, li1 and li2 are massive.

Their equations of motion set them to zero and the superpotential reduces to

W =
1

4�1
Lij li�1 lj�2 J�1�2 ; (2.20)

with �1;2 = 3 : : : 2n�4. The light �elds include the singlets Lij , the SP (2n�6) fundamentals

li=1::2n, and the SU(2)D doubletsRa=1::2m. Clearly, SP (2n�6) is dual to the electricSU(2)1, as
is evident from applying (A.8): �0 2n�61L

= 2
�2M�1

�0 2n�41 , which shows that �01L is precisely the

scale of the dual of the low-energy electric theory with �1L
6�n = M �5�n

1 . The other unbroken

group in the low-energy theory, SU(2)D, should be identi�ed with the electric SU(2)2, which

was left untouched by the �rst duality operation. Matching the scale of the diagonal SU(2)D

to the scales of SP (2n � 4) and SU(2)20, and using (2.3), (2.5), we obtain �6�m
D � hq1 �

q2i�012n�4�028�2n�m � M�5�m
2 so that the scale of the diagonal SU(2)D is equal to the scale

of the original SU(2)2 as expected7.

2.2.2 Mass Flows in the Second Dual.

The 
ow [n;m]! [n;m�1] is the simplest 
ow in the second dual, since SU(2)2 was dualized

last. Adding a mass M for the �rst 
avor of SU(2)2 in the electric theory corresponds to

adding the term MR12 to the superpotential (2.11) in the second dual. The scale of the

low-energy electric SU(2)2 is �
5�(m�1)
2 L = M�5�m

2 (A.7). In the dual theory, the equation of

motion for R12 is

r1 � r2 = v2 = �2M�2 (2.21)

Taking the vevs of ra along the D-
at directions

ra_� =

(
Æa_�
p�2M�2 if _� = 1; 2

0 otherwise,
(2.22)

we �nd that SP (4n+2m�10) is higgsed down to SP (4n+2(m�1)�10) and that the super-

potential (2.11) gives mass to the _� = 1; 2 components of all SP (4n+2m� 10) fundamentals

as well as to the singlets R12, R1a, R2a, G�1, G�2, Yi1 and Yi2. The resulting low-energy theory

is therefore SP (2n� 4)� SP (4n+ 2(m� 1)� 10) and its superpotential is as in (2.11) with

a now taking 2(m� 1) values and _� = 3 : : : 4n + 2m� 10, as can be seen by integrating out

the heavy �elds.

Note also that SP (2n� 4) now has two fewer 
avors, since the �elds p�_� with
_� = 1; 2, and

the �elds 1
�2
G�a=1;2 become heavy, with mass v=2. It therefore has 2n+ 2(m � 1)� 5 
avors

7The numerical factor in the relation between �D, �
0

1 and �02 arises because we are working in the DR
scheme here.
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as expected in [n;m � 1] case. The scale ��1L of the low-energy SP (2n � 4) theory can be

found by matching at the scale of the mass of the heavy 
avors (A.7):

��5�2(m�1)
1L = �M�2

2
c(n;m)

�5�m
2

�1 �
m�1
2

= �1

2
c(n;m)

�
5�(m�1)
2L

�1 �
(m�1)�1
2

(2.23)

= c(n;m� 1)
�
5�(m�1)
2L

�1 �
(m�1)�1
2

;

where the equality on the second line above is (2.12) with m ! m � 1. Consistency of the

[n;m]! [n;m� 1] 
ow with (2.12) therefore implies a recursion relation for c(n;m):

c(n;m) = �2 c(n;m� 1) : (2.24)

Finally, the scale of SP (4n + 2(m� 1)� 10) in the low-energy magnetic theory is (A.8):

��4n+2(m�1)�10
2L =

2

hr1 � r2i
��4n+2m�10
2 = �

��4n+2m�10
2

M�2
: (2.25)

This is clearly consistent with (2.9) after taking m! m� 1 in it and identifying �5�(m�1)
2L =

�5�m
2 M .

We now consider the 
ow [n;m] ! [n � 1;m]. Adding a mass term ML12 for one 
avor

of SU(2)1 in the electric theory, the theory 
ows to the [n � 1;m] model, with the scale of

SU(2)1 given by �5�(n�1)
1L = M �5�n

1 .

In the second dual, upon adding the term ML12 to the superpotential (2.11), the L12

equation of motion is:

p�1 � v1 J�1�2 p�2 � v2 = 2M �1 �
2
2 : (2.26)

The following choice of vevs satis�es (2.26) as well as the D-
atness conditions:

p�=1_�=1 = p�=2
_�=3 = vi=1

_�=2 = vi=2
_�=4 = v �

�
�2M�1�

2
2

�1=4
; (2.27)

with all other components vanishing, and breaks the group down to SP (2(n�1)�4)�SP (4(n�
1) + 2m � 10). The �elds p�_�=1;3

, p�=1;2_�
and vi=1;2

_�
are eaten, and the superpotential (2.11)

gives masses to the broken SP (4n + 2m � 10) components ( _� = 1 : : : 4) of ra_� and v î_�, where

î = 3 : : : 2n, and to the broken SP (2n � 4) components (� = 1; 2) of G�a and A0
�1�2

. It

also gives rise to masses for the gauge singlets Lij , Yia, Wij with i or j equal to 1 or 2.

After integrating out the heavy �elds, the resulting superpotential is of the form (2.11) with

i = 3 : : : 2n, � = 3 : : : 2n � 4 and _� = 5 : : : 4n + 2m � 10, as expected for the second dual of

the [n�1;m] model. The only �elds which transform under the unbroken groups and become

massive from the superpotential are the SP ((2(n�1)�4) fundamentals 1
�2
A0
�1=1;2; �2>2

, which
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mix with the p�>2_�=2;4
components. These two 
avors of the unbroken SP ((2(n � 1) � 4) have

equal masses v=2.

The scale ��1L of SP (2(n�1)�4) is a�ected by two factors under this 
ow: the SP (2n�4)

in the high-energy theory is broken to SP (2(n � 1) � 4) by the expectation values (2.27) of

the �elds p _�=1;3, while at the same time two 
avors { the �elds 1
�2
A0
�1=1;2; �2>2 and p�>2_�=2;4

mentioned above { of the unbroken SP (2(n � 1)� 4) gain mass v=2 from the superpotential

(2.11). Using (A.8) and (A.7), we can �nd the matching condition for ��1 for this 
ow:

��5�2m
1L =

�
v

2

�2 2

v2
��5�2m
1 =

1

2
c(n;m)

�5�m
2

�1 �
m�1
2

= c(n � 1;m)
�5�m
2

�1 �
m�1
2

: (2.28)

Eq. (2.28) implies a recursion relation for c(n;m):

c(n;m) = 2 c(n� 1;m) ; (2.29)

which, together with eq. (2.24) and (3.26) implies that c(m;n) = (�1)m2m+n�3.

The scale ��2L of the SP (4(n � 1) + 2m� 10) can be found using (A.8):

��
4(n�1)+2m�10
2L = 4v�4 ��4n+2m�10

2 = �2��4n+2m�10
2

M �1 �22

= (�1)(n�1)+m26�(n�1) �
2(n�1)+m�2
2 �

2+(n�1)
1

�5�(n�1)
1L �5�m

2

; (2.30)

which is the correct scale for the second dual of the [n� 1;m] model (equation (2.9)).

Finally, we consider adding a mass M for the �eld X. Recall that upon integrating out

the �eld X in the electric theory, one gets a theory with two separate SU(2) gauge groups;

SU(2)1 with n 
avors, and SU(2)2 with m 
avors.

In the second dual, X is not present since it becomes heavy and gets integrated out. How-

ever, the equation of motion (2.10) relates it to the light �eld p, which transforms under both

SP (2n� 4) and SP (4n+2m� 10). Thus, the appropriate term to add to the superpotential,

eq. (2.11), is given by:

ÆW =
1

2n� 4

�1
�2

M J�1�2p
�1 � p�2 (2.31)

Once it is added the �eld p becomes heavy and can be integrated out, so that the SP (2n� 4)

and SP (4n + 2m � 10) gauge theories are now decoupled (except for the superpotential).

Now however, SP (4n + 2m � 10) has Nf = n +m and con�nes for n � 38. One is then left

with an SP (2n � 4) gauge group with an antisymmetric, 2m fundamentals and a number of

8For n � 2 the discussion in this section is not valid. See following sections.
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singlets (including the mesons of the con�ning SP (2n�4)). The superpotential of this theory

is partly given by (2.11), after substituting for the �eld p, from its equations of motion, in

terms of the �elds Lij , vi, Ga� and A0
�1�2

, and going over to the SP (4n + 2m � 10) mesons.

In addition, there is a non-perturbative contribution to the superpotential generated by the

con�ning SP (4n+ 2m� 10).

The dynamics of this SP (2n� 4) gauge theory is thus very involved. Although we cannot

rigorously argue that this is indeed the case, we conjecture that in the infra-red, the theory

gives two decoupled sectors { one corresponding to the electric SU(2)2 with its m 
avors, and

the other corresponding to an SP (2n�6) gauge theory that is the dual of the electric SU(2)1.

This picture can be substantiated by considering the special case n = 3, for which SP (2n�
4) = SU(2) and SP (4n+2m�10) = SP (2m+2). Once the �eld p is integrated out, SU(2) is

left with the 2m doublets G�a (notice there is no antisymmetric in this case). SP (2m+2), on

the other hand, has Nf = Nc+2 and con�nes, generating the superpotential Pf ~M (A.4), where
~M denote collectively the SP (2m+ 2) mesons M ij = vi � vj, Mab = ra � rb and M ia = vi � ra.
These mesons become heavy due to the superpotential (2.11); similarly, the �elds Yia, Wij

and Rab become heavy. Substituting for the �elds p as well as for the other heavy �elds,

we �nd a vanishing superpotential. The second dual therefore gives an SU(2) gauge theory

with m 
avors and no superpotential, corresponding to the the electric SU(2)2 (the theories

are not identical, there is no simple �eld rede�nition that relates their fundamentals). As for

the electric SU(2)1, this theory con�nes for the case n = 3 we are considering. The non-

perturbative superpotential that this theory generates probably arises in the dual through

some complicated dynamics. Aside from this superpotential however, the magnetic and electric

theory are clearly identical in the infra-red.

2.3 Deformations Along Flat Directions.

As a further check of the duals we constructed, we now analyze their moduli spaces. To do

this, various �elds in the electric and magnetic theories are given expectation values along D-

and F -
at directions. We then verify that the resulting theories are equivalent in the infra-

red. In the process we also show that the chiral rings of the electric and magnetic theories are

identical. As is common in the study of duality, classical restrictions on the chiral ring of the

electric theory will sometimes arise through complicated, nonperturbative e�ects in the dual

description.

We limit our discussion to the second dual of section 2.1, since, for the purpose of this

analysis, the �rst dual is essentially the same as simple SP duals.

We begin with the 
at direction parametrized by the expectation value of the �eld X.

In the electric theory the X expectation value breaks the gauge symmetry to the diago-
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nal SU(2)D. The diagonal gauge group has now 2n + 2m doublets and a scale �6�n�m
D =

�5�n
1 �5�m

2 =X2. Its dual is an SP (2n + 2m � 6) gauge theory with 2n + 2m fundamentals,

and a scale obeying:

��2n+2m�6
D =

16(�)n+m �n+mD X2

�5�n
1 �5�m

2

: (2.32)

We will show below that the SP (2n � 4) � SP (4n + 2m� 10) dual theory 
ows to this dual

after deforming it along the X 6= 0 
at direction, thereby establishing its equivalence with the

electric theory.

By the equation of motion for the �eld X, eq. (2.10), giving an expectation value to X in

the electric theory is equivalent to giving an expectation value to p � p in the magnetic theory.

The D- and F -
at conditions that follow from (2.11) determine the expectation values of the

�eld p:

p�_� =

( q
� �2 X

�1
Æ�_� if _� = 1; :::; 2n� 4

0 otherwise :
(2.33)

The p expectation value (2.33) breaks the SP (2n� 4)� SP (4n + 2m� 10) gauge symmetry

down to SP (2n� 4)D �SP (2n+2m� 6). All fundamentals of SP (4n+2m� 10) decompose

into fundamentals of the unbroken SP (2n + 2m � 6), denoted in the following by hatted

�elds, and fundamentals of the diagonal unbroken SP (2n � 4)D, denoted in the following by

barred �elds (e.g. the �elds vi decompose into v̂i which are fundamentals of the unbroken

SP (2n + 2m � 6), and �vi which are fundamentals of SP (2n � 4)D). The �eld p decomposes

under SP (2n� 4)D �SP (2n+2m� 6) as follows: p = (1;1)+ ( ;1)+ ( ;1)+ ( ; ), where

is traceless. The ( ;1) and ( ; ) are eaten by the Higgs mechanism. The ( ;1) part of p

pairs with the �eld A0 and becomes massive due to the superpotential. Thus only the singlet

part of p remains massless, and corresponds to the �eld X. Furthermore, by inspecting the

superpotential (2.11) after substituting the vevs (2.33), we observe that the �elds Ga and �ra

become massive and can be integrated out. After integrating out the heavy �elds the resulting

superpotential is:

W =
1

4 �21 �2
(Wij �X Lij) �vi � �vj + 1

4 �2
Rab r̂

a � r̂b

+
1

2 �1 �2
Yia v̂

i � r̂a + 1

4 �21 �2
Wij v̂

i � v̂j : (2.34)

The diagonal SP (2n � 4)D now has only 2n fundamentals, the �elds �vi, and is therefore

con�ning, generating a nonperturbative superpotential (A.4) Wn:p: � PfM , with M ij � �vi � �vj
being the con�ned degrees of freedom. Adding Wn:p: to the superpotential (2.34) we obtain:

W =
1

4 �21 �2
(Wij �X Lij) M ij +

1

4 �2
Rab r̂

a � r̂b

+
1

2 �1 �2
Yia v̂

i � r̂a + 1

4 �21 �2
Wij v̂

i � v̂j � PfM

2n�3 ��2n�3
D

; (2.35)
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where ��2n�3
D is the scale of the diagonal SP (2n � 4)D. One linear combination of W and L

obtains mass together with the mesonM and can be integrated out. The equations of motion

for the heavy �elds implyM ij = 0 and Wij = XLij . Note that the second equality reproduces

a classical constraint in the electric theory. Integrating the heavy �elds out, the superpotential

becomes:

W =
1

4 �2
Rab r̂

a � r̂b + 1

2 �1 �2
Yia v̂

i � r̂a + 1

4 �21 �2
X Lij v̂i � v̂j : (2.36)

Eq.(2.36) can be identi�ed with the superpotential of the SP (2n+2m�6) dual of the electric

SU(2)D theory mentioned above. To see this note that once X acquires a vev the �elds

transforming under SU(2)D can be taken to be Ra and
Q�Lip
X
. On dualizing SU(2)D with this

matter content one gets a superpotential given precisely by eq.(2.36), with �1 set equal9 top
X. Thus, the electric and the dual theory match along the X 6= 0 
at direction.

Next we consider the 
at direction Rab 6= 0. We begin by giving Rab a rank 2 expectation

value. For the sake of de�niteness we take R12 6= 0. This expectation value completely

higgses SU(2)2. The low-energy electric theory is then the SU(2)1 gauge theory with 2n+ 2

doublets (Q _�; Li), and the massless singlets Raâ { the moduli describing the 
at direction and

the components of the SU(2)2 matter �elds that are not eaten. In the following, the indices

â; b̂ = 1; 2. By the usual rules of SP duality, this low-energy SU(2)1 has a dual description in

terms of an SP (2n� 4) theory. We will see below that the magnetic theory correctly reduces

to this SP (2n� 4) theory along the R12 6= 0 direction.

In the dual theory, the expectation value of R12 gives mass to 2 fundamentals of SP (4n+

2m � 10). The low-energy SP (4n + 2m � 10) theory (whose scale will be denoted by ��2L )

now has 4n+2m�6 fundamentals. It is therefore con�ning, and generates a nonperturbative

superpotential (A.4), Wn:p: � PfM. Here M denote the mesons of the con�ning SP (4n +

2m� 10): M i� = vi � p�; M ij = vi � vj; M��0 = p� � p�0, Ma0b0 = ra
0 � rb0 (with a0; b0 = 3; :::; 2m

only), Ma0i = ra
0 � vi and Ma0� = ra

0 � p�. We now integrate out the heavy 
avor râ from

(2.11), add the nonperturbatively generated superpotential along the R12 6= 0 
at direction,

and rewrite the resulting superpotential in terms of the mesons de�ned above, much like we

did when considering the X 6= 0 
at direction:

W = � PfM
22n+m�6 ��4n+2m�9

2L

� 1

4�1 �22
Lij M i� M j

�

+
1

4 �2 R12

 
�Râa0 M

a0b0 Râ
b0 + 2 Râa0 M

a0� Gâ
� +

2

�1
Râa0 M

a0i Y â
i

9 Equivalently we can perform the X- and �1-dependent �eld rede�nition Y ! Y
p
X, v̂ ! v̂�1=

p
X, so

that the �elds have the same symmetries as those in the dual of SU (2)D. As a result �1 disappears from the
superpotential and the scale matching relation.
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�G�â M
�� Gâ

� �
2

�1
G�â M

�i Y â
i �

1

�21
Yiâ M

ij Y â
j

!
(2.37)

+
1

4 �2

 
2 G�a0 M

�a0 +
2

�1
Yia0 M

ia0 +Ra0b0 M
a0b0 +A0

�1�2
M�1�2 +

1

�21
Wij M

ij

!
:

From the superpotential eq.(2.37) we see that the only �elds that remain massless are the

SP (2n � 4) fundamentals G�â;M
i
� and the gauge singlets Lij; Yâi; M̂ = M��0J��0 and Raâ.

The nonperturbative superpotential Wn:p vanishes after imposing the equations of motion for

the heavy �elds, and the superpotential of the remaining massless �elds is:

W = � 1

4 �1 R12
X "âb̂ G

â
� G

�b̂ +
1

2 �1 �2 R12
Yâi G

â
� M

i� +
1

4 �1 �22
Lij M i

� M
j� ; (2.38)

where we used the relation M̂ = (2n� 4)�2X=�1 (2.10).

But this superpotential, as promised, is precisely the superpotential of the dual of the low-

energy electric SU(2)1 with 2n + 2 doublets, eq. (2.2). To see this note that once R12 6= 0,

the matter �elds transforming under SU(2)1 in the electric theory can be taken to be Li and
Ra�QpR12

. Eq. (2.38) suggests that the �eld dual to Li be identi�ed with li� � 1
�2
M i

�. In addition,

on identifying the �eld dual to Ra�QpR12

with qâ� � Gâ
�pR12

and Vâi � YâipR12

we �nd that eq. (2.38)

agrees with the required superpotential of the dual of the low-energy SU(2)1. This agreement

shows that the electric and dual theory agree along R12 
at direction too.

Classically, the chiral ring of the electric theory satis�es a number of relations. These

ensure, for example, that Rab cannot have an expectation value of rank greater than 2. In

order to see how these relations arise in the dual theory let us return to eq. (2.37). As

was mentioned above, several �elds get mass due to bilinear couplings in this superpotential.

Integrating them out gives rise to equations relating the heavy �elds with the light ones and

these, in fact, correctly reproduce the relations in the chiral ring of the electric theory. For

example, the �eld Ma0b0 gets a mass by pairing with Ra0b0. On integrating it out we �nd that

Ra0b0 =
1

R12
Râa0 Râ

b0 : (2.39)

These are the relations in the chiral ring of the electric theory which result in Rab having an

expectation value of rank � 2. Notice that, whereas in the electric theory these are classical

relations, in the dual they arise after including the e�ects of con�nement, as in (2.37).

We can continue turning on further expectation values in eq.(2.38). For example, an L12

expectation value gives mass to two SP (2n � 4) fundamentals, so that this group con�nes

(recall that along this 
at direction the electric theory is completely higgsed). It is easy

to work out the massless spectrum that follows from eq. (2.38), after accounting for the

nonperturbative superpotential generated by the con�ning SP (2n � 4), and to see that it
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precisely matches that of the electric theory. The superpotential in terms of the massless

�elds vanishes in both theories too. Thus, along the L12;R12 6= 0 
at direction the electric and

magnetic theories 
ow to the same (trivial) infra-red theory. Furthermore, when the analysis

of the chiral ring is extended to this case, one �nds that the magnetic theory reproduces all

the constraints in the electric theory, so that the chiral rings in the two cases are the same.

This concludes our discussion of the 
at directions in the electric and dual theories. As we

have seen, the behavior of these theories agrees along various 
at directions. This provides

strong additional evidence for their equivalence at low energies.

2.4 Flows by Yukawa Perturbations.

In this section we discuss brie
y the 
ows due to Yukawa perturbations in the second dual.

We add the term

W = �ia Yia (2.40)

to the superpotential (2.11) with a Yukawa-coupling matrix of rank P � minf2m; 2ng. Upon
adding the perturbation (2.40), the dual SP (2n�4)�SP (4n+2m�10) theory 
ows to a new

�xed point. The �elds vi and ra get expectation values that obey the F-
atness conditions

vi � ra = �2 �1 �2 �ia; ra � rb = vi � vj = 0 ; (2.41)

and, along the D-
at directions, can be taken to be:

vi_� =

0
BBBBBBBBBBBBBBB@

p
s1 0 : : : 0 0 : : : 0
0 0 : : : 0 0 : : : 0
0

p
s2 : : : 0 0 : : : 0

0 0 : : : 0 0 : : : 0
: : : : : : : : : : : : : : : : : : : : :
0 0 : : :

p
sP 0 : : : 0

0 0 : : : 0 0 : : : 0
: : : : : : : : : : : : : : : : : : : : :
0 0 : : : 0 0 : : : 0

1
CCCCCCCCCCCCCCCA

; (2.42)

ra_� =

0
BBBBBBBBBBBBBBB@

0 0 : : : 0 0 : : : 0p
s1 0 : : : 0 0 : : : 0
0 0 : : : 0 0 : : : 0
0

p
s2 : : : 0 0 : : : 0

: : : : : : : : : : : : : : : : : : : : :
0 0 : : : 0 0 : : : 0
0 0 : : :

p
sP 0 : : : 0

: : : : : : : : : : : : : : : : : : : : :
0 0 : : : 0 0 : : : 0

1
CCCCCCCCCCCCCCCA

; (2.43)
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where by a �eld rede�nition we took the rank-P Yukawa matrix to be diagonal, with eigen-

values �1 : : : �P and si = �2�1�2�i; in eqs. (2.42), (2.43) the SP (4n+2m� 10) gauge indices
_� are taken to enumerate the rows.

The expectation values (2.42), (2.43), higgs the dual theory to SP (2n � 4) � SP (4n +

2m � 10 � 2P ). We will not consider in general the new �xed point, but will only note the

interesting case when the Yukawa coupling has rank P = 2n + m � 5. In this case, the

SP (4n + 2m � 10) group is completely broken, while the matter content of the SP (2n � 4)

theory consists of the antisymmetric tensor A0, the 2m � P fundamentals Ga� with a > P ,

and 2n +m � 5 of the components of p _� (half of the components of p _� and the components

of Ga� with a � P become heavy, as can be seen by substituting the expectation values of vi

and ra in the superpotential (2.11)). Symmetry considerations show that this theory con�nes

for m � 3; the m = 3 case exhibits con�nement without chiral symmetry breaking.

We will not analyze the con�ning phase of this theory in detail in this paper, our only

purpose here is to note that it is possible to 
ow to the con�ning phase by perturbing the

superpotential with dimension-3 terms, without having to add mass terms for any �eld. In

the more interesting chiral product-group theories, such 
ows to the con�ning phase might

be interesting from the point of view of supersymmetry breaking. We leave the detailed

investigation of this for future work.

3 The \Partially Con�ning" Models.

3.1 The [2;m] Models.

In this section we study theories in which one of the two electric gauge groups is in the

con�ning regime. By this we mean, more precisely, that one of the two groups, say SU(2)1,

has three or fewer 
avors and would therefore con�ne in the absence of SU(2)2. These theories

have a rich set of non-perturbative phenomena which duality helps elucidate. This section

deals with the [2;m] models, and the following two sections deal with the [1;m] theories.

A convenient starting point for studying the [2;m] models is the limit �1 � �2, in which

SU(2)1 con�nes at the scale �1. Below this scale one can use an e�ective theory in terms of the

SU(2)1 mesons, X � Q2, Lij � Li � Lj and V _�i � Q _� � Li with i; j = 1 : : : 4. Non-perturbative

e�ects in the con�ning group give rise to a superpotential (A.4)

W = � 1

�3
1

�
X PfL � 1

4
Wij Lkl "ijkl

�
; (3.1)

with Wij = Vi � Vj as in section 2. SU(2)2 in this e�ective theory has 2m + 4 doublets, R _�a
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and V _�i=�1, and its scale is given by10:

�4�m
20 =

�5�m
2

�1
: (3.2)

The dual theories are best understood by starting with the [3;m] duals and 
owing to the

[2;m] case after adding a mass term for one L 
avor. In the previous section we presented two

types of [3;m] duals: one where only one SU(2) is dualized, and the other where both SU(2)s

are dualized. In the former, the [3;m]! [2;m] 
ow is very similar to the Nf = 3 ! Nf = 2


ow in basic SP duality [11]. We therefore only discuss here duals of the second type, in

which both groups are dualized. There are two such theories. Dualizing SU(2)1 followed by

SU(2)2, a [3;m] dual with gauge group SU(2)�SP (2m+2) is obtained. Reversing this order,

an SP (2m� 4)� SP (4m� 4) theory is obtained instead.

We �rst discuss the [3;m] ! [2;m] 
ow in the SU(2) � SP (2m + 2) dual. The analysis

of this 
ow has much in common with that of section 2.2.2. Therefore we only point out the

essential di�erences here.

Adding a mass term ML12 to the superpotential (2.11) of the [3;m] theory, the SU(2) �
SP (2m + 2) dual gauge group gets broken to its SP (2m � 2) subgroup. Several �elds get

heavy either through the Higgs mechanism or by pairing with other �elds through couplings

in the superpotential (2.11). The �elds that remain light are ra_�, v
i
_�
, which transform under

the SP (2m� 2) gauge symmetry, and Lij , Rab, Yia, Wij and X (i; j = 3:::6), which are gauge

singlets11. The resulting superpotential is:

W =
1

4�2

 
Rab r

a � rb + 1

�21
Wij v

i � vj + 2

�1
Yia v

i � ra
!

: (3.3)

Since the SU(2) subgroup is completely broken, one might expect the non-perturbatively

generated superpotential (3.1) to arise from an instanton in this subgroup. However, careful

consideration of the zero-modes involved shows that the contribution from this instanton

vanishes. Furthermore, the scale matching relations eqs. (2.12) and (2.9), with n = 3, imply

the following relation between the scale �1 of the [2;m] electric theory (�3
1 = M�2

1H, with �1H

the corresponding scale in the [3;m] theory) and the scales ��1 and ��2 of the [3;m] magnetic

theory:
1

�3
1

�
��5�2m
1

��2m+2
2

M �41 �
5
2

: (3.4)

10A constant could in principle appear in this scale matching relation, multiplying the right hand side.
However it can be shown to be 1, by �rst establishing, by considering the m ! m � 1 
ow, that it is m-
independent, and then evaluating it in the con�ning [2; 1] model by adding mass terms, calculating the vevs
of various �elds and demanding consistency with the Konishi anomaly.

11 The �eld X arises as follows: unlike the general n case, the n = 3 SU (2) � SP (2m + 2) theory does not
have the A0�1�2 �eld. As a result, one component of p�

_�
does not get mass and can be identi�ed with X.
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Hence, since �1 is the scale appearing in (3.1), this nonperturbative term must arise from

instanton-like con�gurations with one unit of winding in both the SU(2) and the SP (2m+2)

subgroups. While we have not actually calculated this contribution, the counting of zero modes

suggests that it can arise in this manner. We expect these con�gurations to include, but not

be restricted to, instantons that lie in a diagonal SU(2) subgroup of SU(2)� SP (2m + 2).

This non-perturbative e�ect is di�erent from those encountered in the simple-group case,

in that it arises from con�gurations with components lying in partially broken subgroups. It

should be a generic feature of product group theories.

Once we accept that (3.1) does arise, we �nd that the resulting theory is the expected

dual of the electric theory (in the limit �1 � �2 ) with which we started. Below the scale �1,

the electric theory was SU(2)2 with 2m + 4 doublets, whose dual should be an SP (2m � 2)

theory. This is precisely the theory we �nd by 
owing down from the [3;m] dual. The

required matter �elds and superpotential are also in agreement with those found above in the

dual theory, provided we take �1 = �1. Note that the scale �1 in eq. (3.3) arises because

Yia=�1 and Wij=�
2
1 are the canonically normalized �elds. In the electric theory, V _�i=�1 are

the correctly normalized SU(2)2 doublets, consequently, �1 is set equal to �1. In fact, in

the SP (2) � SP (2m + 2) dual discussed above, the strong coupling scale of SP (2m + 2) is

given by (2.9), with n = 3 and �1 ! �1H. Flowing down to the [2;m] dual, we �nd that the

SP (2m� 2) scale is given by

��2m�2
2 = 16 (�1)m �2+m2 �41

�5�m
2 �3

1

; (3.5)

or, setting �1 = �1,

��2m�2
2 = 16 (�1)m �2+m2 �1

�5�m
2

; (3.6)

which is in agreement with (3.2) and the SP -duality matching relation (A.6):

�4�m
20

��2m�2
2 = 16 (�1)m �2+m2 : (3.7)

We end our description of this dual theory with one �nal comment. From the point of view

of the electric theory, we could, strictly speaking, justify the above-mentioned description of

low-energy physics only in the limit �1 � �2. The dual description on the other hand is

valid for all values of the ratio �1=�2. The equivalence between the dual and electric theories

implies then that the electric description too must be more generally valid.

As mentioned above, the [3;m] theory also has a dual with gauge group SP (2m � 4) �
SP (4m� 4). In this case, the 
ow to the [2;m] theory follows the discussion in Section 2.2.2

very closely. The resulting theory has an SP (2m� 4)�SP (4m� 6) symmetry. In particular,

none of the groups is completely broken, and no non-perturbatively generated superpotential
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is expected to arise. In spite of this, by studying its 
at directions as in Section 2.3 and

by deforming the theory after adding mass terms, as in Section 2.2 one can show that the

infra-red behavior of this theory is identical to that of the electric theory.

3.2 Dynamically-Generated Dilaton: [2;m] ! [1;m].

We continue our discussion of the partially con�ning models by turning next to the [1;m]

case. We will see that in these theories the electric theory itself has some interesting features.

Speci�cally, we �nd that a dilaton is dynamically generated in the low energy electric theory

and we will see how it can be understood, in more conventional terms, by 
owing from a [2;m]

dual theory to a [1;m] dual theory. In the subsequent section we will then study in detail the

equivalence between the electric theory and its various duals.

Let us start, as in the previous section, by considering the electric theory in the limit

�1 � �2. At an energy scale of order �1 one can go over to an e�ective theory in terms of

the mesons of SU(2)1, X, V _�i, and Lij , with a non-perturbative superpotential given by:

W = A ( X L12 �W12 � �4
1 ): (3.8)

We can now consider the e�ects of the SU(2)2 group in this e�ective theory. In particular,

one would like to know how its strong coupling scale is related to that in the microscopic

theory. At �rst sight it might seem that these two are equal since the group has 2m + 2

fundamentals both in the ultraviolet theory and in the e�ective theory, where V _�i contributes

two fundamentals. However, a little thought involving the symmetries in the problem shows

that this cannot be the case. In fact the e�ective theory presents us with a puzzle. There is a

non-anomalous symmetry in the high energy theory under which Q has charge 1, each L has

charge �1 and each R has charge � 1
m
. But in the e�ective theory this symmetry is anomalous,

since the �eld V _�i has charge 0 under this symmetry. How can this be possible? The answer

lies in the Green-Schwarz anomaly cancellation mechanism. Let us consider those points in

moduli space where V _�i is zero and the SU(2)2 symmetry is unbroken. We see from eq. (3.8)

that at such points the quantum modi�cation of the constraint will force X and L12 to acquire

vevs which break the global symmetry described above. The corresponding Goldstone boson

then enters the low energy theory as an axion and an appropriate shift in this �eld, along

with the rotations of the R �elds, is then a non-anomalous symmetry of the theory. Since this

is a supersymmetric theory, the partner of the axion �eld acts as a dilaton. Because of this

axion-dilaton �eld, the strong coupling scale of SU(2)2 at low-energy is related to its value in

the microscopic theory in a �eld-dependent way. Note that the quantum deformation of the

superpotential played a crucial role in the discussion above. As a consequence, from the point
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of view of the electric theory, we can regard the origin of the dilaton as a truly dynamical

e�ect.

Now let us be more speci�c. Symmetry considerations tell us that the strong coupling

scale in the low-energy theory is given by:

�5�m
2L = �5�m

2

L12

�2
1

f(
XL12

�4
1

) ; (3.9)

where f(XL12
�4

1

) above is an arbitrary function. We see below how duality will help determine

it completely12. In the process we will also �nd that the dual theory provides a much more

straightforward explanation for the �eld dependence of the coupling: it arises because, as

usual, the dual of the [1;m] theory is obtained by higgsing the dual of the [2;m] theory.

However, in this case, the scale of the resulting [1;m] theory is not uniquely determined and

depends on a modulus. This is the required dilaton in the electric theory.

Let us discuss this in more detail now. We start with the [2;m] model. The dual which

is useful to consider has a gauge group SP (2m� 2) and was discussed at some length in the

previous section. Here we take �1 in eq.(3.3) to be �1 and normalize the Wij and Yia �elds

accordingly. The superpotential in the dual theory is given by the sum of (3.1) and (3.3) and

is:

W =
1

4�2

 
Rab r

a � rb + 1

�2
1

Wij v
i � vj + 2

�1
Yia v

i � ra
!
� 1

�3
1

�
X PfL � 1

4
Wij Lkl "ijkl

�
:

(3.10)

Now we add a mass term for one 
avor of the L �eld:

ÆW = m34 L34 : (3.11)

The equation of motion for L34 then reproduces the expected quantum modi�ed constraint:

XL12 �W12 � �3
1m

34 = 0 ; (3.12)

while the equation of motion for W34 is:

L12

�1
+

1

2�2
v1 � v2 = 0 : (3.13)

The last equation implies that the SP (2m� 2) theory is broken to a SP (2m � 4) subgroup.

We see that the scale ��2L of the low-energy SP (2m � 4) theory, which is given by (A.8),

depends on a modulus, L12, and is:

��2m�4
2L = ��2m�2

2

 
� �1

�2L12

!
: (3.14)

12This dependence can be �xed in other ways, too. For example one can 
ow down to the [1,2] model, give
masses to the di�erent �elds and ensure that the vevs are in accord with the Konishi anomaly.
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Substituting for ��2 from eq. (3.6) we �nd that

��2m�4
2L = 16(�1)m+1�1+m2

�2
1

�5�m
2 L12

: (3.15)

This is consistent with the standard scale matching relation (A.6), applied to �2L and ��2L

only if the scale �2L of the low-energy SU(2)2 in the electric theory is given by:

�5�m
2L = �5�m

2

L12

�2
1

: (3.16)

On comparing with eq. (3.9) we see that this determines the function f to be a constant equal

to 1.

We end this section with one �nal comment. As in the [2;m] models, the low-energy

description of the electric theory used above could be justi�ed only in the limit when �1 � �2.

However, the SP (2m � 4) theory obtained above is valid for all values of the ratio �1=�2.

Duality therefore allows us to conclude that this description of the electric theory must be

more generally valid.

3.3 The [1;m] Models.

We will continue our study of the [1;m] models in this section by establishing in some detail

the equivalence of the electric and dual theories in the infra-red.

Let us begin by summarizing the important features of the electric theory. As we saw in

the previous section the low-energy properties of the electric theory can be described in an

e�ective theory consisting of the mesons13, X, L, V1 _� and V _�
2 , with a superpotential eq. (3.8):

W = A (XL � V1 _�V
_�
2 � �4

1) : (3.17)

The scale of SU(2)2 in this e�ective theory, �2L, is given by eq. (3.16) (i.e. eq. (3.9) with

f � 1).

For m > 2, SU(2)2 is in the nonabelian Coulomb phase and has a dual description in terms

of an SP (2m� 4) gauge group. This was the dual theory considered in the previous section.

The matter �elds in this theory are 2m + 2 dual quarks vi; (i = 1; 2); ra; (a = 1; :::; 2m), and

the gauge singlet mesons Rab,
1
�1

Yia and
1
�2

1

W12, with W12 corresponding to the electric meson

V1 _�V
_�
2 . The superpotential of the dual theory, after solving the constraint (3.17) for the gauge

singlet meson W12, becomes [11]:

W =
1

4�2
Rab r

a � rb + 1

2�2�1
Yia v

i � ra + XL ��4
1

4�2�2
1

vi � vi: (3.18)

13Hereafter, by L we mean L12
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The scale of the dual theory ��2 is determined by the matching relation (A.6) for SP -duality:

��2m�4
2 �5�m

2L = 16 (�)m+1�m+1
2 : (3.19)

We will consider the moduli space of this dual theory in some detail.

Consider �rst those points where XL 6= �4
1. At such points, it follows from eq. (3.18)

that two of the dual quarks, vi, are massive, and SP (2m� 4) con�nes. This is in accord with

the electric theory: when XL 6= �4
1, eq. (3.17) shows that the �elds Vi _� are forced to have

nonzero expectation values and break SU(2)2. In the dual theory, we can integrate out the

massive quarks. On adding the con�ning superpotential generated by SP (2m � 4) with the

2m doublets ra, it is easy to see that all SP (2m� 4) mesons, along with the singlets Rab are

massive. The massless degrees of freedom are the mesons Yia, X and L. The superpotential
for the massless degrees of freedom vanishes. In particular, there is a point in the moduli

space where all the light �elds Yia, X, L have zero expectation values. At that point, all the

global symmetries are unbroken and the theory therefore exhibits con�nement without chiral

symmetry breaking. One can also show, as a consistency check, that the 't Hooft anomalies

are saturated by the light mesons at that point.

In contrast, along the 
at direction XL = �4
1, the theory is in the non-Abelian Coulomb

phase.

Finally, we give expectation values to all electric mesons Yia, X, L and Rab. This makes all

dual quarks massive and one can now integrate them out thereby obtaining a pure SP (2m�4)

theory in the infra-red. The scale of this theory is given by (A.7) ��3m�3
2L = Pf ~M ��2m�4

2 ,

where ~M is the mass matrix of the SP (2m � 4) quarks, which can be read o� eq.(3.18).

Gaugino condensation in the low energy theory generates the superpotential [11] W = (m�
1) 2

m�3

m�1 �m�1 ��3
2L, where �k denotes the k-th root of unity. Evaluating the PfaÆan of the mass

matrix ~M we obtain for this superpotential, after using the scale matching conditions (3.16),

(3.19):

W = (1�m) �m�1

"
Pf R
�5�m
2

(X � �4
1

L )� Rm�1 � Y 2

2m+1 (m� 1)! �5�m
2 L

# 1

m�1

; (3.20)

where all indices are contracted with the appropriate "-symbols. We can add mass perturba-

tions, ÆW = 1
2mR � R +mLL+mXX to (3.20) and compute the vevs of the meson �elds:

hXi = �1

s
�4
1 mL
mX

+ �2

vuut�5�m
2 Pf mR

mX

hLi = �1

s
mX �4

1

mL
(3.21)

hRabi = (m�1
R )ab �2

q
mX �5�m

2 Pf mR ;
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where �1; �2 = �1. These vevs coincide with the ones determined by holomorphy and the

various limits14. Taking the limit of vanishing masses in various orders now allows us to

explore the moduli space. One �nds from eq. (3.22) that a generic 
at direction is given by

arbitrary expectation values for X and L, while the rank of Rab is restricted to be � 2. We

saw in our discussion of the [n;m] models, in a di�erent way, how this restriction on the rank

of Rab arose. Here we see, once again, that while in the electric theory this restriction arose

classically, in the dual it arises as a consequence of a non-perturbative e�ect. The description

of the 
at directions obtained above in the dual theory agrees completely with that of the

electric theory.

This brings us to the end of our discussion for the SP (2m � 4) dual theory. We turn

next to another dual of the [1;m] theory. It can be obtained by �rst dualizing SU(2)2 and

subsequently dualizing the �rst group. The resulting theory has an SP (4m�8)�SP (2m�4)

gauge symmetry. The analysis is considerably more complicated in this case and we will be

able to carry it out only partially for the case m = 3. Even so, as we will see, this constitutes

a very non-trivial test of duality, especially in view of the quantum deformed moduli space in

the electric theory.

The matter content and superpotential of the SP (4m � 8) � SP (2m � 4) theory can be

deduced from Table 3 and the accompanying discussion, in particular, eq. (2.11), after the

following replacements have been made: n ! m, m ! 1, L ! R, R ! L, a ! i = 1; 2

and i ! a = 1; :::; 2m. Note that �1, �1 and ��1 now refer to the second group in Table 3 {

SP (4n + 2m� 10), with n! m and m! 1 { while �2, �2 and ��2 refer to the �rst group {

SP (2n � 4), with n ! m of Table 3. We will denote, as in Table 3, by � the indices under

SP (2m� 4), and with _� { the SP (4m � 8) ones.

We will only analyze the dynamics for the simplest case15, m = 3. Then the dual is

SP (4)�SU(2). The SU(2) gauge group has a matter content of six doublets, 1
�1
G�i, J��1p

�1
_�
,

14For general n;m, with mass terms added for all �elds, the gaugino condensates of the low-energy pure
SU (2) theories are determined by the symmetries:

h�1�1i = �1 32 �2
q
mX �5�n

1
Pf mL f1(t) (3.22)

h�2�2i = �2 32 �2
q
mX �5�m

2
Pf mR f2(t) ;

where �1;2 = �1, and f1;2 are arbitrary functions of t = (�5�n
1

Pf mL)=(�
5�m
2

Pf mR). As in ref.[13],
holomorphy, the large mass or small �1;2 limits, and scale matching, allow us to conclude that f1;2 � 1.
From the Konishi anomaly equations, we can now determine the exact dependence of the vacuum expectation
values on the masses and Wilsonian gauge couplings, which, for n = 1 coincide with the ones obtained from
the superpotential (3.20).

15Analyzing e.g. the m = 4 case requires understanding the nonperturbative dynamics of SP (4) with a
traceless antisymmetric tensor and ten fundamentals and superpotential given in (2.11). For a superpotential
of this type, this is an interesting unsolved problem. We note only that the decon�ning method of [6] (see also
[7], [9]) is not of immediate help in this case { the antisymmetric tensor reappears after dualizing once.
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and is therefore in the con�ning phase. The SU(2) mesons areM = 1
�2
1

G1 �G2, Ni _� =
1
�1
Gi �p _�

and K _� _�0 = �p _� �p _�0. Rewriting the superpotential (2.11) in terms of these mesons, and adding

the nonperturbative piece generated by the con�ning SU(2), the superpotential becomes:

W =
�1

4 �2 �21
Rab v

a � K � vb + 1

4 �1
L ri � ri + 1

2 �1 �2
Yai v

a � ri + 1

2
Ni � ri

+
1

4 �1 �22
Wab v

a � vb � 1
��3
2

�
M PfK � 1

4
Ni � N i � K

�
; (3.23)

where va � K � vb = va_� J _� _� K _� _� J _� _� vb_� and Ni � N i � K = Ni _� Nj _�0 "
ij K _� _�0 "

_� _�0 _� _�0 . The

SU(2) mesons N i
_�
and the quarks ri_� are massive. To �nd the masses of the heavy �elds,

it is convenient to decompose K _�1 _�2 = J _�1 _�2�1X=(2�2) + ~K _�1 _�2 , using (2.10) with �1 and �2

interchanged. We denote by ~K the traceless part of K. The equation of motion for the meson

M implies

0 = PfK =
�21X

2

4 �22
+ Pf ~K : (3.24)

The mass matrix of the �elds (ri_�;N i
_�
) can be read o� eq.(3.23) and its PfaÆan is proportional

to:

det

0
@ L

�1
J

_�1 _�2 J
_�1 _�2

J
_�1 _�2 � �1 X

�2 ��3

2

J
_�1 _�2 � 2

��3

2

~K _�1 _�2

1
A

=

0
@ 4 Pf ~K

 L
�1 ��3

2

!2

+

 
1 +

L X

�2 ��3
2

!2
1
A
2

=

 
1 +

2 L X

c(3; 1) �4
1

!2

: (3.25)

In order to obtain the second equality in (3.25), we used (3.24), and the scale matching

relation for the scale ��2, eq.(2.12) with the appropriate replacements discussed earlier (i.e.,

��3
2 = c(3; 1)�4

1=�2; to avoid confusion we have not interchanged m and n in c(n;m)). The

mass matrix (3.25) is therefore non-degenerate, providedX L 6= �4
1. The requirement that the

dual theory reproduces exactly the modi�cation of the quantum moduli space in the electric

theory thus �xes the constant

c(3; 1) = �2 ; (3.26)

which, using the recursion relations (2.24), (2.29) allows us to determine the constant in the

scale matching relation (2.12). In this case we can integrate out the �elds N , r. We are left

with an SP (4) theory with a traceless antisymmetric tensor ~K (the traceless part of K) and
six fundamentals (the �elds va) and a complicated superpotential, whose precise form can be

obtained but is not essential to the subsequent discussion. It can be shown that this theory

is in the con�ning phase and generates a nonperturbative superpotential:

Wn:p: � v6 ~K2 : (3.27)
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The subsequent algebra is straightforward but somewhat tedious and we only describe it in

words here. Adding (3.27) to (3.23) (after integrating out the heavy �elds N and r), and

rewriting it in terms of SP (4) mesons gives us the required superpotential. From it one

can see that all mesons gain mass, mixing with the singlets. The equations of motion for the

singlets require that the expectation values of the heavy meson �elds vanish (hence the precise

form of the superpotential (3.27) is not essential, since it vanishes after the heavy mesons are

integrated out). The only massless degrees of freedom that remain, �nally, are X, Yia and

L and the superpotential for them vanishes. At the origin { where all these light �elds have

zero expectation values { one again sees that the global symmetries are unbroken and that 't

Hooft's conditions are saturated by these �elds, exactly as in the case of the electric theory

(and the SP (2m� 4) dual discussed above).

On the other hand, along the 
at direction X L = �4
1, as follows from (3.25), the mass

matrix is degenerate, and the massless spectrum of the dual SP (4) theory now has eight

fundamentals and a traceless antisymmetric tensor. By using the symmetries, we can deduce

that no superpotential (which is nonsingular at the origin) can be written in terms of the

mesons and baryons. Hence, new massless degrees of freedom have to descend in the low-

energy theory, and the theory is probably in the non-Abelian Coulomb phase. However, as

was remarked earlier (see footnote), presently we do not have a suÆcient understanding of the

non-Abelian Coulomb phase of the SP -theories with antisymmetric tensor and fundamental

matter content to carry this analysis further. Even so, the agreement obtained so far is already

a non-trivial check of the equivalence between this dual and the electric theory.

4 The Con�ning Models.

We end our study of the SU(2)� SU(2) theories by considering the con�ning models. Some

of these models, namely the [0; 0]; [1; 0] and [2; 0], were studied in ref. [13]. In this section

we study the remaining [2; 1] and [1; 1] models (we note that the latter were also studied in

ref.[14]). We will see how the exact superpotential can be determined in these cases.

We �rst consider the [2; 1] model. It is convenient, in determining the exact superpotential,

to consider the theory in the two limits �1 � �2 and �1 � �2. We start with the limit

�1 � �2. In this limit SU(2)1 has 6 doublets and its non-perturbative dynamics generates a

superpotential:

W = � 1

�3
1

�
X PfL � 1

4
V � V � L

�
; (4.1)

with V � V � L = LijV _�kV _�l"
ijkl" _� _�. The low-energy SU(2)2 now has 6 doublets, Ra and

1
�1

Vi, and one expects a nonperturbative superpotential to be generated in this theory as well.
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Eq.(4.1) can be viewed as giving rise to Yukawa couplings in this low-energy theory. The

simplest guess to make for the SU(2)2 non-perturbative contribution is to assume that it is

una�ected by the presence of these Yukawa couplings. The exact superpotential would then

be given by:

W = �X PfL � 1
4
W � L

�3
1

� R PfW � 1
4
Y 2 �W

�4
2 �

3
1

; (4.2)

where Y 2 �W = YiaYjbWkl"
ijkl"ab and Wij = Vi � Vj.

This simple guess in fact turns out to be correct. There are several ways to see this. First,

one can add masses for all the �elds and show that the resulting expectation values agree

with those determined by the Konishi anomaly. Second, one can add masses for a few �elds

and 
ow to the models analyzed in ref. [13]. One �nds that eq. (4.2) correctly reduces to the

superpotential for these models. Third, there are other terms consistent with the symmetries

that can be written besides those above, for example one can take the ratio of any two terms

in eq.( 4.2) and obtain additional terms. However, such terms always result in singularities

at points in �eld space where there is no physical reason to expect them. This is especially

true from the point of view of the dual theory which in this case is a weakly coupled and

completely Higgsed theory, so that no such singularities can occur in it. Finally, as we see

below, proceeding in a similar way, we obtain exactly the same infra-red physics in the opposite

limit, �2 � �1. This strongly suggests that no terms of order �2=�1 are being left out in

eq.(4.2).

In the �2 � �1 limit, SU(2)2 gets strong �rst and its dynamics generates the constraint

(3.17). Below the scale �2, a dilaton is dynamically generated, as discussed in section 3.2,

and the Wilsonian coupling of SU(2)1 is �eld-dependent and is determined by eq.(3.16) (with

m = 1, and �1 and �2 interchanged). The low-energy SU(2)1 now has 6 doublets. Proceeding

as above, by adding the two superpotentials and solving the constraint for the SU(2)2 meson

V1 � V2, we �nd the following superpotential in this limit:

W = �PfL
�3
1

 
X � �4

2

R
!
+

Y 2 � L
4 �3

1 R
: (4.3)

Although the two superpotentials, eq. (4.3) and (4.2), look di�erent they describe the same

infrared physics. For example, (4.3) can be obtained from (4.2) by integrating out the �eld

W which is massive along the 
at direction with R 6= 0. It can be shown that along other


at directions as well, (4.3) and (4.2) lead to the same massless spectrum and interactions.

By adding mass terms and taking them to zero in various limits one can show that the

moduli spaces are also identical, as eq. (4.3) too yields the correct vevs, given by (3.22) and

the Konishi anomaly. In particular, the point of vanishing expectation values and unbroken

global symmetries, which is obviously part of the moduli space of (4.2) is also part of the
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moduli space in the �2 � �1 limit, eq. (4.3). At this point the theory exhibits con�nement

without chiral symmetry breaking and the required 't Hooft anomaly matching conditions are

saturated by the �elds X, R and Yia.

In view of all this evidence we conclude that eq.(4.2) (or equivalently eq.(4.3)) is the exact

superpotential for the low-energy [2; 1] theory. As we saw above, this superpotential can be

obtained by simply summing the contributions of the two groups together. We expect this to

be true, generally, for product group theories when they have a quantum moduli space; their

exact superpotentials should therefore be straightforward to determine.

It is worth emphasizing that even though the superpotential, eq.(4.2) (or equivalently eq.

(4.3)) and the related description in terms of the moduli �elds was derived initially in the limit

when one of the gauge couplings was much stronger than the other, the evidence discussed

above shows that it is valid more generally.

Finally, we discuss the [1; 1] model. The exact superpotential in this case can be determined

by integrating out one 
avor of the L �elds. Starting with eq. (4.2) and integrating out in

addition the heavy �eld W12 we arrive at the exact superpotential for the [1; 1] model (this

form was obtained previously by the \integrating-in" procedure in ref.[14]):

W = L
�
L R X � L �4

2 �R �4
1 � Y 2

�
: (4.4)

where L is the Lagrange multiplier16. A few comments are in order about this superpotential:

i. It can also be derived by considering the theory in the two limits �1 � �2 and �1 � �2

and adding the contributions of the two groups, as was done for the [2; 1] models.

ii. As expected, it is symmetric under exchanging the two groups.

iii. As eq.(4.4) shows, the [1; 1] model has a quantum-deformed moduli space. It is

interesting to note, that although each gauge group individually has a quantum-modi�ed

moduli space, and the origin is excluded from its quantum moduli space, in the product group

theory it is possible to go to the origin17. At this point the global symmetries are unbroken,

and 't Hooft's conditions are saturated by X, Yia and L (or equivalently, R, since it has the
same symmetries).

This concludes our discussion of the con�ning models.

16 The same form is also obtained by starting with eq.(4.3) after suitably rede�ning the Lagrange multiplier.
17By the origin we mean the point where all the light �elds have zero vevs and the global symmetries are

unbroken. A heavy �eld like W12 which is a singlet under all global symmetries has a vacuum expectation
value at this point though, due to the quantum-modi�ed constraint.
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Table 4: The �eld content and nonanomalous U(1) symmetries of the SU(N) � SU(M) theory.

SU(N) SU(M) U(1)1 U(1)2 U(1)3 U(1)R
Q 0 0 M �Nf 0

Li=1;:::;Nf�M 1 Nf 0 M
2(Nf�N)
Nf�M

�LI=1;:::Nf 1 M �Nf 0 0 0

Ra=1;:::;Mf�N 1 0 Mf
N(Nf�M)

Mf�N
2(Mf�M)

Mf�N
�RA=1;:::;Mf

1 0 N �Mf 0 0

5 The SU(N)� SU(M) Models.

In this section we consider a generalization of the SU(2) � SU(2) theory, with an SU(N) �
SU(M) gauge group and the matter content of a single �eld transforming under both gauge

groups, and additional �elds transforming under the �rst or second group alone as fundamen-

tals or antifundamentals. NF will denote the number of 
avors of the SU(N) group, when

SU(M) is turned o�. Likewise,MF will denote the total number of 
avors under the SU(M)

group. The particle content of the model, as well as the charges of the �elds with respect to

the nonanomalous U(1) symmetries are given in Table 4. Note that in general these theories

are chiral.

By varying the four parameters, N;Nf ;M and Mf , one can explore the non-perturbative

dynamics of these theories. We will not do so here. Rather we will content ourselves with

discussing three aspects of these models. First, we will study the renormalization group 
ows

in the space of the two gauge couplings in these theories. These 
ows can be analyzed in the

vicinity of the two �xed points obtained by turning o� one or the other gauge coupling. We

will �nd a simple criterion to decide when the gauge coupling, which is initially turned o�, is a

relevant perturbation. We than use this criterion to show that the 
ows are locally consistent

with the absence of a phase transition. Second, we will construct a dual theory by alternately

dualizing the two gauge groups. Finally, we will analyze a subset of these theories with an

SU(N) � SU(N � 1) symmetry and show that they dynamically break supersymmetry after

adding suitable Yukawa terms.

5.1 Renormalization Group Flows.

In this section we consider the RG 
ows in the space of the two gauge couplings of the

SU(N)� SU(M) theories introduced above.

In N = 1 supersymmetric Yang-Mills theories there exists an exact relation between the
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anomalous dimensions of the various �elds �i and the beta function [15] :

�(�) = ��2

2�

3T (G)� �i T (Ri) (1� 
i)

1� T (G) �
2�

: (5.1)

where � = g2

4�
, T (R) Æab = TrR(T aT b) and T (G) = T (R = adjoint). 
i is the anomalous

dimension of the chiral super�eld �i and is related to the full scaling dimension by 
i+2 = 2di.

Our subsequent discussion will rely mainly on the numerator on the RHS in eq. (5.1), denoted

by num �

num � = ��2

2�
[3T (G) � �i T (Ri)(1� 
i)] : (5.2)

Note that �xed points can arise when this numerator vanishes18.

For the SU(N)� SU(M) models with the �eld content of Table 4, the numerators of the

beta functions for the two gauge groups19 are given by:

num �N = ��
2
N

2�

�
3N �Nf +

M

2

Q +

Nf �M

2

L +

Nf

2

�L

�
(5.3)

num �M = ��
2
M

2�

�
3M �Mf +

N

2

Q +

Mf �N

2

R +

Mf

2

 �R

�
:

As we show below, equations (5.3) allow us to deduce some nontrivial facts about the 
ow

diagram in these models. There are three cases to consider:

i. Each gauge group is in the interacting non-Abelian Coulomb phase in the limit when

the other gauge interaction is turned o�, i.e. the inequalities 3N > Nf > 3N=2 and 3M >

Mf > 3M=2 hold.

ii. One of the two groups, say SU(N), is in the interacting non-Abelian Coulomb phase,

when the SU(M) interaction is turned o�. On the other hand, the SU(M) group, is in the

magnetically free phase when the SU(N) coupling is turned o�. That is, 3N > Nf > 3N=2

and M + 1 < Mf < 3M=2.

iii. Each group is in the magnetic free phase, in the absence of the other gauge coupling,

i.e., N + 1 < Nf < 3N=2 and M + 1 < Mf < 3M=2.

In each case we will analyze the behavior of the RG 
ows in the neighborhood of the two

�xed points obtained by turning one of the gauge couplings o�. We will then speculate on

the simplest global RG 
ows consistent with this local behavior. We discuss the �rst case at

some length. The analysis in the other cases is quite analogous and we discuss it somewhat

brie
y.

18 The numerator is proportional to the anomaly in the R-symmetry current that determines the scaling
dimensions at the �xed point.

19Eq. (5.1) is valid for the beta functions of the gauge couplings in a product-group theory as well, as is
clear, e.g. from the instanton derivation (�rst two papers in ref. [15]).
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5.1.1 3N > Nf > 3N=2 and 3M >Mf > 3M=2.

We start by setting gM = 0 and considering the �xed point in the resulting SU(N) theory.

A great deal of evidence, from the large-N limit [16] and especially now from duality [2],

shows that the SU(N) theory has a non-trivial �xed point that is attractive (i.e. along

the line gM = 0) in the infra-red. At this �xed point the theory is simply SU(N) SQCD

with Nf 
avors and the anomalous dimensions of all SU(N)-(anti)fundamentals are equal,


Q = 
L = 
�L � 
�g�
N
;0. From the �rst of eqs.(5.3) we can then calculate the anomalous

dimensions at the �xed point (g�N ; 0):


�g�
N
;0 = �

3N �Nf

Nf
: (5.4)

In order to understand the RG 
ows in the neighbourhood of this �xed point we need to

know in addition the beta function of the SU(M) group. In the vicinity of the �xed point

(g�N ; 0) the anomalous dimensions are still given by (5.4), up to small corrections proportional

to the deviation from the �xed point. Substituting the anomalous dimension of the �eld Q in

the second of eqs.(5.3), we obtain for the numerator of the beta function of the SU(M) gauge

coupling

num �M

����
(gN'g�N ;gM�1)

= ��
2
M

2�

�
3M �Mf +

N

2

�g�

N
;0 + :::

�
(5.5)

' �M
2�

"
N

2 Nf

(3N �Nf)� 3M +Mf

#
:

It follows that the coupling gM is irrelevant if

3M �Mf <
N

2 Nf
(3N �Nf ) ; (5.6)

and relevant if the inequality is reversed20. With this information in hand the RG 
ows are

completely determined in the vicinity of the (g�N ; 0) �xed point.

We now turn to the (0; g�M ) �xed point. Since the �xed point for the pure SU(M) theory

is attractive in the infra-red we know that the gM coupling is irrelevant at this �xed point.

On considering the e�ects of the SU(N) group in the neighbourhood of this �xed point we

have, from an analysis very similar to that above, that the gN coupling is irrelevant provided

3N �Nf <
M

2 Mf
(3M �Mf ) ; (5.7)

and is relevant if this inequality is reversed.

20 In the case of an equality in (5.6), we cannot draw any rigorous conclusion about the sign of the beta
function, without additional information about the terms denoted by the ellipses in eq. (5.5).
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Figure 1: Three di�erent RG 
ow diagrams in the space of the two gauge couplings. (a)
and (b) are the simplest 
ows consistent with the behavior in the vicinity of the �xed points,
(g�N ; 0) and (0; g�M ), while (c) is not realized (see text).

We �nd four possibilities depending on whether the two inequalities, (5.6) and (5.7) are

met or not. We discuss these in turn.

First, we note that (5.6) and (5.7) cannot be simultaneously satis�ed: iterating them once

we obtain the inequality 3M �Mf � N
2Nf

M
2Mf

(3M �Mf ), which is clearly violated, since N
2Nf

and M
2Mf

are both smaller than 1
3
(recall that we are considering the theories in the conformal

window). This rules out one possibility. Had it been allowed, there would have to be a phase

boundary in the space of the two couplings and associated with it a phase transition as the

two couplings are varied. For example, the simplest global 
ow diagram consistent with this

possibility is shown in Fig. 1(c). One sees that for gN small enough the theory 
ows to the

gN = 0 �xed point, in contrast when gN is big enough it 
ows to the gM = 0 �xed point.

There is some lore [1], [10], that phase transitions are not allowed in SUSY theories.

As best as we can tell, this lore should apply to couplings in the superpotential. For such

couplings holomorphy suggests that a phase boundary would have to be of (real) codimension

two. But a surface of codimension two is not a boundary at all, since one can interpolate

around it. Thus there are no phase boundaries and therefore no phase transitions can occur.

It is not clear to us, if this lore is directly applicable in the present case. We note for example,

that the gauge couplings under consideration are not the Wilsonian gauge couplings and their

renormalizations involve the anomalous dimensions (eq. (5.1)) which are not holomorphic

functions of the gauge couplings. Nevertheless, our results in this case are consistent with

the absence of a phase transition. In fact, the subsequent discussion in this section will be

consistent with the absence of phase transitions too. It is worth noting that this was equally

true for our discussion of SU(2) � SU(2) duality.
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We now return to considering the remaining possibilities presented by (5.6) and (5.7). If

none of these inequalities hold, then at the �xed point for each gauge group the other gauge

coupling is relevant (�g. 1(a)), and we expect the theory to 
ow to a nontrivial �xed point

where both couplings are nonvanishing.

One would like to understand the global nature of these RG 
ows somewhat better. One

limit in which they can be analyzed is the large-N limit �rst used for this purpose by Banks

and Zaks [16]. In this limit, N;Nf ;M;Mf ! 1, with Mg2M and Ng2N kept �xed, and

Nf=N = 3 � �N and Mf=M = 3 � �M . One �nds, in this case, that the 
ow diagram can be

explicitly worked out in the region where g2NN and g2MM are both small. The resulting 
ow

diagram is shown in Fig. 1(a). There is a unique �xed point (away from both the axes) and

it is infra-red attractive with respect to both the gauge couplings.

Aside from the large-N limit one cannot in general make any rigorous statement about

the global nature of the RG 
ows. Nevertheless it is worth noting that the simplest RG 
ow

diagram consistent with the local analysis performed above continues to correspond to Fig

1(a). In fact this simple ansatz for the 
ow diagram is also the only one consistent with the

absence of phase transitions. If there were another �xed point there would also necessarily be

a phase boundary and therefore a possible phase transition.

Returning to the inequalities (5.6) and (5.7) we �nd there is one more possibility. Namely

that only one of the two, (5.6) or (5.7) holds21. In this case again a large-N analysis can be

performed. The resulting 
ow diagram is shown in Fig. 1(b) (for de�niteness this diagram

is drawn for the case when (5.7) is met but not (5.6)). One sees that in this case the theory


ows to the corresponding Seiberg �xed point in the infra-red. For the general case again one

cannot make any rigorous statement but Fig. 1(b) continues to be the simplest 
ow diagram

consistent with the local information at hand. It is also the only diagram without any phase

transitions.

5.1.2 3N > Nf > 3N=2 and M+ 1 <Mf < 3M=2.

In the case when one, or both, theories are in the magnetic free phase, the 
ows have to be

discussed separately. First we consider the case when one of the groups, say SU(N), is in the

interacting non-Abelian Coulomb phase (i.e. Nf > 3N=2), while the other is in the magnetic

free phase (M + 2 � Mf � 3M=2). Turning on weakly the SU(M) gauge coupling at the

SU(N) �xed point, we �nd the same condition (5.6) for gM to be irrelevant. This condition

cannot be satis�ed now: note that for 3N=2 < Nf < 3N , the r.h.s. of the inequality (5.6)

21 The region in the 4-dimensional parameter space where, eq.(5.6), Nf � M;Mf � N , and 3N > Nf >
3N=2; 3M > Mf > 3M=2 hold simultaneously, is quite complicated. However, it is easy to show that it is not
empty, by �nding a particular point, e.g. N = 6; Nf = 10;M = 8;Mf = 22, that satis�es all inequalities.
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obeys N(3N � Nf )=(2Nf ) < N=2. On the other hand, for our model N � Mf (see Table

4). Therefore, from (5.6) we obtain that 3M �Mf < Mf=2, or Mf > 2M , which contradicts

SU(M) being in the magnetic free phase. This implies that gM is always relevant at the

(g�N ; 0) conformal �xed point. With the analysis of the 
ows in the vicinity of the (g�N ; 0) �xed

point complete, we now turn to the (0; g�M ) �xed point. When gN = 0, the theory 
ows to a

magnetic free phase. The gauge group is SU(Mf �M) and the degrees of freedom are the

gauge singlet mesons Q � �R and R � �R and the dual quarks. Weakly gauging the 
avor subgroup

SU(N) � SU(Mf )L, we �nd that it has Nf +Mf �M 
avors, i.e. Mf �M more 
avors than

at the ultraviolet �xed point. Its beta function near the infra-red free magnetic �xed point is

approximately given by

�N ' ��
2
N

2�
[ 3N � (Mf +Nf �M) ] : (5.8)

Therefore, the coupling gN is irrelevant or relevant at this �xed point depending on whether

the following inequality is met or not:

3N �Nf < Mf �M : (5.9)

This presents us with two possibilities, both of which can be realized (in terms of the

allowed values of N;Nf ;M and Mf ). If (5.9) is met, the simplest ansatz for the RG 
ows

would be that the theory 
ows to the magnetic free phase of SU(M) in the infrared, with the

SU(N) gauge coupling becoming irrelevant (i.e. the 
ow of Fig. 1(b))22. If the inequality (5.9)

is reversed, then the simplest RG 
ow diagram would correspond to having one non-trivial

�xed point away from both axes, and attractive in the infra-red as in Fig. 1(a).

5.1.3 N+ 2 � Nf � 3N=2 and M + 2 �Mf � 3M=2 .

Finally we can consider the case when both groups are in the magnetic free phase, i.e. N+2 �
Nf � 3N=2 and M +2 �Mf � 3M=2 hold. In this case, the beta function for gN is still given

by eq. (5.8), in the vicinity of the (0; g�M ) �xed point. In an analogous manner analyzing the

gM coupling in the vicinity of the (g�N ; 0) coupling gives the beta function for gM as:

�M ' ��
2
M

2�
[ 3M � (Nf +Mf �N) ] : (5.10)

Thus gM is irrelevant if the

3M �Mf < Nf �N (5.11)

condition is met.

22An explicit solution is e.g. N = 26; Nf = 77;M = 22;Mf = 24. Note that SU (N ) is close to becoming
infrared free, Nf = 3N � 1; gauging the SU (M ) 
avor symmetry is enough to drive gN infrared free.
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Table 5: The �eld content of the dual of SU(N)� SU(M).

SU(Nf �N) SU(Mf +Nf

�N �M)
�p
li 1

ra 1

vI 1

�rA 1

Ga 1

However in this case it is easy to show that neither (5.9) nor (5.11) can hold. Eq. (5.9)

implies 3N �Nf < Mf �M �M=2 � Nf=2, which requires Nf > 2N and contradicts SU(N)

being in the magnetic free phase; a similar contradiction follows from (5.11). Therefore in this

case, we expect the theory to 
ow to a non-trivial �xed point. The correspondingly simplest


ow diagram in this case is given by Fig. 1(a).

5.2 Duality in SU(N)� SU(M).

In this section we brie
y discuss how dual theories for the SU(N) � SU(M) models can be

constructed by alternately dualizing the two groups. The analysis is very close to that of the

SU(2)�SU(2) theories which were discussed at length in Section 2. Consequently we do not

describe the construction of the duals in detail and mainly present the resulting �nal form.

The �eld content of the SU(N)�SU(M) theory was described in Table 4. As was discussed

in Section 2 two kinds of duals can be constructed: those in which one of the groups is dualized

and those in which both groups are dualized. Here we only consider the duals obtained by

dualizing both the SU(N) and SU(M) groups. For de�niteness we describe the dual obtained

by dualizing the SU(N) group followed by the SU(M) group below. This dual theory has

an SU(Nf � N) � SU(Mf + Nf � N �M) gauge symmetry. The matter content consists

of �elds transforming under the dual gauge group as shown in Table 5 (we explicitly display

the nonabelian global symmetries indices; they have the same ranges as in Table 4, and lower

(upper) indices denote fundamental (antifundamental) representations).

In addition the dual theory contains the following gauge singlet �elds:

YIA = �LI �Q � �RA

RaA = Ra � �RA (5.12)

LiI = Li � �LI ;

whose charges with respect to the nonanomalous global symmetries can be determined from
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Table 4 and their de�nitions (5.12). The dual theory also has a superpotential given by:

W = � 1

�1 �2
LiI li � vI � �p+ 1

�2
Ga � ra � �p+ 1

�2
RaA ra � �rA +

1

�1 �2
YIA vI � �rA : (5.13)

The strong coupling scales of the gauge groups in the dual theories obey matching relations

which can be derived similarly to the corresponding relations in the SU(2)� SU(2) theories.

The detailed analysis of these dual theories is left for future study. We expect that such

an analysis will help in understanding the non-perturbative behavior of the SU(N)�SU(M)

theories, much as it did in the SU(2) � SU(2) case.

We conclude with one comment. The process of alternately dualizing the groups described

above can be continued to construct other dual theories. In this case a �nite set of duals of

the SU(N) � SU(M) theories is generated. Starting with the second dual { the SU(Nf �
N)�SU(Nf+Mf �N�M) theory constructed above { and dualizing the SU(Nf �N) gauge

group we obtain a third dual: an SU(Mf �M)� SU(Nf +Mf �N �M) gauge group with

Nf+Mf�M�N 
avors of SU(Mf�M) and Nf+Mf�M 
avors of SU(Nf +Mf�N�M).

This theory has the same gauge group, �eld content and superpotential as the second dual

of the SU(N) � SU(M) theory, constructed by dualizing the SU(M) gauge group �rst. In

other words, the chain of duals that can be constructed by alternately dualizing the two gauge

groups closes.

5.3 SU(N)� SU(N� 1) and Supersymmetry Breaking.

In this section we consider a subclass23 of the SU(N) � SU(M) models: the models with

Nf = N�1,M = N�1;Mf = N , which we will refer to as the SU(N)�SU(N�1) models. We

will see that these models dynamically break supersymmetry after suitable Yukawa couplings

are added in the superpotential. The SU(N)�SU(N � 1) models are further generalizations

of the SU(3)�SU(2) model [17] of dynamical supersymmetry breaking. Other generalizations

have been considered in [18], [19], [20].

We begin by analyzing the classical moduli space of these theories. It is described, [17],

[21], by the gauge invariant chiral super�elds YIA, de�ned in (5.12), the �eld �B = b�(�LN�1)�,

where b� = (QN�1)� (� is the SU(N) index), and �bA = ( �RN�1)A. These �elds obey the

classical constraints YIA �bA = 0 and �B �bA � (Y N�1)A. Adding a renormalizable tree-level

superpotential

Wtree = �IA YIA ; (5.14)

one �nds that for a Yukawa matrix of maximal rank (N � 1) the YIA and �B 
at directions

are lifted. To see this, consider the �RA equation of motion. It implies that �LI �Q _� = 0 (recall

23The models for general M are considered in a forthcoming publication [27].
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that rank � = N �1), which in turn implies that YIA = 0 and �B � det(�LI �Q _�) = 0. However,

the 
at directions corresponding to �B = 0, �bA 6= 0 and YIA = 0 are not lifted. While the

SU(N � 1) group is completely broken along these directions the SU(N) group is completely

unbroken. These �bA 6= 0 
at directions can be lifted in the classical theory if in addition to the

Yukawa coupling in eq. (5.14) we add a term �A�bA so that the full tree-level superpotential is:

Wtree = �IA YIA + �A�b
A: (5.15)

Performing an analysis similar to the one above, one can show that all classical 
at directions

are lifted once �A and �IA are chosen such that �IA�A 6= 0.

We turn next to the quantum theory and �rst study it in the limit �1 � �2. In this limit,

the SU(N � 1) group is con�ning, with N 
avors, and nonperturbative e�ects generate [4] a

superpotential

W =
b� M�A

�bA � det M

�2N�3
2

; (5.16)

where the mesons of SU(N � 1) are M�A = Q� � �RA, and the baryons b� and �bA were de�ned

above. Now we weakly gauge the SU(N) global symmetry. The low-energy SU(N) gauge

group has N 
avors, with M�A � and b�; �L�
I � . Consequently, the SU(N) gauge group

con�nes as well and dynamically generates a superpotential. The scale of the low-energy

SU(N) theory is �2N
1L

= �2N+1
1 =�2. Its mesons are the �elds YIA, the �eld PA = b �MA (this

�eld vanishes classically), while the baryons are �B and B = detM (which vanishes classically

as well). The exact superpotential of this model is then given by24:

W =
PA �bA � B
�2N�3
2

+A
�
P � Y N�1 � �B B � �2N+1

1 �2N�3
2

�
: (5.17)

We now add the tree-level perturbation Wtree = �IAYIA+�A�b
A. In order to lift all classical


at directions we choose, �IA = ÆIA�I , if A < N , �IN = 0, and �A = Æ1A�. The F -term

equations of motion for the �elds �bA that follow from this superpotential then imply that :

P1=PN !1 ; (5.18)

while the F -term equations for PA and YIA imply that

P1=PN ! 0 : (5.19)

24This superpotential can be justi�ed by arguments analogous to those of Section 4. The form of the
quantum modi�cation of the constraint in (5.17 ) arises after taking account of the scale �1L of the low-energy
SU (N ) theory, as well as the fact that some of its \quarks" are SU (N � 1)-composites and are normalized
with appropriate powers of �2.
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In deriving eq. (5.19) it is useful to think in terms of the mesons of SU(N), PA and YIA with

masses, �bA=�2N�3
2 and �IA respectively. The vevs of these mesons can be expressed in terms

of their masses in the standard way and this leads to eq. (5.19) for P1 and PN .
Clearly, eq. (5.18) and eq. (5.19) are not compatible. Thus not all of the F -term conditions

can be satis�ed and the theory breaks supersymmetry.

One assumption made in the discussion above was that the K�ahler potential is nonsingular

in terms of the light moduli �elds YIA; �B and �bA. There are two kinds of singularities one might

worry about: those that can occur in the �nite region of moduli space and those that can occur

at the boundaries of moduli space (when some �elds go to 1). We do not expect singularities

in the �nite region of moduli space in the cases considered here. For example, even though we

do not do so, the description used above can be derived from a weakly-coupled, completely

Higgsed, dual theory in which no singularities can occur in the �nite region of moduli space.

The �nite region of moduli space can also be studied, ref. [23], [24], by adding one more 
avor

of the L �elds and analyzing the resulting theory which now has a quantum moduli space

and showing that the moduli �elds saturate the 't Hooft anomalies. Finally, one does not

expect singularities at the boundary of moduli space to be relevant to the discussion of SUSY

breaking, since all 
at directions are lifted classically and we therefore do not expect to be

driven to in�nite �eld values in the quantum theory.

It is also worth commenting on the relation between R symmetries and SUSY breaking

in these models. First we consider the choice of the tree-level superpotential made in the

discussion of SUSY breaking above; �IA = ÆIA�I , if A < N , �IN = 0, and �A = Æ1A�.

In this case one �nds that the superpotential eq. (5.15) preserves a 
avor-dependent, non-

anomalous R symmetry. The charge assignments of the �elds under this symmetry are,
�RN � 2(3N � N2 � 1)=(N � 1), �RA<N � 2N=(N � 1), Q � �2=(N � 1) and �LI � 0.

Thus, the fact that this model breaks supersymmetry, as we found above, is in accordance

with the discussion of ref. [22].

In fact we could have used thisR symmetry to argue that SUSY is broken. For this purpose

note that all the 
at directions are lifted in the classical theory with the superpotential of

eq. (5.15). Furthermore, all the gauge invariant moduli, entering the superpotential eq. (5.17),

except for PA with A 6= N , are charged under the R symmetry. Therefore, if all the F -term

conditions are met the R symmetry must be broken. Since there are no classical 
at directions

we conclude that SUSY is broken. The only other alternative is that the F -term constraints

are not all met but then again SUSY must be broken.

In contrast consider the case of a tree-level superpotential with �IA = ÆIA�I , if A < N ,

�IN = 0, �1 and �N 6= 0 and all other �A = 0. Since the condition �IA�A 6= 0 is met all the 
at

directions are lifted classically but in this case one can show that there is no non-anomalous
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R symmetry. However, an argument similar to the one given above, eq. (5.18) and eq. (5.19),

allows us to conclude that SUSY is broken in this case as well.

We close this section with some comments25 on the case of vanishing �. As we saw above,

in this case, the classical 
at direction with �bA 6= 0 is not lifted. Along this 
at direction,

the SU(N � 1) gauge group is completely broken, while the SU(N) group is unbroken. Thus

one might expect quantum e�ects to play an important role along it. For simplicity, we set

�IA = ÆIA�I , if A < N and �IN = 0 as above. In this case, there is one solution to the

F -term equations obtained from the exact superpotential given by the sum of eq. (5.17) and

eq. (5.14). This solution involves PA ! 0, �bN ! 1 and YII ! 1 for I = 1 : : : N � 1. This

\runaway" solution is somewhat surprising, since YIA 6= 0 is not a classically 
at direction.

To understand the origin of this solution consider the 
at direction along which the �elds
�R _�
A, with A < N have vacuum expectation values which we denote as �R _�

A = �RÆ _�
A. The 
at

direction then corresponds to varying �R. When �R ! 1, the Yukawa term in Wtree gives a

large mass to all SU(N) 
avors. The low-energy theory along this classical 
at direction is

then a pure SU(N) gauge theory. Gaugino condensation in this low-energy theory generates

a superpotential W � �3
1L = (�2N+1

1 det� �RN�1)
1

N . The gradient of this superpotential

with respect to �R is proportional to �R� 1

N , and pushes the �eld �R to in�nity, thus restoring

supersymmetry. Strictly speaking, the behavior of the energy along this direction depends on

both the superpotential and the K�ahler potential. Since, as mentioned above, the infra-red

SU(N) theory is strongly coupled along this 
at direction, the K�ahler potential is diÆcult to

determine exactly. Nevertheless, some preliminary analysis suggests that the corrections to

the classical K�ahler potential for �R are small along this direction, leading to the conclusion

that SUSY is probably restored.

It is also worth mentioning that the behavior of the superpotential along the baryonic 
at

direction discussed above can also be recovered from the exact superpotential, eq. (5.17). On

adding the tree-level superpotential eq. (5.14), one can solve for all the other �elds through

their F -term equations in terms of the antibaryon �bN . This gives a superpotential W �
(�2N+1

1 det� �bN)
1

N , which is identical to the one obtained above once one identi�es �RN�1 with
�bN .
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A Notations. Duality and Scale Matching for SP(2N).

We take SP (2N) to denote the SP group whose fundamental representation is of dimension

2N so that SP (2) = SU(2). The dimension of the SP (2N) group isN(2N+1). The generators

T a for a representation R obey TrT aT b = T (R)Æab, where T ( ) = N +1, T ( ) = T ( ) = 1=2

and T ( ) = N � 1. Here is a traceless antisymmetric tensor, and is the adjoint

representation (symmetric tensor).

The one-loop coeÆcient of the beta function of the SP (2N) theory with 2Nf fundamentals

Qi�, (i = 1; :::; 2NF , � = 1; :::; 2N) is b0 = 3T ( ) � 2NfT ( ) = 3N + 3 � Nf . The D-
at

directions of the electric theory are described by the gauge invariant chiral super�elds (the

SP (2N)-\mesons")

Mij = Qi�1 J
�1�2 Qj�2 � Qi �Qj : (A.1)

Eq. (A.1) de�nes our summation convention: we always take the SP -fundamentals to have

lower indices and raise (lower) SP indices using the SP (2N) invariant antisymmetric tensors

J�� = diag

(  
0 1
�1 0

!
; ::: ;

 
0 1
�1 0

! )
(A.2)

and

J�� = diag

( 
0 �1
1 0

!
; ::: ;

 
0 �1
1 0

!)
; (A.3)

such that J��J�� = Æ�� and Q� = J��Q�. For SP (2) we denote the invariant tensor by "��

with "12 = "21 = 1, in accord with (A.2, A.3).

For Nf � N + 2, the theory is con�ning [11]. The Nf = N + 2 theory has a dynamically

generated superpotential:

W = � PfM

2N�1 �2N+1
; (A.4)

where � is the scale of the N + 2 
avor theory. The superpotentials for Nf < N + 2 can be

obtained from (A.4) by integrating out extra 
avors and using the scale matching relations

(A.7) given below. The PfaÆan of a 2Nf -dimensional antisymmetric matrix is de�ned as

PfM =
1

2Nf Nf !
"
i1i2:::i2Nf�1i2Nf Mi1i2 ::: Mi2Nf�1i2Nf

� MNf

2Nf Nf !
;

and its square equals the determinant. We use "123:::(2Nf�1)(2Nf) = +1.

For Nf > N +2 the theory has a dual description in terms of an SP (2Nf � 2N � 4) gauge

theory [11], with 2NF fundamentals and additional gauge singlets, Mij , which are mapped to

44



the mesons of the electric theory (A.1), and a superpotential

W =
1

4 �
Mij q

i � qj : (A.5)

The �elds qi are the dual quarks and are in the antifundamental representation of the SU(2Nf )

global 
avor symmetry. The strong coupling scale � of the electric theory, the strong coupling

scale �� of the magnetic theory and the parameter � in (A.5) obey the scale matching relation:

�3N+3�Nf ��2Nf�3N�3 = 16 (�)Nf�N�1 �Nf : (A.6)

Upon integrating out a 
avor of SP (2N) fundamentals of mass M , the scale �L of the

low-energy SP (2N) theory with Nf � 1 
avors is related to the scale of the Nf -
avor theory

by the DR threshold relation [26]:

�
3N+3�(Nf�1)
L = M�3N+3�Nf : (A.7)

Along a 
at direction, such that, say, M12 = Q1 �Q2 = v2 6= 0, the SP (2N) theory with Nf


avors breaks to SP (2N �2) with Nf �1 
avors. The scale �L of the low-energy SP (2N �2),

Nf � 1 
avor theory is given by the threshold relation at the mass scale of the heavy SP (2N)

vector bosons that transform as fundamentals of the unbroken SP (2N � 2) group:

�
3(N�1)+3�(Nf�1)
L =

2

v2
�3N+3�Nf : (A.8)
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Table 6: The anomalous U(1) symmetries in the [n;m] models and their duals.

U(1)Q U(1)1 U(1)2 U(1)X U(1)�1 U(1)�2
Q� _� 1 0 0 0 0 0
L�i 0 1 0 0 0 0
R _�a 0 0 1 0 0 0
�5�n
1 2 2n 0 2 � 2n 0 0

�5�m
2 2 0 2m 2� 2m 0 0
X 2 0 0 0 0 0
Lij 0 2 0 0 0 0
Rab 0 0 2 0 0 0
Yai 1 1 1 0 0 0
1
�1
V _�i 1 1 0 0 �2 0

q�� �1 0 0 1 1 0
li� 0 �1 0 1 1 0

�0 8�2n�m2 4 2n 2m 4 � 2n� 2m �2n� 4 0
p�_� 1 0 0 0 �1 1

A0
�1�2

�2 0 0 2 2 �2
vi_� �1 �1 0 1 2 1
ra_� 0 0 �1 1 0 1

1
�2
G�a �1 0 1 1 1 �2
Wij 2 2 0 0 0 0

��4n+2m�10
2 �4 �2n �2m 2n+ 2m� 4 2n+ 4 4n + 2m� 4
��5�2m
1 2 0 2m 2� 2m �2 �2m+ 2
�1 0 0 0 0 2 0
�2 0 0 0 0 0 2

B The Anomalous Symmetries

Table 6 gives all anomalous U(1) symmetries in the [n;m] model and its �rst (Table 2) and

second (Table 3) duals. U(1)X is an anomalous R symmetry, under which the superspace

coordinate �� has charge unity. The nonanomalous U(1) and U(1)R from Tables 1-3 are linear

combinations of the symmetries in Table 6.
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