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Abstract 

A method for computing electromagnetic properties of hadrons in lattice 

QCD is described and preliminary numerical results are presented. The elec- 

tromagnetic field is introduced dynamically, using a noncompact formulation. 

Employing enhanced electric charges, the dependence of the pseudoscalar me- 

son mass on the (anti)quark charges and masses can be accurately calculated. 

At p = 5.7 with Wilson action, the 7~~ - x0 splitting is found to be 4.9(3) 

MeV. Using the measured K” - K+ splitting, we also find m,,/md = .512(6). 

Systematic errors are discussed. 
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If a fundamental theory of quark masses ever emerges, it may be as important to resolve 

the theoretical uncertainty in the light quark masses as it is to accurately measure the 

top quark mass. Moreover, an accurate determination of the up quark mass might finally 

resolve the question of whether nature avoids the strong CP problem via a massless up 

quark. The particle data tables [l] give wide ranges for the up (2 < m, < 8 MeV) and 

down (5 < m,j < 15 MeV) quarks, while lowest order chiral perturbation theory [2, 3, 41 

gives m,lmd = 0.57 f 0.04. Numerical lattice calculations provide, in principle, a very 

precise way of studying the dependence of hadron masses on the 1agrangis.n quark mass 

pararneters(5]. However, the contribution to hadronic mass splittings within isomultiplets 

from electromagnetic (virtual photon) effects is comparable to the size of the up-down quark 

mass difference. Thus an accurate determination of the light quark masses requires the 

calculation of electromagnetic effects in the context of nonperturbative QCD dynamics. In 

this letter, we discuss a method for studying electromagnetic effects in the hadron spectrum. 

In addition to the SU(3) color gauge field, we introduce a U(1) electromagnetic field on the 

lattice which is also treated by Monte Carlo methods. The resulting SU(3)xU(l) gauge 

configurations are then analyzed by standard hadron propagator techniques. 

The small size of electromagnetic mass splittings makes their accurate determination 

by conventional lattice techniques difhcult if the electromagnetic coupling is taken at its 

physical value. One of the main results of this paper is to demonstrate that calculations 

done at larger values of the quark electric charges (roughly 2 to 6 times physical values) 

lead to accurately measurable electromagnetic splittings in the light pseudoscalar meson 

spectrum, while still allowing perturbative extrapolation to physical v&es. 

The strategy of the calculation is as follows. Quark propagators are generated in the 

presence of background SU(3) xU(1) fields where the SU(3) component represents the usual 

gluonic gauge degrees of freedom, while the U( 1) component incorporates an abelian photon 

field (with a noncompact gauge action) which interacts with quarks of specified electric 

charge. All calculations are performed in the quenched approximation and Coulomb gauge 

is used throughout for both components. Quark propagators are calculated for a variety of 

electric charges and light quark mass values. The gauge configurations were generated at 

p = 5.7 on a 123 x 24 lattice. 200 configurations each separated by 1000 Monte Carlo sweeps 

were used. In the results reported here, we have used four different values of charge given by 

ep =0, -0.4, +0.8, and -1.2 in units in which the electron charge is e = Jm = .3028.. . . 
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For each quark charge we calculate propagators for three light quark mass values in order to 

allow a chiral extrapolation. From the resulting 12 quark propagators, 144 quark-antiquark 

combinations can be formed. The meson propagators are then computed and masses for the 

78 independent states extracted. 

Once the full set of meson masses is computed, the analysis proceeds by a combination 

of chiral and QED perturbation theory. In pure QCD it is known that, in the range of 

masses considered here, the square of the pseudoscalar meson mass is quite accurately fit 

by a linear function of the bare quark mssses[6]. We have found that this linearity in the 

bare quark mass persists even in the presence of electromagnetism. For each of the charge 

combinations studied, the dependence of the squared meson mass on the bare quark mass is 

well described by lowest order chiral perturbation theory. Thus we write the pseudoscalar 

mass squared as 

rn$ = A(e,, q) + mqB(eq, ep) + mgB(eq, eq) (1) 

where e,, ea are the quark and antiquark charges, and mp, rnb are the bare quark masses, 

defined in terms of the Wilson hopping parameter by (K-’ - ~:‘)/2a. (Here a is the 

lattice spacing.) Because of the electromagnetic self-energy shift, the value of the critical 

hopping parameter must be determined independently for each quark charge. This is done 

by requiring that the mass of the neutral pseudoscalar meson vanish at K = K,, as discussed 

below. The results for the neutral pseudoscalars are shown in Figure 1. For the physical 

values of the quark charges, we expect that an expansion of the coefficients A and B in (1) to 

first order in e2 should be quite accurate. For the larger values of QED coupling that we use 

in our numerical investigation, the accuracy of first order perturbation theory is less clear: 

in fact, a good fit to all our data requires small but nonzero terms of order e4, corresponding 

to two-photon diagrams. Comparison of the order e4 terms with those of order e2 provides 

a quantitative check on the accuracy of QED perturbation theory. We have tried including 

all possible e4 terms in the fit, but only retained those which significantly reduce the 2 per 

degree of freedom. 

According to a theorem of Dashen [7], in the limit of vanishing quark mass, the value 

of rn$ is proportional to the square of the total charge. Thus, we have also allowed the 

values of the critical hopping parameters for each of the quark charges to be fit parameters, 

requiring that the mass of the neutral mesons vanish in the chiral limit. Thus A takes the 

form Acl)(eP + eg)2 to order e2. (Order e4 terms were not found unnecessary to fit the 
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Figure 1: The mass squared, A@, (in GeV2) f or neutral pseudoscalar meson versus 

lattice bare quark masses mp + mg (in GeV) is shown for various quark charges 

% = 0.0, -0.4,0.8 and -1.2. 
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data.) The coefficient B in (1) which parametrizes the slope of m$ may also be expanded in 

perturbation theory. Of the five possible e4 terms in Bt2) (e,, eq), only the e$ eiee and eie% 

terms were found to improve the x 2. The coefficients in A and B, along with the four values 

of ICY for the four quark charges, constitute a 1Zparameter fit to the meson mass values. 

Before discussing the numerical results, we briefly describe the formulation of lattice 

QED which we have employed in these calculations. The gauge group in this case is abelian, 

and one has the choice of either a compact or noncompact formulation for the abelian gauge 

action. Lattice gauge invariance still requires a compact gauge-fermion coupling, but we are 

at liberty to employ a noncompact form of the pure photon action S,,. Then the theory 

is free in the absence of fermions, and is always in the nonconfining, massless phase. An 

important aspect of a noncompact formalism is the necessity for a gauge choice. We use QCD 

lattice configurations which have all been converted to Coulomb gauge for previous studies 

of heavy-light mesons. Coulomb gauge turns out to be both practically and conceptually 

convenient in the QED sector as well. 

For the electromagnetic action, we take 

S 
1 

em = - 
4e2 C( V,&v - Vv&J2 

W” 
(2) 

with e the bare electric coupling, n specifies a lattice site, V, the discrete lattice right- 

gradient in the /.L direction and A,, takes on values between -co and +CXI. Electromag- 

netic configurations were generated using (2) as a Boltzmann weight, subject to the linear 

Coulomb constraint 

OiA,i = 0 (3) 

with V a lattice left-gradient operator. The action is Gaussian-distributed so it is a trivial 

matter to generate a completely independent set in momentum space, recovering the real 

space Coulomb-gauge configuration by Fast Fourier transform. We fixed the global gauge 

freedom remaining after the condition (3) is imposed by setting the p = 0 mode equal to 

zero for the transverse modes, and the p’= 0 mode to zero for the Coulomb modes on each 

time-slice. (This implies a specific treatment of finite volume effects which will be discussed 

below). The resulting Coulomb gauge field A,,,, is then promoted to a compact link variable 

uem = efiqA np coupled to the quark field in order to describe a quark of electric charge fqe. 

Qrxk propagators are then computed for propagation through the combined SU(3) xU(1) 

gauge field. 
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Table 1: Calculated shift of critical mass, Am, versus tadpole estimate for neutral 

pseudoscalar mesons with various quark charges, eq. All masses are in lattice units. 

eQ Kc dm, C tadpole 

’ 0.0 0.16923(3) - - 

-0.4 O-17130(2) 0.289(5) 0.251 

0.8 0.17763(3) 1.118(5) 0.942 

-1.2 0.18541(4) 2.063(6) 1.912 

Next we discuss the evaluation of critical hopping parameters for nonzero quark charge. 

The self energy shift induced by electromagnetic tadpole graphs may be computed pertur- 

batively. The one-loop tadpole graph is (for Wilson parameter r=l and at zero momentum 

in Coulomb gauge) 
e2 

6mEM = - 
L4 CC 

1 
1-} 

k-0 4C,LE T 8Cikf 
(4 

where kp are the discrete lattice momentum components for a L4 lattice and &, = sin(kJ2). 

This is entirely analogous to the well known QCD term d;mQCD [S]. The mass shift is then 

given by the sum over multiple insertions at the same point, which exponentiates the one- 

loop graph. The usual strong QCD corrections at /3 = 5.7 are given in this approximation 

by an overall multiplicative factor of l/(&E=O). Together this produces a shift of the critical 

inverse hopping parameter of 

The contribution from the conventional one loop radiative correction graph is found to be 

about one third the size of the tadpole. In Table 1, our numerical results for sc and the 

associated Am, is compared with the results using only the perturbative tadpole resummed 

result for the EM interactions(5). 

For charge zero quarks, propagators were calculated at hopping parameter 0.161, 0.165, 

and 0.1667, corresponding to bare quark masses of 175, 83, and 53 MeV respectively. The 

gauge configurations are generated at ,B = 5.7, and we have taken the lattice spacing to be 

o-1 = 1.15 GeV as determined in Ref. [9]. After shifting by the improved perturbative values 

listed in Table 1, we select the same three hopping parameters for the nonzero charge quarks. 
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Because this shift turns out to be very close to the observed shift of K~, the quark masses for 

nonzero charge are nearly the same as those for zero charge. For all charge combinations, 

meson masses were extracted by a two-exponential fit to the pseudoscalar propagator over 

the time range t = 3 to 11. Smeared as well as local quark propagator sources were used 

to improve the accuracy of the ground state mesons masses extracted. Errors on each mass 

value are obtained by a single-elimination jackknife. The resulting data is fitted to the 

chiral/QED perturbative formula (1) by x2 minimization. The fitted parameters are given 

in Table 2. Errors were obtained by performing the fit on each jackkniied subensemble. 

Aside from very small corrections of order (rnd - m,)2, the ?r+ - x0 mass splitting is 

of purely electromagnetic origin, and thus should be directly calculable by our method. 

Because we have used the quenched approximation, ua and dz mesons do not mix. The 

neutral pion mass is obtained by averaging the squared masses of the uii and dd states. (In 

full QCD the ufi and ddmix in such a way that the neutral octet state remains a Goldstone 

boson of approximate chiral SU(3) xSU(3). By averaging the squared masses of uii and dJ 

in the quenched calculation, we respect the chiial symmetry expected from the full theory. 

By contrast, linear averaging of the masses would give a no mass squared nonanalytic in 

the quark masses). Thus, to zeroth order in e2, the terms proportional to quark mass [2] 

cancel in the difference rnz+ - m$,. This difference is then given quite accurately by the 

single term 

mz+ - rn$ w At1)e2 (6) 

Using the coefficients listed in Table 2, and the experimental values of the z”, K”, and K+ 

masses, we may directly solve the resulting three equations for the up, down, and strange 

masses. The z+ -x0 splitting may then be calculated, including the very small contributions 

from the order e2mq terms. We obtain 

n-b+ - m,o = 4.9 f 0.3MeV (7) 

compared to the experimental value of 4.6 MeV. (The electromagnetic contribution to this 

splitting is estimated [lo] to be 4.43 f 0.03 MeV.) Our calculation can be compared to the 

value 4.4 MeV (for AQCD = 0.3 GeV and m, = 120 MeV) obtained by Bardeen, Bijnens 

and Gerard[ll] using large N methods. The values obtained for the bare quark masses are 

m, = 3.86(3), md = 7.54(5), m, = 147(l) (8) 
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T-he errors quoted are statistical only, and are computed by a standard jackknife procedure. 

The eztremely small statistical errors reflect the accuracy of the pseudoscalar mass determi- 

nations, and should facilitate the future study of systematic errors (primarily finite volume, 

continuum extrapolation[l3] and quark loop effects), which are expected to be considerably 

larger. The relationship between lattice bare quark masses and the familiar current quark 

masses in the MS continuum regularization is perturbatively calculable[lrl]. 

The presence of massless, unconfined degrees of freedom implies that the finite volume 

effects in the presence of electromagnetism may be much larger than for pure &CD. In 

fact, the corrections are expected to fall as inverse powers of the lattice size, instead of 

exponentially. We have estimated the size of the finite volume correction phenomenologically 

by considering the discussion of Bardeen, et.al[ll], which models the low-q2 contribution to 

the a+ - z” splitting in terms of r,p, and Al intermediate states. This gives the splitting 

as an integral, 
3e2 M2 

am:=- J rn:rnE 

167r2 ,, (q2 + mz)(q2 + rni) dq2 (9) 

If the upper lit M2 is taken to infinity, this reproduces the result of Ref.[lS], which gives 

bm x = 5.1MeV. Even better agreement with experiment is obtained by matching the low- 

$ behavior with the Iargeq2 behavior from large N perturbative QCD[ll]. Here we only 

use the expression to estimate the finite volume correction, for which the low-q2 expression 

above should be adequate. To estimate the finite volume effect, we cast this expression 

as a four-dimensional integral over d4q and then construct the finite volume version of it 

by replacing the integrals with discrete sums (excluding the q = 0 mode). For a 123 x 24 

box with o-l = 1.15 GeV, we find that the infinite volume value of 5.1 MeV is changed to 

Sm x = 4.8 MeV, indicating that the result we have obtained in our lattice calculation should 

be corrected upward by about 0.3 MeV, or about 6%. In further numerical studies, we will 

be able to determine the accuracy of this estimate directly by calculations on larger box 

sizes. A study of other systematics such as finite lattice spacing effects is also in progress, 

and will be reported in a subsequent publication. 

For comparison with other results,[2, 3, 41 we quote the following mass ratios, which are 

independent of renormalization prescription, 

md-mm, 

ms 
= .0249(3), z = .512(6) w 

With the errors shown, which are statistical only, these results differ significantly from 
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Table 2: Coefficients of fitting function, Eq.(l). Terms of order e,ei and e$ in 13t2) 

and e* in A were consistent with zero and dropped from this fit. Numerical values 

are in GeV2 and GeV for A and B terms respectively. 

Parameter Fit 

A 0.0143(10)( e, + eq)2 

B(o) 1.594(11) 

B(1) 0.205(22)ei + 0.071(9)eqeq + O.O50(7)ei 

B(2) O.O64(17)e”, + O.O33(6)eieg - O.O31(4)efei 

the lowest order estimate[2] which uses Dashen’s theorem to estimate the electromagnetic 

contribution to the kaon splitting to zeroth order. This lowest order estimate neglects the 

quark mass dependence of the electromagnetic terms, which we have determined by our 

procedure. Specifically, the important corrections to the lowest order result come from 

terms involving the strange quark mass times the difference of up and down quark charges. 

These corrections are determined by the second and third terms in B(l) in Table 2. The 

Weinberg analysis predicts that the 4.0 MeV kaon splitting consists of 5.3 MeV from the 

up-down mass difference and -1.3 MeV from EM. In our results, the up-down mass difference 

contributes 5.9 MeV, with -1.9 MeV from EM. This goes in the direction indicated by the 

q-+ 3a decay rate [4], although our results do not deviate as much from the lowest order 

analysis as those of Ref. [4], where the quark mass contribution to the kaon splitting is 

estimated to be 7.0 MeV. 

In the present work we have focused on the pseudoscalar meson masses. This is the 

most precise way of determining the quark masses as well as providing an important test 

of the method in the A+ - x0 splitting. Further calculations of electromagnetic splittings 

in the vector mesons and the baryons, as well as in heavy-light systems, are possible using 

the present method. This will provide an extensive opportunity to test the precision of the 

method and gain confidence in the results. Further study of electromagnetic properties of 

hadrons in lattice &CD, such as magnetic moments and form factors, is also anticipated. 
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