*ﬂ c Fermi National Accelerator Laboratory

h

MPI ~ Ph/95 — 104

TUM - T31 — 100/95
FERMILAB - PUB -95/305~T
. SLAC - PUB 7009

hep — ph/9512380

WEAK DECAYS BEYOND LEADING LOGARITHMS

Gerhard Buchalla®, Andrzej J. Buras'?, Markus E. Lautenbacher' *

Y Physik Department, Technische Universitdt Minchen,
D-85748 Garching, Germany.
2 Max-Planck-Institut fir Physik — Werner-Heisenberg-Institut,
Fohringer Ring 6, D-80805 Miinchen, Germany.
3 Theoretical Physics Department,

Fermi National Accelerator Laboratory,

F.0. Box 500, Batavia, IL 60510, USA.

4 SLAC Theory Group, Stanford University,
P.O. Box 4349, Stanford, CA 94309, USA.

(November 1995)
to appear in Reviews of Modern Physics

Abstract

We review the present status of QCD corrections to weak decays beyond the lead-
ing logarithmic approximation including particle-antiparticle mixing and rare and CP
violating decays. After presenting the basic formalism for these calculations we dis-
cuss in detail the effective hamiltonians for all decays for which the next-to-leading
corrections are known. Subsequently, we present the phenomenological implications
of these calculations. In particular we update the values of various parameters and we
incorporate new information on m, in view of the recent top quark discovery. One
of the central issues in our review are the theoretical uncertainties related to renor-
malization scale ambiguities which are substantially reduced by including next-to-
leading order corrections. The impact of this theoretical improvement on the determi-
nation of the Cabibbo-Kobayashi-Maskawa matrix is then illustrated in various cases.
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L. INTRODUCTION
A. Preliminary Remarks

Among the fundamental forces of nature the weak interactions clearly show the most compli-
cated and diversified pattern from the point of view of our present day understanding represented by
the Standard Model of particle physics. Although this theory of the strong and electroweak forces
is capable of describing very successfully a huge amount of experimental information in a quanti-

tative way and a great deal of phenomena at least qualitatively, there are many big question marks
that remain. The most prominent among them like the problem of electroweak symmetry breaking
and the origin of fermion masses and quark mixing are closely related to the part of the Standard
Model describing weak interactions. Equally puzzling is the fact that whereas the discrete space-
time symmetries C, P, CP and T are respected by strong and electromagnetic interactions, the weak
force violates them all. Obviously, the weak interaction is the corner of the Standard Model that is
least understood. The history of this field is full of surprises and still more of them might be ex-
pected in the future. '
For these reasons big efforts have been and still are being undertaken in order to develop our theo-
retical understanding of weak interaction phenomena and to disentangle the basic mechanisms and
parameters. An excellent laboratory for this enterprise is provided by the very rich phenomenology
of weak meson decays.

The careful investigation of these decays is mandatory for further testing the Standard Model.
Of particular importance is the determination of all Cabibbo-Kobayashi-Maskawa (CKM) parame-
ters as a prerequisite for a decisive test of the consistency of the Standard Model ansatz including
the unitarity of the CKM matrix and its compatibility with the quark masses. Many interesting is-
sues within this context still remain unsettled. Let us just mention here the question of direct CP
violation in non-leptonic K decays (¢'/¢), the yet completely unknown pattern of CP violation in
the B system and the rare K and B decays, which are sensitive to the effects of virtual heavy parti-
cles, most notably the top quark, its mass and its weak couplings. Whether the CKM description of
CP violation is correct, remains as an outstanding open question. It is clear that the need for a mod-
ification of the model is conceivable and that meson decay phenomena might provide a window for
“new physics”. However, independently of this possibility it is crucial to improve the theoretical
predictions in the Standard Model itself, either to further establish its correctness, or to be able to
make clear cut statements on its possible failure.

Now, for all attempts towards a theoretical understanding of these issues the obvious fact that

the fundamental forces do not come in isolation is of crucial significance. Since hadrons are in-
volved in the decays that are of interest here, QCD unavoidably gets into the.game. In order to
understand weak meson decays we have to understand the interplay of weak interactions with the
strong forces. '
To accomplish this task it is necessary to employ the field theoretical tools of the operator prod-
uct expansion (OPE) (Wilson and Zimmermann, 1972) and the renormalization group (Stueckel-
berg and Petermann, 1953), (Gell-Mann and Low, 1954), (Ovsyannikov, 1956), (Symanzik, 1970),
(Callan Jr, 1970), (‘t Hooft, 1973), (Weinberg, 1973). The basic virtues of these two techniques
may be characterized as follows. Consider the amplitude A for some weak meson decay process.
- Using the OPE formalism this amplitude can be represented as (Witten, 1977)



A= (Hes) = ZC(u,MW)@,(u» (L1)

where it is factorized into the Wilson coefficient functions C;; and the matrix elements of local oper-
ators @;. In this process the W boson and other fields with mass bigger than the factorization scale
p are “integrated out”, that is removed from the theory as dynamical degrees of freedom. The effect
of their existence is however implicitly taken into account in the Wilson coefficients. In a more intu-
itive interpretation one can view the expression Y C;Q; as an effective hamiltonian for the process
considered, with Q; as the effective vertices and C; the corresponding coupling constants. Usually
for weak decays only the operators of lowest dimension need to be taken into account. Contribu-
tions of higher dimensional operators are negligible since they are typically suppressed by powers
of p? /M%,, where p is the momentum scale relevant for the decaying meson in question.

The essential point about the OPE is that it achieves a separation of the full problem into two dis-
tinct parts, the long-distance contributions contained in the operator matrix elements and the short-
distance physics described by the Wilson coefficients. The renormalization scale x4 separating the
two regimes is typically chosen to be of the order O(> 1 GeV) for kaon decays and a few GeV
for the decays of D and B mesons. The physical amplitude A however cannot depend on g. The p
dependence of the Wilson coefficients has to cancel the ¢ dependence present in (Q;(p)). In other
words it is a matter of choice what exactly belongs to the matrix elements and what to the coefficient
functions. This cancellation of i dependence involves generally several terms in the expansion in
@.1).

The long-distance part in (I 1) deals with low energy strong interactions and therefore poses a very
difficult problem. Many approaches, like lattice gauge theory, 1/N - expansion, QCD- and hadronic
sum rules or chiral perturbation theory, have been used in the past to obtain qualitative insight and
some quantitative estimates of relevant hadronic matrix elements. In addition heavy quark effective
theory (HQET) and heavy quark expansions (HQE) have been widely used for B decays. Despite
these efforts the problem is not yet solved satisfactorily.

In general in weak decays of mesons the hadronic matrix elements constitute the most important
source of theoretical uncertainty. There are however a few special examples of semileptonic rare
decays (K+ — ntvv, K — n%#%, B — X,vv) where the matrix elements needed can be ex-
tracted from well measured leading decays or calculated perturbatively oras inthe case of B, — pp
expressed fully in terms of meson decay constants. Thus practically the problem of long-distance
QCD can be completely avoided. This makes these decay modes very attractive from a theoretical
point of view, although due to very small branching ratios they are quite dlfﬁcult to access experi-
mentally today.

Contrary to the long-distance contributions the short-distance part can be analyzed systematically
using well established field theoretical methods. Due to the asymptotic freedom property of QCD
the strong interaction effects at short-distances are calculable in perturbation theory in the strong
coupling a;(). In fact a,(x) is small enough in the full range of relevant short distance scales of
O(Mw) down to O(1 GeV) to serve as a reasonable expansion parameter. However the presence
of large logarithms In(Mw /¢) multiplying a,(p) (where 4 = O(1 GeV)) in the calculation of the
coefficients C;(u, Mw) spoils the validity of the usual perturbation series. This is a characteris-
tic feature of renormalizable quantum field theories when vastly different scales are present. It is
therefore necessary to perform a renormalization group analysis which allows an efficient summa-
tion of logarithmic terms to all orders in perturbation theory. In this way the usual perturbation
theory is replaced by the renormalization group improved perturbation theory in which the leading



order (LO) corresponds to summing the leading logarithmic terms ~ (o, In(Mw /u))*. Then at
next-to-leading order (NLO), all terms of the form ~ a;(a In(Mw /x))™ are summed in addition,
and so on. '

The evaluation of the short-distance coefficients in renormalization group improved perturbation
theory is only a part of the entire problem, but one should stress that still it is indispensible to an-
alyze this part systematically; the effective hamiltonians resulting from the short-distance analy-
sis provide the necessary basis for any further computation of weak decay amplitudes. The long-
distance matrix elements needed in addition can be treated separately and will hopefully be known
with desirable accuracy one day.

The rather formal expression for the decay amplitudes given in (I.1) can always be cast in a form
(Buchalla ez al., 1991)

AM - F) = ZB-' Vikm ﬂéou Fi(my,m.) (1.2)

which is more useful for phenomenology. In writing (1.2) we have generalized (I.1) to include sev-
eral CKM factors Viy,,. The functions Fj(mn,, m,) result from the evaluation of loop diagrams
with internal top and charm exchanges and may also depend solely on m, or m.. In certain cases
F; are mass independent. The factors 772}0 p summarize short distance QCD corrections which can
be calculated by the formal methods mentioned above. Finally B; stand for nonperturbative factors
related to the hadronic matrix elements of the contributing operators: the main theoretical uncer-
tainty in the whole enterprise. A well known example of a B;-factor is the renormalization group
invariant parameter Bk relevant for K° — K° mixing and the indirect CP violation in K — 7.
It is worth noting that the short-distance QCD contributions by themselves have already an impor-
tant impact on weak decay processes. In non-leptonic K-decays, for example, they help to explain
the famous AJ = 1/2 rule and they generate penguin operators which are relevant for ¢'/e. They
suppress the semileptonic branching ratio in heavy quark decays and produce a significant enhance-
ment of the weak radiative process B — X,7.

Starting with the pioneering work of (Gaillard and Lee, 1974a) and (Altarelli and Maiani, 197 4),
who calculated the first leading logarithmic QCD effects in weak decays, considerable efforts have
been devoted to the calculation of short-distance QCD corrections to weak meson decay processes.
The analysis has been extended to a large variety of particular modes. Of great interest are espe-
cially processes sensitive to the virtual contribution of heavy quarks, like the top: A classic example
of this type is the 1974 analysis of (Gaillard and Lee, 1974b) of K° — K mixing and their estimate
of the charm quark mass prior to its discovery, based on the dependence of the AS = 2 transition
on virtual charm. This calculation constitutes the prototype application for present day analyses
of virtual top contributions in B® — B° mixing, rare decays and CP violation, which are similar in
Spirit.

Until 1989 most of the calculations were done in LO, i.e. in the leading logarithmic approxima-
tion (Vainshtein et al., 1977), (Gilman and Wise, 1979), (Gilman and Wise, 1980), (Guberina and
Peccei, 1980). An exception was the important work of (Altarelli et al., 1981) where the first NLO
calculation in the theory of weak decays has been presented.

Today the effective hamiltonians for weak processes are available at the next-to-leading level for
the most important and interesting cases due to a series of publications devoted to this enterprise
beginning with the work of (Buras and Weisz, 1990). In table I we give a list of decays for which
NLO QCD corrections are known at present. With the next-to-leading short-distance effects in-
cluded, weak decays have in a sense now achieved the status that the conceptually similar field of
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deep inelastic lepton nucleon scattering had attained more then a decade ago (Buras, 1980).
TABLE 1. Processes for which NLO QCD corrections have been calculated by now.

Decay Reference |
- AF = 1 Decays - B
current-current operators (Altarelli et al., 1981), (Buras and Weisz, 1990)
QCD penguin operators (Buras et al., 1993c), (Buras et al., 1993a),
(Ciuchini et al., 1994a)
electroweak penguin operators (Buras et al., 1993c), (Buras et al., 1993a),
(Ciuchini et al., 1994a)
magnetic penguin operators (Misiak and Miinz, 1995)
B(B — Xev) (Altarelli et al., 1981), (Buchalla, 1993),
(Bagan et al., 1994), (Bagan et al., 1995b)
Inclusive AS =1 (Jamin and Pich, 1994)
Particle-Antiparticle Mixing |
™ (Herrlich and Nierste, 1994)
72, 1B _ (Buras et al., 1990)
RS (Herrlich and Nierste, 1995a)
Rare K- and B-Meson Decays |
|K% = 7%w, B — I*1-, B —» X,vv : (Buchalla and Buras, 1993a)
Kt — atvp, K — ptp~ (Buchalla and Buras, 1994a)
Kt - atup (Buchalla and Buras, 1994b)
Ky — n%te~ (Buras et al., 1994a)
B — X,ete~ (Misiak, 1995), (Buras and Miinz, 1995)

Let us recall why NLO calculations are important for weak decays and why it is worthwile to
perform the very involved and complicated computations.

e The NLO is first of all necessary to test the validity of perturbation theory. In LO all the
(s In(Mw /u))" terms are summed, yielding a result of O(1); it is only at NLO where one
obtains a truly perturbative O(a;) correction relative to the LO and one can check whether
it is small enough to justify the perturbative approach.

¢ Without going to NLO the scheme specific QCD scale A7z extracted from various high en-
ergy processes cannot be used meaningfully in weak decays.

¢ Due to renormalization group (RG) invariance the physical amplitudes do not depend on the
exact scales y; at which quark masses (top) are defined or heavy particles are integrated out.
However in perturbation theory RG invariance is broken through the truncation of the series
by terms of the neglected order. Numerically the resulting scale ambiguities, representing
the theoretical uncertainty of the short-distance part, are a serious problem for the LO which
can be reduced considerably by going to NLO.

¢ The Wilson coefficients are renormalization scheme dependent quantities. The scheme de-
pendence is first “felt” at NLO whereas the LO is completely insensitive to this important
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feature. In particular this issue is essential for a proper matching of the short distance con-
tributions to the long distance matrix elements as obtained from lattice calculations.

¢ In some cases, particularly for ¢'/e, K;, — x%%te~ and B — X,ete™, the central issue of
the top quark mass dependence is strictly speaking a NLO effect.

We would like to stress that short-distance QCD should be contrasted with an “intrinsically per-
turbative” theory like QED, where perturbation theory is almost the whole story since QQED is
exceedingly small. In QCD the coupling is much larger at interesting scales so that the conceptual
questions like residual scale or scheme dependences, which are formally of the neglected higher
order, become important numerically. Thus in this sense the question of higher order corrections
is not only one of a quantitative improvement (of making precise predictions even more accurate,
like in QED), but of a qualitative improvement as well.

We think that the time is appropriate to review the subject of QCD corrections to weak meson
decays at the next-to-leading order level and to collect the most important results obtained in this
field.

B. Outline

This review is divided into three parts, roughly speaking “basic concepts”, “technicalities” and
“phenomenological applications”. The division is made especially for pedagogical reasons hoping
to make the review as readable as possible to a wide audience of physicists.

In the first part we discuss the basic formalism necessary to obtain the effective hamiltonians
for weak decays from the underlying full SU(3) ® SU(2)L ® U(1)y gauge theory of the Standard
Model.

The second part constitutes a compendium of effective hamiltonians for all weak decays for
which NLO corrections have been calculated in the literature and whose list is given in table I. We
include also the discussion of the important decay B — X~ which is known only at the LO level.

The third part of our review then presents the phenomenological picture of weak decays beyond
the leading logarithmic approximation using the results obtained in parts one and two.

We end our review of this exciting field with a brief summary of results and an outlook.

We are aware of the fact that some sections in this review are necessarily rather technical which
is connected to the very nature of the subject of this review. We have however made efforts to
present the material in a pedagogical fashion. Thus part one can be regarded as an elementary in-
troduction to the formalism of QCD calculations which include renormalization group methods and
the operator product expansion. Even if our compendium in part two looks rather technical at first
sight, the guidelines to the effective hamiltonians presented in section IV should be helpful in fol-
lowing and using this important part of our review. In any case the phenomenological part three
is almost self-contained and its material can be easily followed with the help of the guidelines in
section I'V without the necessity of fully understanding the details of NLO calculations.






Part One -

The Basic Formalism

In this first part we will discuss the basic formalism behind radiative corrections to weak decays.

In section II we recall those ingredients of the standard SU(3) ® SU(2) ® U(1) model, which
play an important role in subsequent sections. In particular we recall the Cabibbo-Kobayashi-
Maskawa matrix in two useful parametrizations and we briefly describe the unitarity triangle.

In section III we outline the basic formalism for the calculation of QCD effects in weak decays.
Beginning with the idea of effective field theories we introduce subsequently the techniques of the
operator product expansion and the renormalization group. These important concepts are illustrated
explicitly using the simple, but phenomenologically relevant example of current-current operators,
which allows to demonstrate the procedure in a transparent way. The central issue in this formalism
is the computation of the Wilson coefficients C; of local operators in the LO and NLO approxima-
tion. This calculation involves the proper computation of C; at u = O(Mw) and the renormaliza-
tion group evolution down to low energy scales 4 < My relevant for the weak decays considered.
The latter requires the evaluation of one-loop and two-loop anomalous dimensions of Q: or more
generally the anomalous dimension matrices, which describe the mixing of these operators under
renormalization. We outline the steps for a consistent calculation of the Wilson coefficients C; and
formulate recipes for the determination of the anomalous dimensions of local operators. In section
IIIF we give “master formulae™ for the Wilson coefficients C; , including NLO corrections. Since
these formulae will be central for our review, we discuss their various properties in some detail.
In particular we address the ;- and renormalization scheme dependences and we show on general
grounds how these dependences are canceled by those present in the hadronic matrix elements.



II. STANDARD ELECTROWEAK MODEL
A. Particles and Interactions

Throughout this review we will work in the context of the three generation model of quarks and
leptons based on the gauge group SU(3)®SU(2).®U(1)y spontaneously broken down to SU(3)®
U(1)q. Here Y and @ denote the weak hypercharge and the electric charge generators, respectively.
SU(3) stands for QC D which will be discussed in more detail in the following section. Here we
would like to recall certain features of the electroweak part of the Standard Model which will be
important for our considerations. ’

The left-handed leptons and quarks are put in SU(2),, doublets

(z:)L (:ﬁ)L (:Z)L : aLy
(). ). G, @

with the corresponding right-handed fields transforming as singlets under SU(2);. The primes are
discussed below. The relevant electroweak charges Q, Y and the third component of the weak
isospin 73 are collected in table II.

TABLE II. Electroweak charges @, Y and the third component of the weak isospin T3 for quarks and
leptons in the Standard Model.

vy er €n UL dr UR dr
Q 0 -1 -1 23 -1/3 23 ~1/3
Ts 172 -1/2 0 12 -1/2 0 0
Y| -1 -1 -2 13 1/3 4/3 -2/3|

The electroweak interactions of quarks and leptons are mediated by the massive weak gauge
bosons W and Z° and by the photon A. These interactions are summarized by the Lagrangian

Lint = Lcc + Lnc (IL3)
where |
g2 —ir— '
Lo = —=(JTW* +J-W™* .
cc =3 \/§( > +J; ) (IL.4)
describes the charged current interactions and
=eJmAr 1 2 _jqogu
Lnc = eJ;" A + 5 cos @WJ“Z - (IL5)

the neutral current interactions. Here e is the QED coupling constant, g is the SU(2);, coupling
constant and Oy is the Weinberg angle. The currents are given as follows
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Jf = (adv-a + (& )oa+ (@ )W-r + (F€)v_a + (Tup)v-a + (7:T)v-4 (I1.6)

Jm = ; Qifwf @
Jo =2 fulvy—amps)f (IL.8)
I
vy = Tf — 2Qsin® Oy ag=Tf (IL.9)

where Qs and T denote the charge and the third component of the weak isospin of the left-handed
fermion fr. ' ,
In our discussion of weak decays an important role is played by the Fermi constant:

Gr g3
Vi TG w10
which has the value
Gr = 1.16639 - 1073 GeV ™2 (IL.11)

Other values of the relevant parameters will be collected in appendix A. .

The interactions between the gauge bosons are standard and can be found in any textbook on
gauge theories.

The primes in (II.2) indicate that the weak eigenstates (d', s’, &) are not equal to the correspond-
ing mass eigenstates (d, s, b), but are rather linear combinations of the latter. This is expressed

through the relation
| d Vad Vis Vi d
g l=\Vua V. Vo s (11.12)
v V;d Vts th b

where the unitary matrix connecting theses two sets of states is the Cabibbo-Kobayashi-Maskawa
(CKM) matrix. Many parametrizations of this matrix have been proposed in the literature. We will
use in this review two parametrizations: the standard parametrization recommended by the particle
data group and the Wolfenstein parametrization.

- B. Standard Parametrization

Let us introduce the notation c;; = cosf;; and s;; = sinf;; with ¢ and j being generation labels
(2,7 = 1,2,3). The standard parametrization is then given as follows (Particle Data Group, 1994)

C12€13 $12€13 s13e” %
_ is is
V = | —812€3 — C12523513€"°  C13C23 — $12823513€"°  S23C13 (I1.13)

5 is
812823 — €12C23813€"  —833C12 — 812C23513€°  C23C13
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where 6 is the phase necessary for CP violation. ¢;; and s;; can all be chosen to be positive and §
may vary in the range 0 < § < 2x. However the measurements of CP violation in K decays force
dtobeintherange 0 < 6 < 7.

The extensive phenomenology of the last years has shown that s,3 and s,3 are small numbers:
O(1072) and O(10~2), respectively. Consequently to an excellent accuracy cj3 = ¢p3 = 1 and the
four independent parameters are given as follows -

s12=|Vasl,  s1a=1|Vis|, sa3=1|Vau|, 6 (11.14)

with the phase é extracted from CP violating transitions or loop processes sensitive to |V;q|. The
latter fact is based on the observation that for0 < é < , asrequired by the analysis of CP violation,
there is a one-to—one correspondence between § and |V,4| given by

[Vid| = Va® + b2 — 2abcos 6, a = |VaVyl, b= |V.aVis| (IL.15)

C. Wolfenstein Parameterization Beyond Leading Order

We will also use the Wolfenstein parametrization (Wolfenstein, 1983). It is an approximate |
parametrization of the CKM matrix in which each element is expanded as a power series in the
small parameter A= |Vys| =0.22

1-% A ) AX3(p — i)
V= —A 1-2 A |+o0y (IL16)
AN(1—o—in) —AN 1

and the set (I1.14) is replaced by ‘
A, A, o, 7. (I.17)

The Wolfenstein parameterization has several nice features. In particular it offers in conjunction
with the unitarity triangle a very transparent geometrical representation of the structure of the CKM
matrix and allows to derive several analytic results to be discussed below. This tarns out to be very
useful in the phenomenology of rare decays and of CP violation.

When using the Wolfenstein parametrization one should remember that it is an approximation
and that in certain situations neglecting O(A*) terms may give wrong results. The question then
arises how to find O(\*) and higher order terms ? The point is that since (IL16) is only an approx-
imation the exact definiton of A is not unique by terms of the neglected order O(A*). This is the
- reason why in different papers in the literature different O(A*) terms can be found. They simply
correspond to different definitons of the expansion parameter A. Obviously the physics does not
depend on this choice. Here it suffices to find an expansion in A which allows for simple relations
between the parameters (I1.14) and (I1.17). This will also restore the unitarity of the CKM matrix
which in the Wolfenstein parametrization as given in (IL.16) is not satisfied exactly.

To this end we go back to (II.13) and we impose the relations (Buras et al., 1994b)

s12= A so3 = AN? s13e~% = AX3(g — in) (11.18)

to all orders in A. In view of the comments made above this can certainly be done. It follows that
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813 cosé n= S13
812823 812823

We observe that (I1.18) and (I1.19) represent simply the change of variables from (I1.14) to (II.17).
Making this change of variables in the standard parametrization (II.13) we find the CKM matrix
as a function of (), A, g, n) which satisfies unitarity exactly! We also note that in view of ¢;3 =
1—O()8) the relations between s;; and [V;;] in (II.14) are satisfied to high accuracy. The relationsin
(11.19) have been first used in (Schmidtler and Schubert, 1992). However, the improved treatment
of the unitarity triangle presented below goes beyond the analysis of these authors.

The procedure outlined above gives automatically the corrections to the Wolfenstein parame-
trization in (I.16). Indeed expressing (II.13) in terms of Wolfenstein parameters using (11.18) and
then expanding in powers of A we recover the matrix in (II.16) and in addition find explicit cor-
rections of O(X*) and higher order terms. V,,, remains unchanged. The corrections to V,,, and V3
appear only at @(\7) and O(\®), respectively. For many practical purposes the corrections to the
real parts can also be neglected. The essential corrections to the imaginary parts are:

—
—

siné (IL.19)

AV = —iA2\%. AV, = —iAMYy (I1.20)

These two corrections have to be taken into account in the discussion of CP violation. On the other
hand the imaginary part of V., which in our expansion in A appears only at O()°) can be fully
neglected.

In order to improve the accuracy of the unitarity triangle discussed below we will also include
the O()®) correction to V;g which gives

Via = AN —g—if) (I.21)
with
A? A2

In order to derive analytic results we need accurate explicit expressions for A; = V,;V;; where
i = ¢,t. We have

Im) = —Im), = nA2\® (I1.23)
.
Rede = -\(1-5) (IL.24)
A2
Reh = —(1 - S)A(1 - 9) (I1.25)

Expressions (I1.23) and (I1.24) represent to an accuracy of 0.2% the exact formulae obtained using
(I1.13). The expression (I1.25) deviates by at most 2% from the exact formula in the full range of
parameters considered. In order to keep the analytic expressions in the phenomenological applica-
tions in a transparent form we have dropped a small O(\7) term in deriving (I1.25). After inserting
the expressions (I1.23)—(I1.25) in exact formulae for quantities of interest, further expansion in A
should not be made.
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D. Unitarity Triangle Beyond Leading Order

The unitarity of the CKM matrix provides us with several relations of which
ViaVay + VgV + VoaVis = 0 (11.26)

is the most useful one. In the complex plane the relation (IL.26) can be represented as a trian-
gle, the so-called “unitarity—triangle” (UT). Phenomenologically this triangle is very interesting
as it involves simultaneously the elements V,,;, V,; and V,, which are under extensive discussion at
present. .

In the usual analyses of the unitarity triangle only terms O(\3) are kept in (IL.26) (Buras and
Harlander, 1992), (Nir, 1992), (Harris and Rosner, 1992), (Schmidtler and Schubert, 1992), (Dib
et al., 1990), (Ali and London, 1995). It is however straightforward to include the next-to-leading
O(\®) terms (Buras et al., 1994b). We note first that

V. V5 = —AX3 + O(X). (I1.27)

Thus to an excellent accuracy V,,V; is real with |V_, V3| = AA3. Keeping O(A®) corrections and
rescaling all terms in (IL.26) by A\3 we find

1
o Vs =1-(@2+i7) (1.28)
with g and 7} defined in (I1.22). Thus we can represent (I1.26) as the unitarity triangle in the complex
(2,7) plane. This is shown in fig. 1. The length of the side C B which lies on the real axis equals
unity when eq. (I1.26) is rescaled by V;V;. We observe that beyond the leading order in A the point
A does not correspond to (o,7) but to (g, 7). Clearly within 3% accuracy 3 = g and 7 = 7. Yet
in the distant future the accuracy of experimental results and theoretical calculations may improve
considerably so that the more accurate formulation given here will be appropriate.

A=(pn)

pHn

C=(0,0) B=(1,0)
FIG. 1. Unitarity triangle in the complex (g, 7}) plane.
Using simple trigonometry one can calculate sin(2¢;), ¢; = a, 8,7, in terms of (g, i) with the
result:
25(7* + 2° — @)

) = E PN 2r + 7 @2
sin(28) = (12—2(;;);%’_-2- (IL30)
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o 200 20n _ |
sin(2y) = FiR - i (IL31)

The lengths C' A and B A in the rescaled triangle of fig. 1 to be denoted by R; and R,, respectlvely,
are given by

_ VuaVil _

—_— '2+"2_

RVAA

_ VaViel _ — — _ 1|V
B=wova ™ Vi-ar+7= l @33

The expressions for R, and R; given here in terms of (3, 17) are excellent approximations. Clearly
R, and R; can also be determined by measuring two of the angles ¢;:

(IL.32)

__sin(B) _ sin(a+7) _  sin(B)
" sin(a)  sin(a) ~ sin(y+8) (IL.34)

_sin(y) _sin(a+8) _ sin(y)

“ sin(e) ~  sin(a) ~ sin(y+fB) (@33)
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IIL BASIC FORMALISM

A. Renormalization of QCD

As already emphasized in the introduction, the effects of QCD play an important role in the
phenomenology of weak decays of hadrons. In fact in the theoretical analysis of these decays the
investigation of QCD corrections is the most difficult and extensive part. In the present subsec-
tion we shall therefore briefly recall basic features of perturbative QCD and its renormalization.
Thereby we will concentrate on those aspects, that will be needed for the present review. We will
also take the opportunity to introduce for later reference the expressions for the running coupling,
the running mass and the corresponding renormalization group functions.

The Lagrangian density of QCD reads

Loop = _%(a,,Az — 8,AZ)(B"A™ — 9 Ay — %(amz)z
+q(¢ #—my)q + x> 09, x*
, 2
- % fa.bc( a“ A: -9, Az) Abs A — gz fabe fcdc A: A'l: Acs Adv
+ 95T g AL + g f**(8*x™)xP A (IL1)

Here ¢ = (q1, g2, ¢3) is the color triplet of quark flavor ¢, g = u, d, s, c, b, £. g is the QCD coupling,
A} the gluon field, x* the ghost field and ¢ the gauge parameter. T, f**¢ (a, b,c=1,... ,8) are the
generators and structure constants of SU(3), respectively. From this Lagrangian one may read off
the Feynman rules for QCD, e.g. i gT~* for the quark-gluon vertex.

In order to deal with divergences that appear in quantum (loop) corrections to Green functions, the
theory has to be regularized to have an explicit parametrization of the singularities and subsequently

renormalized to render the Green functions finite. For these purposes we will employ:

o Dimensional regularization (DR) by continuation to D = 4 — 2¢ space-time dimensions
(Bollini and Giambiagi, 1972a), (Bollini and Giambiagi, 1972b), (‘t Hooft and Veltman,
1972a), (Ashmore, 1972), (Cicuta and Montaldi, 1972).

o Subtraction of divergences in the minirﬂ subtraction scheme MS (‘t Hooft, 1973) or the
modified minimal subtraction scheme (M.S) (Bardeen ez al., 1978).

To eliminate the divergences one has to renormalize the fields and parameters in the Lagrangian,
in general through

a 1 2 a a > a
A, =274 g = Z}/%q X3 = Z3%x

2
do = Z,qu° €0 = Zat mo = Znm (@2

The index “0” indicates unrenormalized quantities. The factors Z are the renormalization con-
stants. The scale x has been introduced to make g dimensionless in D = 4 — 2¢ dimensions.
Since we will not consider Green functions with external ghosts, we will not need the ghost field
renormalization. We also do not need the gauge parameter renormalization if we are dealing with
gauge independent quantities, as e.g. Wilson coefficient functions.

A straightforward way to implement renormalization is provided by the counterterm method.
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Thereby the parameters and fields in the original Lagrangian, which are to be considered as un-
renormalized (bare) quantities, are reexpressed through renormalized ones by means of (I11.2) from
the very beginning. For instance, the quark kinetic term becomes

Lr = Joi P90 — MmoGogo = §t P§q— miq+ (2, — 1)§i §q— (2,2, — 1)miq (II1.3)

The advantage then is, that only renormalized quantities are present in the Lagrangian. The coun-
terterms (~ (Z — 1)), appearing in addition, can be formally treated as interaction terms that con-
tribute to Greén functions calculated in perturbation theory. The Feynman rule for the counterterms
in (I11.3), for example, reads (p is the quark momentum)

i(Zy — 1) p= i(Z,2m — D)m (IL.4)

The constants Z; are then determined such that they cancel the divergences in the Green functions
according to the chosen renormalization scheme. In an analogous way all renormalization con-
stants can be fixed by considering the appropriate Green functions.

Of central importance for the study of perturbative QCD effects are the renormalization group equa-
tions, which govern the dependence of renormalized parameters and Green functions on the renor-
malization scale . These differential equations are easily derived from the definition (IIL2) by
using the fact that bare quantities are p-independent. In this way one finds that the renormalized
coupling g(u) obeys (Gross, 1976)

d
, dln”y(u) = B(e, g(p)) (IIL.5)
where
1 dzZ, _
Ble,g) = —eg — gz dln"’“ = —eg + B(9) (IIL6)

which defines the 3 function. (IIL.5) is valid in arbitrary dimensions. In four dimensions (e, g)
reduces to B(g). Similarly, the anomalous dimension of the mass, v, defined through

dm(p) _
dinp - —Ym(g)m(p) (Im.7)
is given by
Tm(g) = Z.dp (IIL.8)

In the M S (M S)-scheme, where just the pole terms in ¢ are presentin the renormalization constants
Z;, these can be expanded as follows

=1
Zi=1+Y 5Zii9) (IIL9)
=1
Using (I11.5), (II1.6) one finds
1 dz; | ,0Z;:(9)
Zi dlnﬂ - _2g ag2 (m.lO)
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which allows a direct calculation of the renormalization group functions from the 1/e-pole part
of the renormalization constants. Along these lines one obtains at the two loop level, required for
next-to-leading order calculations,

3 5

g
Blg) = 16 7~ Piigeaey ) (OL11)
In terms of
_ g | ,
ag = i (1IL.12)
we have
da, o
dln ﬂo ﬂl (47(’)2 (m'ls)

Similarly, the two-loop expression for the quark mass anomalous dimension can be written as

o \ 2 ‘
() = Yo 3 + Tt (52 (. 14)

We also give the 1/e-pole part Z, ; of the quark field renormalization constant Z; to O(a?), which
we will need later on

Q, ag \?2

Zq'l = a14—1r- + ag (-4;) (I[IIS)
" The coefficients in egs. (III.13) — (IIL.15) read
___11N—2f 34, 10 _N2—1
Bo = 3 b= 3N 3Nf—2Cpf Cr= 5N (111.16)
97 10

Ymo = 6CF Ym1 = CF (3CF + ?N - '_f) (.17

3 17
=—Cr a;=Cp (4CF——N+-f) (I1.18)

N is the number of colors, f the number of quark flavors. The coefficients are given in the M S
(M S) scheme. However, By, 51, Tmo and a; are scheme independent. The expressions for e, and
a, in (T11.18) are valid in Feynman gauge, { = 1.

At two-loop order the solution of the renormalization group equation (II1.13) for a,(z) can always
be written in the form

B Inln i‘—f] (L19)

as(p) = i 1-=
T Y

Eq. (III.19) .gives the running coupling constant at NLO. as(p) vanishes as g/A — oo due to
asymptotic freedom. We remark that, in accordance with the two-loop accuracy, (II1.19) is valid
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up to terms of the order O(1/In® 4?/A?). For the purpose of counting orders in 1/ In y? /A? the
double logarithmic expression In In 42 /A% may formally be viewed as a constant. Note that an ad-
ditional term const./ In® u?/AZ, which is of the same order as the next-to-leading correction term
in (II1.19), can always be absorbed into a multiplicative redefinition of A. Hence the choice of the
form (I11.19) is possible without restriction, but one should keep in mind that the definition of A is
related to this particular choice. The introduction of the M'S scheme and the corresponding defin-
ition of Az7z and its relation to A is discussed in section IIIF 4.

Finally we write down the two-loop expression for the running quark mass in the MS (M5)
scheme, which results from integrating (II1.7)

=i 2] 1+ (3 ) 2]

B. Operator Product Expansion in Weak Decays - Preliminaries

Weak decays of hadrons are mediated through the weak interactions of their quark constituents,
whose strong interactions, binding the constituents into hadrons, are characterized by a typical
hadronic energy scale of the order of 1 GeV. Our goal is therefore to derive an effective low en-
ergy theory describing the weak interactions of quarks. The formal framework to achieve this is
provided by the operator product expansion (OPE). In order to introduce the main ideas behind it,
let us consider the simple example of the quark level transition ¢ — sud, which is relevant for
Cabibbo-allowed decays of D mesons. Disregarding QCD effects for the moment, the tree-level
W-exchange amplitude for ¢ — sud is simply given by

.GF+,. M _
A= z‘ﬁVcaVudkg__M_gv(sc)V—A("d)V—A

= 8Ly, ey _a(@d)y—s + O(<) (mL21)
= \/5 cs¥ud V-A V-A M‘?V 1)

where (V — A) refers to the Lorentz structure 4, (1 — 7s).

Since k, the momentum transfer through the W propagator, is very small as compared to the
W mass My, terms of the order O(k? /M) can safely be neglected and the full amplitude A can
be approximated by the first term on the rh.s. of (I11.21). Now this term may obviously be also
obtained from an effective hamiltonian defined by

G
Hess = \/—ch:K‘d(Ec)V_A (@d)v-n +... (IIL22)

where the ellipsis denotes operators of higher dimensions, typically involving derivative terms,
which can in principle be chosen so as to reproduce the terms of higher order in 2 /M3, of the
full amplitude in (IIL.21). This exercise already provides us with a simple example of an OPE. The
product of two charged current operators is expanded into a series of local operators, whose con-
tributions are weighted by effective coupling constants, the Wilson coefficients.

A more formal basis for this procedure may be given by considering the generating functional for
Green functions in the path integral formalism. The part of the generating functional relevant for
the present discussion is, up to an overall normalizing factor, given by
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Zw ~ / [dW+][dW ] exp(i j dzLw) (II1.23)

where Ly is the Lagrangian density containing the kinetic terms of the W boson field and its in-
teraction with charged currents

Lw = —3(BW = QW) QW™ — W) + MW} W
\/_(J+ W 4 JoW ) 24
J:- = VorP1u(l — 75)m p=(u,c, t) n= (d,s,b) Jp_ = (J:)T (IIL.25)

Since we are not interested in Green functions with external W lines, we have not introduced exter-
nal source terms for the W fields. In the present argument we will furthermore choose the unitary
gauge for the W field for definiteness, however physical results do not depend on this choice.
Introducing the operator

Ky (2,y) = 69z - y) (9., (8* + ME) - 8,0,) (LI1.26)

we may, after discarding a total derivative in the W kinetic term, rewrite (IT1.23) as

Zw ~ [lAW*aw lexpi [ d'ad'y W (@)K (2, )Wy (1)

- W"‘] mL.27)
The inverse of K, denoted by A, and defined through |
/ &YKo (2,9) 0"y, 2) = g 6z - 2) (IL.28)
is just the W propagator in the unitary gauge
d'k ~ik(z—y)
Auu(zy y) = WAuv(k)e (III29)
-1 k.k,
Bulb) = g (o — 2222) @30

Performing the gaussian functional integration over W%(z) in (III.27) explicitly, this expression
simplifies to

Zw ~ exp [—z/ =J7 (z)AM (=, y)J"'(y)d“:z:d’*y] (Im.31)
This result implies a nonlocal action functional for the quarks
2 .
Su= [ ol -2 [diodyl;(2)a" (2,9)7y) (I.32)
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where the first piece represents the quark kinetic terms and the second their charged current inter-
actions.

We can now formally expand this second, nonlocal term in powers of 1/MZ; to yield a series of
local interaction operators of dimensions that increase with the order in 1/M3,. To lowest order

AP ~ iw_g(‘i) - -
(z,9) % 35-6%(z - y) (II.33)
w
and the second term in (II1.32) becomes
+u ‘
-z 2 [ dt23; ()7 (2) (L.34)
corresponding to the usual effective charged current interaction Lagrangian
' G GF.,.
Loness = = Z5Ti T@) = = EVa Vo B)V-a(F)v-a L.35)

which contains, among other terms, the leading contribution to (II1.22).
The simple considerations we have presented so far already illustrate several of the basic aspects
of the general approach.

¢ Formally, the procedure to approximate the interaction term in (II1.32) by (II1.34) is an ex-
ample of a short-distance OPE. The product of the local operators J (z) and J}(y), to be
taken at short-distances due to the convolution with the massive, short-range W propagator
A**(z,y) (compare (II1.33)), is expanded into a series of composite local operators, of which
the leading term is shown in (III._34).

¢ The dominant contributions in the short-distance expansion come from the operators of low-
est dimension. In our case these are four-fermion operators of dimension six, whereas oper-
ators of higher dimensions can usually be neglected in weak decays.

o Note that, as far as the charged current weak interaction is concerned, no approximation is
involved yet in the nonlocal interaction term in (I11.32), except that we do not consider higher
order weak corrections or processes with external W boson states. Correspondingly, the OPE
series into which the nonlocal interaction is expanded, is equivalent to the original theory,
when considered to all orders in 1/M7,. In other words, the full series will reproduce the
complete Green functions for the charged current weak interactions of quarks. The trun-
cation of the operator series then yields a systematic approximation scheme for low energy
processes, neglecting contributions suppressed by powers of k2/MZ,. In this way one is able
to construct low energy effective theories for weak decays.

¢ In going from the full to the effective theory the W boson is removed as an explicit, dynamical
degree of freedom. This step is often refered to as “integrating out” the W boson, a termi-
nology which is very obvious in the path integral language discussed above. Alternatively
one could of course use the canonical operator formalism, where the W field instead of being
intergrated out, gets “contracted out” through the application of Wick’s theorem.

o The effective local four-fermion interaction terms are a modern version of the classic Fermi-
theory of weak interactions.
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¢ An intuitive interpretation of the OPE formalism discussed so far is, that from the point of
view of low energy dynamics, the effects of a short-range exchange force mediated by a
heavy boson approximately corresponds to a point interaction.

o The presentation we have given illustrates furthermore, that the approach of evaluating the
relevant Green functions (or amplitudes) directly in order to construct the OPE, as in (I11.21),
actually gives the same result as the more formal technique employing path integrals. While
the latter can give some useful insight into the general aspects of the method, the former is
more convenient for practical calculations and we will make use of it throughout the discus-
sion to follow.

# Up to now we have not talked about the strong interactions among quarks, which have of
course to be taken into account. They are described by QCD and can at short-distances be
calculated in perturbation theory, due to the property of asymptotic freedom of QCD. The
corresponding gluon exchange contributions constitute quantum corrections to the simplified
picture sketched above, which can in this sense be viewed as a classical approximation. We
will describe the incorporation of QCD corrections and related additional features they imply
for the OPE in the following section.

C. OPE and Short Distance QCD Effects

We will now take up the discussion of QCD quantum corrections at short-distances to the OPE
for weak decays. A crucial point for this enterprise is the property of asymptotic freedom of QCD.
This allows one to treat the short-distance corrections, that is the contribution of hard gluons at
energies of the order O(Myw ) down to hadronic scales > 1GeV, in perturbation theory. In the
following, we will always restrict ourselves to the leading dimension six operators in the OPE and
omit the negligible contributions of higher dimensional operators. Staying with our example of
¢ — sud transitions, recall that we had for the amplitude without QCD

GF e, _
Ap = —zv—ngVud(s;q)V_A(u,—dj)v_A (I11.36)

where the summation over repeated color indices is understood. This result leads directly to the
effective hamiltonian of (II1.22) where the color indices have been suppressed. If we now include
QCD effects, the effective hamiltonian, constructed to reproduce the low energy approximation of
the exact theory, is generalized to

Hess = %V;Vud(lel + C2Q>) - (IIL.37)

where
Q1 = (Bicj)v-a(8idi)v-a (I11.38)
Q2 = (3ici)v-a(tijd;)v_a (II1.39)

The essential features of this hamiltonian are:
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o In addition to the original operator ¢, (with index 2 for historical reasons) a new operator
@1 with the same flavor form but different color structure is generated. This is because a
gluon linking the two color singlet weak current lines can “mix” the color indices due to the.
following relation for the color charges T3

1 1
N bl + 55;151'1: (111.40)

ik jl=—ﬁ

o The Wilson coefficients C; and C,, the coupling constants for the interaction terms Q@ and
Q2, become calculable nontrivial functions of a,, M and the renormalization scale p. If
QCD is neglected they have the trivial form C; = 0, C; = 1 and (II1.37) reduces to (I11.22).

In order to obtain the final result for the hamiltonian (II1.37), we have to calculate the coefficients
C,2. These are determined by the requirement that the amplitude A in the full theory be reproduced
by the corresponding amplitude in the effective theory (II1.37), thus

A= -i?—fgvsnd(cl<ql> +C2(Q2) 41

If we calculate the amplitude A4 and, to the same order in s, the matrix elements of operators (Q; ),
(Q2), we can obtain Cy and C; via (IIL.41). This procedure is called matching the full theory onto
the effective theory (II1.37).
Here we use the term “amplitude” in the meaning of “amputated Green function”. Correspond-
ingly operator matrix elements are — within this perturbative context — amputated Green functions
with operator insertion. In a diagrammatic language these amputated Green functions are given by
Feynman graphs; but without gluonic self energy corrections in external legs, like e.g. in figs. 2
and 3 for the full and effective theory, respectively. In the present example penguin diagrams do
not contribute due to the flavor structure of the ¢ — sud transition.

Evaluating the current-current diagrams of fig. 2 (a)—(c), we find for the full amplitude A to
O(as)

_ .Gr., o5, 42 3a,, M o, Mg '
A= —z-ﬁVc’Vud [(1 + 20}:‘47‘_ In _pz) Se + Nir In —P2 S; — 34—1r In ?p-z-sl (I1.42)
Here we have introduced the spinor amplitudes
S1 = (8ic;)v-a(@idi)v-4 (1IL.43)
Sz = (Bici)v-a(@id;)v-4 (TIL.44)

which are just the tree level matrix elements of Q; and Q,. We have employed the Feynman gauge
(¢ = 1) and taken all external quark lines massless and carrying the off-shell momentum p. Fur-
thermore we have kept only logarithmic corrections ~ ¢ -log and discarded constant contributions
of order O(«), which corresponds to the leading log approximation. The necessary renormaliza-
tion of the quark fields in the M .S-scheme is already incorporated into (II1.42). It has removed a
1/e singularity in the first term of (I[.42), which therefore carries an explicit p-dependence.
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FIG. 2. One-loop current-current (a)—(c), penguin (d) and box (e) diagrams in the full theory. For pure
QCD corrections as considered in this section and e.g. in VI the - and Z-contributions in diagram (d) and
the diagram (e) are absent. Possible left-right or up-down refiected diagrams are not shown.

Under the same conditions, the unrenormalized current-current matrix elements of the operators
(1 and Q) are from fig. 3 (a)-(c) found to be

(@)@ = | (IIL45)
Qs u a1 u? Qs p?

(roort (Fomds)) s s (Frn ) 5oz ()

(Q2)® = - (TIL.46)

Q. p? 3 as u o, u?
Again, the divergences in the first terms are eliminated through field renormalization. However, in

contrast to the full amplitude, the resulting expressions are still divergent. Therefore an additional
multiplicative renormalization, refered to as operator renormalization, is necessary:

QY = 2,;Q; (IIL.47)

Since (111.45) and (IT1.46) each involve both S; and S, the renormalization constant is in this case a
2 x 2 matrix Z. The relation between the unrenormalized ((Q;)(?)) and the renormalized amputated
Green functions ({Q;}) is then .

(@) =2%2;(Q;) (IL48)
From (II1.45), (I11.46) and (II1.15) we read off (M S-scheme)

'3/N -3 )

Z=1+Z;E("'3 3/N (I11.49)
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FIG. 3. One loop current-current (a)—(c) and penguin (d) diagrams contributing to the LO anomalous
dimensions and matching conditions in the effective theory. The 4-vertex “® ®"” denotes the insertion of a
4-fermion operator @;. For pure QCD corrections as considered in this section and e.g. in VI the contribu-
tions from <y in diagrams (d.1) and (d.2) are absent. Again, possible left-right or up-down reflected diagrams
are not shown.

It follows that the renormalized matrix elements (Q);) are given by

(@) = (1 + 2CF = In —p—) Si+ 5 3 "‘ =ln W L5851 - 3— In 75, (IIL50)
(Qa) = (1 +2CF—-— In p,) Sa + iﬁln £58- 3— In 55 (IIL51)
Inserting {Q;) into (IT1.41) and comparing with (II1.42) we derive
M . M2

We would like to digress and add a comment on the renormalization of the interaction terms in
the effective theory. The commonly used convention is to introduce via (I11.48) the renormaliza-
tion constants Z;;, defined to absorb the divergences of the operator matrix elements. It is however
instructive to view this renormalization in a slightly different, but of course equivalent way, corre-
sponding to the standard counterterm method in perturbative renormalization. Consider, as usual,
the hamiltonian of the effective theory as the starting point with fields and coupling constants as
bare quantities, which are renormalized according to (¢=s, ¢, u, d)

¢ =z} (I11.53)

¢ =2zc; . (I11.54)
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Then the hamiltonian (I11.37) is essentially (omitting the factor %Vc’; Vud)

CPQi(¢") = 2;2:C;Q: = C:Q: + (2225 - 6;)C,Q: (L.35)

that is, it can be written in terms of renormalized couplings and fields (C;Q;), plus counterterms.

The argument q© in the first term in (II1.55) indicates that the interaction term Q; is composed of
bare fields. Calculating the amplitude with the hamiltonian (IIL.55), which includes the countert-
erms, we get the finite renormalized result

. Z2Z5CHQ:) = C;(Q;) (TIL56)
Hence (compare (II1.48))
Z5 =23 (IIL.57)

In short, it is sometimes useful to keep in mind that one can think of the “operator renormalization”,
which sounds like a new concept, in terms of the completely equivalent, but customary, renormal-
ization of the coupling constants C;, as in any field theory.

Now that we have presented in quite some detail the derivation of the Wilson coefficients in
(I1.52), we shall discuss and interpret the most important aspects of the short-distance expansion
for weak decays, which can be studied very transparently on the explicit example we have given.

e First of all a further remark about the phenomenon of operator mixing that we encountered
in our example. This occurs because gluonic corrections to the matrix element of the original
operator (J are not just proportional to Q; itself, but involve the additional structure Q; (and
vice versa). Therefore, besides a (J;-counterterm, a counterterm ~ @), is needed to renor-
malize this matrix element — the operators in question are said to mix under renormalization.
This however is nothing new in principle. It is just an algebraic generalization of the usual
concepts. Indeed, if we introduce a different operator basis Q4 = (Q2 £ @1)/2 (with coef-
ficients Cyx = C; & C) the renormalization becomes diagonal and matrix elements of Q.
and () are renormalized multiplicatively. In this new basis the OPE reads

A=A+ A= f o Vud(C(Q4) + C_(Q-)) (TIL58)
where (S = (S % 5)/2)
A = iiv,;; ” [(1 + 20,: *In ——) Sy + (— 3)—1n§-’p-2- (IIL.59)
and
(Qs) = (1 + 2cp-—1n ——-) Sy + (—- ¥ 3)—ln # =t (I1160)
Ci=1+ (i’, 3)——111 AZ;Z" (IIL61)
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o In the calculation of the amplitude A in (II1.42) and of the matrix elements in (I11.45) and
(I11.46) the off-shell momentum p of the external quark legs represents an infrared regula-
tor. The logarithmic infrared divergence of the gluon correction diagrams (figs. 2 (a)—(c) and
3 (a)-(c)) as p> — 0 is evident from (I11.42), (I11.45) and (II1.46). A similar observation
can be made for the Mw dependence of the full amplitude A. We see that (IIL.42) is loga-
rithmically divergent in the limit My — oo. This behaviour is reflected in the ultraviolet
divergences (persisting after field renormalization) of the matrix elements (II1.45), (I11.46)
in the effective theory, whose local interaction terms correspond to the weak interactions in
the infinite My limit as they are just the leading contribution of the 1/My operator prod-
uct expansion. This also implies, that the characteristic logarithmic functional dependence
of the leading O( ;) corrections is closely related to the dwergence structure of the effective
theory, that is to the renormalization constants Z;;.

e The most important feature of the OPE is that it provides a factorization of short-distance
(coefficients) and long-distance (operator matrix elements) contributions. This is clearly ex-
hibited in our example. The dependence of the amplitude (II1.42) on p?, representing the
long-distance structure of A, is fully contained in the matrix elements of the local operators
Q: (IIL.50), (II1.51), whereas the Wilson coefficients C; in (II1.52) are free from this depen-
dence. Essentially, this factorization has the form (see (I11.59) — (111.61))

(1+a,,G1nM )—(1+asGln—-) (1+a,,G1n—) (IL62)

that is, amplitude = coefficient function x operator matrix element. Hereby the logarithm on
the Lh.s. is split according to
M, M,

In —% =] w i
2 n” +1n 7 (I11.63)

Since the logarithmic behaviour results from the integration over some virtual loop momen-
tum, we may — roughly speaking — rewrite this as

M, dk? My, dk?2 e dR?
‘/—pz k2 u? _ICT + ./—

Py . (I1L.64)

which illustrates that the coefficient contains the contributions from large virtual momenta
of the loop correction from scales u =~ 1 GeV to My, whereas the low energy contributions
are separated into the matrix elements.

Of course, the latter can not be calculated in perturbation theory for transitions between phys-
ical meson states. The point is, that we have calculated the OPE for unphysical off-shell
quark external states only to extract the Wilson coefficients, which we need to construct the
effective hamiltonian (II1.37). For this purpose the fact that we have considered an unphysi-
cal amplitude is irrelevant since the coefficient functions do not depend on the external states,
but represent the short-distance structure of the theory. Once we have extracted the coeffi-
cients and written down the effective hamiltonian, the latter can be used — at least in principle
- to evaluate the physically interesting decay amplitudes by means of some nonperturbative
approach.
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¢ Ininterpreting the role of the scale 4 we may distinguish two different aspects. From the point
of view of the effective theory u is just a renormalization scale, introduced in the process of
renormalizing the effective local interaction terms by the dimensional method. On the other
hand, from the point of view of the full theory, p acts as the scale at which the full contribution
is separated into a low energy and a high energy part, as is evident from the above discussion.
For this reason g is sometimes also called the factorization scale. ~

¢ In our case the infrared structure of the amplitude is characterized by the off-shell momen-
tum p. In general one could work with any other arbitrary momentum configuration, on-shell
or off-shell, with or without external quark mass, with infrared divergences regulated by off-
shell momenta, quark masses, a fictitious gluon mass or by dimensional regularization. In
the case of off-shell momenta the amplitude is furthermore dependent on the gauge parame-
ter of the gluon field. All these things belong to the infrared or long-distance structure of
the amplitude. Therefore the dependence on these choices is the same for the full amplitude
and for the operator matrix elements and drops out in the coefficient functions. To check
that this is really the case for a particular choice is of crucial importance for practical calcu-
lIations. On the other hand one may use this freedom and choose the treattnent of external
lines according to convenience or taste. Sometimes it may however seem preferable to keep
a slightly more inconvenient dependence on external masses and/or gluon gauge in order to
have a useful check that this dependence does indeed cancel out for the Wilson coefficients
one is calculatinig.

D. The Renormalization Group
1. Basic Concepts

So far we have computed the Wilson coefficient functions (I11.61) in ordinary perturbation the-
ory. This, however, is not sufficient for the problem at hand. The appropriate scale at which to
normalize the hadronic matrix elements of local operators is a low energy scale — low compared to
the weak scale My — of a few GeV typically. In our example of charm decay ¢ = O(m.). For
such a low scale p the logarithm In( M7, /4?) multiplying () in the expression (II.61) becomes
large. Although og(x) by itself is a valid expansion parameter down to scales of O(1 GeV), say,
this is not longer true for the combination as(p) In(ME /¢?). In fact, for our example (II1.61) the
first order correction term amounts for ¢ = 1 GeV to 65 - 130% although o, /47 ~ 4%. The reason
for this breakdown of the naive perturbative expansion lies ultimately in the appearance of largely
disparate scales My and g in the problem at hand.

This situation can be considerably improved by employing the method of the renormalization group
(RG). The renormalization group is the group of transformations between different choices of the
renormalization scale p. The renormalization group equations describe the change of renormalized
quantities, Green functions and parameters, with y in a differential form. As we shall illustrate be-
low, solving these differential equations allows, in the leading logarithmic approximation (LLA),
to sum up the terms (as In(Mw /p))" to all orders n (n = 0, ..., 00) in perturbation theory. This
leads to the RG improved perturbation theory. Going one step beyond in this modified expansion,
to the next-to-leading logarithmic approximation (NLLA), the summation is extended to all terms
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o(as In(Mw /)", and so on. In this context it is useful to consider a, In( My /) with a large
logarithm In(Mw /) as a quantity of order O(1)

a,In %“’- —0() p< My (TL65)

Therefore the series in powers of o, In(Myy /5) cannot be truncated. Summed to all orders it yields
again a contribution of order O(1). Correspondingly the next-to-leading logs a(a; In(Mw /p)"
represent an (o) perturbative correction to the leading term.

The renormalization group equation for the Wilson coefficient functions follows from the fact, that
the unrenormalized Wilson coefficients C(@ = Z.C (CT = (C;, C3)) are y-independent. Defining
the matrix of anomalous dimensions v by

d

- 71
Z dln g

Z (I11.66)

and recalling that ZT = Z~!, we obtain the renormalization group equation

d

I ”0'(;«) =77(a.)C(p) | (IL67)

The solution of (II1.67) may formally be written in terms of a u-evolution matrix U as

C(p) = U(p, Mw)C(Mw) | (IIL68)
From (I11.49) and (II1.66) we have to first order in Qs
- as 4 = —6/N 6
or in the diagonal basis |
N
re(en) = 2 = +6—— ; ! (ITL.70)

Note that if we neglect QCD loop corrections completely, the couplings C are independent of 4.

The nontrivial u-dependence of C expressed in (II1.67) is a genuine quantum effect. It implies
an anomalous scaling behaviour for the dimensionless coefficients, i.e. one that is different from
the classical theory For this reason the factor v is called anomalous (scale) dimension (compare

(II1.67) with ;7—p"™ = nu” for an n-dimensional x-dependent term p™).
Using (111 13) the RG equation (IIL.67) is easily solved with the result
as(Mw)] 2P0 :
Ci(p) = | ———= C+(M, 71
:I:(p) [ as(ﬂ) :l:( W) (III )

‘Atascale pw = My no large logarithms are present and C.. (M) can therefore be calculated in
ordinary perturbation theory. From (II1.61) we have to the order needed for the LLA

Cu(Mw) = 1 (II1.72)
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(IT1.71) and (II1.72) give the final result for the coefficients in the leading log approximation of RG
improved perturbation theory.

At this point one should emphasize, that the choice of the high energy matching scale uw = Mw is
of course not unique. The only requirement is that the choice of pw must not introduce large logs
In(Myw /[ pw) in order not to spoil the applicability of the usual perturbation theory. Therefore pw
should be of order O( My ). The logarithmic correction in (IIL61) is therm O(a,) and is neglected
in LLA. Then, still, Ci(uw) = 1 and

Calu) = [025?5)] = “:fsﬁ”)”’ (14 0(a)) @)

A change of uw around the value of Mw causes an ambiguity of O(as) in the coefficient. This
ambiguity represents a theoretical uncertainty in the determination of C (#). In order to reduce it,
it is necessary to go beyond the leading order. At NLO the scale ambiguity is then reduced from
O(as) to O(a?). We will come back to this point below. Presently, we will set uw = My, but it
is important to keep the related uncertainty in mind.

Taking into account the leading order solution of the RG equation (IT1.13) for the coupling, which
can be expressed in the form

as(p) |
s 1.74
as(m) = Tf BB m2 ( )
we may rewrite (III.71) as
' Ol
1 "
Ci(p) = 2 A (IIL75)
1+ fo%® 1n Mg

(II1.75) contains the logarithmic corrections ~ a, In( Mg, /#?) to all orders in 5. This shows very
clearly that the leading log corrections have been summed up to all orders in perturbation theory
by solving the RG equation. In particular, if we again expand (IIL.75) in powers of s, keeping the
first term only we recover (II1.61). This observation demonstrates, that the RG method allows to
obtain solutions, which go beyond the conventional perturbation theory.

Before concluding this subsection, we would like to introduce still two generalizations of the
approach developed so far, which will appear in the general discussion below.

2. Threshold Effects in LLA

First we may generalize the renormalization group evolution from Mw down to ;z m, to
include the threshold effect of heavy quarks like b or ¢ as follows
Cu) = U=, ) U=y, i )C w) (II1.76)

which is valid for the LLA. In our example of the ¢ — sud transition the top quark gives no con-
tribution at all. Being heavier (but comparable) in mass than the W, it is simply removed from the
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theory along with the W-boson. In a first step the coefficients at the initial scale uw ~ My are
evolved down to p, & m; in an effective theory with five quark flavors (f = 5). Then, again in the
spirit of the effective field theory technique, for scales below g; also the bottom quark is removed
as an explicit degree of freedom from the effective theory, yielding a new effective theory with only
four “active” quark flavors left. The matching corrections between both theories can be calculated
in ordinary perturbation theory at the scale y;, since due to g, & m; no large logs can occur in this
procedure. For the same reason matching corrections (O(e;)) can be neglected in LLA and the
coefficients at u, C (#s), simply serve as the initial values for the RG evolution in the four quark
theory down to g ~ m.. In addition, continuity of the running coupling across the threshold y; is
imposed by the requirement

ot (y AD) = @, g5 (i, A®) (mL77)

which defines different QCD scales A(f) for each effective theory.

Neglecting the b-threshold, as we did before (II1.68), one may just perform the full evolution from
pw to u in an effective four flavor theory. It turns out that in some cases the difference of these two
approaches is even negligible. ‘

We would like to add a comment on this effective field theory technique. At the first sight the idea
to “remove by hand” heavy degrees of freedom may look somewhat artificial. However it appears
quite natural when not viewed from the evolution from high towards low energies but vice versa
(which actually corrsponds to the historical way). Suppose only the “light” quarks u, d, s, ¢ were
known. Then in the attempt to formulate a theory of their weak interactions one would be lead to a
generalized Fermi theory with (effective) four quark coupling constants to be determined somehow.
Of course, we are in the lucky position to know the underlying theory in the form of the Standard
Model. Therefore we can actually derive the coupling constants of the low energy effective theory
from “first principles”. This is exactly what is achieved technically by going through a series of
effective theories, removing heavy degrees of freedom successively, by means of a step-by-step
procedure.

3. Penguin Operators

A second, but very important issue is the generation of QCD penguin operators (Vainshtein
et al., 1977). Consider for example the local operator (3;u;)v - 4(&;d;)v -4, which is directly in-
duced by W-boson exchange. In this case, additional QCD correction diagrams, the penguin di-
agrams (d.1) and (d.2 ) with a gluon in fig. 3, contribute and as a consequence six operators are
involved in the mixing under renormalization instead of two. These read

= (8iu;)v-a(t;di)v-a

Q- (= (E;Ui)V-A((ﬁjdj;V—A

Q3 = (8idi)v-a X, (3;9;)v-4
Q4= (3id;)v-a ):Z(ti’jqji)v—.‘a (IL.78)

Qs = (3idi)v-4 T4(3595)v+4

Qe = (5:d;)v-a L4(3i9:)v+a

~ The sum over g runs over all quark flavors that exist in the effective theory in question. The op-
erators Q1 and @ are just the ones.we have encountered in subsection IIIC, but with the c-quark
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replaced by u. This modified flavor structure gives rise to the gluon penguin type diagrams shown
in fig. 3(d). Since the gluon coupling is of course flavor conserving, it is clear that penguins can-
not be generated from the operator (3c)v_a(#d)v_4. The penguin graphs induce the new local
interaction vertices @3, . . . , @, which have the same quantum numbers. Their structure is easily
understood. The flavor content is determined by the (3d)v_, current in the upper part and by a
Y,(@g)v vector current due to the gluon coupling in the lower. This vector structure is for conve-
nience decomposed into a (V — A) and a (V' + A) part. For each of these, two different color forms
arise due to the color structure of the exchanged gluon (see (II1.40)). Together this yields the four
operators Qs, . .., Qe.

For all operators @1, . .., Js all possible QCD corrections (that is all amputated Green functions
with insertion of Q;) of the current-current (fig. 3 (a)—(c)) as well as of the penguin type (fig. 3(d.1)
and (d.2)) have to be evaluated. In this process no new operators are generated, so that Q.. ., Qs
form a complete set. They “close under renormalization”. In analogy to the case of subsection IIIC
the divergent parts of these Green functions determine, after field renormalization, the operator
renormalization constants, which in the present case form a 6 x 6 matrix. The calculation of the
corresponding anomalous dimension matrix and the renormalization group analysis then proceeds
in the usual way. We will see that the inclusion of higher order electroweak interactions requires
the introduction of still more operators.

E. Summary of Basic Formalism

We think that after this rather detailed discussion of the methods required for the short-distance
calculations in weak decays, it is useful to give at this point a concise summary of the material
covered so far. Atthe same time this may serve as an outline of the necessary procedure for practical
calculations. Furthermore it will also provide a starting point for the extension of the formalism
from the LLA considered until now to the NLLA to be presented in the next subsection.

Ultimately our goal is the evaluation of weak decay amplitudes involving hadrons in the frame-
work of a low energy effective theory, of the form

(Hegg) = %VGKM(QT(#))é(ﬂ)

The procedure for this calculation can be divided into the following three steps.

Step 1: Perturbation Theory .

Calculation of Wilson coefficients C(zw) at uw ~ My to the desired order in o;,. Since loga-
rithms of the form In(gw /My ) are not large, this can be performed in ordinary perturbation the-
ory. It amounts to matching the full theory onto a five quark effective theory.

Step 2: RG Improved Perturbation Theory

e Calculation of the anomalous dimensions of the operators

e Solution of the renormalization group equation for ¢ (1)

30



e Evolution of the coefficients from uw down to the appropriate low energy scale

Clu) = 4 (1, 6w )C(uw)

Step 3: Non-Perturbative Regime . -
Calculation of hadronic matrix elements (Q)(x)), normalized at the appropriate low energy scale K,
by means of some non-perturbative method.

Important issues in this procedure are:
e The OPE achieves a factorization bf short- and long distance contributions.

~ Correspondingly, in order to disentangle the short-distance from the long-distance part
and to extract C(uw ) in actual calculations, a proper matching of the full onto the ef-
Sective theory has to be performed.

— Similar comments apply to the matching of an effective theory with f quark flavors to
a theory with (f — 1) flavors during the RG evolution to lower scales.

- Furthermore, factorization implies, that the y-dependence and also the dependence on
the renormalization scheme, which appears beyond the leading order, cancel between
C.' and (Q.)

~ Since the top quark is integrated out along with the W, the coefficients C (uw) in general
contain also the full dependence on the top quark mass m;.

* A summation of large logs by means of the RG method is necessary. More specifically, in
the n-th order of renormalization group improved perturbation theory the terms of the form

o2 (4) (1) ln —"-f,i)k

are summed to all orders in k (k=0, 1, 2....). This approach is justified as long as a,(z) is
small enough, which requires that x not be too low, typically not less than 1 GeV.

F. Wilson Coefficients Beyond Leading Order
1. The RG Formalism
We are now going to extend the renormalization group formalism for the coéfﬁcient functions
to the next-to-leading order level. Subsequently we will discuss important aspects of the resulting
formulae, in particular the scale- and scheme dependences and their cancellation.

To have something specific in mind, we may consider the calculation for the AS = 1 effective
hamiltonian for nonleptonic decays, which without QCD effects and for low energy is given by

- Gr,,. _ _
Moy = TgVuaVud(su)V-A(ud)v-A (I1L.79)
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At higher energies of course also the charm, bottom and top quark have to be taken into account.
The Feynman diagrams contributing to ©(c,) corrections to this hamiltonian are shown in fig. 2
and 3. Including current-current- as well as penguin type corrections, the relevant operator basis
consists of the six operators in (I11.78).

On the one hand, this particular case is very important by itself since it provides the theoretical
basis for a large variety of different decay modes. On the other hand we will at this stage keep
the discussion fairly general, so that all important features of a general validity are exhibited. In
addition, the central formulae of this subsection will be used at several places later on, if at times
extended or modified to match the specific cases in question. In part two of this report we will give
amore detailed discussion of the hamiltonians relevant for various decays. Here, we would rather
Like to concentrate on the presentation of the OPE and renormalization group formalism.

The effective hamiltonian for nonleptonic decays may be written in general as

Hers = T2 3 Cln)Qu) = ZEGT()E W)  auso)

where the index ¢ runs over all contributing operators, in our example Q,, ..., Qe of (11.78). It
is straightforward to apply H.; to D- and B-meson decays as well by changing the quark flavors
appropriately. For the time being we omit CKM parameters, which can be reinserted later on. uis
some low energy scale of the order O(1 GeV), O(m.) and O(m;) for K-, D- and B-meson decays,
respectively. The argument u of the operators Q;(x) means, that their matrix elements are to be
normalized at scale p. '

The Wilson coefficient functions are given by

Clw) = U, pw)Clpw) (ITL81)

The coefficients at the scale uw = O(Mw ) can be evaluated in perturbation theory. The evolu-
tion matrix U then includes the renormalization group improved perturbative contributions from
the scale yw down to p. .

In the first step we determine C'(uw) from a comparison of the amputated Green function with
appropriate external lines in the full theory with the corresponding amplitude in the effective the-
ory. At NLO we have to calculate to O(as), including non-logarithmic, constant terms. The full
amplitude results from the current-current- and penguin type diagrams in fig. 2, is finite after field
renormalization and can be written as

_gﬁ"r 1(0) - as(pw) 1(1) | '
A—ﬁS (A% + y A% (111.82)

Here S denotes the tree level matrix elements of the operators @ In the effective theory (II1.80)
the current-current- and penguin corrections of fig. 3 have to be calculated for all the operators ;.
In this case, besides the field renormalization, a renormalization of operators is necessary

ZHQ)® = z(Q) - (IIL83)
where the matrix Z absorbes those divergences of the Green functions with operator {J insertion,

that are not removed by the field renormalization. The renormalized matrix elements of the oper-
ators can then to O(a,) be written as
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- Qg -
(@) = (1 + ) 5 s
and the amplitude in the effective theory to the same order becomes

e, . 3
Ay = 570+ 21y mss)

Equating (I11.82) and (I11.85) we obtain
Clpw) = A0 4 280) 5y _ 7 g (L.36)

In general A in (II1.82) involves logarithms In(M2,/ — ?) where p denotes some global external
momentum for the amphtudes in fig. 2. On the other hand the matrix r in (II1.84), characterizing
the radiative corrections to (Q(uw)), includes In(—p?/u?%,). As we have seen in subsection IIIC,

these logarithms combine to In(MZ, /u%) in the Wilson coefficient (II1.86). For pw = My this
logarithm vanishes altogether. For pw = O(Myw) the expression In(MZ,/¢,) is a “small loga-
rithm” and the correction ~ o, In(M#, /3y ), which could be neglected in LLA, has to be kept in
the perturbative calculation at NLO together with constant pieces of order O(a,).

In the second step, the renormalization group equation for o)

dln”cm) 7 (9)C(k) (IL87)

~ has to be solved with boundary condition (II1.86). The solution is written with the help of the U-
matrix as in (II1.81), where U(u, pw) obeys the same equation as C(p) in (I11.87). The general
solution is easily written down iteratively

_ 9() 5L 7 (g1) | o 91 77 (91) 77 (92)
Ul m) = 1+/ N Blar) +/g(m) I /g(m) o2 Bler) Blaa) © (L8%)

which using dg/dIn p = B(g) is readily seen to solve the renormalization group equation

d T ‘
mU (#,m) =77 (9)U(p, m) (111.89)
The series in (IIL.88) can be more compactly expressed by introducing the notion of g-ordering
o 1) |
U(p,m) =T, ex g 90
(1,m) = T, exp / 9B (IIL.90)

where in the case g(x) > g(m) the g-ordering operator 7, is defined through
Tof(91)--- f(gn) = 22 ©(gi, — 9::)0(9i, — 9is) - - - O(Giny — 9in) F(931) - - - F(gin) (IL91)

perm

and brings about an ordering of the factors f(g;) such that the coupling constants increase from
right to left. The sum in (IIL.91) runs over all permutations {,,...,i.} of {1,2,...,n}. The T,
ordering is necessary since in general the anomalous dimension matrices at different couplings do
not commute beyond the leading order, [v(¢1),7(g2)] # 0.
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At next-to-leading order we have to keep the first two terms in the perturbative expansions for 3(g)
(see (IML.11)) and (g)

Qs a.\? ‘
Y(ew) =702 +40 (4—7;) (IIL92)

To this order the evolution matrix U(p,m) is given by (Buras et al., 1992)
Us,m) = (14 2L 1y, m(1 - 2 ) (m.9)

U is the evolution matrix in leading logarithmic approxunauon and the matrix J expresses the
next-to-leading corrections to this evolution. We have

10
UOu,m)=Vv ([C"—;((i)) %) v (I1L.94)
s(1 "

where V diagonalizes y©7
0) _ y-1 7(0)TV (L9S)

and () is the vector containing the diagonal elements of the diagonal matrix 7.
If we define

G=Vv1,0Ty (I11.96)

and a matrix H whose elements are

G::
Hy =800 G L.97
7 IR 9pE 260 + 7,(0) - ‘7_,(0) )

the matrix J is given by
J=VHV (II1.98)

The fact that (II1.93) is indeed a solution of the RG equation (II1.89) to the order considered is
straightforwardly verified by differentiation with respect to In 4. Combining now the initial values
(II1.86) with the evolution matrix (II1.93) we obtain

C(w) = (1 + 2L ) UO ) (A + S G0 _ 74 pZo)y sy

Using (I11.99) we can calculate for example the coefficients ata scale p = p;, = O(my), working in
an effective five flavor theory, f = 5. If we have to evolve the coefficients to still lower values, we
would like to formulate a new effective theory for 4 < p;, where now also the b-quark is removed
as an explicit degree of freedom. To calculate the coefficients in this new four flavor theory at the
scale y;, we have to determine the matching corrections at this scale.

We follow the same principles as in the case of integrating out the W-boson and require
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(@5(m))7C1(m) = (@5-2(m))TC;_1(m) (I11.100)

in the general case of a change from an f-flavor to a (f-1)-flavor theory at a scale m. The “full
amplitude” on the Lh.s., which is now in an f-flavor effective theory, is expanded into matrix ele-
ments of the new (f-1)-flavor theory, multiplied by new Wilson coefficients C t-1. From (I11.84),
determining the matrix elements of operators to O(as), one finds

(@r(m)) = 1+ 20y s (m) Loy
where
by = ) _ pU5-1) (IIL.102)

In (III.102) we have made explicit the dependence of the matrix r on the number of quark flavors
which enters in our example via the penguin contributions. From (II1.100) and (IT1.101) we find

Cy-1(m) = M(m)Cy(m) (IM.103)
with
M(m)=1+ 9%4(:‘—)5# @i

The general renormalization group matrix U in (II1.93), now evaluated for (f~1) flavors, can be used
to evolve Gy, (m) to lower values of the renormalization scale. It is clear that no large logarithms
can appear in (II1.104) and that therefore the matching corrections, expressed in the matrix M(m)
can be computed in usual perturbation theory. We note that this type of matching corrections enters
in a nontrivial way for the first time at the NLO level. In the LLA M = 1 and one can simply omit
the b-flavor components in the penguin operators when crossing the b-threshold.

We also remark that the correction matrix M introduces a small discontinuity of the coefficients,
regarded as functions of 4, at the matching scale m. This is however not surprising. In any case the
C (i) are not physical quantities and their discontinuity precisely cancels the effect of removing the
heavy quark flavor from the operators, which evidently is a “discontinuous” step. Hence, physical
amplitudes are not affected and indeed the behaviour of C at the matching scale ensures that the
same physical result will be obtained, whether we choose to calculate in the f-flavor- or in the (f—
1)-flavor theory for scales around the matching scale m.

To conclude we will write down how the typical final result for the coefficient functions at y =~
1 GeV, appropriate for K-decays, looks like, if we combine all the contributions discussed above.
Then we can write

C(p) = Us(p, pe) M(pte)Us(ftes 18) M (p2s)Us (s, o )C () (I11.105)

where Uy is the evolution matrix for f active flavors. In the following discussion we will not always
include the flavor thresholds when writing the expression for the RG evolution. It is clear, that they
can be added in a straightforward fashion.
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2. The Calculation of the Anomalous Dimensions

The matrix of anomalous dimensions is the most important ingredient for the renormalization
group calculation of the Wilson coefficient functions. In the following we will summarize the es-
sential steps of its calculation.

Recall that thie evaluation of the amputated Green functions with insertion-of the operators § gives
the relation

(@ = Z722(Q) = Zar(Q) (I11.106)

(@), (@) denote the unrenormalized and renormalized Green functions, respectively. Z, is the
quark field renormalization constant and Z is the renormalization constant matrix of the operators
0.

The anomalous dimensions are given by

p _
-1

v9) =2 dng VA (II1.107)

In the M'S (or MS) scheme the renormalization constants are chosen to absorb the pure pole di-

vergences 1/cF (D = 4 — 2¢), but no finite parts. Z can then be expanded in inverse powers of & .

as follows

=1+ Z Zl:(g) (I11.108)
k—l :

Using the expression for the S-function (II1.6), valid for arbitrary £ we derive the useful formula
(Floratos et al., 1977)

6Z1 (g) BZI(a,)

1(9) = —2¢"——5~ 3 = 2% pa (TI1.109)
Similarly to (III.108) we expand
=1+ Z —Zq.x(9) (III.110)
k=1¢
Zgr =1+ Z —ZGFk(g) (IIL.111)
=1¢

From the calculation of the unrenormalized Green functions (III. 106) we immediately obtain Zgp.
What we need to compute v(g) is Z1(g) (I11.109). From (II1.106), (I11.108), (I11.110), (ITL.111) we
find

Zy = 2241 + Zgra (III.112)

At next-to-leading order we have from the 1/¢ poles of the unrenormalized Green functions
2
Zery = bl‘—'+b2< ) (II1.113)
4
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The corresponding expression for the well known factor Z,, has been quoted in (III.15). Using
(111.15), (111.109), (I11.112), (II1.113) we finally obtain for the one- and two-loop anomalous di-
mension matrices 7(?) and 4(!) in (I11.92)

1 = ~202a165; + (B1)s;] ' (I1.114)

AP = —4[2a:6;; + (ba):;] (IL115)

(I11.114) and (II1.115) may be used as recipes to immediately extract the anomalous dimensions
from the divergent parts of the unrenormalized Green functions.

3. Renormalization Scheme Dependence

A further issue, which becomes important at next-to-leading order is the dependence of un-
physical quantities, like the Wilson coefficients and the anomalous dimensions, on the choice of
the renormalization scheme. This scheme dependence arises because the renormalization prescrip-
tion involves an arbitrariness in the finite parts to be subtracted along with the ultraviolet singulari-
ties. Two different schemes are then related by a finite renormalization. Considering the quantities,
which we encountered in subsection IITF 1, the following of them are independent of the renormal-
ization scheme '

Bo, B, 79, AO, AW, T4j (G)TE (IIL116)
whereas

rn 1, J &, (@) (IL117)

are scheme dependent. ‘ _

In the framework of dimensional regularization one example of how such a scheme dependence can
occur is the treatment of s in D dimensions. Possible choices are the “naive dimensional regular-
ization” (NDR) scheme with ~; taken to be anticommuting or the *t-Hooft—Veltman (HV) scheme
(‘tHooftand Veltman, 1972b), (Breitenlohner and Maison, 1977) with non-anticommuting vs. An-
- other example is the use of operators in a color singlet or a non-singlet form, such as

Q2 = (Biwi)v-a(@idj)v-a or Q2= (5:id;)v-a(Bju)v_a (TIL.118)

where i, j are color indices. In D = 4 dimensions these operators are equivalent since they are

related by a Fierz transformation. In the NDR scheme however these two choices yield different

results for r, v) and J and thus constitute two different schemes, related by a nontrivial finite
renormalization. On the other hand, both choices give the same r, 4(!) and J if the HV scheme is

employed.

Let us now discuss the question of renormalization scheme dependences in explicit terms in order

to obtain an overview on how the scheme dependences arise, how various quantities transform un-

der a change of the renormalization scheme and how the cancellation of scheme dependences is

guaranteed for physically relevant quantities.

First of all, it is clear that the product
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(Q(u)"C(p) (IIL.119)

representing the full amplitude, is independent of the renormalization scheme chosen. This is sim-
ply due to the fact, that it is precisely the factorization of the amplitude into Wilson coefficients
and matrix elements of operators by means of the operator product expansion, which introduces
the scheme dependence of C and (). In other words, the scheme dependence of € and (Q) repre-
sents the arbitrariness one has in splitting the full amplitude into coefficients and matrix elements
and the scheme independence of the combined product (II1.119) is manifest in the construction of
the operator product expansion.

More explicitly, these quantities are in different schemes (primed and unprimed) related by

@ =+2)@  C=0-20C L120)

where s is a constant matrix. (IIL.120) represents a finite renormalization of € and (Q). From
(II1.84) we immediately obtain : _

r=r+s (II.121)
Furthermore from
(@) C (k) = (Q(w))*U (1, M) C (M) (IIL.122)
we have
U'(p, Mw) = (1 — MST)U(/I, Mw)(1 + ML)ST) | (I1L.123)
47 4 ‘
A comparison with (II1.93) yields
J=J-sT (IIL.124)

The renormalization constant matrix in the primed scheme, Z’, follows from (I11.120) and (TI1.106)
1= 71— %
Z'=2Z(1 47‘_s) (I1L.125)
Recalling the definition of the matrix of anomalous dimensions, (II1.107) and (IT1.92), we derive
Y =90 =g [5, 4 2805 (IIL.126)

With these general formulae at hand it is straightforward to clarify the cancellation of scheme de-
pendences in all particular cases. Alternatively, they may be used to transform scheme dependent
quantities from one scheme to another, if desired, or to check the compatibility of results obtained
in different schemes.

In particular we immediately verify from (II1.121) and (IIL.124) the scheme independence of the
matrix r7 + J. This means that in the expression for C' in (I[1.99) the factor on the right hand side
of U9, related to the “upper end” of the evolution, is independent of the renormalization scheme,
as it must be. The same is true for U(®). On the other hand C still depends on the renormalization
scheme through the matrix J to the left of U®). As is evident from (II1.120), this dependence is
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compensated for by the corresponding scheme dependence of the matrix elements of operators so
that a physically meaningful result for the decay amplitudes is obtained. To ensure a proper can-
cellation of the scheme dependence the matrix elements have to be evaluated in the same scheme
(renormalization, s, form of operators) as the coefficient functions, which is a nontrivial task for
the necessary non-perturbative computations. In other words, beyond the leading order the match-
ing between short- and long-distance contributions has to be performed properly not only with re-
spect to the scale u, but also with respect to the renormalization scheme employed.

4. Discussion

We will now specialize the presentation of the general formalism to the case of a single opera-
tor (that is without mixing). This situation is e.g. relevant for the operators Q. and Q— with four
different quark flavors, which we encountered in section IIIC. The resulting simplifications are
useful in order to display some more details of the structure of the calculation and to discuss the
most salient features of the NLO analysis in a transparent way.

In the case where only one single operator contributes, the amplitude in the full theory (dynamical
W-boson) may be written as (see (I11.82))

_ _& as(puw) __‘Y(o) Mt?v i) '
A_,\/f(1+ yp 3 In 5 + AYN)S (I11.127)

where we have made the logarithmic dependence on the W mass explicit. In the effective theory
the amplitude reads

Acgy = %C(uwxcz(pw» IL128)

__G as(p ) 7(0) "1"’2
_7_‘50(pw)(1+ 47:" [2 (ln 2

+9E -—ln4r) +F])S

The divergent pole term 1/ has been subtracted minimally. A comparison of (II1.127) and (IT1.128)
_ yields the Wilson coefficient

(0) M2
Clpw) =1+ asff“') [—7 (ln 2 + g — ln41r) + B] (IIL.129)
LA 2\ ki |
where
B=A® -7 (IIL.130)

In the leading log approximation we had simply C(uw) = 1. By contrast at NLO the ©(a,) cor-
rection has to be taken into account in addition. This correction term exhibits the following new
features:

e The expression g — In 4w, which is characteristic to dimensional regularization appears. It
is proportional to v(®).

e A constant term B is present. B depends on the factorization scheme chosen.
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¢ An explicit logarithmic dependence on the matching scale pw shows up.

We discuss these points one by one. _

First, the term 7 — In 47 is characteristic for the M 'S scheme. It can be eliminated by going from
the MS- to the M'S scheme. This issue is well known in the literature. We find it however useful
to briefly repeat the definition of the M'S scheme in the present context, since this is an important

point for NLO analyses.
Consider the RG solution for the coefficient
Clu) = (IL.131)
() 1 [oalem)] 5 - auluw) [ 7 (M2
aglp ol pw sl fw v W
1+ yp J)[ (1) ] (1+ e [— 3 (ln R +9vE 1n41r) +B—J])

This represents the solution for the M S scheme. Therefore in (II.131) o, = a, ms. The redefini-
tion of a, ars through '

. [0 20~y
Qs MS = @, 375 (1 + Bo(ve — In4r) er) (IIL.132)
is a finite renormalization of the coupling, which defines the M S scheme. Since
) (0) (0 P
[ere ms(pw)] 750 = o, 375(pw)] 7% (1 + 77('73 —In 4r)—i%) (II1.133)

we see, that this transformation eliminaies, to the order considered, the vz — In 47 term in (II1.131).
At the lower end of the evolution the same redefinition yields a factor

0) —
24 “a,Ms(l‘)
1 - =-(75 —In4r) = (II1.134)
which removes the corresponding factor from the matrix element (see (I11.128))
© a,375(k)
(Q(w)ms = (1 +L-(re-1n 4w)—"fj—j——) (Q)hars (IIL.135)

At the next-to-leading log level we are working, the transformation (I11.132) is equivalent to a re-
definition of the scale A according to

Al = dme A2 (IL.136)

as one can verify with the help of (II1.19). In ptac_t_icc; one can just drop the (yg — In 47) terms in
(IIL131). Then a,(p) and A are to be taken in the M S scheme. Throughout the present report it is
always understood that the transformation to M5 has been performed. Then

NOY
25
] i 2

_ as(p) 5 [2s(pw)

Ol = (1-+ %) |2l
Second, from the issue of the M S — MS tralisformation, or more generally an arbitrary redefinition
of a; (or A) one should distinguish the renormalization scheme dependence due to the ambiguity

© 2
(1+ as(pw) [_’7 In %W +B-— J]) (1IL.137)
w
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in the renormalization of the operator. It suggests itself to use for the latter the term “factoriza-
tion scheme dependence”. This is the scheme dependence we have discussed in sectmn IIF3. A
change in the factorization scheme transforms 4(!), B and J as

7(1)' = 7(1) + 280 B =B-—s J=J—-3s (I11.138)

where s is a constant number. This follows from the formulae in section IIIF3 and from the defi-
nition of B in (IIL.130). Note that in the case of a single operator the relation between v() and J
simplifies to

1 (B
J= © _ (1)) 139
TR ( Bl 7 (III )
Obviously the scheme dependence cancels in the difference B — J in (I11.137).

Third, due to the explicit uw dependence in the O(a,) correction term the coefficient function is,
to the order considered, independent of the precise value of the matching scale uw, as it must be.
Indeed

d — 2
dTn gy C W) = Olas) (II1.140)
since
d . 2
T gy (W) = —2ﬂ°a—(f,:v—)' +0(c}) (IIL141)

In the same way one can also convince onesclf that the coefficient function is independent of the
heavy quark threshold scales, up to terms of the neglected order.
Of course the dependence on the low energy scale x remains and has to be matched with the cor-
responding dependence of the operator matrix element.
All the points we have mentioned here apply in an analogous manner also to the case with operator
mixing, only the algebra is then slightly more complicated.

We would like to stress once again that it is only at the NLO level, that these features enter the
analysis in a nontrivial way, as should be evident from the presentation we have given above.

5. Evanescent Operators

Finally, we would like to mention the so called evanescent operators. These are operators which
existin D # 4 dimensions but vanish in D = 4. It has been stressed in (Buras and Weisz, 1990)
that a correct calculation of two-loop anomalous dimensions requires a proper treatment of these
operators. This discussion has been extended in (Dugan and Grinstein, 1991) and further general-
ized in (Herrlich and Nierste, 1995b). In view of a rather technical nature of this aspect we refer
the interested reader to the papers quoted above.
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Part Two -

The Effective Hamiltonians

The second part constitutes a compendium of effective hamiltonians for weak decays. We will deal
with all decays for which NLO corrections have been calculated in the literature and whose list is
given in table I. This includes a listing of the initial conditions C;(Mw), a listing of all one-loop
and two-loop anomalous dimension matrices and finally tables of numerical values of the relevant
Wilson coefficients as functions of Ay, m; and the renormalization schemes considered. In certain
cases we are able to give analytic formulae for C;.

We will discuss all effective hamiltonians one by one. With the help of the master formulae and
the procedure of section III it is easy to see similarities and differences between various cases. Our
compendium includes also the b — sy and b — sg transitions which although known only in the
leading logarithmic approximation deserve special attention.

Finally, as a preparation for the third part we give a brief description of the “Penguin-Box Ex-
pansion” (PBE), which can be regarded as a version of OPE particularly suited for the study of the
m. dependence in weak decays.

In addition we have also included a section on NLO QCD calculations in the context of HQET
This chapter lies somewhat outside our main line of presentation. Also a comprehensive discussion
of HQET is clearly beyond the scope of the present paper. However, we would like to illustrate the
application of the general formalism for short distance QCD corrections within this framework and
summarize a few important NLO results that have been obtained in HQET.
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IV. GUIDE TO EFFECTIVE HAMILTONIANS

In order to facilitate the presentation of effective hamiltonians in weak decays we give a com-
plete compilation of the relevant operators below. Divided into six classes, these operators play a
dominant role in the phenomenology of weak decays. The six classes are given as follows

Current-Current Operators (fig. 4 (a)):

Q1= Biujly_p (Bidi)y_, Q2= (Su)y_, (@d)y_, Iv.1)
QCD-Penguins Operators (fig. 4 (b)): |
=Dy s S A= (E;d,-)v_Azq:(ajqf)v_; av2)
Qs = (3d)y._, Eq: (@9)via Qs = (3idj)y_4 qu (Ti%)vaa (Tv.3)
Electroweak-Penguins Operators (fig. 4(c):
IR CON O SO COMIES JCRAVING DINCZo N ava4)
Qo = -Z- (3d)y_a Zq: e (79)v-a Qo= g (id;)y_a ; eq (59 )v_a avs)

Magnetic-Penguins Operators (fig. 4 (d)):

Qr = Sc?mb&a“"(l +7)0:F  Qsg= 8—97r—2m,,§,-af‘"(1 + %) Te6G%  (IV6)
AS = 2 and AB = 2 Operators (fig. 4(e)):
Q(AS =2) = (3d)v-a(3d)v-a  Q(AB=2)= (bd)v_a(bd)v-a Iv.7)
Semi-Leptonic Operators (fig. 4 (f)):
Qwv = (3d)v_a(ee)v  Qra = (3d)v-a(Ce)a av.s)
Qov = (Bs)v_a(Ee)v  Qion = (bs)v-a(ée)a av.o)
Q) = Bd)v-a(wv)v-a  Q(ip) = (3d)v-a(Er)v-a (Iv.10)

where indices in color singlet currents have been suppressd for simplicity.

For illustrative purposes, typical diagrams in the full theory from which the operators (IV.1)-
(IV.10) originate are shown in fig. 4.

The operators listed above will enter our review in a systematic fashion. We begin in section V
with the presentation of the effective hamiltonians involving the current-current operators ¢, and
Q- only. These effective hamiltonians are given in (V.4), (V.5) and (V.6) for AB = 1, AC =1
and AS = 1 non-leptonic decays, respectively.

In section VI we will generalize the hamiltonians (V.4) and (V.6) to include the QCD-penguin
operators Q3 — Qs. The corresponding expressions are given in (V1.32) and (VL 1), respectively.
This generalization does not affect the Wilson coefficients of @, and Q.

44



\iJ
W g w uet u,Gt
g-
d ] d u q - q
(@ ()
d s d s
w u,ct
u,Gt u,ct W w
Tz VL
q q q q
© @

©

FIG. 4. Typical diagrams in the full theory from which the operators (IV.1)~(IV.10) originate. The cross
in diagram (d) means a mass-insertion. It indicates that magnetic penguins originate from the mass-term on
the external line in the usual QCD or QED penguin diagrams.

Next in section VII the AS = 1 and AB = 1 hamiltonians of section VI will be generalized to
include the electroweak penguin operators Q7 — Q10. These generalized hamiltonians are given in
(VIL1) and (VIL37) for AS = 1 and AB = 1 non-leptonic decays, respectively. The inclusion of
the electroweak penguin operators implies the inclusion of Q E D effects. Consequently the coef-
ficients of the operators @1 — Q¢ given in this section will differ slightly from the ones presented
in the previous sections.

In section VIII the effective hamiltonian for K — 7%*e~ will be presented. It is given in
(VIIL1). This hamiltonian can be considered as a generalization of the AS = 1 hamiltonian (VI.1)
presented in section VI to include the semi-leptonic operators Q7v and Q74. This generalization
does not modify the numerical values of the AS = 1 coefficients C; (: = 1,.. ., 6) given in section
VL -

In section IX we will discuss the effective hamiltonian for B — X,v. It is written down in
(IX.1). This hamiltonian can be considered as a generalization of the A B = 1 hamiltonian (VI1.32)
to include the magnetic penguin operators @7, and Qsg. This generalization does not modify the
numerical values of the AB = 1 coefficients C; ( = 1,....,6) from section VI.
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In section X we present the effective hamiltonian for B — X,e*te™. It is to be found in X.1)
and can be considered as the generalization of the B — X,v hamiltonian to include the semi-
leptonic operators Qov and Q104. The coefficients C; (¢ = 1,...,6,77,8G) given in section IX
are not affected by this generalization.

In section XI the effective hamiltonians for K+ — atvi, K, — uptp~, K — 7%0p
(B — X,qvv)and B — I*]~ will be discussed. They are given in (X14), (X1.44), (X1.56) and
(XL.57) respectively. Each of these hamiltonians involves only a single operator: Q( viv) or Q(ui)
for K* — n*vv (K — x%7) and K, — ptp~ with analogous operators for B — X, avv and
B — It

Finally, sections XII and XIII present the effective hamiltonians for AS = 2 and AB = 2
transitions, respectively. These hamiltonians involve the operators Q(AS = 2) and Q(AB = 2)
and can be found in (XI1.1) and (XIII.1).

In table Il we give the list of effective hamiltonians to be presented below, the equations in
which they can be found and the list of operators entering different hamiltonians.

TABLE III. Compilation of various processes, equation no. of the corresponding effective hamiltonians
and contributing operators.

_ Process Cf. Equation Contributing Operators
AF =1, F = B,C, S current-current VA—V.6) Q1,Q2
AF = 1pure QCD (VL1D), (V1.32) @1,---,Q6
AF = 1 QCD and electroweak (VIL1), (VIL37) Q1,...,Q10
KL — xete (VIL1) Q1,.. -, Qs,Q7v, Q74
B - Xs7 (D(J) Qh seey Q67 Q7’ya QSG
B — X,ete” X.1) @1, --,Q6,Q7y,Qs6, Qov, Q104
K* — xtvp, (KL — p¥p~)sp, K1 — 7%»,[(X14), (XL44), (XL56)|Q(iv), Q(iap)
B — X,qvv, B — It~ X157 _
K° — K° mixing : (XIL1) Q(AS =2)
BY — B mixing (XIIL.1) Q(AB =2)
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V. THE EFFECTIVE AF = 1 HAMILTONIAN: CURRENT-CURRENT OPERATORS
A. Operators
We begin our compendium by presenting the parts of effective hamiltonians involving the

current-current operators only. These operators will be generally denoted-by @, and @, although
their flavour structure depends on the decay considered. To be specific we will consider

Q= Gicilv-a(@d)v_s Q2 = (bici)v—a(iijd;)v-a (V.0
@1 = (Sicj)v-a(tjdilv-a Q2 = (3ici)v-a(8jd;)v-a (V.2)
1 = (Biw;)v-a(Bidi)v-a Q2 = (Siwi)v-a(id;)v_a (V.3)

for AB =1, AC =1 and AS = 1 decays respectively. Then the correspondmg effective hamil-
tonians are given by

Gr

Hyi(AB=1)= \/“VcbV;td[CI(»u)Ql +Co()Q2] (1 = O(my)) (V4)
Hy/(AC=1)= %V* ValGi(#)@ + Co()@2])  (k=0(ms)) (V)
Hy(AS =1) = 3‘;1 VidCi()@: + Ca(w)Qs]  (u = O(1GeV)) V6)

As we will see in subsequent sections these hamiltonians have to be generalized to include also
penguin operators. This however will not change the Wilson coefficients C; (1) and C,(u) except
for small O(«) corrections in a complete analysis which includes also electroweak penguin oper-
ators. For this reason it is useful to present the results for C; ; separately as they can be used in a
large class of decays.

When analyzing ¢; and @; in isolation, it is useful to work with the operators )4 and their
coefficients z defined by

Q=3@%Q)  ==GC. v

®+ and Q_ do not mix under renormalization and the expression for z4 () is very simple.

B. Wilson Coefficients and RG Evolution
The initial conditions for z; at ¢ = Mw are obtained using the matching procedure between

the full (fig. 2 (a)—(c)) and effective (fig. 3 (a)—(c)) theory summarized in section IIIF 1. Given the
initial conditions for z; at scale p = My
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as(Mw)
TB:E (V.8)

ze(Mw) =1+

and using the NLO RG evolution formula (II1.99) for the case without mixing one finds for the
Wilson coefficients of 4+ at some scale p

iy = [ o) ;] [es(Mw)] ™ T, | au(Mw) -
z+(p) = [1 + Ji] [ ao(a) ] [1 + T(B:l: —Ji)] (V.9)
with
(1) (0)
Ji = —ﬂ:ﬁl 2 ﬂo d: = > ﬂo (V.10)

where the coefficients 8o and 3, of the QCD S-function are given in (II1.16). Furthermore the LO
and NLO expansion coefficients for the anomalous dimensions v of Q4 in (V.10) and the coeffi-
cients By in (V.8) are given by

4O NF1
=121 (V.11)
(1)-@[_ 57 _ 19 ]
W= S [N 2 2Bk V.12)
NF1
By=—1t- ; DALY ST O (VI3)

with V being the number of colors. Here we have introduced the parameter «.. which conveniently
distinguishes between various renormalization schemes

0 NDR
Ky = { +4 HV - (V.14)
Thus, using N = 3 in the following, J; in (V.10) can also be written as
3F1 ~Q
Jx = (J&)NDR + kx = (Ji)npr = —-ni (V.15)

6 12

Setting 7( ) » By and B, to zero gives the leading logarithmic approximation (Altarelli and Maiani,
1974), (Gaillard and Lee, 1974a).

The NLO calculations in the NDR scheme and in the HV scheme have been presented in (Buras
and Weisz, 1990). In writing (V.12) we have incorporated the —27( ) correction in the HV scheme
resulting from the non-vanishing two-loop anomalous dimension of the weak current.

(1) { 0 NDR

7.’ = N';v—l 2‘30 Hv (V.16)

The NLO corrections 7( ) in the dimensional reduction scheme (DRED) have been first considered
in (Altarelli et al., 1981) and later confirmed in (Buras and Weisz, 1990). Here one has Ky =
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F6 — N. This value for x4 in DRED incorporates also a finite renormalization of «, in order to
work in all schemes with the usual M5 coupling.

As already discussed in section III F 3, the expression (By — Ji) is scheme independent. The
scheme dependence of the Wilson coeffcients z4 (u) originates then entirely from the scheme de-
-pendence of J; at the lower end of the evolution which can be seen explicitly in (V.15).

In order to exhibit the 4 dependence on the same footing as the scheme dependence, it is useful
to rewrite (V.9) in the case of B—decays as follows: ‘

S ¥ ] M di ] M
rato) = [1+ 22| [20) P 1 2l g, ] v
with
2 9 A9
Ji(p) = (Je)npr £ T3kt Tl"(r‘n—:) (V.18)

summarizing both the renormalization scheme dependence and the p—dependence. Note that in
the first parenthesis in (V.17) we have set as(p) = a,(m;) as the difference in the scales in this
correction is still of higher order. We also note that a change of the renormalization scheme can be
compensated by a change in u. From (V.18) we find generally

()
K
#E = pNDR exp (rpﬁ) (V.19)
where ¢ denotes a given scheme. From (V.14) we then have
1
KHV = ENDR €Xp (g) (V.20)

Evidently the change in y relating HV and NDR! is the same for z4 and z_ and consequently for
Ci(p). |
This discussion shows that a meaningful analysis of the 4 dependence of Ci(u) can only be
made simultaneously with the analysis of the scheme dependence. .
The coefficients C;(u) for B-decays can now be calculated using

Crlu) = z4 (1) . z_(p) Cal) = z4(p) -2F z—(p) V21

To this end we set f = 5 in the formulae above and use the two-loop as(u) of eq. (I11.19) with

A= A%. The actual numerical values used for a;(Mz) or equivalently Ag—:)g are collected in
appendix A together with other numerical input parameters. '

In the case of D-decays and K-decays the relevant scales are = O(m,) and p = O(1GeV),

respectively. In order to calculate C;(x) for these cases one has to evolve these coefficients first

1The relation e = unpR exp (3%1) between NDR and DRED is more involved. In any case pyy
and pdp e are larger than pnpg.
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from p = O(m;) further down to g = O(m.) in an effective theory with f = 4. Matching
¥ (my) = o (mys) we find to a very good approximation A%% = (325 % 110) MeV. Unfortu-
nately, the necessity to evolve C;(u) from g = Mw down to ¢ = m. in two different effective theo-
ries (f = 5and f = 4) and eventually in the case of K-decays with f = 3 for 4 < m. makes the for-
mulae for C;( ) in D—decays and K-decays rather complicated. They can be found in (Buras et al.,
1993b). Fortunately all these complications can be avoided by a simple trick, which reproduces the
results of (Buras et al., 1993b) to better than 1.5%. In order to find C;(p) for 1 GeV < p < 2GeV
one can simply use the master formulae given above with A% replaced by A%% and an “effective”
number of active flavours f = 4.15. The latter effective value for f allows to obtain a very good
agreement with (Buras et al., 1993b). This can be verified by comparing the results presented here
with those in tables X and XII where no “tricks” have been used. The nice feature of this method is
that the z and renormalization scheme dependences of C;(x) can still be studied in simple terms.
The numerical coefficients C;(p) for B—decays are shown in tables IV and V for different x
- and A(i)s-. In addition to the results for the NDR and HV renormalization schemes we show the LO

¥

values’. The corresponding results for K—decays and D—decays are given in tables VI and VII.

TABLE IV. The coefficient C;(u) for B-decays.

ALY = 140 MeV ABL = 225 MeV AL =310Mev |
u[GeV] LO NDR HV LO NDR HV LO NDR HV |
4.0 -0274] -0.175] -021if -0.310] -0.197] -0239fj -0.341] -0216] -0.264
.50 -0244] -0.151] -0.184]] -0274| -0.169] -0.208}f -0.300[ -0.185| -0.228
6.0 0221 -0.133] -0.164] -0.248] -0.148] -0.184[ -0269] -0.161] -0.201
7.0 -0203] -0.118] -0.148] -0226] -0.132] -0.166| -0.246] -0.143] -0.181
8.0 -0.188] -0.106] -0.135| -0.209| -0.118] -0.151ff -0.226] -0.128] -0.164

TABLE V. The coefficient C3(x) for B-decays.

AL) = 140MeV AS) = 295 MeV AL = 310Mev |

u[GeV] LO NDR HV LO NDR HV LO NDR HV |
40 | 1.121] 1074] 1.09] 1.141] 1086 1.107] 1.158] 1.096] 1.120
50 | 1105 1062] 1.078] 1.121] 1072] 1.090] 1.135] 1.080] 1.101
60 | 1093 1054| 1069] 1.107] 1062[ 1079] L1118 1068] 1087
70 | 1084] 1.047] 1.061] 1096] 1.054 1069 1.106] 1059 1.077
80 | 1077] 1.042] 1055 1087] 1.047] 1062 1.096 1052] 1069

From tables IV-IX we observe:

2The results for the DRED scheme can be found in (Buras, 1995).
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The scheme dependence of the Wilson coefficients is sizable. This is in particular the case
of C; which vanishes in the absence of QCD corrections.

The differences between LO and NLO results in the case of C, are large showing the impor-
tance of next—to-leading corrections. In fact in the NDR scheme the corrections may be as
large as 70%. This comparison of LO and NLO coefficients can however be questioned be-
cause for the chosen values of Agzs one has af{*9)(Mz) = 0.1350.009 to be compared with
as(Mz) = 0.117 £ 0.007 (Bethke, 1994), (Webber, 1994). Consequently the difference in
LO and NLO results for C; originates partly in the change in the value of the QCD coupling.

In view of the latter fact it is instructive to show also the LO results in which the next-to-
leading expression for o, is used. We give some examples in tables VIII and IX. Now the
differences between LO and NLO results is considerably smaller although still as large as
30 — 40% in the case of C; and the NDR scheme.

In any case the inclusion of NLO corrections in NDR and HV schemes weakens the impact of
QCD on the Wilson coefficients of current-current operators. It is however important to keep
in mind that such a behavior is specific to the scheme chosen and will in general be different
in other schemes, refiecting the unphysical nature of the Wilson coefficient functions.

TABLE VI The coefficient Cy () for K-decays and D-decays.

- AY — 215 Mev AG =325Mev | A = 435Mev |
p#[GeV]l LO | NDR| HV LO| NDR| HV [ 1O i NDR| HV |
[1.00 | -0.602] —0410] -0491] -0.742] —0510] -0.631] -0.899] -0.632] -0.825

125 | -0529] -0356| -0424 -0.636] -0430] -0.523] -0.747] -0512] -0.642
150 | -0478] -0319] -0379 -0.565| -0.378] -0457| -0.653] -0439] -0.543
175 | -0439] -0.291] -0.346[ -0514] -0340] -0410] -0587] -0390] -0478
200 | -0409] -0269] -0320] -0475] -031 -o.::ﬂshL -0537] -0353] 0431

TABLE VII. The coefficient Cy(1) for K-decays and D-decays.

AY =215Mev | AG) = 395 Mev AD = 435Mev |

p[GeV] LO NDR HV LO NDR HV LO NDR HV |
1.00 1.323|  1.208] 1.259] 1422] 1275 1.358]] 1539 1.363] 1.506
125 1274 1174] 1216] 1346 1221 1282[ 1426 1277 1.367
1.50 1241 1.152) 1L187) 1.298] 1.188] 1237 1.358] 1228 1.29
175 1.216f 1.136] 1.167] 1.264] 1165 1207 1313 1.196] 1252
2.00 1198 1123} 1152f 1.239] 1148 1.185" 1279 1174 1221
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TABLE VIIL CF° and C%© for B-decays with o, in NLO.

AL = 140Mev | ALL = 225 Mev ALY = 310MeV |

p[GeV] C1 Cz JL C] Cz Cl Cz ,
40 -~ 0244 1.105 J’r -0274 1.121 _ -0.301 1.135
50 -0.217 1.091 -0.243 1.105 -0.265 1.116
6.0 -0.197 1.082 | -0.220 1.093 || -0.239 1.102

TABLE IX. CLO and C}© for K and D-decays with o, in NLO.

AY =215Mev || A =35Mev || Al =435Mev |
u[GeV] Cr_| C: | Ci | Ca | Ci | C:_ |
1.0 —0.524 1.271 -0.664 1.366 -0.851 1.502
15 0413 1.201 -0.493| - 1.250 -0.579 1.307
20 -0.354 1.165 -0412 1200 || -0.469 1235

We have made the whole discussion without invoking HQET (cf. section XV). It is sometimes
stated in the literature that at © = m, in the case of B-decays one has to switch to HQET. In this case
for p < m, the anomalous dimensions . differ from those given above. We should however stress
that switching to HQET can be done at any g < m,, provided the logarithms In(m; /) in (@;) do
not become too large. Similar comments apply to D-decays with respect to g = m.. Of course the
coefficients C; calculated in HQET for 4 < m, are different from the coefficients presented here.
However the corresponding matrix elements (Q;) in HQET are also different so that the physical
amplitudes remain unchanged.
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VL. THE EFFECTIVE AF = 1 HAMILTONIAN: INCLUSION OF QCD PENGUIN OPERATORS

In section V we have restricted ourselves to current-current operators when considering QCD
corrections to the effective AF = 1 (F = B, C, S) hamiltonian for weak decays.

As already mentioned in section IIID 3 e.g. for the AS = 1 case the special flavour structure
of Q2 = (3u)y_, (@d)y_, allows not only for QCD corrections of the current-current type as in
fig. 3 (a)—(c) from which the by now well known second current-current operator Q, is created.
For a complete treatment of QCD corrections all possible ways of attaching a gluon to the initial
weak AF' = 1 transition operator (), have to be taken into account. Therefore attaching gluons to
@ in the form of diagrams (d.1) and (d.2) in fig. 3, generates a completely new set of four-quark
operators, the so-called QCD penguin operators, usually denoted as Qs, . . . , @¢>. This procedure
is often referred to as inserting Q; into type-1 and type-2 penguin diagrams.

The AS = 1 effective hamiltonian for K — =7 at scales ¢ < m, then reads

Gr

Ha(AS=1)= TV* udZ(z'(I‘) +7y(p) Qi (VLD)
i=1
with
VeV
T= V,:’;V:d . (V1.2)

The set of four-quark operators Q(x) and Wilson coefficients Z(p) and F(p) will be discussed one
by one in the subsections below.

A, Operators

The basis of four-quark operators for the AS = 1 effective hamiltonian in (VL.1) is given in
explicit form by

Q1 = (Biuj)y_, (Bidi)y_,y »

Q2 = (3u)y_, (2d)y_, ,

Qs = (5d)y_p 2 (§0)y_ » | (VL3)
Qs= (Eidj)v_.A Zq:(qui)v-A ’

Qs = (gd)v_A Z(q-q)V+A ’

Qe = (5id;)y_, D (Ti%)vya -
7

30bviously, whether or not it is possible to form a closed fermion loop as in a type-1 insertion or to connect
the two currents to yield a continuous fermion line as required for a type-2 insertion strongly depends on
the flavour structure of the operator considered. E.g. for @, only the type-2 penguin diagram contributes.
This feature can be exploited to obtain NLO anomalous dimension matrices in the NDR scheme without the
necessity of calculating closed fermion loops with 5 (Buras ez al., 1993¢), (Buras et al., 1993a).
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As already mentioned, this basis closes under QCD renormalization.

For 4 < m. the sums over active quark flavours in (VL.3) run over u, d and s. However, when
myp > p > m is considered also ¢ = c has to be included. Moreover, in this case two additional
current—current operators have to be taken into account

Ql = (gicj)V-A (Ejdi)v..A 1 Qg = (gc)V-A (Ed)v_..{- (V1L4)

and the effective hamiltonian takes the form

Ha(ss =1 = SV, [(1 1) H () (Qi - Q) 47 z:v,-(u)ce.-] VLS)

=1 =1

B. Wilson Coefficients

For the Wilson coefficients y;(x) and z;(¢) in eq. (VL.1) one has

yi() = vi) — zi(p) - (VL6)

The coefficients z; and v; are the components of the six dimensional column vectors #(y) and Z(u).
Their RG evolution is given by

() = Us(pt, me) M(me)Us(me, mu) M (mu)Us(mu, Mw)C(Mw) , (VLT)

#(p) = Us(p, mc)Z(me). | (VL8)

Here U;(m,, m3) denotes the full NLO evolution matrix for f active flavours. M(m;) is the match-
ing matrix at quark threshold m; given in eq. (II.104). These two matrices will be discussed in
more detail in subsections VIC and VID, respectively.

The initial values C(Mw) necessary for the RG evolution of #(x) in eq. (V1.7) can be found
according to the procedure of matching the effective (fig. 3) onto the full theory (fig. 2) as summa-
rized in section III F. For the NDR scheme one obtains (Buras et al., 1992)

Cu(mw) = 2 &) (V19)
Co(Mw)=1- lsl- 3—%"—") | (VI.10)
Cs(Mw) = -—a’gfw) Eo(zs), (VL11)
Co(Mw) = a,(SM W)EO( t) (VL12)
Cs(Mw) = —25MW) i), (VL13)
ColMw) = “S(MW)Eo(zt), (VL14)

where
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2 z(18 — 11z — 2%)  2%(15 - 16z + 42?)
Eo(:c)—--s-lna:+ 501 —2)° | S —2) Inz, (VIL.15)
~ 2 .
Eo(z:) = Eo(z:) — 3 ' (VL16)
with
m;
=1 (VL17)

Here Eq(z) results from the evaluation of the gluon penguin diagrams.

The initial values 5(Mw) in the HV scheme can be found in (Buras et al., 1992).

In order to calculate the initial conditions Z(m.) for z;(y) in eq. (VL.8) one has to consider the
difference Q% — Q3 of Q2-type current-current operators as can be seen explicitly in (VI.5). Due to
the GIM mechanism the coefficients z;(x) of penguin operators Q;, ¢ # 1,2 are zero in 5- and 4-
flavour theories. The evolution for scales ¢ > m. involves then only the current-current operators
Q% — @, ¢ = 1,2, with initial conditions at scale y = My

Zl(Mw) = Cl(Mw) ’ z:(Mw) = Cz(Mw). (VI.18)

Q12 = Q1,2 and Qf , do not mix with each other under renormalization. We then find

(2&3) = Us(me, mo) M(my) Us(my, Mw) (2%3) ’ (VL19)

where this time the evolution matrices Uy 5 contain only the 2 x 2 anomalous dimension submatrices
describing the mixing between current-current operators. The matching matrix M (m;,) is then also
only the corresponding 2 X 2 submatrix of the full 6 x 6 matrix in (VI.27). For the particular case
of (V1.19) it simplifies to a unit matrix. When the charm quark is integrated out the operators Qf ,
disappear from the effective hamiltonian and the coefficients z;(x), ¢ # 1, 2 for penguin operators
become non-zero. In order to calculate z;(m.) for penguin operators a proper matching between
effective 4- and 3-quark theories, that is between (V1.5) and (VI.1), has to be made. For the 3-quark
theory one obtains in the NDR scheme (Buras et al., 1993b)

( zlgmcg )
- —ag/ 2241rcFs c
Z(mc) = as/(‘s,,)}s(,f[g) ; (V1.20)
‘ —a/(247)F(m.)
\ a/@m)F(mc)

Where
F(md) = =3 za(m.) (VI21)

In the HV scheme z, are modified and one has F,(m.) = 0 or z;(m.) = 0 fori # 1,2,
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C. Renormalization Group Evolution and Anomalous Dimension Matrices

The general RG evolution matrix U(m,, m;) from scale m, down to my < my reads in pure

QCD

g(my) T( 4" _
U, m) = Tyexp [ dg'%j,)), (V122)

with 7,(g?) being the full 6 x 6 QCD anomalous dimension matrix for Q;, . . . , Js.
For the case at hand it can be expanded in terms of a; as follows

m(g?) = Za® 4 B (V1.23)
4r *  (4m) ®

Explicit expressions for v{%) and 4{!) will be given below.
Using eq. (V1.23) the general QCD evolution matrix U(my, m;) of eq. (VI.22) can be written
as in (IT1.93) (Buras et al., 1992).

U(m,y, mp) = (1 + %‘-l]) UO(m,, m;) (1 - 3-"(1—:’:2.7) - (V1.24)

where U(®)(m;, m2) denotes the evolution matrix in the leading logarithmic approximation and J
summarizes the next-to-leading correction to this evolution. Therefore, the full matrix I/ (1, m2)
sums logarithms (a,t)" and a,(ast)" with ¢ = In(m}/m?). Explicit expressions for U©(m,, m,)
and J are given in egs. (I11.94)—(I11.98).

The LO anomalous dimension matrix 7{%) of eq. (V1.23) has the explicit form (Gaillard and Lee,
1974a), (Altarelli and Maiani, 1974), (Vainshtein ez al., 1977), (Gilman and Wise, 1979), (Guberina
and Peccei, 1980)

(€6 0 o o 0 \
6 =£ =2 2 =2 2
N 3N 3 3N 3
0 0 =22 22 =4 4
) _ 3N 32 3év 3 (VI.25)
s 2f -6 =2 f 2 .
00 6_511\? T"":it 3N 'ét
00 0 o £ -6
Vo 0o ¢ ¥ gy tluN) g
3N 3 3N N 3

The NLO anomalous dimension matrix 7&1) of eq. (V1.23) reads in the NDR scheme (Buras et al.,
1992), (Ciuchini et al., 1994a) :
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—an_2f 1.2/ ki) -I —8 -7 \
2 9 2773 9 3 9 3
7 + 2f _21__2f _202 1354 _ 1192 904
2T 73 2 9 243 81 243 81
0 0 5311 71/ 5983 . f 2384 71f 1808 __ f
) | 486 9 162 3 243 9 81 3
TeNDRIN=3 0 0 a9 | sef _o1 884 _1%0_ swf _1a  esef
18 7 243 6 81 ) 243 3 81
-61 f -11f 61 1
0 0 9 3 % + _9't —-99 + JsTt
0 0 —682 106 f 225 4 1676f _1343+1348[}
\ 243 81 2 243 6 81

(V1.26)

In (VL.25) and (V1.26) f denotes the number of active quark flavours at a certain scale u. The
corresponding results for 7{") in the HV scheme can either be obtained by direct calculation or by
using the relation (II1.126). They can be found in (Buras ez al., 1992), (Ciuchini et al., 1994a) where
also the N dependence of 7{!) is given.

D. Quark Threshold Matching Matrix

As discussed in section IIIF 1 in general a matching matrix M (m) has to be included in the
RG evolution at NLO when going from a f-flavour effective theory to a (f — 1)-flavour effective
theory at quark threshold u = m (Buras et al., 1992), (Buras et al., 1993b).

For the AS = 1 decay K — = in pure QCD one has (Buras et al., 1992)

as(m)

M(m) =14 Tﬂ'—- 51‘51'. (V1.27)

At the quark thresholds m = m; and m = m,, the matrix ér, reads

6rf = — gP (0,0,0,1,0,1) (V1.28)
with
T 1. 1
PT=(0,0,—3,1,-3,1). (V1.29)

E. Numerical Results for the K — 77 Wilson Coefficients in Pure QCD

Tables X-XII give the AS = 1 Wilson coefficients for @, . . . , Qs in pure QCD.
We observe a visible scheme dependence for all NLO Wilson coefficients. Notably we find lys] to
be smaller in the HV than in the NDR scheme.
In addition all coefficients, especially z; and ys, . .., ys, show a strong dependence on Ay
Next, at NLO the absolute values for 21,5 and y; are suppressed relative to their LO results, except
for ys in HV and y,6 in NDR for 4 > m.. The latter behaviour is related to the effect of the
matching matrix M (m,) absent for p > m..
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TABLE X. AS = 1 Wilson coefficients at u = 1 GeV for my = 170 GeV. y; = y2 = 0.

AL = 215 MeV A =35Mev | A = 435Mev |
Sheme] LO | NDR| HV | LO| NDR| HV | LO| NDR| HV

z -0.602| -0407) -0491j -0743] -0.506] -0636ff -0901] -0622] -0.836
22 1323} 1204| 1260 1423| 1270 1362| 1541 1352| 1515

2 -0.008/ -0.022| -0.010} -0.012| -0.034| -0.016|f -0.016] -0.058] -0.029
25 0.003 0.006 0.003 0.004 0.007 0.004 L 0.005 0.009 0.005
2 -0.009] -0.021] -0.009|] -0.013}] -0.034| -0.014ff -0.018] -0.058] -0.025
Y3 0.029 0.023 0.026 0.036 0.031 0.036 0.045 0.040 0.048
Y4 -0.051] -0.046] -0.048) -0.060; -0.056f -0.059| -0.069] -0.066] -0.072
Ys 0.012 0.004 0.013 0.013| -0.001f 0016 0014| -0.013] 0.020
Ye -0.084| -0076] -0070]f -0.111f -0.109] -0.096| -0.145| -0.166] -0.136

23 0.003| 0007| 0.004 " 0.004| 0.013 o.oo*:t 0006 0022] 0015

TABLE XI. AS = 1 Wilson coefficients at # = m, = 1.3 GeV form; = 170 GeV and f = 3 effective
flavours. |zs|, ..., | 2| are numerically irrelevant relative to |z; 2. 71 = 32 = 0.

Al = 215 MeV 4, AE) = 325 MeV ) = 435 MeV

Scheme LO NDR NDR HV LO NDR HV
% -0518] -0.344 -0411” —0621 -0412| -0.504|f -0727| -0487| -0.614

22 1.266 1.166 1.207 1.336 1.208 1.269 1.411 1.258 1.346
y3 0.026 0.021 0.024 0.032 0.027 0.031 0.039 0.035 0.040
Ya -0.050f -0.046] -0.048) -0.059] -0.056| -0.058) -0.068 -0.067| -0.070
Ys 0.013 0.007 0.013 0.015 0.005 0.016 0.016 0.001 0.018

v | -0075| -0067] -0062| -0005| -0088| -0079| -oms| -om6| -0.102

For ys, . . ., y5 there is no visible m; dependence in the range m, = (170 £ 15) GeV. For |ys| there
is a relative variation of O(£1.5%) for in/decreasing m.

Finally, a comment on the Wilson coefficients in the HV Scheme as presented here is appropriate.
As we have mentioned in section V B, the two-loop anomalous dimensions of the weak current in
the HV scheme does not vanish. This peculiar feature of the HV scheme is also felt in 4{!). The
diagonal terms in (! aquire additional universal large O(/N?) terms (44/3)N? which are absent
in the NDR scheme. These artificial terms can be removed by working with v(") — 27{") instead of
41, This procedure, adopted in this review and in (Buras et al., 1993b), corresponds effectively
to a finite renormalization of operators which changes the coefficient of a,/4x in C¥Y (M) from
—13/2 to —7/6. The Rome group (Ciuchini ez al., 1994a) has chosen not to make this additional
finite renormalization and consequently their coefficients in the HV scheme differ from the HV
coefficients presented here by a universal factor. They can be found by using

) = |1 - 5acr| ™) (VL30)
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TABLE XII. AS = 1 Wilson coefficients at u = 2 GeV for mt = 170 GeV. For ¢ > m, the GIM

mechanism gives z; = 0,1 =3,...,6. 1y =y = 0.
¥ - 215MeV A =35Mev | Al = g35Mev

Scheme] LO | NDR| HV LO| NDR| HV | LO | NDR| HV
n | 0411 -0266] -0318] -0477] 0309 —0.374] —0541] -0350] —0430
z | 119| 1121 1151f 1240 1145| 1185| 1282 1170 1220
ys | 0019 0015| 0018 0023| 0023| 0022| 0027| 0027] 0026
v | -0040 -0046] -0039| -0046| -0.054 -0045]| -0052] -0062| —0.052
ys | 0011] 0010| o0011| 0012] 0010 0013] 0013| 0010] 0015
yo | —0.055] -0057] -0.047| -0067] 0070 -0.056] -0.078] -0085| -0067

Clearly this difference is compensated by the corresponding difference in the hadronic matrix ele-
ments of the operators Q;.

F. The AB = 1 Effective Hamiltonian in Pure QCD

An important application of the formalism developed in the previous subsections is for the case
of B-meson decays. The LO calculation can be found e.g. in (Ponce, 1981), (Grinstein, 1989)
where the importance of NLO calculations has already been pointed out. This section can be viewed
as the generalization of Grinstein’s analysis beyond the LO approximation. We will focus on the
AB = 1, AC = 0 part of the effective hamiltonian which is of particular interest for the study
of CP violation in decays to CP self-conjugate final states. The part of the hamiltonian inducing
AB =1, AC = =1 transitions involves no penguin operators and has already been discussed in
V.

At tree-level the effective hamiltonian of interest here is simply given by

Z E ;f;v;q’

g=u,cq'=d,s

Heg(AB=1) = % (ba),,_, (@0)v-s - (VI31)

The cases ¢’ = d and ¢’ = s can be treated separately and have the same Wilson coefficients
Ci(p). Therefore we will restrict the discussion to ¢’ = d in the followmg
Usmg unitarity of the CKM matrix, {, + £+ & = 0 with §; = V3V, and the fact that Q¥ ', and
, have the same initial conditions at x = My one obtains for the effccuvc AB = 1 hamiltonian
at scales p = O(my)

Hea(AB=1)= \/—{Ec [C1(#)Q1(1) + Co(1)Q5(m)] + &u [Cr(i)QF (1) + Co(p)Q3(p)]

=& Z Ci(p)Qi(p)} - (VL32)

=3

Here
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Qi = (Bigs)y_, (@di)y_y »

Q:= (B‘I)V__ A @Dv_s

Ed) VA Z (Q-‘I)V-A ] (V1.33)
b;

(
( d; )V A Z(qui)V_A y
Ed) V-A Z (‘1‘1)v+A y

)V—A ; (qui)v+A 3

Qs =

5=
e = (bd

where the summation runs over ¢ = u, d, s, ¢, b.
The corresponding AB = 1 Wilson coefficients at scale ¢ = ©@(my,) are simply given by a
truncated version of eq. (V1.7)

C(my) = Us(mp, Mw) C(Mw). (VL34)
Here Us; is the 6 x 6 RG evolution matrix of eq. (VI.24) for f = 5 active flavours. The initial
conditions C (Mw) are identical to those of (VI.9)—(VI.14) for the AS = 1 case.

G. Numerical Results for the AB = 1 Wilson Coefficients in Pure QCD

TABLE XIIl. AB = 1 Wilson coefficients at g = T, (msp) = 4.40 GeV for my = 170 GeV.

AP = 140Mev | AD) = 295Mev | A(f%. =310MeV
Scheme| LO NDR| HV | LO NDR| HV | LO NDR| HV
C: -0272( -0.164[ -0201} -0307| -0.184] -0227] -0337] —0202] -0.250
Ca 1.120| 1.068| 1.087 " 1.139] 1078} 1101 “ 1.155] 1087 1113
Cs 0012| 0012 0011) 0013| 0013] 0012| 0015] 0015| 0014
Cs | -0026f -0.031) -0026 -0.030| -0035 -0029] -0032] -0038] -0032
Cs 0008| 0008| 0008} 0009| 0009| 0009| 0009| 0009| 0010
Ce -0.033| -0.035] -0.029|] -0.038| -0.041 -0033] -0.042] -0.046| -0.036

Table X1IIT lists the AB = 1 Wilson coefficients for @}, @5°, Qs, . . ., Qs in pure QCD.
C1, Cy and Cg show a O(20%) scheme dependence while this dependence is much weaker for the
rest of the coefficients.
Similarly to the AS = 1 case the numerical values for AB = 1 Wilson coefficients are sensitive
to the value of Agrz used to determine ¢ for the RG evolution. The sensitivity is however less
pronounced than in the AS = 1 case due to the higher value i = 7, (my) of the renormalization
scale.
Finally, one finds no visible m. dependence in the range m, = (170 & 15) GeV.
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VIL. THE EFFECTIVE AF = 1 HAMILTONIAN: INCLUSION OF ELECTROWEAK PENGUIN -
OPERATORS

Similarly to the creation of the penguin operators Qs, . . . , @¢ through QCD corrections the in-
clusion of electroweak corrections, shown in figs. 2 (d) and (e), generates a set of new operators,
the so-called electroweak penguin operators. For the AS = 1 decay K- — = they are usually
denoted by Q7, ..., Q1o.

This means that although now we will have to deal with technically more involved issues like an
extended operator basis or the possibility of mixed QCD-QED contributions the underlying princi-
ples in performing the RG evolution will closely resemble those used in section VI for pure QCD.

Obviously, the fundamental step has already been made when going from current-current operators
only in section V, to the inclusion of QCD penguins in section VI. Hence, in this section we will
wherever possible only point out the differences between the pure 6 x 6 QCD and the combined
10 x 10 QCD-QED case.

The full AS = 1 effective hamiltonian for K — = at scales 4 < m, reads including QCD
and QED corrections?*

Hee(AS =1) = fV‘ udZ(zt(l‘)+Ty:(I‘))Qt(l‘)7 oo

=1

with 7 = —VgVa/ (Vi Vaa)-

A. Operators

The basis of four-quark operators for the AS = 1 effective hamiltonian in (VIL1) is given by
@1,- - -, Qe of (VL.3) and the electroweak penguin operators

3
Qr = ‘i (gd)v..A Z € (q-‘I)v-;-A ’
q
3
=3 (3:d;)y_a Zq: €q (‘ij%‘)v+A ’
3
Qs = § (3d)y-a E g (39)v-a > (VIL2)

Q1o = (3: JIV-A Zeq (‘IJQ=)V-A

Here, e, denotes the quark electric charge reflecting the electroweak origin of Q)+, ..., Q. The
basis Q1, ..., Q1o closes under QCD and QED renormalization. Finally, for my, > g > m the
operators Q) and Q5 of eq. (V1.4) have to be included again similarly to the case of pure QCD.

“In principle also operators Q11 = 725ms50,, T°G¥(1 — ¥5)d and Qy2 = Tk ms30,, F* (1 ~ 45)d
should be considered for K — ww. However, as shown in (Bertolini ez al., 1995a) their numerical contri-
bution is negligible. Therefore 1, and @, will not be included here for K — w.
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B. Wilson Coefficients

As far as formulae for Wilson coefficients are concerned the generalization of section VIB to
the present case is to a large extent straightforward.
First, due to the extended operator basis () and Z(y) in egs. (V1.7) and (VL8) are now ten di-
mensional column vectors. Furthermore, the substitution -

Us(mi,mz) — Us(mi1, my, )

has to be made in the RG evolution equations (V1.7), (VL.8) and (V1.19). Here U (M1, m,, @) de-
notes the full 10 x 10 QCD- QED RG evolution matrix for f active flavours. U (1, my, @) will
still be discussed in more detail in subsection VIIC.

The extended initial values C'(Mw) including now O(«) corrections and additional entries for
@7, - -, Q10 can be obtained from the usual matching procedure between figs. 2 and 3. They read
in the NDR scheme (Buras et al., 1993b)

11 au(M:
Cr(Mw) = = a—(‘hrw—), (VIL3)
1L aMw) 35 o
Co(Mw)=1- 6 ym T | (VIL4)
Co(Mw) = 2 g0y 4 g [2Bo(ed) + el (VILS)
Cs(Mw) = as(sj‘:w)z'o(-'ﬂt), (VIL6)
C _ as(Mw) -~
s(Mw) = T Todr Eo(z.), (VIL7)
Co(Mw) = MW (o), vIL®)
Cr(Myw) = == [4Co(2:) + Do(z4)] , | (VILY)
Cs(Mw) =0, (VIL10)
Co(Mw) = -6% [400(%) + Bo(xt) + sin"'lew(mBo(zt) - 4C’o(zt))] s (VHII)
Cro(Mw) =0, | (VIL12)
where
1 T zlnz
By(z) = [1 il 1)2] , (VIL13)
Co(z) = 38’- [i - f + (3$_+1?2 In z] , (VIL14)
4 —192° + 252  7%(52% — 2z — 6)
Dy(z) = —§-In + 36(z 1) + 18z —1)° Inz, (VIL15)
Do(a1) = Do(ae) ~ 5. (VIL16)
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Eo(:ct) and z; have already been defined in eqgs. (VI.16) and (V1.17), respectively. Here By(z)
results from the evaluation of the box diagrams, Co(z) from the Z°-penguin, Do(z) from the photon
penguin and Eo(z) in Eo(z.) from the gluon penguin diagrams.

The initial values C(My ) in the HV scheme can be found in (Buras et al., 1993b).

Finally, the generalization of (V1.20) to the @, . . . , Q1o basis reads (Buras et al., 1993b)

( % (mc) \
zy(me)
—a/(247) Fy(mc)
ST
Ame) = af@n)Elng |- VL
af (67f)0Fe(mc)
af(6x)F,(mc)
0 )

with Fg(m,) given by (V1.21) and
F(mc) = —% (3z1(me) + 22(m.)) . (VIL18)

In the HV scheme, in addition to 21, differing from their NDR values, one has F,(m.) = F,(m,.) =
0 and, consequently, z;(m.) = 0 for: # 1, 2.

C. Renormalization Group Evolution and Anomalous Dimension Matrices

Besides an extended operator basis the main difference between the pure QCD case of section
VI and the present case consists in the additional presence of QED contributions to the RG evo-
lution. This will make the actual formulae for the RG evolution matrices more involved, however
the underlying concepts developed in sections V and VI remain the same.
Similarly to (V1.22) for pure QCD the general RG evolution matrix U(m;, m3, @) from scale
my down to m; < my can be written formally as
otm), , 47 (9% a)
Um,m,aETex/ dg ————~
( 1 2 ) g p g(mz) g ,3(9')
with v(g?, @) being now the full 10 x 10 anomalous dimension matrix including QCD and QED

contributions.
For the case at hand 4(g?, a) can be expanded in the following way

(VIL.19)

1(e%,) = (") + LT + .. (VIL20)

SWe neglect the running of the electromagnetic coupling o, which is a very good approximation (Buchalla
etal., 1990).
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with the pure as-expansion of 7;(¢°) given in (V1.23). The term present due to QED corrections
has the expansion

Qg
D) =10+ 28 +.... (VIL21)

Using (VI1.20)-(VIL.21) the general RG evolution matrix U(m,, m3, a) of eq. (VIL19) may
then be decomposed as follows

U(ma, ms, ) = U(my, ms) + = R(m1,ms), (VIL22)

Here U (1, m2) represents the pure QCD evolution already encountered in section VI but now gen-
eralized to an extended operator basis. R(m,,m;) describes the additional evolution in the pres-
ence of the electromagnetic interaction. U(m;, m;) sums the logarithms (a,t)™ and a,(a,t)™ with
t = In(m3/m}), whereas R(m;, m,) sums the logarithms #(c,t)" and (o,t)".

The formula for U(m;, m;) has already been given in (VL.24). The leading order formula for
R(m,,m3) can be found in (Buchalla et al., 1990) except that there a different overall normaliza-
tion (relative factor —4= in R) has been used. Here we give the general expression for R(my,m3)
(Buras et al., 1993b)

.g(ml)d , U(ml, m’) FT(g') U(ml” mg)

B(ma,ma) = -/g(mz) (")

2 1¢
= —--BE | 4 (K(o)(mhmz) + EZKP)(mhmz)) v,

0 =1

(VIL23)

with ¢’ = g(m’).
The matrix kernels in (VII.23) are defined by

(KO (my, m5));; = MQ [(as(mz))aj 1 (as(mz))af 1 ]’ _(VII.24)

a;—a;—1 [\as(m1)) a(m1)  \as(m) as(m;)

Mt(zl) a,!m ! aj a,!m ! a; . -
(KB (m1,my)), = { S [(‘?("3:’2 g 5"";’3’ ylizs, (VIL25)
7 as{m: t as(m ..
' M;; (a.(mf) In o) =7 :
Kgl)(mh m2) = - as(m2) K(o)(mlv m2) H y (VH.26)
Kél)(ml, mz) = oas(mq) H K(o)(ml, ms) (VIL.27)
with
M(O) = V-1 7£O)T v,
MO =y (7&” - %mﬁ“"" + [0, ]) V. (VIL28)

The matrix H is defined in (II1.97).



After this formal description we now give explicit expressions for the 10 x 10 LO and NLO
anomalous dimension matrices 7{%, 7{9, 4{!) and {1). The values quoted for the NLO matrices
are in the NDR scheme (Buras et al., 1993c), (Buras et al., 1993a), (Ciuchini et al., 1994a). The
corresponding results for v{!) and 7(‘) in the HV scheme can either be obtained by direct calculation
or by using the QCD/QED version of eq. (III.126) given in (Buras et al., 1993a). They can be found
in (Buras et al., 1993c), (Buras et al., 1993a) and (Ciuchini et al., 1993a); (Ciuchini et al., 1994a).

The 6 x 6 submatrices for @, ..., Qs of the full LO and NLO 10 x 10 QCD matrices {*) and

(1) are identical to the corresponding 6 x 6 matrices already given in egs. (VI.25) and (VL.26),
respecnvely Next, @y, . .., Qs do not mix to @z, ..., Q0 under QCD and hence

[7*50)] A [751)] i 0

The remaining entries for rows 7-10 in 4{) (Bijnens and Wise, 1984) and v{1) (Buras et al., 1993¢),
(Ciuchini et al., 1994a) are given in tables XIV and XV, respectively. There u and d (f = u + d)
denote the number of active up- and down-type quark flavours.

i=1,...6 j=T1,...,10. (VIL29)

TABLE XIV. Rows 7—-10 of the LO anomalous dimension matrix 7(0) .

G,Hl 1| 2 3 4 5 6 7 8 9] 10
71 ol o 0 0 0 0 5 -6 0 0
9] o o 3 -2 o -2 0 0 #F 6

TABLE XV. Rows 7-10 of the NLO ) anomalous dimension matrix 7( ) for N = 3 and NDR.

E’J)

1 2 3 4 5
7 0 0 —61!1;—11[2! —11!1;—d£2! 83!1&;&!2!
8 0 0 —682!u-d£2! 106!1;1—d£2! 704!;4—;1[2!
9 0 0 202 + 3gu—d12! __1%?_4 _ gu-:p! 1_214%2 _ 71(u;d{2!
G, ) 6 7 | 8 9 10
7 SR 2-E -99+ &/ 0 0
8 e ~Bpaf|  -Beg sl 0 0
u—-df2 2 2
of  -m-e o | -g-y ¥
646 (u—d/2 2 2
lo] §celped 0 i+ | -3-¥

The full 10 x 10 matrices (%) (Lusignoli, 1989) and ~{!) (Buras et al., 1993a), (Ciuchini et al.,
1994a) can be found in tables XVI and X VII, respectively.
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'I‘ABLE XVI. The LO anomalous dimension matrix 7§°).

GH 1] 2] 3] 4] 5| 6 7 8 9 10
if -§[ o of o o] o Y 0 By 0
2l of -§ o} o] of o % 0 = 0
3 of o of of of of -le4leNwda) o s, 16N@dz) |
4 0 0 0 0 ol o -12§N + 16(142—7&/2) 0 -_1267Af. + 16(u2-7d£2) —§
55 0f 0| of o} of of §g4lNGd2))| 16N (s-d/2) 0
6f 0| of of o of o 16(u—d/2) 8 16(u—d/2) 0
71 o o o] of & of s4leNera) | LNGid)

‘8l o o| of of o £ 16{xtd/a) 4 16(utd/d) 0
9f o] of -4 of of of £4eNGih) | o _28, 16NWd/)]
10 of of of -3 of of &F ot | o} N, 16Gud) | _4

|
1

== ———

D. Quark Threshold Matching Matrix

Extending the matching matrix M(m) of (V1.27) to the simultaneous presence of QCD and

QED corrections yields

as(m)

a .7
ym ort .

61'3' +

At scale 4 = my, the matrices ér, and ér, read

6rf = %P (0,0,0,—2,0,-2,0,1,0,1)

&l = ;—gP (0,0,6,2,6,2,—3,—1,~3,—1)

andat g = m.

&l = —gP (0,0,0,1,0,1,0,1,0,1)

6rT = —‘;—21‘3 (0,0,3,1,3,1,3,1,3,1)

€

with eq. (V1.29) generalized to

1 1
PT=(0 0,-2,1,-3,1,0,0,0,0 )
( b4 3’ 3 0 )

PT =(0,0,0,0,0,0,1,0,1,0).
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TABLE XVIL The NLO anomalous dimension matrix 7! for N = 3 and NDR.

Tables XVIII-XX give the AS = 1 Wilson coefficients for Q,, ...

E. Numerical Results for the K — 77 Wilson Coefficients

QCD and QED.

The coefficients for the current-current and QCD penguin operators @, ...

(%, 7) 1 2 3 4 5
1 194 _2 88 28 _ 388
9 3 243 81 243
2 25 4 - 556 556 556
3 9 729 243 729
1690  136(u—d/2 1690 136(::—4(2) 232 _ 136(u—d/2)
3 0 0 729 243 %5 T 729 T 243
—g41 _ 32d 655 _ 32d 88 _ 388u 32d
4 0 0 SB-F+ 3 + B 2 243~ 729 T 729
—136!14—:![2! 36!1;—&[2 ! —9_ 36!u—dz2!
5 0 0 243 81 2 243
=748« , 212d 7484 _ 212d _ 748u 212d
6 0 0 s t 7o 243 243 3 720 T 559
7 0 0 —136(u+d/4) 136(u+d£4) _116 _ 36(u+d£4)
243 9 243
=748y _ 106d 748u _ 748w _ 106d
8 0 0 "“"729 729 + 4 243 1- 5% 729
7012 _ 136(u+d/4) 36(u+d(4) 116 _ 136(u+d/4)
9 0 0 729 243 729 — 243
1333 _ 388u _ 16d 107 16d .44 _ 388u _ 16d
10 0 0 243 — 729 — 729 + o 243 >+ o83 243 7243 — 729 739
(3,7) 6 7 8 9 10
1 ) 152 40 136 56
81 27 9 27 9
2 556 484 124 _ 3148 172
243 729 27 729 27
!u-dp! 3136 104!14—:1[2[ 64 | 88(u—d/2) 20272 84!u-d£2! 112 8(u—d/2)
3|- 243 70 T 77 T 9 729 77 + 9
_32d 152 3140u , 6564| 40 _ 100w __ 16d 170 1232d 14 14811. _ 8od
4|31 + 243 ~ 243 7 T 729 729 |9 27 T 97 + 22 2o T 729 + 57 — 57
5 36(u~d/2) _ g;_z + M(u—dp) 40 + 88(u—d/2 ) 184(u~d/2) gu-dm'
81 3 9 27 9
748¢ _ 212d 52124 4832d 182 , 188u _ 160d| —2260u 2816d —140 u
6 7+ 243 ~ 243 -2- 9 T 29 729 + 27 ~f23 t+ 9 +
7 gg + 136 u+d 4 _134 + 104(u+d/4) §_§ + 88(u+ d/4) 184(u+d/4) _ﬂ‘tﬂﬂ
9 27 27 9
91 748u. 106d _ 5212w _ 2416d 154 1 =2260u __ 14084 =140u _ 32d
89+ 33 + 2 -5t -5 + 158 | =2260u_ 14084 37 T 27
116 36(u+d/4 1568 , 104(u+d/4 32 wtd/4) | 5578 , 184(utd/4 38 , 8 (utd/4
9 _3+4_u _m+__(_u _27+4_9_u 578 4 184(utd/e) | 38 8 (utd/s)
44 16d 3140w _ 3284 | 20 _ 100u , 8d 140 908z __ 616d 2s 148u 40 d
10| 5+%5+i5 | 7+ 9 F 75 —Tee | 59— Tt t o e vt 5

, @10 in the mixed case of

, Qe are only very

weakly affected by the extension of the operator basis to the electroweak penguin operators
, Qe given in connection with tables X~XII for
the case of pure QCD basically still holds and will not be repeated here.

Q...

For the remaining coefficients of Q, . ..

y @10. Therefore the discussion for @, ...

, @10 one finds a moderate scheme dependence for y7, yo

and y10, but a O(9%) one for ys. The notable feature of |ys| being larger in NDR than in HV still
holds, but is now confronted with an exactly opposite dependence for the other important AS = 1
Wilson coefficient yg which is in addition enhanced over its LO value.
The particular dependence of ys and ys with respect to scheme, LO/NLO and m, (see below) should
be kept in mind for the later discussion of &'/« in section XIX.

67




TABLE XVIII. AS = 1 Wilson coefficients at 4 = 1 GeV for m; = 170 GeV. y; = 2 =0.

AY =215Mev || AL = 325 MeV % AY) = 435 MeV
HV | L

MS —MS
Scheme LO NDR HV || LO NDR 0O NDR HV

z -0.607] -0409 —0.494' -0.748| -0.509| -0.640ff -0.907| -0.625| -0.841
2 1.333 1.212 1.267 1.433 1.278 1.371 1.552 1.361 1.525
z3 0.003 0.008 0.004 0.004 0.013 0.007 0.006 0.023 0.015
24 -0.008] -0.022f -0.010f -0.012] -0.035| -0.017f -0.017 -0.058 -0.029
zs5 0.003 0.006 0.003 0.004 0.008| 0.004 0.005 0.009 0.005
2 -0.009] -0.022] -0.009]] -0.013] -0.035| -0.014) -0.018] -0059| -0.025

zz[a 0.004 0.003 —0.003ﬁ 0.008 0011} -0.002 0.011 0.021{ -0.001

zgfa 0 0.008 0.006 0.001 0.014 0.010 0.001 0.027 0.017
z/a 0.00s 0.007 0 0.008 0.018 0.005 0.012 0.034 0.011
z10/a 0 -0.005{ -0.006}] -0.001] -0.008] -0.010|f -0.001] -0.014! -0.017

Ya -0.052| -0.048( -0.050 -0.061] -0.058] -0.061)f -0.071] -0068] -0.074
Ys 0012} 0005| 0013} 0013 -0001} 0016} 0014| -0013] 0021
Y6 -0.085] -0078] -0.071] -0.113| -0.111] -0.097]| -0.148] -0.169| -0.139
yr/e 0.027{ -0.033] -0.032[ 0036] -0.032 -0.030" 0043 -0.031f -0.027

¥ 0030| 0.025| 0028 0038] 0032] 0037 " 0047 0042| 0.050

ys/a 0.114 0.121 0.133 0.158 0.173 0.188 0.216 0.254 0.275
Yo/ -1.491| -1479| -1.480| -1.585] -1.576] -1.577|| -1.700| -1.718] -1.722
Yo/ 0.650 0.540 0.547 0.800 0.690 0.699 0.968 0.892 0.906

We also note that in the range of m, considered here, y7 is very small, yo is essentially unaffected
by NLO QCD corrections and y,, is suppressed for 4 > me. It should also be stressed that lyo| and
|y10| are substantially larger than |ys| although, as we will see in the analysis of €' [e, the operator
Qs is more important than Qg and Q;, for this ratio. ‘

Next, one infers from tables XVIII-XX that also in the mixed QCD/QED case the Wilson coeffi-
cients show a strong dependence on Ags.

In contrast to the coefficients ys, ..., ys for QCD penguins, yz, ..., y10 for the electroweak pen-
guins show a sizeable m. dependence in the range m, = (170 + 15) GeV. With in/decreasing
m, there is a relative variation of O(£19%) and O(£10%) for the absolute values of ys and yo 10,
respectively. This is illustrated further in figs. 5 and 6 where the m, dependence of these coeffi-
cients is shown explicitly. This strong m.-dependence originates in the Z°-penguin diagrams. The
m¢-dependence of ys and y10 can be conveniently parametrized by a linear function to an accuracy
better than 0.5 %. Details of this m-parametriziation can be found in table XXL.

Finally, in tables X VIII-XX one observes again the usual feature of decreasing Wilson coefficients
with increasing scale p.

F. The AB = 1 Effective Hamiltonian Including Electroweak Penguins

Finally we present in this section the Wilson coefficient functions of the AB = 1, AC =
0 hamiltonian, including the effects of electroweak penguin contributions (Buras ez al., 1993b).
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TABLE XIX. AS = 1 Wilson coefficients at 4 = m, = 1.3GeV form; = 170GeV and f = 3

effective flavours. |23, . . ., |210| are numerically irrelevant relative to |z; 2|. 11 = y2 = 0.
AY) = 25MeV | AD = 325MevV | AD = 435Mev |
Scheme LO NDR nv LO NDR HV LO NDR HV
5 0521 -0346] -0413] -0.625] -0415] -0.507] -0.732] -0.490| -0617
2 1275 1172 1214| 1345| 1216| 1276( 1420| 1265 1354

¥3 0.027 0.023 0.025 0.034 0.029 0.033 l 0.041 0.036 0.042
Ya -0.051] -0.048] -0.049| -0.061] -0.057 -0.060| -0.070{ -0.068| -0.072
¥s 0.013 0.007 0.014 0.015 0.005 0.016 0.017 0.001 0.018
Yo -0.076] -0.068] -0.063] -0.096] -0.089| -0.081| -0.120| -0.118] -0.103
yr/e 0.030( -0.031] -0.031 0.039| -0.030; -0.028|| 0.048| -0.029 -0.026
ys/a 0.092 0.103 0.112 0.121 0.136 0.145 0.155 0.179 0.189
ya/a -1.428| -1.423] -14231 -1490| -1.479] -1479|| -1.559| -1.548| -1.549
Yo/ 0.558 0.451 0457 0.668 0.547 0.553 0.781 0.656 0.664

TABLE XX. AS = 1 Wilson coefficients at 2 = 2 GeV for my = 170 GeV. For u > m, the GIM
mechanism gives 2; = 0,1=3,...,10. yy =y = 0.

AG =215Mev | AY) = 325 MeV Al = 435 Mev
Scheme] LO | NDR| HV | LO| NDR| HV | LO | NDR| HV
s | -0413] —0268] -0320] -0480] -—0310] —0376| -0544] —0352| -0432
27 1206 | 1127| 1157 1248| 1151 1191 1290| 1176 1227
ys | 0021 0020 O0OI19| 0025 0024 0023 0028 0.028] 0027

Ya -0.041| -0.046] -0.040ff -0.047] -0.055| -0.046| -0.053| -0.063] -0.053
Ys 0.011 0.010 0.012 0.012 0.011 0.013 0.014 0.011 0.015
Y6 -0.056] -0.058] -0.047|f -0.068| -0.071] -0.057)} -0.079] -0.086] -0.068
yr/a 0.031| -0.023] -0.020§ 0.037{ -0.019] -0.020 0042| -0.016] -0.019
ys/a 0.068 0.076 0.084 0.084 0.094 0.102 0.101 0.113 0.121
Yo/ -1357 -1.361f -1.357| -1.393| -1.389| -1.389| -1.430| -1419] -1423
Yo/ 0.442 0.356 0.360 0513 0414 0419 II 0.581 0472 0477

— e ——— —— —

These effects play a role in certain penguin-induced B meson decays as discussed in (Fleischer,
1994a), (Fleischer, 1994b), (Deshpande et al., 1995), (Deshpande and He, 1995).

The generalization of the AB = 1, AC = 0 hamiltonian in pure QCD (VI1.32) to incorporate
also electroweak penguin operators is straightforward. One obtains

Ha(AB=1) = \/—{ﬁc [C1(1)Q1 (1) + Ca()Q5(1)] + & [Cr(1) Q% (1) + Cap) Q3 ()]

~& ZCe(u)Qi(u)}- (VIL37)

=3
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TABLE XXI. Coefficients in linear m,-parametriziation y;/a = a + b - (m;/170 GeV) of Wilson
coefficients yo/a and g0/ at scale 42 = m. for AlLL = 325 MeV.

| _w/e | B0/ ]
; a _ b a b
LO 0.189 -1.682 -0.111 0.780
NDR ' 0.129 -1.611 -0.128 0.676
HV 0.129 -1.611 -0.121 0.676
1 ¥ T ) ¥ ] 1] L] T ¥ T T T T o-m
0.08 |- 1t 4 0.18
- 4 0.16
0.04 | -
| - { 0.14 <
0.00 1 {012 ®
L 4 0.10
-0.04 | NOR|
L -4 0.08
-0'08130.1;0'1&).16:0 150'150'150 2oo ‘1)10 1;;0'15';0 1"/o 130'150'260'2100'06
| m, [GeV] m, [GeV]
FIG. 5. Wilson coefficients y7(m.)/a and ys(m.)/a as functions of m, for Agls = 325 MeV.
where the operator basis now includes the electroweak penguin operators
3 17 _
Q= 3 (bd)V—A Xq: eq (30)v4a
3 /- _
Q=3 (), Z:, €q (%% )v4a »
3 bd -
Q=3 (bd),_, Xea(@v-s » (VIL38)
3 1 _
Qo = 3 (bidj) VoA ; €q (%i%i)v-a
in addition to (V1.33). The Wilson coefficients at u = m, read
C(my) = Us(mp, My, o) C(Mw). (VIL39)

where Us is the 10 x 10 evolution matrix of (VIL22) for f = 5 flavors. The o} (Mw) are given in
(VIL.3) - (VI1.12) in the NDR scheme.
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FIG. 6. Wilson coefficients yo(m.)/a and y10(m.)/ e as a fanction of m; for AS—; = 325 MeV,
G. Numerical Results for the AB = 1 Wilson Coefficients

TABLE XXII. AB = 1 Wilson coefficients at 4 = ip(mp) = 4.40 GeV for m; = 170 GeV.

AL = 14oMev | AS =925 Mev | AL = 310 Mev
Scheme| LO NDR HV LO NDR HV | LO NDR HV
Ci | -0273] -0165] -0202] -0308[ -0185] -0228] -—0339] —0203 -0251
Cz | 1125| 1072| 1091f 1.144| 1082] 1105 " 1161 1092 1117
Cs | 0013] 0013| 00iZ] 0014 0014 0013| 0016] 00i6| 0015
C: | -0.027| 0031 -0.026] -0030| -0035| -0029 -0033| -0.039| -0.033
Cs | 0008| 0008| 0008 0009/ 0009| 0009/ 0009| 0009 0010
Cs | 0033 -0036] 0029 -0038] -0041] -0033] -0043] —0046] -0037
Cr/a| 0042] -0.003] 0006| 0045| -0002] 0005 0.047| -0001] 0005
Cs/a | 0041 0047| 0052| 0048 0054| 0060| 0054| 0061| 0067
Cofa | -1264| -1279| -1269| -1280 -1292| -1283| -1294| -1303| -1.296
|Cw/a| 0291] 0234 0237 0328 0263| 0266[ 0360| o0288| 0201

v

Table XXTI lists the AB = 1 Wilson coefficients for @7, @3, Qs, . . . , @10 in the mixed case
of QCD and QED. '
Similarly to the AS = 1 case the coefficients for the current-current and QCD penguin operators
@1,- . -, Qe are only very weakly affected by the extension of the operator basis to the electroweak
penguin operators @7, . .., Q0. Therefore the discussion of Cy, ..., Cs in connection with table
X1 is also valid for the present case.
Here we therefore restrict our discussion to the coefficients Cv,...,Cyo of the operators
Q1,. .., Q10 in the extended basis.
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The coefficients C, . ..., Cio show a visible dependence on the scheme, Ay and LO/NLO. How-
ever, this dependence is less pronounced for the coefficient C than it is for C78,10- This is notewor-
thy since in B-meson decays Co usually resides in the dominant electroweak penguin contribution
(Fleischer, 1994a), (Fleischer, 1994b), (Deshpande et al., 1995), (Deshpande and He, 1995).
In contrast to C4, . . ., Ce the additional coefficients C, . . ., Cio show a non negligible m, depen-
dence in the range m. = (170 + 15) GeV. With in/decreasing m; there is-similarly to the AS = 1
case a relative variation of O(+19%) and O(£10%) for the absolute values of Cs and Ca,10, TE-
spectively.

Since the coefficients Cy and C'yo play an important role in B decays we show in fig. 7 their m,
dependence explicitly. Again the m,-dependence can be parametrized by a linear function to an
accuracy better than 0.5 %. Details of the m,-parametriziation are given in table XXIIL

TABLE XXIII. Coefficients in linear m,-parametriziation C;/a = a + b - (m/170 GeV) of Wilson
coefficients Co/a and Cio/e at scale js = my, = 4.4 GeV for AL) = 225 MeV.

" | C9/ a H l Cio / (44 l
| a b a b |
LO 0.152 -1.434 -0.056 0.385
NDR 0.109 ~-1.403 -0.065 0.328
HV 0.117 -1.403 -0.062| 0.328

1-6 M T v T M 1 M T o ] v L L} 0.40
- - 0.35
14 | .
- 4030 _
1.2 - 4
B -1 025
1'0 2 I3 PR | " ] " 1 i 1 i 1 " 1 " " 1 N ] " 1 ] " 1 L ] " i i 020
130 140 150 160 170 180 190 200 140 150 160 170 180 190 200 210

m, [GeV] m, [GeV]
FIG. 7. Wilson coefficients Co/a and Cio/a at p = Tp(mp) = 4.40 GeV as a function of m, for

) —
A'Iv_i's' = 225 MeV.
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VIIL. THE EFFECTIVE HAMILTONIAN FOR K|, — 7%te-

The AS = 1 effective hamiltonian for Kz — #%%e~ at scales ¢ < m, is given by

6,7V
Ha(AS=1) = %Vu‘;m 2 () + 7 yi()) Qi(p) + 7 yra(Mw) Qra(Mw) | (VIILI)
' =1
with
_ VeV
= —Vu’.;vid . (VIIL.2)
A. Operators

In (VIIL1) Q1,2 denote the AS = 1 current-currentand Qs, . . ., Q¢ the QCD penguin operators
of eq. (VL.3). For scales 4 > m. again the current-current operators Qs 2 of eq. (VI.4) have to be
taken into account.

The new operators specific to the decay K — 7%te~ are

Qv = (3d)v-a(ée)v, (VIIL3)
Q74 = (3d)v_a(Ee)a . ~ (VIIL4)

They originate through the - and Z°-penguin and box diagrams of fig. 2.
It is convenient to introduce the auxiliary operator

Qv = (a/as) (3d)v-a(Ee)v (VIILS5)

and work for the renormalization group analysis in the basis Q, . . . , Qs, Q% The factor a/ag in
the definition of ()7, implies that in this new basis the anomalous dimension matrix v will be a
function of a; alone. At the end of the renormalization group analysis, this factor will be put back
into the Wilson coefficient C7v(x) of the operator Q7v in eq. (VIIL3). There is no need to include
a similar factor in Q)74 as this operator does not mix under renormalization with the remaining op-
erators. Since Q)74 has no anomalous dimension its Wilson coeffcient is u-independent.

In principle one can think of including the electroweak four-quark penguin operators .
@7,...,Q10 of eq. (VIL2) in H.g of (VIIL1). However, their Wilson coefficients and matrix el-
ements for the decay K — n°*e~ are both of order O(c) implying that these operators even-
tually would enter the amplitude A(K; — n%*e™) at O(a?). To the order considered here this
contribution is thus negligible. This should be distinguished from the case of K — 7 discussed
in section VIL. There, in spite of being suppressed by /a;, relative to QCD penguin operators,
the electroweak penguin operators have to be included in the analysis because of the additional en-
hancement factor ReAo/ReA; ~ 22 present in the formula for /e (see section XIX). Such an
enhancement factor is not present in the K7 — w%*e~ case and the electroweak penguin opera-
tors can be safely neglected.

Concerning the Wilson coefficients, the electroweak four-quark penguin operators would also af-
fect through mixing under renormalization the coefficients Cs, .. ., Cs at O() and Crv at O(a?).
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Since the corresponding matrix elements are O(a) and O(1), respectively, we again obtain a neg-
ligible O(a?®) effectin A(Kz — n%*e™).

In summary, the electroweak four-quark penguin operators Q, . . ., Q10 can safely be neglected in
the following discussion of H.g(AS = 1) for K, — n%*e-.

We also neglect the “magnetic moment” operators.These operators, being of dimension five,
do not influence the Wilson coefficients of the operators Q;, ..., Q, @»v and Q7,4. Since their
contributions to K, — #%*e~ are suppressed by an additional factor m,, they appear strictly
speaking at higher order in chiral perturbation theory. On the other hand the magnetic moment
type operators play a crucial role in b — sy and b — dy transitions as discussed in sections IX and
XXII. They also have to be kept in the decay B — X,ete~.

B. Wilson Coefficients

Egs. (V1.6)«(V1.8) remain valid in the case of K — n%*e~ with Us(m,,m,) and M (m;)
now denoting 7 x 7 matrices in the Q,,..., Qs, @4y basis. The Wilson coefficients are given

by seven-dimensional column vectors Z(x) and %(x) having components (z15...,26,75y) and
(v1, ..., ve, iy ), respectively. Here
as(u o
vrv(p) = i ) vrv (i), zzy (1) = :(:‘) zrv(p) (VILL6)

are the rescaled Wilson coefficients of the auxiliary operator Q%,, used in the renormalization group
evolution. :

The initial conditions Cy(Mw), ..., Cs(Mw), z1(Mw), z2(Mw) and zi(me), . .., z¢(m.) for
the four-quark operators @, ..., Qs are readily obtained from egs. (VI.9)~(VIL.14), (V1.18) and
(V1.20).

The corresponding initial conditions for the remaining operators Q’,, and Q-4 specificto K —
x%*e~ are then given in the NDR scheme by

as(Mw) [Co(zt) — By(z:)

C!IV(MW) =

2r sin? Oy

— Do(zs) — 4Co(z,)] (VIIL7)

and

& Bo(z:) — Co(z:)
2r sin? 8y )

Cra(Mw) = yra(Mw) = (VILLS)

In order to find z7 (m.) which results from the diagrams of fig. 3, we simply have to rescale the
NDR result for zz(m.) in eq. (VIL.17) by a factor of ~3a,/c. This yields

as(mc)

2n

Z;V(mc) ==

F(m). (VIIL9)
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C. Renormalization Group Evolution and Anomalous Dimension Matrices

Working in the rescaled basis @)1, . . . , Qs, @7y the anomalous dimension matrix + has per con-
struction a pure O(o;) expansion ‘,

N = 4_7(0) + — 7(1) +. ) (VIIL.10)

(4 )2
where () and 7(") are 7 x 7 matrices. The evolution matrices U(m;, m,) in egs. (VL.7) and (VL8)
are for the present case simply given by (V1.24) and (I11.94)—(I11.98).

The 6 x 6 submatrix of 7(®) involving the operators Q, ..., Qe has already been given in
eq. (V1.25). Here we only give the remaining entries of () related to the additional presence of
the operator Q%

19 = ~18N n = ~§

X9 = -%s-N(u—%—%) %9 = _.lgé(u_g—N) (VIIL11)
h? = N (u-9) W = =% (u-9) |
1D = —28= BN + 4f W =0 i=1,..,6

where N denotes the number of colours. These elements have been first calculated in (Gilman and
Wise, 1980) except that +{? and v 9 have been corrected in (Eeg and Picek, 1988), (Flynn and
Randall, 1989a).
The 6 x 6 submatrix of 4{) involving the operators Q. .., Qs has already been presented as
7™ in eq. (V1.26) and the seventh column of 4!) is given as follows in the NDR scheme (Buras
et al., 1994a)

1(?_-:-(1 N,

m_@( _i)

727 81 N N ’

08 (omdY (1) s 28 (1

g
9 - (B9 g8) (L) 8
747—(u81+d81 5-N)+5 (v -1), (VIIL12)

w_8( _d\p
) 40 ﬂ‘i)( __1_)
"67'( TR VAU K

68 20
#P =26 = "—Nz ?Nf+4CFf

=0 z'=1,...,6

where Cr = (N? —1)/(2N). The corresponding results in the HV scheme can be found in (Buras
et al., 19943).
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D. Quark Threshold Matching Matrix

For the case of Kz — w%*e™ the matching matrix M(m) has in the basis Q1, ..., Qs, @,y
the form

M(m)=1+ ﬁirﬂ) srT - (VIIL13)

where 1 and 6r7 are 7 x 7 matrices and m is the scale of the quark threshold.

The 6 x 6 submatrix of M (m) involving Q, . . . , Q¢ has been given in eq. (VI.28). The remain-
ing entries of ér; can be found from the matrix ér. given in egs. (VII.32) and (VIL34) by making
a simple rescaling by —3 o, /a as in the case of z7(m.).

In summary, for the quark threshold m = my, the matrix ér, reads

{000 0 0 0 0 )
000 0 0 0 O
000 0 0 0 -2
5ry = 00;7-3%—3-%. (VIIL14)
000 0 0 0 -2
00 % 5% -5 -2
\00O0 0 0 0 0 /

For m = m the seventh column of 7 in (VIIL.14) has to be multiplied by —2.
E. Numerical Results for the K; — 7%*e~ Wilson Coefficients

TABLE XXIV. K1, — 7°e* e~ Wilson coefficients for Qrv,aatp = 1GeV for m, = 170 GeV. The
corresponding coefficients for @, .. ., Qg can be found in table X of section VL

A = 215 MeV AL = 395 Mev AY) = 435 MeV
Scheme] 1O | NDR| AV | I0] WbR| EV | 10| NOR| HV
zv/a| —0014] -0015] 0005] —0.024] —0.046] -0003|] —0.035] —0.084] —0011
yiv/e| 0575 0747 0740| 0540 0735| 0725| 0509] 0720 0710
yrafe| -0700] -0700] -0700| -0700| -0.700| -0.700] -0.700] -0.700| -0.700

In the case of K, — 7%*e™, due to 7-$?) = 7,(,,1-) =0,z = 1,...,6 in eq. (VIIL.11) and

(VII.12), respectively, the RG evolution of @, . . . , Q¢ is completely unaffected by the additional
presence of the operator Q7v. The K1 — 7°*e™ Wilson coefficients z; and ;, ¢ = 1,...,6 at
scale 4 = 1 GeV can therefore be found in table X of section VL.
The K, — n°%*e~ Wilson coefficients for the remaining operators Q7v and Q07,4 are given in table
XXIV. Some insight in the analytic structure of y,v will be gained by studying the analogous decay
B — X,e%e™ in section X and also in section XXI where the phenomenology of K; — 7%*te~
will be presented.
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TABLE XXV, K, — 7%%e~ Wilson coefficients 27y /a and y7v/a for my = 170 GeV and various
values of p. o

——— T ]

AL =215MeV | Agy=326MeV | A =0WinMev |

Scheme| 1O | NDR|] HV| 10| NDR] HV || LO | NDR| HV |
1[GeV] zv/a

0.8 -0.031} -0.029| 0.004
1.0 | -0014] -0015| 0005 -0024] -0.046] -0003] -0035 -0084/ -0011
12 | -0004] 0009 0002 -0006| 0020 o0 | -0009| -00s1] -0.002
p[GeV] yrv/o |
0.8 0578 0.751] 0.744] 0545] 0.739] 0730] 0514] 0.722] 0712
1.0 0575| 0747| 0740 o0540| 0735| o725 o0s509| 072 0710
12 0571 0744 0736 0537| 0731] 0721 0505 0716] 0706

-0.053] -0.081 -0.012" -0.077| -0.149] -0.023

In table XXV we show the p-dependence of z7v /o and y7v/a. We find a pronounced scheme
and p-dependence for z7v. This signals that these dependences have to be carefully addressed in
the calculation of the CP conserving part in the Kz — n%*e~ amplitude. On the other hand, the
scheme and u-dependences for y7v are below O(1.5%).

Similarly, zzv shows a strong dependence on the choice of the QCD scale Agzg while this depen-
dence is small or absent for y7v and yr4, respectively.

Finally, as seen from eq. (VIIL.9) 2-v is independent of m,. However, with in/decreasing m, in the
range m = (170£15) GeV there is a relative variation of O(+3%) and O(%14%) for the absolute
values of y7v and y-4, respectively. This is illustrated further in fig. 8 and table XXVI where the
my dependence of these coefficients is shown explicitly. Accidentally for m; &~ 175 GeV one finds
lyzv| =~ |yza|. Most importantly the impact of NLO corrections is to enhance the Wilson coeffi-
cient y7v by roughly 25%. As we will see in section XXI this implies an enhancement of the direct
CP violation in K, — wn%*e™.

TABLE XXVIL K, — n%%e~ Wilson coefficients y7v/a and y74 /a for p = 1.0 GeV and various
values of my.

e e e e ——————— e R RRRRRRRRRRESSEEERRDRDZ™
—————

yv/a yra/a

AYL = 215 MeV AL = 395 MeV AL = 435 MeV
m[GeV]| LO| NDR[ HV| LO| NDR[ HV| LO| NDR| HV
150 | 0546] 0719] 0711 0512] 0706] 0.697] 0481] 0692 0.681] -0.576
160 | 0560/ 0.733f 0726| 0526| 0.721| 0711f 0495 0.706| 0.696| -0.637
170 | 0575| 0747\ 0740{ 0540 0735 0725) 0509 0720 0710 -0.700|
180 | 0588 0761 0753 0554| 0748 0739 0523 0734 0723 -0765
190 | 0601 0.774] 0.766| 0567| 0.761f 0752 0536 0747 0.736| -0.833

200 0.614] 0.786| 0.779] 0.580] 0.774] 0.764] 0.549| 0.760| 0.749] -0.902
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FIG. 8. Wilson coefficients |y7v/a|? and |yz4/a|? as a function of m, for A-I(;—; = 325 MeV at scale
u=1.0GeV.
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IX. THE EFFECTIVE HAMILTONIAN FOR B — X,y

The effective hamiltonian for B — X, at scales z = O(my,) is given by

Haa(b > 1) = = ZEViVe |- GWIQ) + OriW)Qn()+ CraW)@ea()] @

i=1

where in view of |V,;,V,,/V;3V,,| < 0.02 we have neglected the term proportional to V% V.

A. Operators
The complete list of operators is given as follows

Q1 = (3:¢;)v-a(C;bi)v-a
Q2 = (3c)v-a(Eb)v-a

Qs = (3b)v-a ;@I)V—A

Qs = (3ibj)v-4 ) _(Tigi)v-a

Qs = (5b)v-4 Zq(@)vu (X.2)
Qs = (gibj)V—Aq;(q-jqi)V+A

e
Qry = g-r-imb&-a'"’(l + v5)b: Fy

Qsc = émb&-a’“’(l +75)T;:5;Gy,
The current-current operators (1,2 and the QCD penguin operators Qs, . . . , @¢ have been already
contained in the usual AB = 1 hamiltonian presented in section VIF. The new operators Q-., and
Qsc specific for b — sy and b — sg transitions carry the name of magnetic penguin operators.
They originate from the mass-insertion on the external b-quark line in the QCD and QED penguin
diagrams of fig. 4 (d), respectively. In view of m; <« my we do not include the corresponding
contributions from mass-insertions on the external s-quark line.

B. Wilson Coefficients

A very peculiar feature of the renormalization group analysis of the set of operators in (IX.2)
is that the mixing under (infinite) renormalization between the set @4, . .., Qe and the operators
@74, Qs vanishes at the one-loop level. Consequently in order to calculate the coefficients Cv., (1)
and Csg(p) in the leading logarithmic approximation, two-loop calculations of O(eg?) and O(g?)
are necessary. The corresponding NLO analysis requires the evaluation of the mixing in question
at the three-loop level. In view of this new feature it is useful to include additional couplings in the
definition of @7, and Qsg as done in (IX.2). In this manner the entries in the anomalous dimension
matrix representing the mixing between @, . . . , Q¢ and @7, Qsc at the two-loop level are O(g?)
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and enter the anomalous dimension matrix v{?). Correspondingly the three-loop mixing between
these two sets of operators enters the matrix v({1),

The mixing under renormalization in the sector Q7.,, Qs proceeds in the usual manner and the
corresponding entries in 7{”) and v{") result from one-loop and two-loop calculations, respectively.

At present, the coefficients C7, and Csg are only known in the leading logarithmic approxi-
mation. Consequently we are in the position to give here only their values in this approximation.
The work on NLO corrections to C7, and Csg is in progress and we will summarize below what is
already known about these corrections. :

The peculiar feature of this decay mentioned above caused that the first fully correct calculation
of the leading anomalous dimension matrix has been obtained only in 1993 (Ciuchini ez al., 1993b),
(Ciuchini et al., 1994c). Itis instructive to clarify this right at the beginning. We follow here (Buras
et al., 1994c).

The point is that the mixing between the sets @4, .. ., Q¢ and Q7., Qsc in 7% resulting from
two-loop diagrams is generally regularization scheme dependent. This is certainly disturbing be-
causc the matrix (%), being the first term in the expansion for 1,, is usually scheme independent.
There is a simple way to circumvent this difficulty (Buras et al., 1994c).

As noticed in (Ciuchini et al., 1993b), (Ciuchini ez al., 1994c) the regularization scheme de-
pendence of 4% in the case of b — sy and b — sg is signaled in the one-loop matrix elements
of @1,. .., Qs for on-shell photons or gluons. They vanish in any 4-dimensional regularization
scheme and in the HV scheme but some of them are non-zero in the NDR scheme. One has

(Qi)gne-loop =Y (QT‘V)treey t=1,...,6 (IX.3)
and
. (Qi)gxe—loop =2 (QSG')tree, 1= 1, ey 6. (]X.4)

In the HV scheme all the y;’s and z;’s vanish, while in the NDR scheme § = (0,0,0,0, -1, —1)
and 7 = (0,0,0,0,1,0). This regularization scheme dependence is canceled by a corresponding
regularization scheme dependence in (%) as first demonstrated in (Ciuchini ez al., 1993b), (Ciuchini
et al., 1994c). It should be stressed that the numbers y; and z; come from divergent, i.e. purely
short-distance parts of the one-loop integrals. So no reference to the spectator-model or to any
other model for the matrix elements is necessary here.

In view of all this it is convenient in the leading order to introduce the so-called “cffective co-
efficients” (Buras et al., 1994c) for the operators Q7. and Qsg which are regularization scheme
independent. They are given as follows:

6
C () = () + 3 O (w). IX.5)
: =1 )
and
6
CQM () = Q) + 3 20 (n) @IX.6)
=1

- One can then introduce a scheme-independent vector

COI () = (CI(w, -+ G (), O (), 2 () . (IX.7)
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From the RGE for C®)(y) it is straightforward to derive the RGE for G(®°/f(1). It has the form

d @eif; \ _ Xs_(0)eff A(0)esf
P Ci7 (p) = ywglt Ci " (w) ' (IX.8)
where i
ot 7D+ OZLI yery) ~ om#?’ -:né?’ i=7,j=1,...,6
Vil = 18 + oy 27 — 279 i=8, j=1,...,6 (IX.9)
7,(?) otherwise.

The matrix (%7 is a scheme-independent quantity. It equals the matrix which one would directly
obtain from two-loop diagrams in the HV scheme. In order to simplify the notation we will omit
the label “eff” in the expressions for the elements of this effective one loop anomalous dimension
matrix given below and keep it only in the Wilson coefficients of the operators Q7. and Qsg.

This discussion clarifies why it took so long to find the correct leading anomalous dimension
matrix for the b — s decay (Ciuchini et al., 1993b), (Ciuchini et al., 1994c). All previous calcu-
lations (Grinstein ez al., 1990), (Cella et al., 1990), (Misiak, 1993), (Adel and Yao, 1993), (Adel
and Yao, 1994) of the leading order QCD corrections to b — s+ used the NDR scheme setting
unfortunately z; and y; to zero, or not including all operators or making other mistakes. The dis-
crepancy between the calculation of (Grigjanis et al., 1988) (DRED scheme) and (Grinstein et al.,
1990) (NDR scheme) has been clarified by (Misiak, 1994).

C. Renormalization Group Evolution and Anomalous Dimension Matrices
The coefficients C;(y) in (IX.1) can be calculated by using
C(p) = Us(p, Mw)C(Mw) - X.10)

Here Us(u, Mw) is the 8 x 8 evolution matrix which is given in general terms in (IIL93) with +
being this time an 8 x 8 anomalous dimension matrix. In the leading order Us(u, Mw) is to be
replaced by U (i, M) and the initial conditions by C®)( M) given by (Grinstein et al., 1990)

CO(Mw) =1 (IX.11)
3 2 3 2
) _ 3z} — 2z; -8z — 5z + Tz, __1.,
Cz, (Mw) TE—T Inz, + e —1F - 2D0(zt) (X12)
2 3 2
0) _ . =3z} —z; + 5z} + 2z, _ 1
Csc(Mw) = o1 Inz, + 8o —1F - 3 o(Zt) (IX.13)

with all remaining coefficients being zero at ¢ = Mw. The functions Dg(z.) and E}(z;) are some-
times used in the literature. The 6 x 6 submatrix of 4{°) involving the operators Qs . . . , Qs is given
in (V1.25). Here we only give the remaining non-vanishing entries of 7(*) (Ciuchini et al., 1993b),
(Ciuchini et al., 1994c).
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Denoting for simplicity ;; = (7,);;, the elements 4’ with i = 1,...,6 are:

104
1 =0, 9= 57 Cr (IX.14)
@ _ 116 © _ (104 _9%8 )
Y37 = 27 Cr Va7 = 27" 27d Cr - (IX.15)
0-%ce (R ll2,)
V57 3CF Yo7 27d ~ 57 u)Cr (IX.16)

The elements -y,.‘;’) withz =1,...,6 are:

1. 291
49 =3 L0 TN -5 (IX.17)

©_2, 581 ©) _ (1_1 _E.}_)
Yo =GN -—FH+3f n=6+(FN-T+)f (IX.18)
Te =N+ 5 —-3f s =—4~(GN-F%)f (IX.19)

Finally the 2 x 2 one-loop anomalous dimension matrix in the sector @7+, Qsc is given by (Grin-
stein et al., 1990)

7 =8Cr V=0 (IX.20)
8
%7 =—3Cr 9 =16Cr —4N

As we discussed above, the first correct calculation of the two-loop mixing between Qy, ..., Qg
and Q7., Qsc has been presented in (Ciuchini ez al., 1993b), (Ciuchini et al., 1994¢) and confirmed
subsequently in (Cella ez al., 1994a), (Cella et al., 1994b), (Misiak, 1995). In order to extend these
calculations beyond the leading order one would have to calculate 4{! (see (II1.92)) and O(as)
corrections to the initial conditions in (IX.12) and (IX.13). We summarize below the present status
of this NLO calculation. .

The 6 x 6 two-loop submatrix of 7{") involving the operators @, . . . , Qs is givenineg. (VI.26).
The two-loop generalization of (IX.20) has been calculated only last year (Misiak and Miinz, 1995).
It is given for both NDR and HV schemes as follows

548 56
+P = Cr (—-N —16Cp — gf )

9
7o =0 @X.21)
W _ o (404, 32 ﬁ)
787—CF( 27N+3CF+27f
m_ 28 12 214,., %65 13
W=ty Nty y -9V

The generalization of (IX.14)~«(IX.19) to next-to-leading order requires three loop calculations
which have not been done yet. The O(a) corrections to Cr.(Mw) and Cag(Mw) have been con-
sidered in (Adel and Yao, 1993).
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D. Results for the Wilson Coefficients

The leading order results for the Wilson Coefficients of all operators entering the effective
hamiltonian in (IX.1) can be written in an analytic form. They are (Buras ez al., 1994c)

e u) = gkjiﬂa‘ (i=1,...,6) (IX.22)
O () = nBCI) (M) + 5 (1 — n¥) CA(Mw) + O () é hin,  (IX.23)
C1 () = nB O M) + C (M) Y- Fin, (x.24)

1=1
with |
- "‘0%")”) aX.25)

and C%)(Mw) and C{2(Mw) given in (IX.12) and (IX.13), respectively. The numbers a;, k;z,
and h; are given in table XXVTI.

TABLE XXVIL
i 1 2 3 4 5 6 7 8
a; = = &l i 0.4086] —0.4230( —0.8994 0.1456
ky; 0 0 1 -1 0 0 0 0
ko 0 0 1 : 0 0 0 0
ki 0 0f -& 1 0.0510f —0.1403] —0.0113 0.0054
kai 0 of -4 -4 0.0984 0.1214 0.0156 0.0026
ks 0 0 0 0| -0.0397 0.0117[  —0.0025 0.0304
kei 0 0 0 0 0.0335 0.0239| -0.0462| -0.0112
kil  2.2996] —1.0880 -3 -&| 06494 —0.0380] -0.0185| —0.0057
h;|  0.8623 0 0 0| -0.9135 0.0873| —0.0571 0.0209
E. Numerical Analysis

The decay B — X, is the only decay in our review for which the complete NLO corrections
are not available. In presenting the numerical values for the Wilson coefficients a few remarks on
the choice of a; should therefore be made. In the leading order the leading order expression for a;
should be used. The question then is what to use for Aqcp in this expression. In other decays for
which NLO corrections were available this was not important because LO results were secondary.
We have therefore simply inserted our standard Ay values into the LO formula for o;. This proce-

dure gives of®)(Mz) = 0.126,0.136,0.144 for A% = 140 MeV, 225 MeV, 310 MeV, respectively.
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In view of these high values of o{*)(Mz) we will proceed here differently. Following (Buras et al.,
1994c) we will use o{5)(Mz) = 0.110,0.117, 0.124 as in our NLO calculations, but we will evolve
a(p) to u ~ O(my,) using the leading order expressions. In short, we will use

_ as(Mz)
) = T B 0t) 2r O ) (IX.26)

This discussion shows again the importance of the complete NLO calculation for this decay.
Before starting the discussion of the numerical values for the coefficients C;:"’f F and CQ 1et

us illustrate the relative numerical importance of the three terms in expression (IX.23) for C{9°//.
For instance, for m; = 170 GeV, = 5GeV and o{?(M3) = 0.117 one obtains

C (1) = 0.698 C(Mw) +0.086 C(Myw) — 0.156 CV(Mw)
= 0.698 (—0.193) + 0.086 (—0.096) — 0.156 = —0.299 . IX.27)

In the absence of QCD we would have Cﬁ?‘f Hp) = C}?,)(Mw) (in that case one has n = 1).

Therefore, the dominant term in the above expression (the one proportional to C{* (M )) is the
additive QCD correction that causes the enormous QCD enhancement of the b — s+ rate (Bertolini
et al., 1987), (Deshpande et al, 1987). It originates solely from the two-loop diagrams. On the
other hand, the multiplicative QCD correction (the factor 0.698 above) tends to suppress the rate,
but fails in the competition with the additive contributions.

In the case of Cég;)ef f a similar enhancement is observed

C (1) = 0.730 C(Mw) — 0.073 CO(Mw) ,
= 0.730 (—0.096) — 0.073 = —0.143. (IX.28)

In table XX VIII we give the values of C'/ and C2°// for different values of 4 and of®) (Mg).
To this end (IX.26) has been used. A strong p-dependence of both coefficients is observed. We will
return to this dependence in section XXIIL

TABLE XXVIIL Wilson coefficients C\o)'f and C{9°// for m, = 170 GeV and various values of
ags)(Mz) and p.

ol (Mz) = 0.110 PD(Mz) =017 | ol (Mz) = 0.124
T N N I 5 N8
2.5 ~0.323 0.153 0.3%4 ~0.157 ~0.346 20.162
5.0 -0.291 -0.140 0299 -0.143 -0.307 ~0.147
1.5 0275 -0.133 | -0.281 -0.136 0287 ~0.139
10.0 -0.263 0,129 -0.268 -0131 0274 ~0.133
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X. THE EFFECTIVE HAMILTONIAN FOR B — X,ete™
The effective hamiltonian for B — X,ete™ at scales g = O(my,) is given by

He(b — sete™) = Heg(b— s7) — X.1)

%V' i [Cov (1)Qav (1) + Croa(p)Qr0a(p)]

where again we have neglected the term proportionalto V), V,, and Heg(b — sv) is givenin (IX.1).

A. Operators

In addition to the operators relevant for B — X4, there are two new operators
Qov = (3b)v-a(Be)y Qo4 = (3b)v_a(€e€)a (X.2)

where V and A refer to 4, and v,s, respectively.
They originate in the Z°- and v-penguin diagrams with external &e of fig. 4 (f) and from the
corresponding box diagrams.

B. Wilson Coefficients

The coefficient C1o4(p) is given by

Yo(zt)

CIOA(MW) = %C‘IO(MW)a élO(MW) = -m

X.3)
with Yp(x) given in (X.8). Since Q104 does not renormalize under QCD, its coefficient does not
depend on ¢ &= O(my,). The only renormalization scale dependence in (X.3) enters through the
definition of the top quark mass. We will return to this issue in section XXIIIC.

The coefficient Coy () has been calculated over the last years with increasing precision by sev-
eral groups (Grinstein et al., 1989), (Grigjanis et al., 1989), (Cella et al., 1991), (Misiak, 1993)
culminating in two complete next-to-leading QCD calculations (Misiak, 1995), (Buras and Miinz,
1995) which agree with each other.

In order to calculate the coefficient Coy including next-to-leading order corrections we have
to perform in principle a two-loop renormalization group analysis for the full set of operators con-
tributing to (X.1). However, Q104 is not renormalized and the dimension five operators Q7., and
Qsc have no impact on Cov. Consequently only a set of seven operators, Q;,. .., Qs and Qgv,
has to be considered. This is precisely the case of the decay K1 — n%*e~ discussed in (Buras
et al., 1994a) and in section VIII, except for an appropriate change of quark flavours and the fact
that now g = O(my,) instéad of 4 = O(1 GeV). Since the NLO analysis of K, — 7%*e™ has
already been presented in section VIII we will only give the final result for Coy (). Because of the
one step evolution from p = Mw down to 4 = m;, without any thresholds in between it is possible
to find an analytic formula for Cov(u). Defining C by

Cov(k) = 5-Co(k) X4
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one finds (Buras and Miinz, 1995) in the NDR scheme
Yo(z:)

CyPR(n) = PYPR + =35 — 4Zo(2:) + PeBo(z:) (X.5)
sin® Ow
with
NDR ® 5 +1
P, = ———(—0.1875 U/
0 as(MW) ( + gp n )
8
+1.2468 + > n%[rNPR 1 5] X.6)
=1
8
Pg =0.1405 + Y _ gin™*'. XD
=1
The functions Yy(x) and Zg(z) are defined by
1
Yo(z) = Co(z) — Bo(z)  Zo(z) = Co(z) + 7 Do(2) 0.6))

with Bo(z), Co(z) and Do(z) given in (VIL.13), (VIL.14) and (VIL15), respectively. Eo(z) is given
in eq. (VL.15). The powers a; are the same as in table XXVII. The coefficients p;, rNPR, s, and
¢; can be found in table XXIX. Pg is O(10~%) and consequently the last term in (X.5) can be ne-
glected. We keep it however in our numerical analysis. These results agree with (Misiak, 1995).

TABLE XXIX.
i 1 2 3 4 5 6 7 8
| 0] 0, — 505" =z, 0.0433 0.1384 0.1648/  —0.0073
rNDR 0 0.8966] —0.1960] —0.2011 0.1328) -0.0292| —0.1858
si 0 0] -0.2009 -0.3579 0.0490|° -0.3616| —0.3554 0.0072
g 0 0 0 0 0.0318 0.0918  -0.2700 0.0059
rHV of ©0f -0.1193 0.1003] —0.0473 0.2323| -0.0133] —0.1799

In the HV scheme only the coefficients r; are changed. They are given on the last line of table

XXIX. Equivalently we can write

with

‘We note that

» 4 _
B = PR+ 62 (307 + €fY - ¢ - 3¢{7)

{0

NDR
HvV -

X.9)

(X.10)




8 8
> pi=0.1875, 3 g = —0.1405, X.11)

i=1 t—l

Z(r + 8;) = —1.2468 + — (1 + &), }: pi(a;i +1) = —-—. (X.12)

=1 i=1

In this way forn = 1 one finds Pg = 0, PYPR = 4/9 and PFV = 0 in accordance with the initial
conditions at u = Mw. Moreover, the second relanon in (X. 12) assures the correct large logarithm
in PP ie. 8/9 In(Mw/p).

The special feature of Cov (1) compared to the coefficients of the remaining operators contribut-
ing to B — X,ete™ is the large logarithm represented by 1/c; in P, in (X.6). Consequently the
renormalization group improved perturbation theory for Cgy has the structure O(1/a;) + O(1) +
O(as)+. . ., whereas the corresponding series for the remaining coefficients is O(1) + O(a) +. . ..
Therefore in order to find the next-to-leading O(1) term in the branching ratio for B — X,ete™,
the full two-loop renormalization group analysis has to be performed in order to find Coy, but the
coefficients of the remaining operators should be taken in the leading logarithmic approximation.
This is gratifying because the coefficient of the magnetic operator ()7, is known only in the leading
logarithmic approximation.

C. Numerical Results

In our numerical analysis we will use the two-loop expression for a, and the parameters col-
lected in the appendix. Our presentation follows closely the one given in (Buras and Miinz, 1995).

In table XXX we show the constant P, in (X.6) for different 4 and Ay, in the leading order
corresponding to the first term in (X.6) and for the NDR and HV schemes as given by (X.6) and
(X.9), respectively. In table XXXI we show the corresponding values for Cs(x). To this end we
setmy = 170 GeV.

TABLE XXX. The coefficient Py of 5‘9 for various values of Ag—;%- and u.

AD = 140Mev | AL = 225 Mev A8 =310 Mev
u[GeV][ LO| NDR] HV| 1LO| NDR| HV| LO| NDR| HV
25 2053 2928] 2797 1933| 2.846] 2759 1835 2.775| 2727
50 1852| 2625 2404 1788 25911 2395 1736 2562| 2388
15 1675| 23911 2127 1632 2373 2127 1597 2358 2128
100 | 1526] 2204] 1912 1494 2194 1917] 1469 2.185| 1921

We observe:

e The NLO corrections to F, enhance this constant relatively to the LO result by roughly 45%
and 35% in the NDR and HV schemes, respectively. This enhancement is analogous to the
one found in the case of K, — 7%te-.
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TABLE XXXI. Wilson coefficient C for my = 170 GeV and various values of A% and p.

| Ag% = 140 MeV AL — 295 Mey AL — 310 MeV
[ GeV] LO NDR| ~ HV LO NDR HV LO NDR HV
25 2053 4493 4361] 1.933] 4410] 4323 1835 43381 4290
50 1.852| 4.191) 3970 1788 4.156] 3961 1.736] 4.127] 3954
15 1.675| 3.958| 3.694] 1.632] 3940| 3694 15970 3924 3605
10.0 1.526| 3772 3.480" 1494| 3761 3485] 1469 3752 3488

In calculating F, in the LO we have used a,(z) at one-loop level. Had we used the two-loop
expression for a;(x) we would find for u = 5GeV and Agls = 225MeV the value PL° ~
1.98. Consequently the NLO corrections would have smaller impact. Ref. (Grinstein et al.,
1989) including the next-to-leading term 4/9 would find P, values roughly 20% smaller than
PNDR given in table XXX. |

It is tempting to compare F in table XXX with that found in the absence of QCD corrections.
In the limit a, — 0 we find P)'°R = 8/9 In(Mw/) + 4/9 and PFY = 8/9 In(My/p)
which for 4 = 5 GeV give PYPR = 2.91 and PHV = 2.46. Comparing these values with
table XXX we conclude that the QCD suppression of F, present in the leading order approx-
imation is considerably weakened in the NDR treatment of 45 after the inclusion of NLO
corrections. It is essentially removed for z > 5 GeV in the HV scheme.

The NLO corrections to Cy which include also the mq-dependent contributions are large as
seen in table XXXI. The results in HV and NDR schemes are by more than a factor of two
larger than the leading order result Cs = Pf© which consistently should not include m,-
contributions. This demonstrates very clearly the necessity of NLO calculations which allow
a consistent inclusion of the important mq~-contributions. For the same set of parameters the
authors of (Grinstein et al., 1989) would find Cj to be smaller than CVPR by 10-15%.

The Apz dependence of Cs is rather weak. On the other hand its ¢ dependence is sizable
(~ 15% in the range of z considered) although smaller than in the case of the coefficients
C7, and Csg given in table XXVIII. We also find that the m, dependence of Cs is rather
weak. Varying m, between 150 GeV and 190 GeV changes C; by at most 10%. This weak
m, dependence of C originates in the partial cancelation of m, dependences between Yo (z)
and Zo(z;) in (X.5) as already seen in the case of Kz — n%*e™ in fig. 8. Finally, the dif-
ference between C)'PF and CJ7V is small and amounts to roughly 5%.

The dominant rn.-dependence in this decay originates in the m, dependence of (:’m(Mw). In
fact, as can be seen in section VIII Cyo( Mw) = 27y74/a with y7 4 presentin K, — 7%te-.
The m, dependence of y7, is shown in fig. 8.
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X1. EFFECTIVE HAMILTONIANS FOR RARE K- AND B-DECAYS
A. Overview

In the present section we will summarize the effective hamiltonians valid at next-to-leading log-
arithmic accuracy in QCD, which describe the semileptonic rare Flavour Changing Neutral Current
(FCNC) transitions K+ — «*vw, (K — ptp~)sp, Kt — #%9, B — X, qvv and B — It1-.
These decay modes all are very similar in their structure and it is natural to discuss them together.
On the other hand they differ from the decays K — #x, K — wete”, B — X,yand B — X,ete~
discussed in previous sections. Before giving the detailed formulae, it will be useful to recall the
most important general features of this class of processes first. In addition, characteristic differ-
ences between the specific modes will also become apparent from our presentation.

e Within the Standard Model all the decays listed above are loop-induced semileptonic FCNC
processes determined by Z°-penguin and box diagrams (fig. 2 (d) and (¢)).
In particular, a distinguishing feature of the present class of decays is the absence of a photon
penguin contribution. For the decay modes with neutrinos in the final state this is obvious,
since the photon does not couple to neutrinos. For the mesons decaying into a charged lepton
pair the photon penguin amplitude vanishes due to vector current conservation.
An important consequence is, that the decays considered here exhibit a hard GIM suppres-
sion, quadratic in (small) internal quark masses, which is a property of the Z°-penguin and
box graphs. By contrast, the GIM suppression resulting from photon penguin contributions
is logarithmic. Decays where the photon penguin contributes are for example K7 — n%te~
and B — X,e*e~. The differences in the basic structure of these processes, resulting from
the different pattern of GIM suppression, are the reason why we have discussed K; —
n%*e~ and B — X,ete™ in a separate context.

e The investigation of low energy rare decay processes allows to probe, albeit indirectly, high
energy scales of the theory. Of particular interest is the sensitivity to properties of the top
quark, its mass m; and its CKM couplings V;, and V},4.

e A particular and very important advantage of the processes under discussion is, that theoret-
ically clean predictions can be obtained. The reasons for this are:

— The low energy hadronic matrix elements required are just the matrix elements of quark
currents between hadron states, which can be extracted from the leading (non-rare)
semileptonic decays. Other long-distance contributions are negligibly small.

An exception is the decay K — p*u~ receiving important contributions from the
two-photon intermediate state, which are difficult to calculate reliably. However, the
short-distance part (K, — p*p~)sp alone, which we shall discuss here, is on the same
footing as the other modes. The essential difficulty for phenomenological applications
then is to separate the short-distance from the long-distance piece in the measured rate.

-~ According to the comments just made, the processes at hand are short-distance
processes, calculable within a perturbative framework, possibly including renormaliza-
tion group improvement. The necessary separation of the short-distance dynamics from
the low energy matrix elements is achieved by means of an operator product expansion.
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The scale ambiguities, inherent to perturbative QCD, essentially constitute the only the-
oretical uncertainties present in the analysis. These uncertainties are well under control
as they may be systematically reduced through calculations beyond leading order.

¢ The points made above emphasize, that the short-distance dominated loop-induced FCNC
decays provide highly promising possibilities to investigate flavourdynamics at the quantum
level. However, the very fact that these processes are based on higher order electroweak ef-
fects, which makes them interesting theoretically, at the same time implies, that the branching
ratios will be very small and not easy to access experimentally.

The effective hamiltonians governing the decays K+ — »+wvw, (K, — ptp~)sp, K — 7%,
B — X,qvv, B — ¥, resulting from the Z%-penguin and box-type contributions, can all be
written down in the following general form

Gr o

Hets = V2 27 sin? O

(AcF(zc) + AeF(z¢)) (ﬁn')v-A(ﬁ‘)V-A XL1D
where n, n’ denote down-type quarks (n,n’ = d,s,bbutn # n’) and r leptons, r = [,y
(! = e, p, 7). The X; are products of CKM elements, in the general case \; = V;:V. ,. Further-
more z; = m?/ME,.

The functions F'(x;) describe the dependence on the internal up-type quark masses m; (and on lep-
ton masses if necessary) and are understood to include QCD corrections. They are increasing func-
tions of the quark masses, a property that is particularly important for the top contribution.
Crucial features of the structure of the hamiltonian are furthermore determined by the hard GIM
suppression characteristic for this class of decays. First we note that the dependence of the hamil-
tonian on the internal quarks comes in the form

> AF(e) = A(F(z) = F(z) + M(F(e) = F(z) *X12)

i=u,c,t

where we have used the unitarity of the CKM matrix. Now, hard GIM suppression means that for
z < 1 F behaves quadratically in the quark masses. In the present case we have

F(z)~zlnz . for zk1 (X1.3)

The first important consequence is, that F'(x,) ~ 0 can be neglected. The hamiltonian acquires the
form anticipated in (XL1). It effectively consists of a charm and a top contribution. Therefore the
relevant energy scales are Mw or m; and, at least, m., which are large compared to Agcp. This
fact indicates the short-distance nature of these processes.
A second consequence of (X1.3) is that F'(z.)/F(z:) = O(1072) < 1. Together with the weight-
ing introduced by the CKM factors this relation determines the relative importance of the charm
versus the top contributionin (XI.1). As seen in table XXXII a simple pattern emerges if one writes
down the order of magnitude of A, A, in terms of powers of the Wolfenstein expansion parameter
A

For the CP-violating decay K — n°v and the B-decays the CKM factors ). and ), have the
same order of magnitude. In view of F'(z.) < F(z;) the charm contribution is therefore negligible
and these decays are entirely determined by the top sector.
For K* — #*yv and (K — p*p~)sp on the other hand ), is suppressed compared to ). by
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TABLE XXXII. Order of magnitude of CKM parameters relevant for the various decays, expressed in
powers of the Wolfenstein parameter A = 0.22. In the case of K7, — r?uﬁ, which is CP-violating, only the
imaginary parts of A.; contribute.

e ettt oreremmaesme e e ——

Kt - atyp K; — %0 ; B — X,vb B — Xavv

" (Kp — p*p~)sp B, = Itl- By — It~
Ac ~A (ImA, ~ A% ~ A2 ~ A3
At ~ A8 (ImA; ~ A5) ~ A2 ~ A3

a factor of order O(A*) ~ O(10~2), which roughly compensates for the ©(10°) enhancement of
F(z:) over F(z.). Hence the top and charm contributions have the same order of magnitude and
must both be taken into account. _

In principle, as far as flavordynamics is concerned, the top and the charm sector have the same
structure. The only difference comes from the quark masses. However, this difference has striking
implications for the detailed formalism necessary to treat the strong interaction corrections. We
have m;/Mw = O(1) and m./Mw < 1. Correspondingly the QCD coupling o is also somewhat
smaller at m, than at m.. For the charm contribution this implies that one can work to lowest order
in the mass ratio m./Mw . On the other hand, for the same reason, logarithmic QCD corrections
~ asln My /m, are large and have to be resummed to all orders in perturbation theory by renor-
malization group methods. On the contrary, no large logarithms are present in the top sector, so that
ordinary perturbation theory is applicable, but all orders in m,/My have to be taken into account.
In fact we see that from the point of view of QCD corrections the charm and top contributions are
quite “complementary” to each other, representing in a sense opposite limiting cases.

We are now ready to list the explicit expressions for the effective hamiltonians.

B. The Decay K+ — ntvp
1. The Next-to-Leading Order Effective Hamiltonian

The final result for the effective hamiltonian inducing K+ — 7tv# can be written as

Gr a

ﬁmzz (VaVeaXiop + ViV X (20)) (5d)v-a(Bm)v-a.  (X14)

=€, T

Hes =

The index I=e, p, T denotes the lepton flavor. The dependence on the charged lepton mass, resulting
from the box-graph, is negligible for the top contribution. In the charm sector this is the case only
for the electron and the muon, but not for the 7-lepton.

- The function X (z), relevant for the top part, reads to () and to all orders in z = m? [/ ME,
X(z) = Xo(z) + %:Xl(x) (XL5)

with (Inami and Lim, 1981)
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T 2 +z 3z-—-6
Xo(e) = § |-1E2 4 E ] xL6)
and the QCD correction (Buchalla and Buras, 1993a)
, 23z + 522 ~ 4z - 112 + 23 + ¢
Xi(z) = - 0—zF T (1-1:)3 Iz
8z +4r?+2% -2 , 4z
2(1 — $)3 ln T — ( )2 L2(1 )
0Xo(z
+ 8z 60:15 ) Inz, XL7
where z, = p?/ME, with g = O(m,) and
z Int
Ly(l —z) = /1 dt (XL8)

The p-dependence in the last term in (XI.7) cancels to the order considered the pu-dependence of

the leading term Xo(z(g)).
The expression corresponding to X () in the charm sector is the function X}, . It results from the

RG calculation in NLLA and is given as follows:
Xiy = Cnr —4By? (XL9)

Cnr and B( /2) correspond to the Z°-penguin and the box-type contribution, respectively. One has
(Buchalla and Buras, 1994a)

a(m) (48 2% 696 ) 4r 15212,
COnp = =35 K< [ TR d K- — R ) | ST Tem (U K

“ 1176244 . 2302, 3520184
+(1 h‘mz)(IGK“ 8K-)— o135 K+ et T Tamizs K

(S, s o) oo
where
":fjfj)”) .= % KL1D)
K,=K% K_=K% Kp=K% (XL.12)
B = XK s - k) (s + 20 - k)
RN N
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Here K3 = K~Y%, m = m,, r = m}/m?(1) and m, is the lepton mass. We will at times omit the
index I of X4 1. In (X1.10) — (X1.13) the scale is p = O(m.). The two-loop expression for as(y)
is given in (II1.19). Again ~ to the considered order — the explicit In(4?/m?) terms in (XI.10) and
(XI.13) cancel the p-dependence of the leading terms.

These formulae give the complete next-to-leading effective hamiltonian for K+ — n*tvi. The
leading order expressions (Novikov ez al., 1977), (Ellis and Hagelin, 1983), (Dib et al., 1991),
(Buchalla et al., 1991) are obtained by replacing X (z:) — Xo(z:) and Xk, — Xy with Xz
found from (XI.10) and (XI.13) by retaining there only the 1/a,(z) terms. In LLA the one-loop
expression should be used for o;. This amounts to setting 3, = 0 in (IIL.19). The numerical values
for Xy for p = m and several values of A(") and m.(m,) are given in table XXXIII. The p
dependence will be discussed in part three.

TABLE XXXIII. The functions X§;; and X7;; for various Aw and m..

Xfp /107 X5 /1074 |

AL [MeV] \ mc [GeV] 1.25 1.30 1.35 1.25 1.30 1.35
215 10.55 11.40 1228 7.16 7.86 8.59

325 9.71 10.55 1141 6.32 7.01 172

435 8.75 9.59 1045 5.37 6.05 6.76

2. Z-Penguin and Box Contribution in the Top Sector
For completeness we give here in addition the expressions for the Z°-penguin function C(z)
and the box function B(xz, 1/2) separately, which contribute to X (z) in (XI.5) according to
X(z) = C(z) - 4 B(z,1/2) (X1.19)

The functions C and B depend on the gauge of the W-boson. In ’t Hooft-Feynman-gauge (¢ = 1)
they read

C(z) = Co(z) + —Cl(z) (XL15)
where (Inami and Lim, 1981)
Colz) = 2 [‘1" =+ g hne (XL16)

and (Buchalla and Buras, 1993b)
‘ 29z + 7z2 + 42> =z — 3522 — 323 — 3zt

Cile) = 3(1 x)z - 3(1— a:)3 Inz
20z% — 23 4+ z* Az + z°
TR —aF l z+ = )2L2(1 z)
+8z—a-g;—a(:-a-:l Inz, X1.17)
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Similarly

B(z,1/2) = Bo(z) + %Bl(:c, 1/2) (XL18)
with the one-loop function (Inami and Lim, 1981)
1{ =z T
By(z) = 1 [1 — + =2y In a:] (X1.19)
and (Buchalla and Buras, 1993a)
13z + 322 z — 1722 z+322 , 2z
By(z,1/2) = 31— o) - 31 —2) Inz — mlﬂ T+ (l—_z—)z-Lz(l —z)
+8z a%’z(z) Inz, (X1.20)

The gauge dependence of C and B is canceled in the combination X (XI.14). The second argument
in B(z,1/2) indicates the weak isospin of the external leptons (the neutrinos in this case).

3. The Z-Penguin Contribution in the Charm Sector

In the next two paragraphs we would like to summarize the essential ingredients of the RG cal-
culation for the charm sector leading to (XI1.10) and (XI.13). In particular we present the operators
involved, the initial values for the RG evolution of the Wilson coefficients and the required two-
loop anomalous dimensions. We will first treat the Z 9-penguin contribution (XI.10) and discuss
the box part (XI.13) subsequently. Further details can be found in (Buchalla and Buras, 1994a).

At renormalization scales of the order O(My) and after integrating out the W- and Z-bosons
the effective hamiltonian responsible for the Z°-penguin contribution of the charm sector is given
by

G a 72
Hg?}‘c = 7;21‘. Sinz GW Ac 2M‘?V ('U+O+ + v.0_ + 'U3Q) (XI.ZI)

where the operator basis is

O = —i / &'z T ((Gic;)v-a(Eidi)v-a) (2) ((Erce)v-a(wv)v-a)(0) —{c—>u} (X122

Oy =—i / @'z T ((5ici)v-a(€idi)v-a) () ((@rer)v-a(@v)v-a) (0) —{c—u} (X123)

m?,_ B
Q= g_z(Sd)V—A(VV)V-A (X1.25)
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The Wilson coefficients at 4 = My are (77 = (v4,v_, v3))

F(Mw) = 79 + %ﬂﬁ(" (X1.26)
797 = (1,1,0) (X1.27)
W7 = (B,, B_, Bs) (X1.28)
where in the NDR scheme (M5, anticommuting +s in D # 4 dimensions)
By = ¢11N—21T-,l B; =16 (X1.29)

with N denoting the number of colors.
In the basis of operators {0, O_, @} the matrix of anomalous dimensions has the form

Y+ 0 Y3
y=10 1 13 (XL30)
0 0 733

with the perturbative expansion

v(as) = —7‘°) + ( I 1:) ~® | (XL31)
The nonvanishing entries of the anomalous dimension matrix read

7:5(:;) = 2(Ymo — Bo) 733 = 2(Ym1 - B)

2} = £653 ) =2 (-21 £ T F BN £ §F) (XL32)
) = +8(N £1) 24 = Cr(£88N —48)

where Yo, Ym1» Bo, 1 can be found in (II1.17) and (II1.16), respectively. The expressions (%)
refer to the NDR scheme, consistent with the scheme chosen for #(Mw ). Following the general
method for the solution of the RG equations explained in section III F 1, we can compute the Wilson
coefficients ¥'(y) at a scale 4 = O(m,). It is convenient to work in an effective four-flavor theory
(f = 4) in the full range of the RG evolution from My down to z. The possible inclusion of a
b-quark threshold would change the result for Xy, by not more than 0.1% and can therefore be
safely neglected.

After integrating out the charm quark at the scale ¢ = O(m.), the Z°-penguin part of the charm
contribution to the effective hamiltonian becomes

G a , '
Hefhe = ‘\/—gmkc Cni (3d)v-a(?v)v-a (XL33)

_z 1, _ _"’_ 0 (©)
Oni = =5 2(1 In 5 | (43K, +4¢ K_)+ =)
The explicit expression for vs(p) as obtained from solving the RG equation is given in (Buchalla
and Buras, 1994a). Inserting this expression in (X1.34), expressing the charm quark mass m(y) in
terms of m(m) and setting N = 3, f = 4, we finally end up with (XI.10).

Cow)] . s
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4. The Box Contribution in the Charm Sector
The RG analysis for the box contribution proceeds in analogy to the Z°-penguin case. The box

part is even somewhat simpler. When the W boson is integrated out, the hamiltonian based on the
box dlagram reads

Gr a w2
Hefte = RV Do (—M_vzv) (c10 + c2Q) (X1.35)

0=—i / d'z T ((5)v-a(#)v-4) (=) (W)v-a(@d)v-4) (0) — {c — u} (X1.36)
with Q alread given in (XI.25). The Wilson coefficients at My in the NDR scheme are given by
as(MW)
47

& (Mw) = (er(Mw), c2(Mw)) = (1,0) + (0,B:) B,=-36 (X1.37)

In the operator basis {O, @} the anomalous dimension matrix has the form

_ {072
¥ = (0 2z ) (X1.38)
When expanded as
= %0 (“8)2 M
1= + i) 7 (X1.39)

the non-zero elements read (NDR scheme for (1))

79 = 2(Ymo — fo) 72 = 2(4m1 — B1)

40
© _ (1) (XL40)
Nz = =32 Y2 =80CF
Finally, after integrating out charm at = O(m,)
G

Mo =~ sraras e BAE Gy -amn)y-a (X1L41)

a2 _ %) u_z 5 rlor) | 4r
By = —— [16 (1 it )+ as(ﬂ)bz(p) (X1.42)

(X1.41) is written here for one neutrino flavor. The index (1/2) refers to the weak isospin of the
final state leptons. From this result (XI.13) can be derived (N = 3, f = 4). The explicit expression
for cz(2) can be found in (Buchalla and Buras, 1994a).

Although Wilson coefficients and anomalous dimensions depend on the renormalization
scheme, the final results in (XI.10) and (XI.13) are free from this dependence. The argument pro-
ceeds as in the general case presented in section IITF 3.
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5. Discussion

It is instructive to consider furthermore the function X (z) in the limiting case of small masses
(z < 1), keeping only terms linear in z and including O(e;) corrections:

23 + 2xn? )
—_—

3 (X1.43)

. 3 1 oy 2
X(z) = —Zwlnz — 72 + ym (—2zln z—Tzlnz —
This simple and transparent expression can be regarded as a common limiting case of the top- and
the charm contribution: On the one hand it follows from keeping only terms linear in z in the top
function (XL.5). On the other hand it can be obtained (up to the last term in (X1.43) which is O(a,z)
and goes beyond the NLLA) from expanding Xy, (X1.9) (for m; = 0) to first order in a,.

This exercise provides one with a nice cross-check between the rather different looking functions
Xz and X (=) of the charm- and the top sector. Viewed the other way around, (X1.43) may serve
. to further illustrate the complementary character of the calculations necessary in each of the two
sectors. X () is the generalization of (XI.43) that includes all the higher order mass terms. Xy
on the other hand generalizes (XI.43) to include all the leading logarithmic, O(za? In"*' z), as
well as the next-to-leading logarithmic O(za? In" z) corrections, to all orders n in ¢,. Of these
only the terms with n = 0 and » = 1 are contained in (X1.43).

Applying the approximation (XI.43) to the charm part directly, one can furthermore convince one-
self, that the O( ;) correction term would amount to more than 50% of the lowest order result. This
observation illustrates very clearly the necessity to go beyond straightforward perturbation theory
and to employ the RG summation technique. The importance of going still to next-to-leading or-
der accuracy in the RG calculation is suggested by the relatively large size of the O(zo, In z) term.
Note also, that formally the non-logarithmic mass term (—z/4) in (X1.43) is a next-to-leading order
effect in the framework of RG improved perturbation theory. The same is true for the dependence
on the charged lepton mass, which can be taken into account consistently only in NLLA.

A crucial issue is the residual dependence of the functions Xz and X (z;) on the corresponding
renormalization scales g, and p,. Since the quark current operator in (XI.1) has no anomalous di-
mension, its matrix elements do not depend on the renormalization scale. The same must then hold
for the coefficient functions Xz and X (z.). However, in practice this is only true up to terms of
the neglected order in perturbation theory. The resulting scale ambiguities represent the theoretical
uncertainties present in the calculation of the short-distance dominated processes under discussion.
. They can be systematically reduced by going to higher orders in the analysis. In table XXXIV we
compare the order of the residual scale dependence in LLA and in NLLA for the top- and the charm
contribution.

TABLE XXXIV. Residual scale ambiguity in the top and charm sector in LLA and NLLA.

=Top Sector (u; = O(m,)) - =Charm Sector (. = O(m,))
LLA 0(033) o(zc)
NLLA _{)(ai) O(asz.)

For numerical investigations we shall use 1GeV < p. < 3GeV for the renormalization
scale p. = O(m.) in the charm sector. Similarly, in the case of the top contribution we choose
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pe = O(m;) in the range 100 GeV < g < 300 GeV for m; = 170 GeV. Then, comparing LLA
and NLLA, the theoretical uncertainty due to scale ambiguity is typically reduced from ©(10%) to

O(1%) in the top sector and from more than 50% to less than 20% in the charm sector. Here the
quoted percentages refer to the total variation (Xinoz — Xmin )/ Xcentrat Of the functions X (z;) or
Xy within the range of scales considered. Phenomenological implications of this gain in accuracy
will be discussed in section XXIV. -

C. The Decay (K, — ptu~)sp
1. The Next-to-Leading Order Effective Hamiltonian
The analysis of (K, — p*u~)sp proceeds in essentially the same manner as for K+ — r+vi.

The only difference is introduced through the reversed lepton line in the box contribution. In par-
ticular there is no lepton mass dependence, since only massless neutrinos appear as virtual leptons

in the box diagram.
The effective hamiltonian in next-to-leading order can be written as follows:
Hopp=—CF & (V:VuYui + ViVY (@ ) (3d)v—a(fip)v—-a + b (XL44
eff = V2 2nsin2 O * ¢ cdYNL ts VidY (Tt v-AlBpt)v-a .C. 44)
The function Y (z) is given by
Y(2) = Yo(z) + Y (2) (XL45)
where (Inami and Lim, 1981)
z|4d—2 3z :
Yo(:c)—g[l_z+(l_$)2 lna:] (X1.46)

and (Buchalla and Buras, 1993a)
4z + 1622 +42° 4z — 1022 — 23 — 4

Yi(z) = 31-z)2 (1-z)p Inz
2z — 14z + 23 -zt 2z + 23
TE In‘z + i )2L2(1 z)
+ 8:02?—:?-)- Inz, (X1.47)

The RG expression Yy, representing the charm contribution reads
Ynrp =Cni — B,(V'I} /2) (X1.48)
where Cy is the Z%-penguin part given in (XI.10) and Bz(v_zy ?) is the box contribution in the charm

sector, relevant for the case of final state leptons with weak isospin T3 = —1/2. One has (Buchalla
and Buras, 1994a)
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BGY = "'"(1") [3(1-1{2)( 4(" + 115;27152(1—1{;1))

p? 329 15212 30581

m 12 T 625 2t Tho0

——KK 2] (X1.49)
Note the sirﬂple relation toB (1/ 2 in (X1.13) (forr = 0)

- \m
B - By = Xk, —1) (XL50)

More details on the RG analysis in this case may be found in (Buchalla and Buras, 1994a).

TABLE XXXV. The function Yy, for various Aw and m..

| Ynr /1074 |

Aﬁ% [MeV] \ m [GeV] 1.25 1.30 1.35
215 3.09 331 3.53

325 3.27 3.50 3.73

435 3.40 3.64 3.89

2. Discussion

The gauge independent function Y can be decomposed into the Z°-penguin- and the box con-
tribution

Y(z) = C(z) — B(z,-1/2) (XL51)

In Feynman-gauge for the W boson C(z) is given in (XL.15). In the same gauge the box contribu-
tion reads

B(z,—1/2) = Bo(z) + 43;31(:1:, -1/2) , (XL52)
with By(z) from (XI.19) and
25z 9:1: 11z + 5z2 z+3z% 322 2
+8z aB;f”) lnz, (XL53)

The equality B(z,1/2) = B(z, —1/2) at the one-loop level isa particular property of the Feynman-
gauge. It is violated by O(a;) corrections. There is however a very simple relation between
Bl(m, 1/2) and B1($, —1/2)

By(z, -—1./2) — By(z,1/2) = 16 By(z) (X1.54)
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| We add a few comments on the most important differences between Yy, and Xyy.
Expanding Y to first order in o, we find

Yvo = lz + s’z + O(asz) (X1.55)
2 4z A

In contrast to Xy both the terms of O(zIn z) and of O(a,zInz) are absent in Y. The can-
cellation of the leading O(z In z) terms between Z°-penguin and box contribution implies that the
non-leading O(z) term plays a much bigger role for Yxr.. A second consequence are the increased
importance of QCD effects and the related larger sensitivity to g, resulting in a bigger theoreti-
cal uncertainty for Yy, than it happened to be the case for Xyz. In addition, whereas X (z.) is
suppressed by ~ 30% through QCD effects, the zeroth order expression for Y is enhanced by as
much as a factor of about 2.5. Nevertheless, QCD corrections included, X, still exceeds Yni by
a factor of four, so that Yy, is less important for (K; — u*p~)sp than Xy, is for K+ — v,
Although the impact of the bigger uncertainties in Yivz, is thus somewhat reduced in the complete
result for (K — p*p~)sp, the remaining theoretical uncertainty due to scale ambiguity is still
larger than for K* — w*v. It will be investigated numerically in section XXV. The numerical
values for Yn, for g = m. and several values of Ag—)s and m.(m) are given in table XXXV.

D. The Decays K1, — 7%v9, B — X, qvp and B, g — I*+1~

After the above discussion it is easy to write down also the effective hamiltonians for K’ L —
7%, B — X, qvv and B,y — 111, As we have seen, only the top contribution is important in
these cases and we can write

Hoy=%E % oy Xz )(Hn Y —a(70)v_a + h.c (XL56)
eff = 2 o1 sin2 @W tn¥tn t V-4 V-4 -C. .
for the decays K1 — 7%, B — X,vv and B — Xyvp, with (An’) = (3d), (bs), (bd) respec-
tively. Similarly

_Gr @
V2 27 sin’ Oy

for B, — I*I~ and By — I*1~, with (@n') = (bs), (bd). The functions X, Y are given in (XL5)
and (XL.45).

Vi Vi Y (@) (7n)v_a(Dv—a + hoc. (XL57)

Hess =
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XII. THE EFFECTIVE HAMILTONIAN FOR K° - K° MIXING
A. General Structure

The following chapter is devoted to the presentation of the effective hamiltonian for AS =
2 transitions. This hamiltonian incorporates the short-distance physics contributing to K° — K°
mixing and is essential for the description of CP violation in the neutral K-meson system.
Being a FCNC process, K °— K mixing can only occur at the loop level within the Standard Model.
To lowest order it is induced through the box diagrams in fig. 4 (¢). Including QCD corrections the
effective low energy hamiltonian, to be derived from these diagrams, can be written as follows
(i = ViViy)

- G%
HOT = Taea Miv [NimSo(ze) + XinaSo(z:) + 2AcAsSo(ze, )] X

x [ees ()] ~2/° [1 + %ﬁ‘lJa] Q+ h.c (XIL1)

This equation, together with (XI1.31), (XIL10), (XIL.68) for 71, 5, and 73 respectively, represents
the complete next-to-leading order short-distance hamiltonian for AS = 2 transitions. (XII.1) is
valid for scales 4 below the charm threshold y. = O(n.). In this case H25~2 consists of a single
four-quark operator

Q= (Ed)v_A(.‘s'd)v-A - (X1IL2)

which is multiplied by the corresponding coefficient function. It is useful and customary to decom-
pose this function into a charm-, a top- and a mixed charm-top contribution, as displayed in (XIL1).
This form is obtained upon eliminating A, by means of CKM matrix unitarity and setting z,, = 0.
The basic electroweak loop contributions without QCD correction are then expressed through the
functions Sp, which read (Inami and Lim, 1981)

So(mc) =z, (X11.3)
_ 4z, —-1Uzl+3}  3zilnz,
Sol®) = =i —eyr  ~ Ai—zep (XIL4)
2
So(Te, 72) = 7 |In Zt — —3% 3z; Ina; (XIL5)

z. 41—z 4(1- T:)?

Here again we keep only linear terms in z. < 1, but of course all orders in z;.

Short-distance QCD effects are described through the correction factors 1, 772, 3 and the explic-
itly a,-dependent terms in (XII.1). The discussion of these corrections will be the subject of the
following sections.

Without QCD, i.e. in the limit ¢, — 0, one has 7;[a)~/° — 1. In general, the complete coeffi-
cient function multiplying Q in (XII.1) contains the QCD effects at high energies pw = O(My),
pe = O(my) together with their RG evolution down to the scale 4 = O(1GeV). A common
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ingredient for the three different contributions in (XIL1) is the anomalous dimension of the op-
erator Q and the corresponding evolution of its coefficient. The Fierz symmetric flavor struc-
ture of () implies that it acquires the same anomalous dimension as the Fierz symmetric operator
Q+ = (Q2 + Q1)/2 (see section V), explicitly

) (‘”_)2 1) -
=T &) (XIL6)
S0 gV =1 (1)_%1[_21+%_9N+ f] (NDR) (XIL7)

The resulting evolution of the coefficient of () between general scales 4 and p then reads

- ds
Cou) = |1+ el aelin)y | (2l g, xaLs)
where
1@ d . A®

Y=o TRA T )
depend on the number of active flavors f. At the lower end of the evolution f = 3. The terms in
(X11.8) depending on o, () are factored out explicitly in (XIL.1) to exhibit the z-dependence of the
coefficient function in the f = 3 regime, which has to cancel the corresponding p-dependence of
the hadronic matrix element of  between meson states in physical applications. A similar com-
ment applies to the scheme dependence entering J in (XI1.9) through the scheme dependence of
~(), Splitting off the u-dependence in (XIL.1) is of course not unique. The way it is done belongs
to the definition of the 7;-factors. _
Let us finally compare the structure of (XII.1) with the effective hamiltonians for rare decays dis-
cussed in chapter XI. Common features of both types of processes include:

¢ Both are generated to lowest order via electroweak FCNC loop transitions involving heavy
quarks.

o They contain a charm and a top contribution.
o The hamiltonian consists of a single dimension-6 operator.

Besides these similarities, however, there are also a few important differences, which have their
root in the fact that the AS = 2 box diagrams involve two distinct quark lines as compared to the
single quark line in semileptonic rare decays:

¢ The CKM parameter combinations A; appear quadratically in (XTI.1) instead of only linearly.

e (XII1) in addition receives contributions from a mixed top-charm sector. This part in fact
turns out to have the most involved structure of the three contributions.

o The operator @ has a non-vanishing QCD anomalous dimension, resulting in a non-trivial
scale and scheme dependence of the Wilson coefficient.
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o The hadronic matrix element of the four-quark operator @ is a considerably more compli-
cated object than the quark current matrix clements in semileptonic rare decays.

We will now present the complete next-to-leading order results for 7;, 7, and 73 in turn and dis-
cuss their most important theoretical features. The first leading log calculations of 7, have been
presented in (Vainshtein et al., 1976), (Novikov et al., 1977) and of 7, in (Vysotskij, 1980). The
complete leading log calculation inlcuding also 73 has been first performed in (Gilman and Wise,
1983). Leading order calculations in the presence of a heavy top can be found in (Kaufman ez al,,
1989), (Flynn, 1990), (Datta et al., 1990) and (Datta et al., 1995).

B. The Top Contribution — 7,

The basic structure of the top quark sector in #Z;5~? is easy to understand. First the top quark
is integrated out, along with the W/, at a matching scale p; = O(m,), leaving a m,-dependent coef-
ficient normalized at ., multiplying the single operator Q. Subsequently the coefficient is simply
renormalized down to scales 4 = O(1 GeV) by means of (XI1.8). Including NLO corrections the
resulting QCD factor 7, from (XII.1) may be written (in M) as follows (Buras et al., 1990)

= [ae(m )7 [as(mb)]6/25 [as(ﬂt) o/ (XIL10)

as(m,) as(my)

: [1 + “‘(m") (Js—J5) + ""(m") 2 (s — i)

as(p) [ Si(ze) ﬂ B dln 50(‘“)
+ 4r (So(xg) + Bt JS + 2 ln M2 + Ymo 31 ]-n M2
where Ym0 = 6CF,
N -1 NZ-1
By =5—5— +3— (NDR) . (XI.11)
and
Si(e) = T $9(z) + S‘”(w) (XIL12)
&), _ _ 64 —68z —17z% +11z° = 32 — 68z + 322° — 282> + 3o*
51 (z) 11 =) + 20— 2) Inz
2?4 — Tz + T2% — 2-‘53) 2z(4 — Tz — 2% + %)
+ o) z+ oy Ly(1 —2)
16 :
+ — (— - L2(1 - m)) (XH13)
)y _ _ =(4—39z +1682% +112%)  32(4 — 24z + 362% + T2° + z%)
S1(x) = — - TTRPE 20— 2)t Inz
32%(134+ 4z +2%) . , 32°(5+4 1)
+ 2(1 — z)* Inz — A=2¢ Ly(1 - z) (XI1.14)

103



where the dilogarithm L, is defined in (XL.8).

In the expression (XII.10) we have taken into account the heavy quark thresholds at 2 and m,
in the RG evolution. As it must be, the dependence on the threshold scales is of the neglected order
O(e3). In fact the threshold ambiguity is here of O(a?) also in LLA since 7(® is flavor indepen-
dent. It turns out that this dependence is also very weak numerically and we therefore set fo = m,
and pp, = my. Furthermore it is 2 good approximation to neglect the b-threshold completely us-
ing an effective 4-flavor theory from u,; down to m.. This can be achieved by simply substituting
my — g in (XIL.10).

The leading order expression for 5 is given by the first three factors on the rh.s. of (XIL 10). The
fourth factor represents the next-to-leading order generalization. Let us discuss now the most in-
teresting and important features of the NLO result for 5, exhibited in (XII. 10).

e 7 is proportional to the initial value of the Wilson coefficient function at bt = My
5(z) = So(2) + 3= (51(2) + BeSo(a)) (XIL15)

which has to be extracted from the box graphs in fig. 4 (¢) and the corresponding gluon cor-
rection diagrams after a proper factorization of long- and short-distance contributions.

® S5(z) in (XII.15) is similar to the functions X (z) and Y (z) in sections XIB 1 and XIC 1 ex-
cept that 5(z) is scheme dependent due to the renormalization that is required for the opera-
tor Q. This scheme dependence enters (XII.15) through the scheme dependent constant B;,
given in the NDR scheme in (XI1.11). This scheme dependence is canceled in the combina-
tion B; — J5 by the two-loop anomalous dimension contained in Js. Likewise the scheme
dependence of J; cancels in the differences (J; — J;_; ) as is evident from the discussion of
section ITIF 3.

e A very important point is the dependence on the high energy matching scale y,. This de-
pendence enters the NLO o (g )-correction in (XII.10) in two distinct ways: First as a term
proportional to 7(®) and, secondly, in conjunction with 7,,. The first of these terms can-
cels to O(as) the p,-dependence present in the leading term [ (12 )]8/23. The second, on the
other hand, leads to an O(«) p;-dependence of 5; which is just the one needed to cancel the
p-ambiguity of the leading function So(z:()) in the product 1, So(z;), such that in total
physical results become independent of u; to O(a,). From these observations it is obvious
that one may interpret y. in the first case as the initial scale of the RG evolution and in the
second case as the scale at which the top quark mass is defined. These two scales need not
necessarily have the same value.

The important point is, that to leading logarithmic accuracy the yu,-dependence of both
15° (p:) and So(z:(p¢)) remains uncompensated, leaving a disturbingly large uncertainty in
the short-distance calculation.

e Itisinteresting to note that in the limit m; 3> My the dependence on ¢ enters ), asln p, fm,,
rather than In ., /Mw . This feature provides a formal justification for choosing y; = O(m,)
instead of p¢ = O(Mw). An explicit expression for the large m, limit in the similar case of
725 may be found in section XIII.
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o Although at NLO the product 7,Sq(z:) depends only very weakly on the precise value of
p+ as long as it is of O(my), the choice p; = m; is again convenient; With this choice 72
becomes almost independent of the top quark mass m,(m;). By contrast, for p: = My, say,
n2 would decrease with rising m;(m,) in order to compensate for the increase of So(z:(Mw))
due to the use of a - for high m; ~ “unnaturally” low scale My .

o Asmentioned above the dependence of the Wilson coefficient on the low energy scale p and
the remaining scheme dependence (J3) has been factored out explicitly in (XIL1). Therefore
the QCD correction factor 1, is by definition scale and scheme independent on the lower end
of the RG evolution.

C. The Charm Contribution - 7,

The calculation of 7, beyond leading logs has been presented in great detail in (Herrlich and
Nierste, 1994), (Herrlich, 1994). Our task here will be to briefly describe the basic procedure and
to summarize the main results.

In principle the charm contribution is similar in structure to the top contribution. However, since the
quark mass m. < Mw, the charm degrees of freedom can no longer be integrated out simultane-
ously with the W boson, which would introduce large logarithmic corrections ~ a, In My /m.. To
resum these logarithms one first constructs an effective theory at a scale O( My ), where the W bo-
son is removed. The relevant operators are subsequently renormalized down to scales pe = O(m,),
where the charm quark is then integrated out. After this step only the operator ) (XI1.2) remains
and #, is finally obtained as discussed in section XII A. '

Let us briefly outline this procedure for the case at hand. After integrating out W the effective
hamiltonian to first order in weak interactions, which is needed for the charm contribution, can be
written as

G . : ,
HO = 7; > ViVa (C4QY + QYY) (XIL16)

09'=u,c

where we have introduced the familiar AS = 1 four-quark operators in the multiplicatively renor-
malizable basis :

, 1
QL = 5 [Gial)v-a(@idi)v -4 % (g} v-a(Gide)v-4] (XIL17)

We remark that no penguin operators appear in the present case due to GIM cancellation between
charm quark and up quark contributions.

AS = 2 transitions occur to second order in the effective interaction (XI1.16). The AS = 2 effec-
tive hamiltonian is therefore given by

HAS=2 = —% / &'z T (HO (=)HO(0)) (XIL18)

Inserting (XI1.16) ihto (XT1.18), keeping only pieces that can contribute to the charm box diagrams
and taking the GIM constraints into account, one obtains

Hff‘s}iz = -CfF-/\Z Z CiC;0;; (X11.19)

2 i1j=+1'—
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where
05 = =5 [ #2 T [QE()Q5(0) - QE@Q(0) - QF)QE0) + Q)] (IL20)

From the derivation of (XII.19) it is evident, that the Wilson coefficients of the bilocal operators
O;; are simply given by the product C;C; of the coefficients pertaining to the local operators Q;,
Q;. The evolution of the C; from My down to u. proceeds in the standard fashion and is described
by equations of the type shown in (XII.8) with the appropriate anomalous dimensions inserted. In
the following we list the required ingredients. '

The Wilson coefficients at scale u = My read

(M -
Ce(Mw) =1+ “(4—1:"13* (XIL21)
N
By = in-%, (NDR) (X11.22)

The two-loop anomalous dimensions are

_% 0 (_ag)’ )
VT 0 + i) T (X11.23)
©_ ,NF1 (n:ﬁ*_l[_ 57 __ 19 E]
W =+6—— oy |2 £y F3 N3/ (NDR) (X11.24)
Fori,7 = +, — we introduce
©) pe) )
dN=2_ S0 _G, % 25
20 T R
and .
d=dD 1 dh =gy Jo | (XI1.26)

The essential step consists in matching (XI1.19) onto an effective theory without charm, which will
contain the single operator @ = (3d)v_4(3d)v_4. In NLO this matching has to be performed
to O(as). At a normalization scale g it reads explicitly, expressed in terms of operator matrix
elements (z,j = +, —)

mf He Qs\ flc Z
(0;) = __851'2 ) [‘f: + %:—) (Kijln :z—g + ﬂz’j)} (@) (X11.27)
N+3 N-1 N-1
Tod = 7 T4 =T = - T = 1 (XI1.28)

Kyt = 3(N - 1)T++ Kp- =K_p = 3(N + 1)T+._ [T 3(N + 3)T__. (XII.29)
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The §;; are scheme dependent. In the NDR scheme they are given by (Herrlich and Nierste, 1994)

6 , —N?+2N+13
ﬂ**‘(l'N)(mN +3 4N )

—N24+2N -2 , 3N?413
" ﬂ+— - ﬂ-‘l‘ - (1 - N) ( 12N T + 4N cm'BO)
N*—4N+2 , 3N?4+10N +13
ﬂ“‘(l_N)( 12N " T 4N

Now, starting from (X11.19), evolving C; from My down to ., integrating out charm at i with the
help of (XI1.27), evolving the resulting coefficient according to (XIL.8) and recalling the definition
of n, in (XII.1), one finally obtains

m = e X (ﬂ’f—)) M (s) Y,

it \ 0s(pc) as(my)

X [TU s(l‘c) (Ic :In + TSJ(J(?) - J3)+ ﬂi.i) +
iy ("’f’“’ - )+ 2l 6+.5,- 7)) | (XTL31)

We conclude this section with a discussion of a few important issues concerning the structure of
this formula.

e (XII.31), as first obtained in (Herrlich and Nierste, 1994), represents the next-to-leading order
generalization of the leading log expression for n; given in (Gilman and Wise, 1983). The
latter follows as a special case of (XII.31) when the O(a,) correction terms are put to zero.

o The expression (XIL.31) is independent of the renormalization scheme up to terms of the
neglected order O(a). We have written 7, in a form, in which this scheme independence
becomes manifest: While the various J-terms, B; and §;; in (XIL.31) all depend on the

renormalization scheme when considered separately, the combinations ; J( - J3) + Bij,
Ji; (5) J,(;') and B; + B; — J,(f_) are scheme invariant.

e The product 7, (.)z.(p.) is independent of . to the considered order,
d .
o . T (e)e(pie) = O(ex) (XIL.32)

in accordance with the requirements of renormalization group invariance. The cancellation
of the u.-dependence to O(a) is related to the presence of an explicitly u.-dependent term
at NLO in (XI1.31) and is guaranteed through the identity

0 4040
Kij = T (7m0+72 27

which is easily verified using (II1.17), (XI1.7), (XI1.24), (XIL.28) and (X11.29).

(XTI1.33)
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o Also the ambiguity in the scale uw, at which W is integrated out, is reduced from O(q,)
to O(a?) when going from leading to next-to-leading order. As mentioned above the de-
pendence on the b-threshold scale y; is O(a?) in NLLA as well as in LLA. Numerically the
dependence on p; is very small. Also the variation of the result with the high energy match-
ing scale uw is considerably weaker than the residual dependence on p.. Therefore we have
set up = mp and pw = Mw in (XIL31). In numerical analyses we will take the dominant
p.-dependence as representative for the short-distance scale ambiguity of 7;. The general-
ization to the case pw # Mw is discussed in (Herrlich and Nierste, 1994). The more general
case up # mg is trivially obtained by substituting m;, — g, in (XIL31).

e Note that due to the GIM structure of O;; no mixing under infinite renormalization occurs
between O;; and the local operator Q). This is related to the absence of the logarithm in the
function So(z.) in (XIL.3).

It is instructive to compare the results obtained for 7; and n,. Expanding (XII.31) to first order in
as, in this way “switching off” the RG summations, we find

Qg .
o ()] 7%/° (1 + ————4&‘) J3) m= (XI1.34)
©) 2 2 2 2 1
% | E M4 ig? &2
1+4ﬂ_[2 (lnMvzv-}-lnMsz 1+91r)+7m0(lnm2+3)}

where we have replaced x4, — ¢ and m, — m. In deriving (XI1.34) besides (XII.33) the following
identities are useful ’

©, O '
Z T =1 2 Tijuj— = 7(0) (X11.35)
f,i=+,— L=+~ 2
Z 7:;;(B: + B;) = 2B, (XIL36)
ivj=+1"

The same result (X11.34) is obtained from 7, as well, if we set m, = my, = p; = y, m; = min
(X1I.10) and expand for m < Myw. This exercise yields a useful cross-check between the calcula-
tions for 7; and 7. In addition it gives some further insight into the structure of the QCD correc-
tions to AS = 2 box diagrams, establishing 7, and 7, as two different generalizations of the same
asymptotic limit (X1I1.34). '

D. The Top-Charm Contribution — 73

To complete the description of the K° — K° effective hamiltonian we now turn to the mixed
top-charm component, defined by the contribution ~ A A, in (XII.1), and the associated QCD cor-
rection factor 3. The short distance QCD effects have been first obtained within the leading log
approximation by (Gilman and Wise, 1983). The calculation of 73 at next-to-leading order is due
to the work of (Herrlich and Nierste, 1995a), (Nierste, 1995). As already mentioned, the renor-
malization group analysis necessary for 53 is more involved than in the cases of 7, and 7,. The
characteristic differences will become clear from the following presentation.
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We begin by writing down the relevant AS = 1 hamiltonian, obtained after integrating out W and
top, which provides the basis for the construction of the AS = 2 effective hamiltonian we want to
derive. It reads

G RN
M=% ( > ViVu Y G- AtZC-Qe) - (XIL37)
0,q9'=u,c i=1,2 =3
with v
QY = (5:ig))v-al@idi)v-a | 5 = (5ig)v-a(@id;)v-s (XIL38)

and corresponds to the hamiltonian (VL.5), discussed in chapter VI, except that we have included
the AC = 1 components @}, @f*, which contribute in the analysis of ;. By contrast to the simpler
case of 7, presented in the previous section, now also the penguin operators Q;, i = 3,...,6 (VL3)
have to be considered. Being proportional to A\, = V;V,4 they will contribute to the AcAs-part
- of (XIL1), We remark in this context that, on the other hand, the penguin contribution to the A2-
sector is entirely negligible. Since only light quarks are involved in Qs, . . . , Qs, the double penguin
diagrams, which would contribute to the A?-piece of the AS = 2 amplitude, are suppressed by
at least a factor of m{/m? compared with the dominant top-exchange effects discussed in section
XIIB. _

At second order in (XI1.37) AS = 2 transitions are generated. Inserting (XI1.37) in an expression
similar to (XII.18), eliminating A, by means of A\, = —A.— ), and collecting the terms proportional
to A.A;, we obtain the top-charm component of the effective A.S = 2 hamiltonian in the form

6
Ho e = %%Acz\g > [Z CiCiQi; + 07.-Q7} (X11.39)
i=+ |j=1
where
Qi = =5 [ @'+ T [20(©)Q7(0) - QF(2)QF(0) - QX)) (XIL4o)
fory =1,2and

Qi = -3 [ P2 T(Q(2) ~ QF (=) Qi(0) + Q=) @P(0) - QF(O)]  (XaL)

forj=3,...,6. _

In defining these operators we have already omitted bilocal products with flavor structure like
(3utid) - (3cgd), which cannot contribute to AS = 2 box diagrams. Furthermore, for the factor
entering the bilocal operators with index ¢ we have changed the basis from Q‘{:% to Q17 givenin
(XTI.17). In addition local counterterms proportional to the AS = 2 operator

m2  _ -
Q7 = ?(SJ)V—A(SCI)V—A (X11.42)

have been added to (XI1.39). These are necessary here because the bilocal operators can in general
mix into ()7 under infinite renormalization, a fact related to the logarithm present in the leading
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term —z. ln z. entering So(z., z;) in (XIL.5). This behaviour is in contrast to the charm contribu-
~ tion, where the corresponding function So(z.) = z. does not contain a logarithmic term and conse-
quently no local AS = 2 counterterm is necessary in (XIL.19). On the other hand the situation here
is analogous to the case of the charm contribution to the effective hamiltonian for K+ — z+vi
in section XI B which similarly behaves as z. In z. in lowest order and correspondmgly requires a
counterterm, as displayed in (XI1.21) and (XI.35).

Afteri mtegratmg out top and W at the high energy matching scale pw = O(My), the Wilson
coefficients Cj, j = 1,...6 of (XII.37) and (XI1.39) are given in the NDR-scheme by (see section

VD)

ST QS(I‘W)( 22 2 ) pw
C*(pw) = (0,1,0,0,0,0) + 1 6, -2, — 33 9, IMW

s 11 ~ ~

4 2elpw) (—, -, —-—Eu(zt), —Eo(zt), —-Eo(z,), -Eo(z.)) (XI143)
4r 2 6

and Cy = C; £ C. Ey(x,) can be found in (VI.16). The coefficient of @~ is obtained through

matching the AS = 2 matrix element of the effective theory (XIL.39) to the corresponding full

theory matrix element, which is in the required approximation (z. < 1) given by (compare (XII.1))

G%
Afuller = Ton —E My 20 A So(ze, 2:)(Q) (XI1.44)

At next-to-leading order this matching has to be done to one loop, including finite parts. Note that
here the loop effect is due to electroweak interactions and QCD does not contribute explicitly in
this step. The matching condition determines the sum C7 = Cy, + C;_, which in the NDR scheme
and with the conventional definition of evanescent operators, (Buras and Weisz, 1990), see also
(Herrlich and Nierste, 1995a), (Nierste, 1995), reads

2
C7([.tw) = as‘(II:rW) [ I I‘W + 4111 Iy — 32:: 3$t lnzt

v T e +2] (XIL45)

at next-to-leading order. In leading log approximation one simply would have Crpw) =
The distribution of C7 among C7,. and C7_ is arbitrary and has no impact on the physics. For ex-
ample we may choose

Cry =Cy Cr-=0 (XI1.46)
Having determined the initial values of the Wilson coefficients
CHT = (CCy,...,CiCs,Crs) (X11.47)
at a scale py, ) (uw ), the next step consists in solving the RG equations to determine CHE(p,)
at the charm mass scale p. = O(m.). The renormalization group evolution of G is given by
dxn,,C‘*’(") 2 C ) (XIL43)

s -1 T
7&:) _ (7 + 7+ ’&7) (XIL49)

6T Yr7
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Here 7, is the standard 6 x 6 anomalous dimension matrix for the AS = 1 effective hamiltonian
including QCD penguins from (V1.23), (VL.25) and (VI.26) (NDR-scheme). Similarly v+ are the
anomalous dimensions of the current-current operators. They can be obtained as Y+ = Ys11 Y512
and are also given in section V.,

Y77 represents the anomalous dimension of Q)7 (XI1.42) and reads

a, a,\?
Y77 = T+ + 29m + 2B(9) /9 = 4—743’ + (—) " (XI1.50)
T 4r
For N = 3 and in NDR
4 175 152
7;(7)) =-2+ Ef ‘Yg/) = 3 + _g—f (X11.51)

Finally 4.7, the vector of anomalous dimensions expressing the mixing of the bilocal operators Q) +;
(¢ =1,...,6)into @7, is given by

- as as 2 - .

Va7 = Z;’Yg + (H) 7(117) (X11.52)
where
(0T

Y47~ = (-16,-8,—32,~16,32,16) (XI1.53)
7 = (8,0,16,0,~16,0) (XI1.54)
" = (~212,-28, a4, 56, %, 52) (XILSS)
FUT = (276, —92,552, —184, —12%,0) (XIL56)

The scheme-dependent numbers in »7537’ are given here in the NDR-scheme with the conventional

treatment of evanescent operators as described in (Buras and Weisz, 1990), (Herrlich and Nierste,
1995a), (Nierste, 1995).

In order to solve the RG equation (XII.48_2 itis useful (Herrlich and Nierste, 1995a), (Nierste, 1995)
to define the eight-dimensional vector (CT = (C4, ..., Cs))

DT = (C7,Cry/C,4,Cr-/C2) (XIL57)
which obeys
d =t T -4 -
dlnuD =~TD (XI1.58)
where
Ts V47 Y-7 .
Y= |0 yr—v 0 (XIL59)
07 0 Yrr — - '

111



The solution of (XII.58) proceeds in the standard fashion as described in section IIIF 1 and has the
form

D(pe) = Us(fpe, 1) M () Us (1o, ) D () (XIL60)

similarly to (II.105). The b-quark-threshold matching matrix M (#s) is.an 8 x 8 matrix whose
6 x 6 submatrix M;;, ¢, = 1,...,6 is identical to the matrix M described in section VID. The
remaining elements are M7; = Mss = 1 and zero otherwise. From (XIL.60) the Wilson coefficients
C,'(;lc) are obtained as

Ci(pe) = Di(pe) i=1,...,6 Cr(pe) = Ci(pe)Dr(pee) + C- (#c)Ds(pc) (XIL.61)

The final step in the calculation of 73 consists in removing the charm degrees of freedom
from the effective theory. Without charm the effective short-distance hamiltonian corresponding
to (X11.39) can be written as

— G2
Heftet = 5 AeMCuQ (XIL62)
The matching condition is obtained by equating the matrix elements of (XI1.39) and (X11.62), eval-
uated at a scale g, = O(m.). At next-to-leading order one needs the finite parts of the matrix
elements of @);;, which can be written in the form

mg(l‘c)

(@i (ko)) = —2 Fii(1e)(Q) (XIL63)
where in the renormalization scheme described above after eq. (XI1.56) the r;; are given by
(4ln(p./me) — V1; j=1,2
rij(pe) = 4 (81n(p./ m) —4)r; j=3,4 (X1I.64)
(=8In(pe/me) +4)7;; j =5,6 '
T41 = Te3 = T35 = (1 £ 3)/2 (X11.65)
T4 =1 T-;=0 jeven (X11.66)

Using (XI1.63), the matching condition at p. between (XIL.39) and (XI1.62) implies

Calte) = X2 - Culko)C(1) B 1) + o) o) (XIL67)
i=% 5=1 8 47((1, (”C)

Evolving C.; from y. to p < p. in a three-flavor theory using (XIL.8) and comparing (XII.62) with
(XII.1), we obtain the final result

o =dw) [T o (1)
= S s gy 0w (1 ) +
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L Y Gl i) (XIL63)

=% j=1

One may convince oneself, that 735o(z., z:) is independent of the renormalization scales, in par-
ticular of g, up to terms of O(z.a?/%a,).

Furthermore, using the formulae given in this section, it is easy to see from the explicit expres-
sion (XII.68), that n3a;2/° — 1 in the limit a, — 0, as it should indeed be the case.
The next-to-leading order formula (XI1.68) for 73, first calculated in (Herrlich and Nierste, 1995a),
(Nierste, 1995), provides the generalization of the leading log result obtained by (Gilman and Wise,
1983). It is instructive to compare (XII.68) with the leading order approximation, which can be
written as

9 —WC-f’O(pc)

e (XIL69)

13° = a,(pc)?

using the notation of (XII.68). CF© denotes the coefficient Cr, restricted to the leading logarithmic
approximation. Formula (XI1.69), derived here as a special case of (XIL.68), is equivalent to the
result obtained in (Gilman and Wise, 1983).

If penguin operators and the b-quark threshold in the RG evolution are neglected, it is possible to
write down in closed form a relatively simple, explicit expression for ;. Using a 4-flavor effective
theory for the evolution from the W-scale down to the charm scale, we find in this approximation

_ Zo(ite) 2/9
"= Sl

T 18 12 6 7716 o, () 307
[a,(uc) (— 7Kt = K- oK+ 2233K’) (1 T 4x 1?55) +

Be _ l) -
+ (ln me 2 (3K++ 2K+.. + K__) <+

262497 123 1108657 277133

+35000 5+ ~ 525 K+~ T 30000 K ~ Bo7mg K7t

21003 13331 10181 1731104
+K ( )

~ 8750 Ky + 13750 Ky - 181257~~~ 2512125 "

3z, 3z2lnz, 1
+ (lnzt Moy " iG eyt 2) KK7] (XIL70)

where

K++ - K12/25' K.|._ — K—6/25 K__ = K—24/25 (XH.71)

- as(Mw)
as(pc)

Here we have set uyw = Mw. (XIL.70) represents the next-to-leading order generalization of an
approximate formula for the leading log 73, also omitting gluon penguins, that has been first given
in (Gilman and Wise, 1983). The analytical expression for 73 in (XI1.70) provides an excellent
approximation, deviating generally by less than 1% from the full result.

K, =K K (X11.72)
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E. Numerical Results
1. General Remarks

After presenting the theoretical aspects of the short-distance QCD factors M, 72 and 73 in the
previous sections, we shall now turn to a discussion of their numerical values. However, before
considering explicit numbers, we would like to make a few general remarks.

First of all, it is important to recall that in the matrix element (K°|H2572| K°) (see (XIL1)), only
the complete products

S mlon (7 14 2L ] (ROIQUIKY) = ClmROIQUIKY) i)

are physically relevant. Here Sy; denote the appropriate quark mass dependent functions S, for the
three contributions (: = 1, 2, 3) in (XIL1). None of the factors in (XIL.73) is physically mean-
ingful by itself. In particular, there is some arbitrariness in splitting the product (X1I1.73) into the
short-distance part and the matrix element of @) (XI1.2) containing long distance contributions. This
arbitrariness has of course no impact on the physical result. However, it is essential to employ a de-
finition for the operator matrix element that is consistent with the short-distance QCD factor used.
Conventionally, the matrix element ( K°|Q| K°) is expressed in terms of the so-called bag parame-
ter By () defined through '

(K°|Q(1)IK®) = - FEm% Bk () (XIL.74)

wioe

where m is the kaon mass and Fx = 160MeV is the kaon decay constant. In principle, one
could just use the scale- and scheme dependent bag factor By (i) along with the coefficient func-
tions C;(x) as defined by (XI1.73), evaluated at the same scale and in the same renormalization
scheme. However, it has become customary to define the short-distance QCD correction factors
n; by splitting off from the Wilson coefficient C;(x) the factor [ae(p)]~%/°[1 + au(p)/(47) J5],
which carries the dependence on the renormalization scheme and the scale #. This factor is then
attributed to the matrix element of @, formally cancelling its scale and scheme dependence. Ac-
cordingly one defines a renormalization scale and scheme invariant bag parameter By (compare

(X11.73), (XI1.74))
Bg = [as(y)]-ﬂg [1 + aTT(;llJ{l BK([!.) (X11.75)

If the #; as described in this report are employed to describe the short-distance QCD corrections,
eq. (XIL75) is the consistent definition to be used for the kaon bag parameter.

Eventually the quantity B () should be calculated within lattice QCD. At present, the analysis
of (Sharpe, 1994), for example, gives a central value of Bk (2GeV)npr = 0.616, with some still
sizable uncertainty. For a recent review see also (Soni, 1995). This result already incorporates the
lattice-continuum theory matching and refers to the usual NDR scheme. It is clear that the NLO
calculation of short-distance QCD effects is essential for consistency with this matching and for a
proper treatment of the scheme dependence. Both require O(a,) corrections, which go beyond the
leading log approximation.
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To convert to the scheme invariant parameter By one uses (XIL.75) with the NDR-scheme value
for J3 = 307/162 to obtain By = 0.84. Note that the factor involving J3 in (XI1.75), which
appears at NLO, increases the r.h.s. of (XIL75) by ~ 4.5%. The leading factor a;2/® is about 1.31.
Of course, the fact that there is presently still a rather large uncertainty in the calculation of the
hadronic matrix element is somewhat forgiving, regarding the precise definition of By. However,
as the lattice calculations improve further and the errors decrease, the issue-of a consistent definition
of the 7; and Bx will become crucial and it is important to keep relation (XI1.75) in mind.

Let us next add a side remark concerning the separation of the full amplitude into the formally
RG invariant factors 7; and Bx. This separation is essentially unique, up to trivial constant fac-
tors, if the evolution from the charm scale ;. down to a "hadronic” scale p < M is written in the
resummed form as shown in (XI1.8) and one requires that all factors depending on the scale y are
absorbed into the matrix element. On the other hand the hadronic scale 4 = O(1GeV) is not really
much different from the charm scale g = O(m,), so that the logarithms In 42/ .. are not very large.
Therefore one could argue that it is not necessary to resum those logarithms. In this case the first
two factors on the r.h.s. of (XI1.8) could be expanded to first order in o, and the amplitude (XI1.73)
would read

Ci(ke) (1 + 25 ”ﬂ) (ROIQu)IK%) X1L76)

From this expression it is obvious, that the separation of the physical amplitude into scheme in-
variant short-distance factors and a scheme invariant matrix element is in general not unique. This
illustrates once more the ambiguity existing for theoretical concepts such as operator matrix ele-
ments or QCD correction factors, which only cancels in physical quantities.

For definiteness, we will stick to the RG improved form also for the evolution between fe and p
and the definitions for 7; and By that we have discussed in detail above.

2. Results for my, n2 and 13

We are now ready to quote numerical results for the short-distance QCD corrections 7; at next-
to-leading order and to compare them with the leading order approximation. '
The factors 7, and 73 have been analyzed in detail in (Herrlich and Nierste, 1994) and (Nier-
ste, 1995). Here we summarize briefly their main results. Using our central parameter values
me(me) = 1.3GeV, A% = 0.325GeV, my(m.) = 170GeV and fixing the scales as y, = m,,
pw = Myw for 91, pw = 130GeV for 53, one obtains at NLO

m = 1.38 n3 = 0.47 (XIL.77)

This is to be compared with the LO values corresponding to the same input 72 = 1.12, 50 =
0.35. We note that the next-to-leading order corrections are sizable, typically 20% — 30%, but still
perturbative. The numbers above may be compared with the leading log values n{° = 0.85 and
15 = 0.36 that have been previously used in the literature, based on the choice m, = 1.4GeV,
Aqgcp = 0.2GeV and uw = Myw. The considerable difference between the two LO values for M
mainly reflects the large dependence of 1, on Agep.

In fact, when the QCD scale is allowed to vary within A% = (0.325 £ 0.110)GeV, the value for
m (NLO) changes by ~ +35%. The leading order result 77 appears to be slightly less sensitive
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to Agcp. However, in this approximation the relation of Agep to A( ) i 1s not well defined, which
introduces an additional source of uncertainty when working to leadmg logarithmic accuracy.
The situation is much more favorable in the case of 73, where the sensitivity to Ag'als is quite small,
~ +3%. Likewise the dependence on the charm quark mass is very small for both ; and 73. Using
me(mc) = (1.3 £ 0.05)GeV and the central value for AGL it is about £4% for n; and entirely
negligible for 73.
Finally, there are the purely theoretical uncertainties due to the renormalization scales. They are
dominated by the ambiguity related to p.. The products So(z.(p.)) - m(pc) and So(zo(k.), z¢) -
n3(sc) are independent of . up to terms of the neglected order in RG improved perturbation theory.
In the case of So(zc(#c)) - m(pe) (So(zc(pe), 1) - n3(x.)) the remaining sensitivity to u. amounts
to typically +15% (£7%) at NLO. These scale dependences are somewhat reduced compared to
the leading order calculation, where the corresponding uncertainty is around £30% (+£10%).
To summarize, sizable uncertainties are still associated with the number for the QCD factor 7;,
whose central value is found to be #; = 1.38 (Herrlich and Nierste, 1994). On the other hand,
the prediction for n3 appears to be quite stable and can be reliably determined as 73 = 0.47 +
0.03 (Herrlich and Nierste, 1995a), (Nierste, 1995). One should emphasize however, that these
conclusions have their firm basis only within the framework of a complete NLO analysis, as the
one performed in (Herrlich and Nierste, 1994), (Nierste, 1995). Fortunately the quantity #,, for
which a high precision seems difficult to achieve, plays a less important role in the phenomenology
of indirect CP violation.

Finally, we turn to a brief discussion of 7, (Buras et al., 1990), representing the short-distance
QCD effects of the top-quark contribution. For central parameter values, in particular A(4) =
0.325GeV and m(m.) = 170GeV, and for y; = m,(m;) the numerical value is

= 0.574 (XI1.78)

Varying the QCD scale within A{L = (0.325 £ 0.110)GeV results in a +:0.5% change in 7,. The
dependence on m.(m;) iseven sma]lcr, only +0.3% for m,(m,) = (170+15)GeV . Itis worthwhile
to compare the NLO results with the leading log approximation. Using the same input as before
yields a central value of 72 = 0.612, about 7% larger as the NLO result (XII.78). However, what
is even more important than the difference in central values is the quite striking reduction of scale
uncertainty when going from the leading log approximation to the full NLO treatment. Recall that
the p.-dependence in 7, has to cancel the scale dependence of the function So(z:(u:)). Allowing
for a typical variation of the renormalization scale g, = O(m;) from 100GeV to 300GeV results
in a sizable change in So(z:(z))n5° of £9%. In fact, in leading order the p,-dependence of 7,
has even the wrong sign, re-inforcing the scale dependence present in Sp(z:(p:)) instead of reduc-
ing it. The large sensitivity to the unphysical parameter ; is essentially eliminated (to +0.4%) for
n2S0(z:) at NLO, a quite remarkable improvement of the theoretical accuracy. The situation here is
similar to the case of the top-quark dominated rare K and B decays discussed in sections XI, XXIV
and XXVI. For a further illustration of the reduction in scale uncertainty see the discussion of the
analogous case of 7,p in section XIIIB.

- The dependence of 7, on the charm and bottom threshold scales g, = O(m,) and g, = O(my) is
also extremely weak. Taking 1GeV < pu. < 3GeV and 3GeV < puy < 9GeV results in a variation
of n; by merely +0.26% and +0.06%, respectively.

In summary, the NLO result for n3So(x.) is, by contrast to the leading logarithmic approximation,
essentially free from theoretical uncertainties. Furthermore, 7, is also rather insensitive to the in-
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put parameters Ay and m;. The top contribution plays the dominant role for indirect CP viola-
tion in the neutral kaon system. The considerable improvement in the theoretical analysis of the

short-distance QCD factor 7, brought about by the next-to-leading order calculation is therefore
particularly satisfying.
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XIII. THE EFFECTIVE HAMILTONIAN FOR B° — B° MIXING
A. General Structure

Due to the particular hierarchy of the CKM matrix elements only the top sector can contribute
significantly to B® — B° mixing. The charm sector and the mixed top-charm contributions are
entirely negligible here, in contrast to the K° — K'° case, which considerably simplifies the analysis.

Refering to our earlier presentation of the top sector for AS = 2 transitions in section XII B we
can immediately write down the effective AB = 2 hamiltonian. Performing the RG evolution only
down to scales p1p = O(ms) and making the necessary replacements (s — b) we get, in analogy to
(XII.1) (Buras et al., 1990) :

M = e M (Vi mau(ad ™ [1+ 280 ) 0 4 e oy

~ 16%2 4z
where here
Q= (M)V-A(Ed)V—A (X111.2)
and |
ne = [as ()% x | (XIIL3)
x [1 + az(;“) (g:g:; +B,— Js + % In -A’-}:% + vmoal;i“g‘) In A’;fzv)]

The definitions of the various quantities in (XII1.3) can be found in section XII B. Several important
aspects of 7, in the kaon system have also been discussed in this section. Similar comments apply
to the present case of 725. Here we would still like to supplement this discussion by writing down
the formula for 7,5 in the limiting case m, > Mw,

28 = [as(e)]¥® x ' (XIIL4)
4O 2

2
X [1 + M (—lnﬁ%+7mglnf‘—2+ 11 — 2212+Bt -Js+0 (—Mi‘:’))]
4r 2 mi my 9 m;

This expression clarifies the structure of the RG evolution in the limit m, > M. It also sug-
gests that the renormalization scale is most naturally to be taken as y; = O(m,) rather than
#t = O(Mw), both in the definition of the top quark mass and as the initial scale of the RG evolu-
tion. Formula (XII1.4) also holds, with obvious modifications, for the 7, factor in the kaon system,
which has been discussed in sec. XIIB.

We finally mention that in the literature the u;-dependent factors in (XIII.1) are sometimes not
attributed to the matrix elements of @), as implied by (XIII.1), but absorbed into the definition of
the QCD correction factor

28 = N2 e ()] "% [1 + a%g:ﬂJs] | (XIIL.5)

Whichever definition is employed, it is important to remember this difference and to evaluate the
hadronic matrix elementconsistently. Note that, in contrast to 7,p, 7.5 is scale and scheme depen-

dent.
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B. Numerical Results

The correction factor 7,5 describes the short-distance QCD effects in the theoretical expression
for B® — B° mixing. Due to the arbitrariness that exists in dividing the physical amplitude into
short-distance contribution and hadronic matrix element, the short-distance QCD factor is strictly
speaking an unphysical quantity and hence definition dependent. The B-factor, parametrizing the
hadronic matrix element, has to match the convention used for n2p. With the definition of 7,5
employed in this article and given explicitly in the previous section, the appropriate B-factor to be
used is the so-called scheme independent bag-parameter Bg as defined in eq. (XVIIL.18), where
¢ = pp = O(m;). We remark, that the factor 5, is identical for B; — B, and B, — B, mixing. The
effects of SU(3) breaking enter only the hadronic matrix elements. This feature isa consequence of
the factorization of short-distance and long-distance contributions inherent to the operator product
expansion. For further comments see also the discussion of the analogous case of short-distance
QCD factors in the neutral kaon system in section XIIE 1.

In the following we summarize the main results of a numerical analysis of n,p. The factor 5,5 is
analogous to 7, entering the top contribution to K° — K mixing and both quantities share many
important features. '

The value of 7:5 for Aff) = 0.325GeV, my(m.) = 170GeV and with p; set equal to m, (m) reads
at NLO

728 = 0.551 ' (X111.6)

This can be compared with nZ§ = 0.580, obtained, using the same input, in the leading logarithmic
approximation. In the latter case the product ngg (u:) - S(z+(s:)) is, however, affected by a residual
scale ambiguity of £9% (for 100GeV < p, < 300GeV). This uncertainty is reduced to the negli-
gible amount of +0.3% in the complete NLO expression of 755(4) - S(z:(:)), corresponding to
an increase in accuracy by a factor of 25. The sensitivity to the unphysical scale #: in leading and
next-to-leading order is illustrated in fig. 9.

In addition the number shown in (XIIL6) is also very stable against changes in the input para-
meters. Taking A%% = (0.325 % 0.110)GeV and m,(m.) = (170 £ 15)GeV results in a variation
of 7, by +1.3% and +0.3%, respectively.

It is clear from this discussion, that the short-distance QCD effects in B® — B° mixing are very
well under control, once NLO corrections have been properly included, and the remaining uncer-
tainties are extremely small. The effective hamiltonian given in (XIII.1) therefore provides a solid
foundation for the incorporation of non-perturbative effects, to be determined from lattice gauge
theory, and for further phenomenological investigations related to B® — 3° mixing phenomena.
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FIG. 9. Scale p; dependence of 7;5(p:)So(z¢(p:)) in LO and NLO. The quantity n25(u:)So(z:(p:))
enters the theoretical expression for Am g, describing B — B° mixing. Tt is independent of the precise value
of the renormalization scale u, up to terms of the neglected order in a,. The remaining sensitivity represents

an unavoidable theoretical uncertainty. This ambiguity is shown here for the leading order (dashed) and the
next-to-leading order calculation (solid).
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XIV. PENGUIN BOX EXPANSION FOR FCNC PROCESSES

An important virtue of OPE and RG is that with m; > My the dependence of weak decays
on the top quark mass is very elegantly isolated. It resides only in the initial conditions for the
Wilson coefficients at scale 4 ~ Mw i.e. in C;(Mw). A quick look at the initial conditions in the
previous sections reveals the important fact that the leading m,-dependence in all decays considered
is represented universally by the m.-dependent functions which result from exact calculations of
the relevant penguin and box diagrams with internal top quark exchanges. These are the functions

So(z:), Bo(z:), Co(z), Do(zt); Eo(z:), D(')(-'”t)’ E(')(zt) : (XIV.1)

for which explicit expressions are given in (XIL.4), egs. (VIL.13)~(VIL15), (VL15), (IX.12) and
(IX.13), respectively. In certain decays some of these functions do not appear because the corre-
sponding penguin or box diagram does not contribute to the initial conditions. However, the func-
tion Co(z:) resulting from the Z°-penguin diagram enters all AF = 1 decays but B — X,~. Hav-
ing a quadratic dependence on m;, this function is responsible for the dominant m,-dependence
of these decays. Since the non-leading m,-dependence of Co(z:) is gauge dependent, Co(z:) is
always accompanied by By(z:) or Do(z;) in such a way that this dependence cancels. For this rea-
son it is useful to replace the gauge dependent functions Bo(z:), Co(z:) and Do(z;) by the gauge
independent set (Buchalla et al., 1991)

Xo($g) = Co(.‘L‘t) - 4Bo($t)
Yo(z:) = Co(z:) — Bo(z:) (X1v.2)

Zo(@:) = Col@r) + § Dol(z:)

as we have already done at various places in this review. The inclusion of NLO QCD corrections
to B°-B°-, K°-K°-mixing and the rare K- and B-decays of section XI requires the calculation
of QCD corrections to penguin and box diagrams in the full theory. This results in the functions
S(z+) = 9250(z:), X (z;) and Y (z), with the latter two given in (XL5) and (X1.45), respectively.
It turns out however that if the top quark mass is definded as m; = m,(m,) one has

S(ze) = 02 So(ze), X(z2) = 1x Xo(2:), Y(:) = 1y Yo(z:) (XIV.3)

with 72, 7x and 7y almost independent of m,. Numerical values of nx and 7y are given in part
three.

Consequently with this definition of m, the basic m,-dependent functions listed in (XIV.1) and
(XTIV.2) represent the m-dependence of weak decays at the NLO level to a good approximation. It
should be remarked that the QCD corrections to Do, Eo, Dj and Ef have not been calculated yet.
They would however be only required for still higher order corrections (NNLO) in the renormal-
ization group improved perturbation theory as far as Dy and Ej are concerned. On the other hand,
in the case of Dy and Eq, which are relevant for the b — s decay, these corrections are necessary.

An inspection of the effective hamiltonians derived in the previous sections shows that for B°-
B°-mixing, K°-K°-mixing and the rare decays of section XI the m, dependence of the effective
hamiltonian is explicitly given in terms of the basic functions listed above. Due to the one step
evolution from p; to p we have also presented the explicit m-dependence for B — X,v and
B — X,ete™ decays. On the other hand in the case of K — 77 and K. 1 — 7%te” where

121



the renormalization group evolution is very complicated the m, dependence of a given box or pen-
guin diagram is distributed among various Wilson coefficient functions. In other words the m,-
dependence acquired at scale p ~ O(Mw) is hidden in a complicated numerical evaluation of
U(p, Mw ) .

For phenomenological applications it is more elegant and more convenient to have a formalism
in which the final formulae for all amplitudes are given explicitly in terms of the basic m,-dependent
functions discussed above.

In (Buchalla ez al., 1991) an approach has been presented which accomplishes this task. It gives
the decay amplitudes as linear combinations of the basic, universal, process independent but ;-
dependent functions F,(z.) of eq. (XIV.1) with corresponding coefficients P, characteristic for the
decay under consideration. This approach termed “Penguin Box Expansion” (PBE) has the follow-
ing general form

A(decay) = Py(decay) + Y P,(decay) F,(z:) X1v.a)

where the sum runs over all possible functions contributing to a given amplitude. In (XIV.4) we |
have separated a m;-independent term P, which summarizes contributions stemming from internal
quarks other than the top, in particular the charm quark.

Many examples of PBE appear in this review. Several decays or transitions depend only on a
single function out of the complete set (XIV.1). For completeness we give here the correspondence
between various processes and the basic functions

B®-B®-mixing So(z+)

K — nvv,B— Kvi, B— nvi Xo(z¢)

K — pg, B> 1 Yo(z,)

Ky — n%te~ Yo(z:), Zo(z:), Eo(z:)

4 XD(mt)s Yo(-'l?t), Zﬂ(zt), Eo(-’l?t)

B — X_,’)’ D(’)(.Tt), Eé(l't)

B — X,ete~ Yo(zt), Zo(z:), Eo(z:), Dy(z:), Eg(z:)

In (Buchalla et al., 1991) an explicit transformation from OPE to PBE has been made. This
transformation and the relation between these two expansions can be very clearly seen on the basis
of '

A(P — F) =Y (F|Ow(p)|P) Ur;(p, Mw) C;(Mw) (XIV.5)

i,k

where Uy;(p, Mw) represents the renormalization group transformation from Mw down to u. As
we have seen, OPE puts the last two factors in this formula together, mixing this way the physics
around Mw with all physical contributions down to very low energy scales. The PBE is realized
on the other hand by putting the first two factors together and rewriting C;(Mw) in terms of the
basic functions (XIV.1). This results in the expansion of eq. (XIV.4). Further technical details and
the methods for the evaluation of the coefficients P, can be found in (Buchalla et al., 1991), where
further virtues of PBE are discussed.

Finally, we give approximate formulae having power-like dependence on z, for the basic, gauge
independent functions of PBE '
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0.76

So(z:) = 0.784 - z{

Yo(z:) = 0.315- 2078
Eo(z:) = 0.564 - z;°%
Ey(zy) = 0.145 - 2219,

Xo(tt)
Zo(a:t)
Dy(z:)

0.660 - z0-57
0.175 - z0-93
0.244 - z2-%0

(XIV.6)

In the range 150 GeV < m; < 200 GeV these approximations reproduce the exact expressions to

an accuracy better than 1%.
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XV. HEAVY QUARK EFFECTIVE THEORY BEYOND LEADING LOGS
A. General Remarks

Since its advent in 1989 heavy quark effective theory (HQET) has developped into an elaborate
and well-established formalism, providing a systematic framework for the treatment of hadrons
containing a heavy quark. HQET represents a static approximation for the heavy quark, covari-
antly formulated in the language of an effective field theory. It allows to extract the dependence of
hadronic matrix elements on the heavy quark mass and to exploit the simplifications that arise in
QCD in the static limit.

- There are several excellent reviews on this subject (Neubert, 1994c), (Georgi, 1991), (Grinstein,
1991), (Isgur and Wise, 1992), (Mannel, 1993) and we do not attempt here to cover the details of
this extended field. However, we would like to emphasize the close parallels in the general formal-
ism employed to calculate perturbative QCD effects for the effective weak hamiltonians we have
been discussing in this review and in the context of HQET. In particular we will concentrate on
results that have been obtained in HQET beyond the leading logarithmic approximation in QCD
perturbation theory. Such calculations have been done mainly for bilinear current operators in-
volving heavy quark fields, which have important applications in semileptonic decays of heavy
hadrons. For the purpose of illustration we will focus on the simplest case of heavy-light currents
as an important example. Furthermore, while existing reviews concentrate on semileptonic decays
and current operators, we will also include results obtained for nonleptonic transitions and sum-
marize the calculation of NLO QCD corrections to B® — B® mixing in HQET (Flynn er al., 1991),
(Giménez, 1993). These latter papers generalize the leading-log results first obtained in (Voloshin
and Shifman, 1987), (Politzer and Wise, 1988a), (Politzer and Wise, 1988b).

Throughout we will restrict ourselves to the leading order in HQET and not address the question
of 1/m corrections. For a discussion of this topic we refer the reader to the literature, in particular
the above mentioned review articles.

B. Basic Concepts

Let us briefly recall the most important basic concepts underlying the idea of HQET.
The Lagrangian describing a quark field ¥ with mass m and its QCD interactions with gluons reads

L=V P¥ —mI¥ XV.1)

where D,, = 0, — igT* A}, is the gauge-covariant derivative. If ¥ is a heavy quark, i.e. its mass is
large compared to the QCD scale, Agcp/m < 1, it acts approximately like a static color source
and its QCD interactions simplify. A heavy quark inside a hadron moving with velocity v has ap-
proximately the same velocity. Thus its momentum can be written as p = mv + k, where k is a
small residual momentum of the order of Agcp and subject to changes of the same order through
soft QCD interactions. To implement this approximation, the quark field ¥ is decomposed into

U(z) = ™" (hy(z) + Ho(2)) (XV.2)

with k, and H, defined by
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ho(z) = ef'mv-=1i2—”\1:(z) XV3)

H(z) = e‘m"-=l;—’-’\p(z) (XVA4)

To be specific we consider here the case of a hadron containing a heavy quark, as opposed to a heavy
antiquark. In order to describe a heavy antiquark, the definitions (XV.3) and (XV.4) are replaced
by

hf,')(:.z) = e‘im""’l_T;{\I’(z) | (XV.5)
H ) (z) = e-‘m"-=1i2’-’\Ir(z) (XV.6)

Consequently, for a heavy antiquark, one only needs to substitute v — —v in the expressions given
below for the case of a heavy quark.

In the rest frame of the heavy quark &, and H, correspond to the upper and lower components of
¥, respectively. In general, for m — oo h, and H, represent the large” and “small” components
of ¥. In fact, the equations of motion of QCD imply that H, is suppressed by a factor Agop/m in
comparison to k,. The inclusion of an explicit exponential factor exp(—imv - z) in (XV.2) ensures
that the momentum associated with the field A, is only a small residual momentum of order Agcp.
Now an effective theory for A, is constructed by eliminating the small component field H, from
explicitly appearing in the description of the heavy quark. On the classical level this can be done by
using the equations of motion or, equivalently, by directly integrating out the H,, degrees of freedom
in the context of a path integral formulation (Mannel et al., 1992). The effective Lagrangian one
obtains from (XV.1) along these lines is given by (D% = D* — v*v - D)

1 .
v-D+2m—ic Pih (XV-7)

Aceff,tot = ﬁ"iv . th + 71.1,3 plz

The first term in (XV.7)
Less = h,(iv*d, + gv“T“A:)h, XVvs)

represents the Lagrangian of HQET to lowest order in 1/m and will be sufficient for our purposes.
The second, nonlocal contribution in (XV.7) can be expanded into a series of local, higher dimen-
sion operators, carrying coefficients with increasing powers of 1/m. To first order it yields the cor-
rection due to the residual heavy quark kinetic energy and the chromo-magnetic interaction term,
coupling the heavy quark spin to the gluon field.
From (XV.8) one can obtain the Feynman rules of HQET, the propagator of the effective field A,
i 1+ ¢

. v-k 2 (XV9)
and the k,-h,-gluon vertex, igv*T°. The explicit factor (14+ £)/2 in (XV.9) arises because the
effective field &, is a constrained spinor, satisfying 4k, = h,, as is obvious from (XV.3). The
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velocity v, is a constant in the effective theory and plays the role of a label for the effective field
h,. In principle, a different field &, has to be considered for every velocity v.

The Lagrangian in (XV.8) exhibits the crucial features of HQET: The quark-gluon coupling is in-
dependent of the quark’s spin degrees of freedom and the Lagrangian is independent of the heavy
quark flavor, since the heavy quark mass has been eliminated. This observation forms the basis for
the spin-flavor symmetry of HQET (Isgur and Wise, 1989), (Isgur and Wise, 1990), which gives
rise to important simplifications in the strong interactions of heavy quarks and allows to establish
relations among the form factors of different heavy hadron matrix elements. The heavy quark sym-
metries are broken by 1/m-contributions as well as radiative corrections.

So far our discussion has been limited to the QCD interactions of the heavy quark. Weak inter-
actions introduce new operators into the theory, which may be current operators, bilinear in quark
fields, or four-quark operators, relevant for semileptonic and nonleptonic transitions, respectively.
Such operators form the basic ingredients to be studied in weak decay phenomenology. They can as
well be expanded in 1/m and incorporated into the framework of HQET. For example a heavy-light

current operator gI' ¥ (evaluated at the origin, £ = 0), can be written (XV.2)

qT'l = gTh, + 0('7—11-) (XV.10)

to lowest order in HQET.

Up to now we have restricted our discussion to the classical level. In addition, of course, quantum
radiative corrections have to be included. They will for example modify relations such as (XV.10).
Technically their effects are taken into account by performing the appropriate matching calcula-
tions, relating operators in the effective theory to the corresponding operators in the full theory to
the required order in renormalization group improved QCD perturbation theory. The procedure
is very similar to the calculation of the usual effective hamiltonians for weak decays. The basic
difference consists in the heavy degrees of freedom that are being integrated out in the matching
process. In the general case of effective weak hamiltonians the heavy field to be removed as a dy-
namical variable is the W boson, whereas it is the lower component heavy quark field H, in the
case of HQET. This similarity will become obvious from our presentation below.

At this point some comment might be in order concerning the relationship of the HQET formalism
to the general weak effective hamiltonians discussed primarily in this review, in particular those
relevant for b-physics.

The effective hamiltonians for AB = 1,2 nonleptonic transitions are the relevant hamiltonians
for scales u = O(m,), which are appropriate for B hadron decays, and their Wilson coefficients
incorporate the QCD short distance dynamics between scales of O(Myw ) and O(m;). As already
mentioned at the end of section V it is therefore not necessary to invoke HQET. The physics below
p = O(my) is completely contained within the relevant hadronic matrix elements. On the other
hand, HQET may be useful in certain cases, like e.g. B® — B° mixing, to gain additional insight
into the structure of the hadronic matrix elements for scales below m;, but still large compared to
Aqcp. These scales are still perturbative and the related contributions can be extracted analyti-
cally within HQET. In particular, this procedure makes the dependence of the matrix element on
the heavy quark mass explicit, as we will see on examples below. Furthermore, this approach can
be useful e.g. in connection with lattice calculations of hadronic matrix elements, which are easier
to perform in the static limit for b-quarks, i.e. employing HQET (Sachrajda, 1992). The simplifi-
cations obtained are however at the expense of the approximation due to the expansion in 1/m.
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The most important application of HQET has been to the analysis of exclusive semileptonic tran-
sitions involving heavy quarks, where this formalism allows to exploit the consequences of heavy
quark symmetry to relate formfactors and provides a basis for systematic corrections to the m — oo
limit. This area of weak decay phenomenology has been already reviewed in detail (Neubert,
1994c), (Georgi, 1991), (Grinstein, 1991), (Isgur and Wise, 1992), (Mannel, 1993) and will not
be covered in the present article. -

C. Heavy-Light Currents

As an example of a next-to-leading QCD calculation within the context of HQET, we will now
discuss the case of a weak current, composed of one heavy and one light quark field, to leading
order in the 1/m expansion. For definitness we consider the axial vector heavy-light current, whose
matrix elements determine the decay constants of pseudoscalar mesons containing a single heavy
quark, like fp and fp.

The axial vector current operator in the full theory is given by

where ¥ is the heavy and ¢ the light quark field. In HQET this operator can be expanded in the
following way

: ~ ~ 1
- A=Ci(p)Ar + Ca(p)Az + 0(;) (XV.12)
where the operator basis in the effective theory reads

A; = gy, 15k A, = qu,ysh, - (XV.13)

with the heavy quark effective field A, defined in (XV.3). The use of the expansion (XV.12) is to
make the dependence of the matrix elements of A on the heavy quark mass m explicit. The depen-
dence on this mass is two-fold. First, there is a power dependence, which is manifest in the heavy
quark expansion in powers of 1 /m. From this series only the lowest order term is shown in (XV.12).
Second, there is a logarithmic dependence on m due to QCD radiative corrections, which can be
calculated in perturbation theory. This dependence is factorized into the coefficient functions C;,
C> in much the same way as the logarithmic dependence of nonleptonic weak decay amplitudes on
the W boson mass is factorized into the Wilson coefficients of the usual weak hamiltonians. Since
the dynamics of HQET is, by construction, independent of m, no further m dependence is present
in the matrix elements of the effective theory operators A; 2, except for trivial factors of m related
to the normalization of meson states. Consequently the m dependence of (XV.12) is determined
explicitly. '

We remark that in general the meson states in HQET to be used for the r.h.s. of (XV.12) differ
from the meson states in the full theory to be used to sandwich the operator A on the Lh.s.. For the
leading order in 1/m we are working in this distinction is irrelevant, however.

An important point is that the operators A 2 in the effective theory have anomalous dimensions,
although the operator A in the full theory, being an axial vector current operator, does not. As a
consequence matrix elements of A, will depend on the renormalization scale and scheme. This
dependence is canceled however through a corresponding dependence of the coefficients so that
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the physical matrix elements of A will be scale and scheme independent as they must be. The ex-
istence of anomalous dimensions for the effective theory operators merely reflects the logarithmic
dependence on the heavy quark mass m due to QCD effects. This dependence results in logarithmic
divergences in the limit i — oo, corresponding to the effective theory, which require additional
infinite renormalizations not present in full QCD. Obviously the situation is completely analogous
to the case of constructing effective weak hamiltonians through integrating out the W boson, which
we have described in detail in section III. In fact, the extraction of the coefficient functions by fac-
torizing long and short distance contributions to quark level amplitudes and the renormalization
group treatment follow exactly the same principles.

The Wilson coefficients at the high matching scale u, = O(m), the initial condition to the RG
evolution, can be calculated in ordinary perturbation theory with the result (NDR scheme)

Ci(pn) =1+ :" ( ‘°’ln + B, ) (XV.14)
Calus) = :—;Bz (XV.15)

with
B, = —4Cr B, = -2Cr (XV.16)

and 7( ) given in (XV.18) below. CF is the QCD color factor (N? — 1)/(2N). We remark that the
coefficient of the new operator A,, generated at O(a;), is finite without requiring renormalization.
As a consequence no explicit scale dependence appears in (XV.15) and B, is a scheme independent
constant. For the same reason A, and A; do not mix under renormalization, but renormalize only
multiplicatively. The anomalous dimension of the effective heavy quark currents is independent of
the Dirac structure. It is the same for A; and A, and reads at two-loop order

@9 4 0 2
Tt =Vht g =+ (47r) :(XV‘W)
where
7 = —3CF © (XV.18)

49 2 8
0= (<2242 Nep s (3=52) 24 S -

6 3 2
2456 , 20
=S -Er+ G f (NDR) (XV.19)

N (f) denotes the number of colors (flavors). The anomalous dimension 7,(3) has been first cal-
culated by (Voloshin and Shifman, 1987) and (Politzer and Wise, 1988a), (Politzer and Wise,
1988b). The generalization to next-to-leading order has been performed in (Ji and Musolf, 1991)
and (Broadhurst and Grozin, 1991).

The RG equations are readily solved to obtain the coefficients at a lower but still perturbative scale
#t, where, formally, 4 < ps = O(m). Using the results of section ITTF we have
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Ci(k) = (1 + "‘;(:) JM) [O;:((”;)) ™ (1 + %"‘—) [7,‘.?’ mEt 4B — J,.,]) (XV.20)

m

dn
_ {as(en) |™ as(pn)
Co(p) = [a,(u)] ym B, Xv.z21)
with
(0) (1) :
Yui di Yht
dpy = == Jh=—p — =2 XV.22
W= o Al 0,31 T ( )

We remark that the corresponding formulae for the vector current can be simply obtained from the
above expressions by letting 45 — 1 and changing the sign of B,. ‘

In addition to the case of heavy-light currents considered here, the NLO corrections have also been
calculated for flavor-conserving and flavor-changing heavy-heavy currents of the type ¥I'¥ and
U, I'¥, respectively, where ¥, ¥1,2 are heavy quark fields (' = +,, 7,7s). In these cases the
anomalous dimensions become velocity dependent. Additional complications arise in the analy-
sis of flavor changing heavy-heavy currents due to the presence of two distinct heavy mass scales.
For a detailed presentation see (Neubert, 1994c) and references cited therein.

D. The Pseudoscalar Decay Constant in the Static Limit

An important application of the results summarized in the last section is the calculation of the
short distance QCD effects, from scales between p), = O(m) and the low scale p1 = O(1GeV), for
the decay constants fp of pseudoscalar heavy mesons. Using only the leading term in the expansion
(XV.12), omitting all 1/m power corrections, corresponds to the static limit for fp, which plays
some role in lattice studies. As already mentioned we will restrict ourselves here to this limit. We
should remark however, that non-negligible power corrections are known to exist for the realistic
case of B or D meson decay constants (Sachrajda, 1992).

The decay constant fp is defined through

(0JA|P) = —ifpmpu, | | (XV.23)

where the pseudoscalar meson state | P) is normalized in the conventional way ((P|P) = 2EV).
The matrix elements of A,; are related via heavy quark symmetry and are given by

O1411P) = ~(014a|P) = —if()y/mpo, XV24)

Apart from the explicit mass factor ,/mp, which is merely due to the normalization of | P), these
matrix elements are independent of the heavy quark mass. The “reduced” decay constant f(w)is
therefore m-independent. It does however depend on the renormalization scale and scheme chosen.
The computation of f() is a nonperturbative problem involving strong dynamics below scale p.
Using (XV.12), (XV.20), (XV.21), (XV.23) and (XV.24) we obtain

f ' dht
fp = \%—l (1 + a;(:),]h,) [%%] (1 + 2dn) e 4 B — gy - Bz]) (XV.25)
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The dependence of the coefficient function on the renormalization scheme through J3; in the second
factor in (XV.25), and its dependence on g cancel the corresponding dependences in the hadronic
quantity f(u) to the considered order in e,. The last factor in (XV.25) is scheme independent.
Furthermore the cancellation of the dependence on p; to the required order can be seen explicitly.
Note also the leading scaling behaviour fp ~ 1/,/mp, which is manifest in (XV.25).

Although f(jz) cannot be calculated without nonperturbative input, its independence of the heavy
quark mass m implies that fwill drop out in the ratio of fg over fD, if charm is treated as a heavy
quark. One thus obtains

I \/% [ngzg]d“ (1 p ) =)

aS aa C c
+ 4(7‘: INCIW 1’:; 4(7’: ) i—) (XV.26)
The QCD factor on the right hand side of (XV.26) amounts to 1.14 for m; = 4.8GeV, m, =
. 1.4GeV and Azpz = 0.2GeV if we set u; = my, ¢ = b,c. If we allow for a variation of the

renormalization scales as 2/3 < p;/m; < 2, this factor lies within a range of 1.12 to 1.16. This
is to be compared with the leading log approximation, where the central value reads 1.12 with a
variation from 1.10 to 1.15. Note that due to cancellations in the ratio fg/fp the scale ambiguity
is not much larger in LLA than in NLLA. However the next-to-leading order QCD effects further

enhance fg/ fp independently of the renormalization scheme.

E.AB =2 'l‘ransitions in the Static Limit

In section XIII we have described the effective hamiltonian for B — B° mixing. The calculation
of the mixing amplitude requires in particular the evaluation of the matrix element (5°|Q|B°) =
(Q) of the operator

= (bd)v-4(bd)v_a Xv21n

in addition to the short-distance Wilson coefficient. Coefficient function and operator matrix ele-
ment are to be evaluated at a common renormalization scale, u; = O(my), say. In contrast to the
determination of the Wilson coefficient, the computation of the hadronic matrix element involves
nonperturbative long-distance contributions. Ultimately this problem should be solved using lat-
tice QCD. However, the b quark is rather heavy and it is therefore difficult to incorporate it as a
fully dynamical field in the context of a lattice regularization approach. On the other hand QCD
effects from scales below p, = O(m;) down to ~ 1GeV are still accessible to a perturbative treat-
ment. HQET provides the tool to calculate these contributions. At the same time it allows one to
extract the dependence of (B°|Q|B°) on the bottom mass m; explicitly, albeit at the prize of the
further approximation introduced by the expansion in inverse powers of m;,.

In a first step the operator Q) in (XV.27) is expressed as a linear combination of HQET operators
by matching the “full” to the effective theory at a scale g, = O(m;)

(@ = (1+ 22 [0 1010 2 + 5 5]} @) + 2120 5,(0, )
(XV.28)
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Here
@ = 2(hd)v_a(ROd)y-4 Qs = 2(hd)s_p(Rd)s_p (XV.29)

((hd)s—p = k(1 — 75)d) are the necessary operators in HQET relevant for the case of a B® — B°
transition. The field & creates a heavy quark, while (~) annihilates a heavy antiquark. Since the
effective theory field % (A(~)) cannot, unlike the full theory field b in Q, at the same time annihi-
late (create) the heavy antiquark (heavy quark), explicit factors of two have to appear in (XV.29).
Similarly to the case of the heavy-light current discussed in the previous section a new operator
Q. with scalar-pseudoscalar structure is generated. Its coefficient is finite and hence no operator
mixing under infinite renormalization occurs between Q and §,.

In a second step, the matrix element (Q(s)) at the high scale p; has to be expressed through the
matrix element of () evaluated at a lower scale 4 ~ 1GeV, which is relevant for a nonperturbative
calculation, for example using lattice gauge theory. This relation can be obtained through the usual
renormalization group evolution and reads in NLLA

(Gl = [22) Tl ay(n) = () 5\ <
”b)) = aa(/“) 1+ AT J (Q(l‘)) (XV.30)
where

- 50 s d 5()

‘= 2% T=ah~ 5% (XV31)

with the beta-function coefficients 5o and 5, given in (II1.16). The calculation of the one-loop
anomalous dimension () of the HQET operator Q, required for the leading log approximation to
(XV.30), has been first performed in (Voloshin and Shifman, 1987) and (Politzer and Wise, 1988a),
(Politzer and Wise, 1988b). The computation of the two-loop anomalous dimension 5 is due to
(Giménez, 1993). Finally, the next-to-leading order matching condition (XV.28) has been deter-
mined in (Flynn ez al., 1991). In the following we summarize the results obtained in these papers.

The scheme dependent next-to-leading order quantities B, B and 5(®) refer to the NDR scheme
with anticommuting s and the usual subtraction of evanescent terms as defined in (Buras and
Weisz, 1990). For N = 3 colors we then have

B-B=-14 B=13—1 B,=-8 (XV.33)
808 52 64
=) _SU8 9 o 04

5 5 "t f (XV34)

where f is the number of active flavors.
At this point we would like to make the following comments.

e The logarithmic term in (XV.28) reflects the O(a;,) scale dependence of the matrix elements
of @ and Q. Accordingly its coefficient is given by the difference in the one-loop anomalous
dimensions of these operators, ¥(%) and (9.
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o The one-loop anomalous dimension of the effective theory operator @, 79, is exactly twice
as large as the one-loop anomalous dimension of the heavy-light current discussed in section
XVC (see eq. (XV.18). Therefore the scale dependence of (Q) below u; is entirely con-
tained in the scale dependence of the decay constant squared f 2(p) This implies the well
known result that in leading log approximation the parameter Bp has no perturbative scale
dependence in the static theory below p. As the result of (Giménez, 1993) for 7() shows,
this somewhat accidental cancellation is not valid beyond the one-loop level.

e The matching condition (XV.28) contains besides the logarithm a scheme dependent con-
stant term in the relation between (Q) and (Q). We have written this coefficient in the form
B— Bin order to make the cancellation of scheme dependences, to be discussed below, more
transparent. Here B is identical to B, introduced in (V.8) and characterizes the scheme de-
pendence of (Q) (see also sections XII and XTII).

o The quantity 7(!) has been originally calculated in (Giménez, 1993) using dimensional re-
duction (DRED) instead of NDR as renormalization scheme. However, B turns out to be
the same in DRED and NDR, implying that also () coincides in these schemes (Giménez,
1993).

Finally we may put together (XV.28) and (XV.30), omitting for the moment the scheme inde-
pendent, constant correction due to (),, to obtain

@ = [ (1 8 50 oa £ 155 5] 4 20805 (o
(XV.35)

This relation serves to express the B® — B® matrix element of the operator Q, evaluated at a scale
ps = O(my), which is the relevant scale for the effective hamiltonian of section XIII, in terms
of the static theory matrix element (Q(x)) normalized at a low scale g ~ 1GeV. The latter is
more readily accessible to a nonperturbative lattice calculation than the full theory matrix element
(Q(ms)). Note that (XV.35) as it stands is valid in the continuum theory. In order to use lattice re-
sults one still has to perform an O(c,) matching of Q to its lattice counterpart. This step however
does not require any further renormalization group improvement since by means of (XV.35) Q is
already normalized at the appropriate low scale . The continuum - lattice theory matching was
determined in (Flynn et al., 1991) and is also discussed in (Giménez, 1993).

Of course, the right hand side in (XV.35) gives only the leading contribution in the 1/m expan-
sion of the full matrix element (Q(x;)) (apart from @,). Going beyond this approximation would
require the consideration of several new operators, which appear at the next order in 1/m. These
contributions have been studied in (Kilian and Mannel, 1993) in the leading logarithmic approxima-
tion. On the other hand (XV.35), while restricted to the static limit, includes and resums all leading
and next-to-leading logarithmic corrections between the scales p, = O(m;) and g ~ 1GeV in the
relation among Q and Q. It is interesting to consider the scale and scheme dependences present
in (XV.35). The dependence on g in the first factor on the r.h.s. of (XV.35) is canceled by the u-
~ dependence of (Q(x)). The dependence on p; of this factor is canceled by the explicit In p; term
proportional to 7(%). Hence the only scale dependence remaining on the r.h.s., to the considered
order O(a), is the one ~ a,(ps)7(® In gs. This is precisely the scale dependence of the full the-
ory matrix element on the Lh.s., which is required to cancel the corresponding dependence of the

132



Wilson coefficient. Similarly the term ~ a,(u;)B represents the correct scheme dependence of
{Q(ps)), while the scheme dependence of a,(u)J cancels with the scheme dependence of (Q(u))
and the difference B — J is scheme independent by itself. This discussion demonstrates explicitly
that the transition from full QCD to HQET can be made at an arbitrary scale p; = O(my), as we
have already emphasized above.

Finally we would like to remark that since the logarithm In g5/ p is not really very large in the
present case, one might take the attitude of neglecting higher order resummations of logarithmic
terms altogether and restricting oneself to the O(a;) corrections alone. Then (XV.28) would be al-
ready the final result, as it was used in (Flynn et al., 1991). This approximation is fully consistent
from a theoretical point of view. Yet it is useful to have the more complete expression (XV.35)at
hand. Of course, as indicated above, the finite O(a,) correction due to the matrix element of §,
in (XV.28) must still be added to the r.h.s. of (XV.35). However, to complete the NLO renormal-
ization group calculation also the leading logarithmic corrections related to the operator @, should
then be resummed. To our knowledge this part of the analysis has not yet been performed in the
literature so far.
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Part Three -

The Phenomenology of Weak Decays

The third part of our review presents the phenomenological picture of weak decays beyond the
leading logarithmic approximation.

There is essentially a one-to-one correspondence between the sections in the second and in the

third part of this review. Part three uses heavily the results derived in part two. In spite of this, the
third part is meant to be essentially self-contained and can be followed without difficulties by those
readers who only scanned the material of the second part and read section II.

The phenomenological part of our review is organized as follows. We begin with a few com-
ments on the input parameters in section XVI. Next, as an application of the NLO corrections in the
current-current sector, we summarize the present status of the tree level inclusive B-decays, in par-
ticular the theoretical status of the semi-leptonic branching ratio. The issue of exclusive two-body
non-leptonic decays and the question of factorization will not be discussed here. The numerical
values of the related factors a; for various renormalization schemes can be found in (Buras, 1995).
The main part of the phenomenology begins in section XVIII where we update the “standard”
analysis of the unitarity triangle based on the indirect CP violationin K — #x (the parameter ex)
and the B ~ BY mixing described by z4. We incorporate in this analysis the most recent values
of my, Vs /Vis, Vis, Bk and Fg. In addition to the analysis of the unitarity triangle we determine
several quantities of interest. These results will be used frequently in subsequent sections.

In section XIX we present ¢'/¢ beyond leading logarithms, summarizing and updating the exten-
sive analysis presented in (Buras ez al., 1993b). &’ measures the size of the direct CP violation in
K — 77 and its accurate estimate is an important but very difficult task. In section XX we discuss
briefly the K1, — K5 mass difference and the AJ = 1/2 rule. Next, in section XXI we present an
update for K — n%%te™.

Next in sections XXII and XXIIT we consider B — X,y and B — X,ete, respectively.
B — X,~ isknown only in the LO approximation. However, in view of its importance we summa-
rize the leading order formulae and show the standard model prediction compared with the CLEQ
II findings. We also summarize the present status of NLO calculations for this decay. The NLO
calculations for B — X,e*e™ have been completed and we give a brief account of these results.
Sections XXIV-XXVI discuss K — 7vv, K — p*pu~ and rare B-decays (B — X,vo,
B — I*I~). Except for K — p*p~, all these decays have only very small hadronic uncertain-
ties and the dominant theoretical errors are related to various renormalization scale ambiguities.
We demonstrate that these uncertainties are considerably reduced by including NLO corrections,
which will improve the determination of the CKM matrix in forthcoming experiments. Using the
results of section XVIII, we also give updated standard model predictions for these decays.
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XVL. COMMENTS ON INPUT PARAMETERS

The phenomenology of weak decays depends sensitively on a number of input parameters. We
have collected the numerical values of these parameters in appendix A. To this end we have fre-
quently used the values quoted by (Particle Data Group, 1994). The basis for our choice of the
numerical values for various non-perturbative parameters, such as Bx or Fp, will be given in
the course of our presentation. In certain cases, like the B-meson life-times and the size of the
BS — B§ mixing, for which the experimental world averages change constantly we have chosen
values, which are in the ball park of those presented at various conferences and workshops during
the summer of 1995. Here we would like to comment briefly on three important parameters: |V,
|Vus/Ves| and m,. The importance of these parameters lies in the fact that many branching ratios
and also the CP violation in the Standard Model depend sensitively on them.

A.CKM Element |V |

During the last two years there has been a considerable progress made by experimentalists (Pat-
terson, 1995) and theorists in the extraction of |V,;| from the exclusive and inclusive B-decays. In
these investigations the HQET in the case of exclusive decays and the Heavy Quark Expansions for
inclusive decays played a considerable role. In particular we would like to mention the important
papers (Neubert, 1994a), (Shifman et al., 1995) and (Ball ez al., 1995a) on the basis of which one
is entitled to use:

V| = 0.040 £0.003 => A=0.8210.06 (XVL1)

This should be compared with an error of £0.006 for [V,;| quoted still in 1993. The corresponding
reduction of the error in A by a factor of 2 has important consequences for the phenomenology of
weak decays.

B. CKM Element Ratio [V,;/V.3)

Here the situation is much worse and the value

‘;“"l = 0.08 £ 0.02 (XV12)
chb

quoted by (Particle Data Group, 1994) appears to be still valid. There is a hope that the error could
be reduced by a factor of 2 to 4 in the coming years both due to the theory (Ball et al., 1995a) and
the recent CLEO measurements of the exclusive semileptonic decays B — (w, ¢)lv; (Thorndike,
1995).

C. Top Quark Mass m,
Next it is important to stress that the discovery of the top quark (Abe et al., 1994a), (Abe et al.,

1994b), (Abe et al., 1994c), (Abachi et al., 1995) and its mass measurement had an important im-
pact on the field of rare decays and CP violation reducing considerably one potential uncertainty.

136



It is however important to keep in mind that the parameter m;, the top quark mass, used in weak
decays is not equal to the one used in the electroweak precision studies at LEP or SLD. In the latter
investigations the so-called pole mass is used, whereas in all the NLO calculations listed in table
I and used in this review, m, refers to the running current top quark mass normalized atp =my:
mt(mt) One has

m®P = iy (my) [1 +1 “’(m‘)] (XVL3)
T

so that for my = O(170 GeV), m(m;) is typically by 8 GeV smaller than m{" ). This difference

will matter in a few years.

In principle any definition /7, (g;) with g, = O(m;) could be used. In the leading order this
arbitrariness in the choice of . introduces a potential theoretical uncertainty in those branching
ratios which depend sensitively on the top quark mass. The inclusion of NLO corrections reduces
this uncertainty considerably so that the resulting branching ratios remain essentially independent
of the choice of y;. We have discussed this point already in previous sections. Numerical examples
will be given in this part below. The choice y; = m; turns out to be convenient and will be adopted
in what follows.

Using the m("°l°) quoted by CDF (Abe ez al., 1994a), (Abe et al., 1994b), (Abe et al., 1994c)
together with the relation (XVI.3) we find roughly

me = my(my) = (170 £ 15) GeV (XVI4)

which we will use in our phenomenological applications. In principle an error of £11 GeV could
be used but we prefer to be conservative.
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XVIL INCLUSIVE B DECAYS
A. General Remarks

Inclusive decays of B mesons constitute an important testing ground for our understanding of

strong interaction dynamics in its interplay with the weak forces. At the same time inclusive semi-
leptonic modes provide useful information on |V|.
Due to quark-hadron duality inclusive decays of heavy mesons can, in general, be calculated more
reliably than corresponding exclusive modes. During recent years a systematic formulation for the
treatment of inclusive heavy meson decays has been developed. It is based on operator product
and heavy quark expansion, which are applied to the B meson inclusive width, expressed as the
absorptive part of the B forward scattering amplitude

1 . ‘
(B - X) = 5 —Im (z / d“m(B;THS}‘}(z)HS‘}(O)|B)) (XVIL1)

Here ’Hg(} is the part of the complete AB = 1 effective hamiltonian that contributes to the partic-
ular inclusive final state X under consideration. E.g. for inclusive semileptonic decays

G _
M rana = Z5Va(@v-s 3 (I)v-s+hee (XVIL2)

I=e,p,r

For nonleptonic modes the relevant expression is the AB = 1 short distance effective hamiltonian
given in (VL.32). It has been shown in (Chay et al., 1990), (Bjorken et al., 1992), (Bigi et al., 1992),
(Bigi et al., 1993), (Manohar and Wise, 1994), (Blok et al., 1994), (Falk et al., 1994), (Mannel,
1994), (Bigi er al., 1994a), that the leading term in a systematic expansion of (XVIIL.1) in 1/m; is
determined by the decay width of a free b-quark calculated in the parton picture. Furthermore, the
nonperturbative corrections to this perturbative result start at order (A/m;)?, where A is a hadronic
scale ~ 1 GeV, and are quite small in the case of B decays. In the light of this formulation it be-
comes apparent that the perturbative, partonic description of heavy hadron decay is thus promoted
from the status of a model calculation to the leading contribution in a systematic expansion based
on QCD. We will still comment on the (A/m;)? corrections below. In the following we will how-
ever concentrate on the leading quark level analysis of inclusive B decays. As we shall see, the
treatment of short-distance QCD effects at the next-to-leading order level — at least for the domi-
nant modes — is of crucial importance for a proper understanding of these processes.

The calculation of b-quark decay starts from the effective A B = 1 hamiltonian containing the rele-
vant four-fermion operators multiplied by Wilson coefficients. To obtain the decay rate, the matrix
elements (squared) of these operators have to be calculated perturbatively to the required order in
as. While in LLA a zeroth orderevaluation is sufficient, O(a;) virtual gluon effects (along with real
gluon bremsstrahlung contributions for the proper cancellation of infrared divergences in the inclu-
sive rate) have to be taken into account at NLO. In this way the renormalization scale and scheme
dependence present in the coefficient functions is canceled to the considered order (O(as)) in the
decay rate. Thus, by contrast to low energy decays, in the case of inclusive heavy quark decay, a
physical final result can be obtained within perturbation theory alone.

Our goal will be in particular to review the present status of the theoretical prediction for the B
meson semileptonic branching ratio Bsy . This quantity has received some attention in recent years
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since theoretical calculations (Altarelli and Petrarca, 1991), (Tanimoto, 1992), (Palmer and Stech,
1993), (Bigi et al., 1994b), (Falk et al., 1995) tended to yield values around 12.5 — 13.5%, above
the experimental figure Bsy = (10.4 % 0.4)% (Particle Data Group, 1994). However, these ear-
lier analyses have not been complete in regard to the inclusion of final state mass effects and NLO
QCD corrections in the nonleptonic widths. More precisely, these calculations took into account
mass effects appropriate for the leading order in QCD along with NLO QCD corrections obtained
for massless final state quarks. Recently the most important of these — so far lacking — mass effects
have been properly included in the NLO QCD calculation through the work of (Bagan et al., 1994),
(Bagan et al., 1995a), (Bagan et al., 1995b). These O(a,) mass effects tend to decrease Bg;, and,
according to the analysis of these authors essentially bring it, within theoretical uncertainties, into
agreement with the experimental number. Before further discussing these issues, it is appropriate
to start with a short overview summarizing the possible b-quark decay modes and classifying their
relative importance.

B. b-Quark Decay Modes

First of all, a b-quark can decay semileptonically to the final states cl#; and ulp; with I = e, p,
T.
In the case of nonleptonic final states we may distinguish three classes: Decays induced through
current-current operators alone (class I), decays induced by both current-current and penguin op-
erators (class IT) and pure penguin transitions (class III). We have

Class Final State
I |cud, cus; ués, wucd
IO |cés, c&d; uiid, uus
I |ddd, dds; ssd, s3s

Clearly there is a rich structure of possible decay modes even at the quark level and a complete
treatment would be quite complicated. However, not all of these final states are equally important.
In order to perform the analysis of b-quark decay, in particular in view of the calculation of Bsy,
it is useful to identify the most important channels and to introduce appropriate approximations in
dealing with less prominent decays. To organize the procedure, we make the following observa-
tions: '

¢ The dominant, i.c. CKM allowed and tree-level induced, décays are b — clv, b — ciud
and b — ccs. For these a complete NLO calculation including final state mass effects is

necessary.

o The channels cis, ced, ucd, utis may be incorporated with excellent accuracy into the modes
cid, cts, uts, uiid, respectively, using the approximate CKM unitarity in the first two gen-
erations. The error introduced thereby through the s-d mass difference is entirely negligible.

o Penguin transitions are generally suppressed by the smallness of their Wilson coefficient
functions, which are typically of the order of a few percent. For this reason, one may neglect
the pure penguin decays of class IIT altogether as their decay rates involve penguin coeffi-
cients squared.
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- o Furthermore we may neglect the penguin contributions to the CKM suppressed b — u tran-
sitions of class II .

o In addition one may treat the remaining smaller effects, namely b — u transitions and the
interference of penguins with the leading current-current contribution in b — czs within the
leading log approximation.

o Finally, rare, flavor-changing neutral current b-decay modes are negligible in the present con-
text as well.

Next we will write down expressions for the relevant decay rate contributions we have discussed.
For the dominant modes b — clv, b — cud and b — ¢s (without penguin effects) one has at
next-to-leading order:

L(b — clv) = Iy P(z., z1,0) [1 + %11(;,"—)9(%, .1:;,0)] (XVIL3)

as(Mw) — ag(u)
2%

I'(b — cuad) = [P(z.,0,0) [2L1 + 12 + (2L3Ry + L2R.)

+ 228 (31 L e + 20+ LYoz

+ 3% = ) (on(en) — 121a L)) | (XVIL4)

QS(MW) — a,(p)
2

I'(b — cés) = T'oP(zc, Tcy T5) [2L_2,_ + L% + (2L3Ry + L2R.)

3 4
+ -;—(L?,_ — L?)(h12(z.) — 121n ﬁ;))] (XVIL5)

+ 2B (3 L (e + 2+ L Phan(e)

Eq. (XVIL5) neglects small strange quark mass effects in the NLO terms, which have however
been included in the numerical analysis in (Bagan et al., 1995b). In the equations above Iy =
GEmi|Ves|*/(19272) and P(zy, 22, 23) is the leading order phase space factor given for arbitrary
masses z; = m;/m; by
(l—-z1)2 d
P(zy,72,23) = 12 / -f—(s — 23 — 22)(1 + 22 — s)w(s, 22, z2)w(s,2?,1)  (XVIL6)

(z2+z3)?

w(a,b,c) = (a® + b* + ¢® — 2ab — 2ac — 2bc)*/? : XVILT)

P is a completely symmetric function of its arguments.
Furthermore
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with dy = 6/23, d_ = —12/23 (see (V.10)) and 4 = O(m;). The scheme independent Ry come
from the NLO renormalization group evolution and are given by Ry = By — Ju (see (V.9)). For
f =5 flavors R, = 6473/3174, R_ = —9371/1587. Note that the leading dependence of L on
the renormalization scale 4 is canceled to O(a;) by the explicit u-dependence in the a,-correction
terms. Virtual gluon and bremsstrahlung corrections to the matrix elements of four fermion oper-
ators are contained in the mass dependent functions g, g;; and h;;.

The function g(z1, 2, z3) is available for arbitrary z,, z,, z3 from (Hokim and Pham, 1983),
(Hokim and Pham, 1984). The special case g(z1,0,0) has been analysed also in (Cabibbo and
Maiani, 1978). Analytical expressions have been given in (Nir, 1989) for g(z;, 0,0) and in (Bagan
et al., 1994) for (0, 2,0). The functions g11(z), g12(z) and ga2(z) are calculated analytically in
(Bagan et al., 1994). Furthermore, as discussed in (Bagan et al., 1994), hi1(z) and h22(z) can be
obtained from the work of (Hokim and Pham, 1983), (Hokim and Pham, 1984). Finally, h;12(z) has
been determined in (Bagan et al., 1995b). For the full mass dependence of these functions we refer
the reader to the cited literature. Here we quote the results obtained in the massless limit. These
have been computed in (Altarelli ez al., 1981), (Buchalla, 1993) for Gii» h,'j (_q,-,-(O) = h.'j(O))

g11(0) = g52(0) = 3—1—7f2 912(0) = 911(0)"}2 (XVIL9)

Li=Li(p) = [ (XVILS)

Furthermore

9(0,0,0) = 2—5 —x? (XVIL10)

In table XXX VI we have listed some typical numbers extracted from (Bagan et al., 1995a), (Bagan
et al., 1995b) illustrating the impact of charm mass effects (for z. = 0.3) in the NLO correction
terms by giving the enhancment factor of the NLO over the LO results. There are of course vari-
ous ambiguities involved in this comparison. The numbers in table XXXVI are therefore merely
intended to show the general trend. Note the sizable enhancement through NLO mass effects in the
nonleptonic channels, in particular b — c¢s. A large QCD enhancement in the latter case has also
been reported in (Voloshin, 1995).

TABLE XXXVI. Typical values for the ratio of NLO to LO results for dominant b-decay channels with
(1) and without (II) including finite charm mass effects in the NLO correction terms. The leading order final
state mass effects (through the function P) are taken into account in all cases.

" b: cey o b :;TV - b— cid ) b— cc‘;
0.85 0.88 1.06 1.32
II“ 0.79 0.80 1.01 1.02

To complete the presentation of b decay modes we next write down expressions for the CKM
suppressed channels b — ulv, b — ués and b — uud (without penguins) as well as the contribution
to the b — ccs rate due to interference of the leading, current-current type transitions with penguin
operators. Restricting ourselves to the LLA for these small contributions we obtain
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Fb—ou) lv)= I‘ol |2ZP(0 z1,0 - (XVIL11)
]
(b — ugs) = ro| |2P(o ze,2s) [2L3 + L2] (XVIL12)
— N |2 2 2 2
P(b— uad) = Tol | 222 + 2] (XVIL13)
ch

1 1
Alpenguin (b — cZs) = 6ToP(z., zc, z.) [cl (C3 + 3¢ + Fes + §Cs))

+ c2 (%63 +cq4+ F(§C5 + 06))] (XVH.14)

where c,, . . ., c¢ are the leading order Wilson coefficients and

622 2

_ c ds 2 _ 2 2 2 2 2
F= P(a:c,:vc,-'l?s)( +/)2 32(8+:c, z)(1+ s — ) w(s, 22, z3)w(l,s,2?)  (XVIL15)

Numerically we have for |V,;/Vs| = 0.1
L(b— ud_ lv) =~ 0.024T, I'(b — ués) = 0.017T (XVIL16)
1

T(b— vad) ~ 0.034T6 AT enguin(b — cis) ~ —0.041T, (XVIL17)

Note that the contribution due to the interference with penguin transitions in b — ¢&s is negative.
Hence, in addition to being small the effects in (XVIIL.16) and (XVII.17) tend to cancel each other
in the total nonleptonic width.

Finally one may also incorporate nonperturbative corrections. These have been derived in (Bi gi
et al., 1992) and are also discussed in (Bagan et al., 1994). As mentioned above, nonperturbative
effects are suppressed by two powers of the heavy b-quark mass and amount typically to a few
percent. For details we refer the reader to the cited articles.

C. The B Meson Semileptonic Branching Raﬁo

An important application of the results described in the previous section is the theoretical pre-
diction for the inclusive semileptonic branching ratio of B mesons
I'(B — Xev)

Ber =
St T..:(B)

(XVII.18)

On the parton level I'(B — Xev) ~ I'(b — cev) and
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T:0t(B) =~ Z I'(b— clv) + I‘(b — ciid) + I'(b — ¢€s) + Al penguin(b — cés) + I'(b— u)

I=e,u,r

(XVIL.19)

Here we have applied the approximations discussed above. I'(b — u) summarizes the b — u tran-
sitions.

Based on a similar treatment of the partonic rates, including in particular next-to-leading QCD cor-
rections for the dominant channels and also incorporating nonperturbative corrections, the authors
of (Bagan et al., 1995a), (Bagan ez al., 1995b) have carried out an analysis of Bg;, and estimated
the theoretical uncertainties. They obtain (Bagan et al., 1995b)

Bsy=(120£14)% and Bsp=(112%17)% (XVIL20)

using pole and M'S masses, respectively. The error is dominated in both cases by the renormaliza-
tion scale uncertainty (my/2 < p < 2my). Note also the sizable scheme ambiguity.

Within existing uncertainties, the theoretical prediction does not disagree significantly with the ex-
perimental value Bsy, ez, = (10.4 + 0.4)% (Particle Data Group, 1994), although it seems to lie
still somewhat on the high side.

It is amusing to note, that the naive mode counting estimate for Bsy, neglecting QCD and fi-
nal state mass effects completely, yields Bs; = 1/9 = 11.1% in (almost) "perfect agreement”
with experiment. Including the final state masses, still neglecting QCD, enhances this number to
Bsi, = 15.8%. Incorporating in addition QCD effects at the leading log level increases the hadronic
modes, thus leading to a decrease in Bsy,, resulting typically in Bsz, = 14.7%. A substantial further
decrease is finally brought about through the NLO QCD corrections, which both further enhance
hadronic channels, in particular 5 — c€s, and simultaneously reduce b — cev. As pointed out in
(Bagan et al., 1995a), (Bagan et al., 1995b) and illustrated in table XXX V1 final state mass effects
in the NLO correction terms play a nonnegligile role for this enhancement of hadronic decays. The
nonperturbative effects also lead to a slight decrease of Bsy.

In short, leading final state mass effects and QCD corrections, acting in opposite directions on Bs;,
tend to cancel each other, resulting in a number for Bsy, not too different from the simple mode-
counting guess.

We finally mention that, besides a calculation of Bsy, the partonic treatment of heavy meson
decay has further important applications, such as the determination of |V,;| from inclusive semi-
leptonic B decay, B — X_ev. Analyses of this type have been presented in (Luke and Savage,
1994), (Bigi and Uraltsev, 1994), (Ball and Nierste, 1994), (Shifman et al., 1995).

Exact results beyond the presently known NLO accuracy seem extremely difficult to obtain,
even for relatively simple quantities like the semileptonic b-quark decay rate. There exist however
calculations in the literature devoted to the investigation of these higher order perturbative effects.
Due to the severe technical difficulties, those calculations require additional assumptions. For in-
stance, in an interesting study (Ball et al., 1995a) have investigated the effects of the running of
a5 on the semileptonic b-quark decay rate to all orders in perturbation theory. This calculation is
equivalent to a resummation of all terms of the form o, (8oc;)™, which are related to one-gluon ex-
change diagrams containing an arbitrary number n of fermion bubbles. The work of (Ball et al.,
1995a) applies the renormalon techniques developped in (Beneke and Braun, 1995), (Ball et al.,
1995b) and generalizes the O(Boa?) results computed in (Luke et al., 1995). The underlying idea
is similar in spirit to the BLM apptoach (Brodsky et al., 1983). An important application of the re-
sult is the extraction of |Vs| (Ball et al., 1995a). The formalism has also been used to study higher
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order QCD corrections to the 7 lepton hadronic width (Ball et al., 1995b). Irrespective of the ul-
timate reliability of the approximation, these investigations are useful from a conceptual point of
view as they help to illustrate important features of the higher order behavior of the perturbative
expansion.

In principle the discussion we have given for b-decays may of course, with appropriate mod-
ifications, be applied to the case of charm as well. However here the nonperturbative corrections
to the parton picture, which scale like 1/m} with the heavy quark mass mg, are by an order of
magnitude larger than for B mesons and accurate theoretical predictions are much more difficult to
obtain (Blok and Shifman, 1993).

144



XVIlL. ¢k, BC°-B° MIXING AND THE UNITARITY TRIANGLE
A, Basic Formula for ¢

The indirect CP violationin K — 7 is described by the well known parameter £ 5. The general
formula for ek is given as follows -

38(::\44) (ImMy; + 26ReM;,) (XVIIL1)
where
_ ImA,
€= ton (XVIIL2)

with Ao = A(K — (77)1=0) and AMk being the K1-Ks mass difference. The off-diagonal
element M, in the neutral K-meson mass matrix represents the K°-K° mixing. It is given by

2mx M}, = (K°Ha(AS = 2)|K°) (XVIIL3)

where Hegr(AS = 2) is the effective hamiltonian of eq. (XII.1). Defining the renormalization group
invariant parameter Bx by

(3)
Bk = Bx(p) [of(n)] oy [ %"_)Je,] (XVIIL4)
_ ' 8
(K°|(3d)v-4(5d)v-4|K®) = 3 Br () Fgmi (XVIIL5)
and using (XII.1) we find
G%
My, = Tor 2FKBKMKM2 [A*zﬂlso(:cc) + A:20250(2e) + 2A N3 S0(ze, zt)] (XVIIL6)

where the functions So(z;) and So(z;, z;) are those of eq. (XIL.3)~(XII.5). Fx is the K-meson
decay constant and mg the K-meson mass. The coefficient J; is given in (XIL 9) and the QCD
factors n; have been discussed in section XII. Their numerical values are

m = 1.38 72 = 0.57 ns = 0.47. (XVIIL7)

The last term in (XVIIL1) constitutes at most a 2 % correction to ¢x and consequently can be ne-
glected in view of other uncertainties, in particular those connected with By. Inserting (XVIIL6)
into (XVIIL.1) we find

ex = CcBrIm, {Rez\c [m1S0(zc) — n3So(zc, z¢)] — ReAmzSo(ze) } exp(in/4) (XVIIL8)

where we have used the unitarity relation ImA; = Im), and we have neglected Re);/Re), =
O(2*) in evaluating Im(A? A?). The numerical constant C, is given by
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Using the standard parametrization of (I1.13) to evaluate ImJ; and Re);, setting the values for s;,,
s13, S23 and my in accordance with appendix A and taking a value for Bk (see below) one can
determine the phase § by comparing (XVIIL8) with the experimental value for ex.

Once § has been determined in this manner one can find the corresponding point (g, 7) by using
(11.19) and (11.22). Actually for a given set (s12, 513, S23, My, Bi) there are two solutions for 6 and
consequently two solutions for (g, 7). In order to see this clearly it is useful to use the Wolfenstein
parametrization in which ImJ,, Re), and Re), are given to a very good approximation by (I1.23)-
(I1.25). We then find that (XVIII.8) and the experimental value for ex specify a hyperbola in the

(@, %) plane given by
7{(1 — 8)A%n:So(z:) + Po(€)} A?Bx = 0.226. (XVIIL10)

= 3.78 - 10%. (XVIILY)

where

1
A7
The hyperbola (XVIII.10) intersects the circle given by (I1.32) in two points which correspond to
the two solutions for 6 mentioned earlier.

The position of the hyperbola (XVIIL10) in the (3, 7) plane depends on my, |Vz3| = AA? and
Bg. With decreasing m., |V;3]| and B the ex-hyperbola moves away from the origin of the (g, 77)
plane. When the hyperbola and the circle (I1.32) touch each other lower bounds consistent with
ex® for my, |Vis|, |Vus/Vis| and Bk can be found. The lower bound on m, is discussed in (Buras,
1993). Corresponding results for |V, / V4| and Bk are shown in fig. 11 and 12, respectively. They
will be discussed below.

Moreover approximate analytic expressions for these bounds can be derived. One has

Po(e) = [n3So(zc, 2:) — mz.] (XVIIL11)

1 1 0.658
(Mt)min = Mw [2 Yy ( Yo 1.4)] (XVIIL12)
A : -1
[Vis/ Vis i = =7 [4%Bx (2227047 + 1.4)] (XVIIL13)
(Bi)min = [APRs (222704% + 1.4)] 7 (XVIIL14)

Concerning the parameter By, the analyses of (Sharpe, 1994), (Ishizuka, 1993) (Bx = 0.83 +
0.03) using the lattice method and of (Bijnens and Prades, 1995) using a somewhat modified form
of the 1/N approach of (Bardeen et al., 1988), (Gérard, 1990) give results in the ball park of the
1/N result Bx = 0.70 & 0.10 obtained some time ago in (Bardeen et al., 1988), (Gérard, 1990).
* In particular the analysis of (Bijnens and Prades, 1995) seems to have explained the difference be-
tween these values for By and the lower values obtained using the QCD Hadronic Duality approach
(Pich and de Rafael, 1985), (Prades et al., 1991) (Bx = 0.39 +0.10) or using SU(3) symmetry and
PCAC (Bk = 1/3) (Donoghue et al., 1982). These higher values of By are also found in the most
recent lattice analysis (Crisafulli et al., 1995) (Bx = 0.86 £ 0.15) and in the lattice calculations of
Bernard and Soni (B = 0.78 & 0.11) and the JLQCD group (Bx = 0.67 &+ 0.07) with the quoted
values obtained on the basis on the review by (Soni, 1995). In our numerical analysis we will use

Bx =0.75£0.15. (XVIIL15)
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B. Basic Formula for B°-B° Mixing

The B°-B° mixing is usually described by

(AM)s,, 2|My|s,,
I's,, I's,,

(XVIIL.16)

Tgs =

where (AM)p,, is the mass difference between the mass eigenstates in the B§ — B9 system and
the BY — B? system, respectively,andI's,, = 1/ 78,, With g, , being the correspondmg lifetimes.
The oﬁ—dlagonal term M, in (XVIIL16) is given by

2mp|My,| = |(B°|Heﬂ(AB = 2)|BY)| (XVIIL17)

where Heq(AB = 2) is the effective hamiltonian of (XIIL1). Defining the renormalization group
invariant parameter Bg by

-6/23 (5) '
B = Ba(u) [o®(u) [ "‘—47@.15] (XVIIL18)
_ - 8
(B°|(bd)v-a(bd)v-4|B% = 3Bs(w)Famp (XVIIL19)
and using (XTIL1) we find |
G2 | |
Tds = 78,5 518MB,, (BB, F5, ) My So(2e) | Viga,n)|* (XVIIL20)

with the QCD factor 7 discussed in section XIII and given by g = 0.55.
The measurement of B?-B? mixing allows then to determine |V,4| or R; of (11.33)

[Via| = AX3R, R = 1.52—2% (XVIIL21)
So(z2)
where
0.040] | 200 MeV 0.5 16ps]°5 0.551%°
Ro_[Wc-bI—H BBFB][075 [ . (XVIIL22)
which gives setting g = 0.55
170 GeV]%™ | 200 MeV 05 11,6 ps]%*
— .10-3
Vig| = 8.56 - 10 [mt(mt)] [ e ] [0 L [ ] . (XVIIL23)

There is a vast literature on the lattice calculations of Fig. The most recent results are somewhat
lower than quoted a few years ago. Based on a review by (Sachrajda, 1994), the recent extensive
study by (Duncan et al., 1995) and the analyses in (Bernard et al., 1994), (Draper and McNeile,
1994) we conclude that Fg, = (180 £ 40) MeV. This together with the earlier result of the Euro-

pean Collaboration (Abada et al., 1992) for B, gives Fp,\/Bg, = 194 + 45MeV. A reduction
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of the error in this important quantity is desirable. These results for Fjp are compatible with the
results obtained using QCD sum rules (e.g. (Bagan et al., 1992), (Neubert, 1992)). An interest-
ing upper bound Fp, < 195 MeV using QCD dispersion relations has also recently been obtained
(Boyd et al., 1995). In our numerical analysis we will use

v/Bs.Fs, = (200 £ 40) MeV . (XVIIL.24)

The accuracy of the determination of R, can be considerably improved by measuring simulta-
neously the B?-B? mixing described by z,. We have

: 2
1 -le B, Mp FBd BBd
= [ 121 =2 = Pe B . XVIIL
Re= Jmm\maVi-¥(1-20  Ri= 20 [ o (XVIIL25)

Note that m, and |V.;| have been eliminated in this way and that R,, depends only on SU (3)-flavour
breaking effects which contain much smaller theoretical uncertainties than the hadronic matrix el-
ements in z4 and z, separately. Provided z4/z, has been accurately measured a determination of
R, within :10% should be possible. Indeed the most recent lattice results (Duncan et al., 1995),
(Baxter et al., 1994) give Fp,/Fp, = 1.22 & 0.04. A similar result Fjp,/Fp, = 1.16 + 0.05 has
been obtained using QCD sum rules (Narison, 1994). It would be useful to know Bg,/Bp, with a
similar precision. For Bg, = Bpg, we find using the lattice result Ry, = 0.66 + 0.07.

C.sin(28) from ex and BP-B° Mixing

Combining (XVIII.10) and (XVIIL.20) one can derive an analytic formula for sin(23) (Buras
et al., 1994b)

sin(28) =

1 [ 0.226

1.16A%,BZ | A2 "IPo(E)] - (XVIIL26)

Py(e) is weakly dependent on m, and for 155GeV < m, < 185GeV one has Py(e) = 0.31 +
0.02. As 7 < 0.45 for |Vs/Vas| < 0.1 the first term in parenthesis is generally by a factor of 23
larger than the second term. Since this dominant term is independent of m, the values for sin(23)
extracted from ex and B®-B® mixing show only a weak dependence on m; as stressed in particular
in (Rosner, 1992).

Since in addition AR} is independent of |V,;|, the dominant uncertainty in this determination
of sin(24) resides in A?Bg in the first term in the parenthesis and in Fp,\/Bp, contained in R3.

D. Phenomenological Analysis

We will now combine the analyses of ex and of B — BS mixing to obtain allowed ranges for
several quantities of interest. We consider two sets of input parameters, which are collected in the
appendix. The first set represents the present situation. The second set can be considered as a “fu-
ture vision” in which the errors on various input parameters have been decreased. Itis plausible that
such errors will be achieved at the end of this decade, although one cannot guarantee that the central
values will remain. In table XXXVII we show the results for §, ImJ);, sin 2a, sin 28, sin~, |Vi4|
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and z,. They correspond to the two sets of parameters in question, with and without the constraint
from B$ — B mixing. The results for Im\, and |Vaa| will play an important role in the phenomenol-
ogy of rare decays and CP violation. For completeness we also show the expectations for sin 2a,
sin 28 and sin v which enter various CP asymmetries in B-decays. As already discussed in detail
in (Buras et al., 1994b), sin 2a cannot be predicted accurately this way. On the other hand sin 23
and sin -y are’' more constrained and the resulting ranges for these quantities indicate that large CP
asymmetries should be observed in a variety of B-decays.

TABLE XXXVII. Predictions for various quantities using present and future input parameter ranges
given in appendix A. Im ), and |V;4| are given in units of 10~ and 10~3, respectively. 4 is in degrees.

no z4 constraint with z4 constraint
Present - Future Present Future

é 37.7-160.0 574-1449 37.7-140.2 58.5-93.3| .
ImA, 0.64-1.75 0.82-1.50 0.87-1.75 1.12-1.50
[Vidl 6.7-13.5 7.7-12.1 6.7-119 78-93
z, , - - 11.1-47.0 19.6 -29.6
sin 2a -0.86 - 1.00 -0.323-1.00 -0.86 -1.00 -0.30-0.73
sin 23 0.21-0.80 0.34-0.73 0.34-0.80 0.57-0.73
sin y 0.34-1.00 0.58 -1.00 0.61-1.00 0.85-1.00

In fig. 10 we show ImJ);, as a function of m.. In fig. 11 the lower bound on |V,;/V,;| resulting
from the ex-constraint is shown as a function of |V3| for various values of Bx. To this end we
have set m, = 185 GeV. For lower values of m, the lower bound on |V,;/V,;| is stronger. A sim-
ilar analysis has been made by (Herrlich and Nierste, 1995a). The latter work and the plot in fig.
11 demonstrate clearly the impact of the e constraint on the allowed values of |V,;/V.s| and |V4).
Simultaneously small values of |V,s/V.;| and | V5|, although still consistent with tree-level decays,
are not allowed by the size of the indirect CP violation observed in X' — #x. Another representa-
tion of this behaviour is shown in fig. 12 where we plot the minimal value of Bx consistent with
the experimental value of ex as a function of V,, for different |V,;/V5| and m; < 185 GeV.

Finally in fig. 13 we show the allowed ranges in the (5, 7) plane obtained using the information
from Vs, |Vus/Vas|, ex and B} — BY mixing. In this plot we also show the impact of a future mea-
surement of B? — B? mixing with z, = 10, 15, 25, 40, which by means of the formula (XVIIL25)
gives an important measurement of the side R, of the unitarity triangle. Whereas at present a broad
range in the (p, 77) plane is allowed, the situation might change in the future allowing only the val-
ues 0 < g < 0.2and 0.30 < 7 < 0.40. This results in smaller ranges for various quantities of
interest as explicitly seen in table XXXVII.

Other analyses of the unitarity triangle can be found in (Peccei and Wang, 1995), (Cmchlm
et al., 1995), (Herrlich and Nierste, 1995a), (Ali and London, 1995).
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XIX. ¢'/e BEYOND LEADING LOGARITHMS
A. Basic Formulae

The direct CP violation in K — = is described by ¢’. The parameter &’ is given in terms of
the amplitudes Ao = A(K — (77)1=0) and Az = A(K — (77)1=;) as follows

e = -%5(1 — Q) exp(i®), (XIX.1)
where _
_ Ion _ RBAz . 1 Im.Az
$=Redy’ “TRed = oTma (XIX.2)

and ® = 7r/2+62—60z7r/4.
When using (XIX.1) and (XIX.2) in phenomenological applications one usually takes ReAq
and w from experiment, i.e. _

Redg=333-107"GeV  Red;=150-10"2GeV  w=0.045 (XIX.3)

where the last relation reflects the so-called AT = 1/2 rule. The main reason for this strategy is the
unpleasant fact that until today nobody succeded in fully explaining this rule which to a large extent
is believed to originate in the long-distance QCD contributions. We will be more specific about this
in the next section. On the other hand the imaginary parts of the amplitudes in (XIX.2) being related
to CP violation and the top quark physics should be dominated by short-distance contributions.
Therefore ImAq and ImA; are usually calculated using the effective hamiltonian given in (VIL1).
Using this hamiltonian and the experimental values for ¢, ReAg and w the ratio ¢’ /€ can be written
as follows

¢'/e = Im), [p(llz) - p(3/2)] - XIX.4)
where
PO =5 P = 2 3:{Qi)o(1 — Ryire) XIX.5)
PE2 =3 PEM = 3 Yyl Q:)2 (XIX.6)
with |
r= ﬁn:_,%' (XIX.7)

Here the hadronic matrix element shorthand notation is
(Qi)r = ((v7)1|Qi| K) (XIX.8)

and the sum in (XIX.5) and (XIX.6) runs over all contributing operators. This means for B> me
also contributions from operators Q5 , to P(1/2) and P®/2) have to be taken into account. These
are necessary for P(/2) and P®/2) 10 be independent of the renormalization scale . Next,
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_ 1 (ImAz)I_B,
Qo = o ImA; (XIX.9)
represents the contribution stemming from isospin breaking in the quark masses (m, # mgy). For
Q4 we will take

Qpip = 0.25 £0.05 (XIX.10)

which is in the ball park of the values obtained in the 1/N, approach (Buras and Gérard, 1987) and
in chiral perturbation theory (Donoghue e al., 1986), (Lusignoli, 1989). .., is independent of
my.

The numerical values of the Wilson coefficients y; have been already given in section VIIE.
We therefore turn now our attention to the hadronic matrix elements (XIX.8) which constitute the
main source of uncertainty in the calculation of ¢'/e.

B. Hadronic Matrix Elements for K — 77

The hadronic matrix elements (Q);); depend generally on the renormalization scale £ and on
the scheme used to renormalize the operators @;. These two dependences are canceled by those
present in the Wilson coefficients C;(x) so that the resulting physical amplitudes do not depend on
p and on the renormalization scheme of the operators. Unfortunately the accuracy of the present
non-perturbative methods used to evalutate (Q;)7, like lattice methods or 1/N, expansion, is not
sufficient to obtain the required ¢ and scheme dependences of (Q;);. A review of the existing meth-
ods and their comparison can be found in (Buras et al., 1993b), (Ciuchini et al., 1995). In view of
this situation it has been suggested (Buras et al., 1993b) to determine as many matrix elements
(Q:)}1 as possible from the leading CP conserving K — w7 decays, for which the experimental
data are summarized in (XIX.3). To this end it turned out to be very convenient to determine (@)1
at a scale 4 = m.. Using the renormalization group evolution one can then find (Q;); at any other
scale pt # mc. The details of this procedure can be found in (Buras et al., 1993b). Here we simply
summarize the results of this work.

We first express the matrix elements (Q;); in terms of the non-perturbative parameters B,(l/ 2

and B§3/ ? for (Q:)o and (Q;)2, respectively. For p < m, we have (Buras et al., 1993b) -

(@Yo = — %X B2, (XIX.11)
(@2)0 = gXBél’ a, (XIX.12)
(@s)o = %X B/, | (XIX.13)
(Q4)o = (@3)o + (@2)0 — (@1)o, ' X1X.149)
(@s)o = %Bgllz)(@)o ) (XIX.15)
2 2 F
(Qslo = — 4\@ l:ms(”)n:'l{md(ﬂ)] - B, (XIX.16)
(@)o =~ [é(@)o(n +1) - %] B, (XIX.17)
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(@s)o = =[5 @edolx +1) - %] B, (XIX.18)
{Qs)o = g(Qx)o - %(Qs)o , (XIX.19)
(Q1o)o = (@2)0 + %(Ql)o - %(Qs)o , (XIX.20)
(@1)2 =(Q2)2 = i—XB“”’ 2, (XIX.21)
(i)e=0, i= 3 (XIX.22)
Q)2 = [6 f(_)o + ] BE/ (XIX.23)
(Qs)z = — [m(Qs)o + -\é——X] BE?, (XIX.24)
(@e)2 = (Quo)z = 2(@u)a, (XIX.25)
where
A2 F,

Ty (XIX.26)
X= JE:F, (mk —m2) , (XIX.27)

and |
(Qe)o = Qeo (XIX.28)

Bél/ 2)

The actual numerical values used for mg, m,, Fk, F, are collected in appendix A.

In the vacuum insertion method B; = 1 independent of . In QCD, however, the hadronic
parameters B; generally depend on the renormalizations scale y and the renormalization scheme
considered.

C. (Q:i(u))2 for (V — A) ® (V — A) Operators

The matrix elements (Q1)2, (Q2)2, (Qo)2 and (Q10)2 can to a very good approximation be de-
termined from ReA; in (XIX.3) as functions of Ay, # and the renormalization scheme considered.
To this end it is useful to set @ = 0, as the O(a) effects in CP conserving amplitudes, such as the
contributions of electroweak penguins, are very small. One then finds

_ _ 10°GeV® Red; _ 847-10~%GeV?
(Ql(ﬂ))2 = (Q2(ﬂ’))2 - 1.77 Z+([l) - z+(”)

and comparing with (XIX.21)

(XIX.29)
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0.363
z4(p)

with z; = z; + 2z,. Since z;(p) depends on the scale x and the renormalization scheme used,
(XIX.30) gives automatically the scheme and p dependence of B§3/ 2) and of the related matrix
elements (Qi)2, {(Q2)2, (@s)2 and (Q10)2- The impact of O(a) corrections on this result has been
analysed in (Buras et al., 1993b). It amounts only to a few percent as expected. These corrections
are of course included in the numerical analysis presented in this reference and here as well. Using
g =me=13GeV, A(4) = 325 MeV and z;(m.) of table XIX we find according to (XIX.30)

BE () = (XIX.30)

BEA) p(me) = 0. 453 BE)(m.) = 0.472. (XIX.31)
The following comments should be made:
o BEA(p) decreases with increasing p.

o The extracted value for B(a/ )is by more than a factor of two smaller than the vacuum inser-
tion estimate.

e Itis compatible with the 1/N, value B&/?(1 GeV) ~ 0.55 (Bardeen et al., 1987a) and some-
what smaller than the lattice result B§3/ 2)(2 GeV) = 0.6 (Ciuchini et al., 1995).

D. (Qi(p))o for (V — A) ® (V — A) Operators

The determination of {Q;(x))o matrix elements is more involved because several operators may
contribute to ReAp. The main idea of (Buras et al., 1993b) is then to set 4 = m,, as at this scale
only @; and @ operators contribute to ReAy in the HV scheme. One then finds (Q1(m:))o as a
function of (Q2(m.))o ‘

10 GeV? ReA, _ z2(me)
177 z(me) z(me)

(@1(mc))o = (@2(mc))o (XIX.32)

where the reference in {@Q; 2(m.))o to the HV scheme has been suppressed for convenience. Using
next the relations (XIX.14), (XIX.19) and (XIX.20) one is able to obtain (Q4(m.))o, (Qe(m.))o and
(@10(mc))e as functions of (Q2(mc))e and (Q3(mc))o. Because (Q3(m.))o is colour suppressed
it is less essential for this analysis than (Q»(m.))e. Moreover its Wilson coefficient is small and
similarly to (Qs(m.))o and (Q10(mc))o also (Qs(m.))o has only a small impact on £’/z. On the
other hand the coefficient y, is substantial and consequently (Q4(m.))o plays a considerable role
in the analysis of ¢’/c. The matrix element (Q3(m.))o has then an indirect impact on &’ /¢ through
relation (XIX.14). For numerical evaluation, (Q3(m.))o of (XIX.13) with B B{? = 1 can be used
keeping in mind that this may introduce a small uncertainty in the final analys1s This uncertainty
has been investigated in (Buras ez al., 1993b).

Once the matrix elements in question have been determined as functions of (Q2(m.))o in the
HV scheme, they can be found by a finite renormalization in any other scheme. Details can be
found in (Buras et al., 1993b).
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If one in addition makes the very plausible assumption valid in all known ndn-perturbative ap-
proaches that (Q_(m.))e = (Q+(mc))o > 0 the experimental value of ReA, in (XIX.3) together
with (XIX.32) and table XIX implies for A% = 325 MeV

B{(me) =57+11 B r(me) =6.6+1.0 B;},/,@(mc)_= 62+ 10. (XIX.33)

The extraction of B{'/?)(m,) and of an analogous parameter B{"/?(m,) are presented in detail in
(Buras et al., 1993b). B{*/*)(m.) depends very sensitively on B{/?(m,) and its central value is as
high as 15. B{'/?(m.) is less sensitive and typically by (10-15)% lower than B{?(m.). In any
case this analysis shows very large departures from the results of the vacuum insertion method.

E. (Qi(p))o2 for (V — A) ® (V + A) Operators

The matrix elements of the (V — A) ® (V + A) operators Qs—Qs cannot be constrained by
CP conserving data and one has to rely on existing non-perturbative methods to calculate them.
Fortunately, there are some indications that the existing non-perturbative estimates of {Q;(u))o.2,
¢ =35,...,8 are more reliable than the corresponding calculations for (V — A) ® (V — A) operators.

First of all, the parameters B{/” (Kilcup, 1991), (Sharpe, 1991) and B> (Franco et dl.,
1989), (Kilcup, 1991), (Sharpe, 1991), (Bernard and Soni, 1991) calculated in the lattice approach

B{{"=10+02 Bf?=10+02 (XIX.34)

agree well with the vacuum insertion values (B; = 1) and in the case of Bél /2) and Béa/ ?) with the
1/N., approach (B{"? = B{*® = 1) (Bardeen et al., 1987b), (Buras and Gérard, 1987).

We note next that with fixed values for B&/ ? and B%’”’ the u-dependence of (@s¢)o and
(Q7,)2 is governed by the 1 dependence of m,(u). For (Qs)o and (Qs)- this property has been
first found in the 1/N, approach (Buras and Gérard, 1987): in the large- N, limit the anomalous di-
mensions of Qs and Qs are simply twice the anomalous dimension of the mass operator leading to
~ 1/m?(y) for the corresponding matrix elements. Another support comes from a renormalization
study in (Buras ez al., 1993b). In this analysis the B;-factors in (XIX.34) have been set to unity at
# = mc. Subsequently the evolution of the matrix elements in the range 1 GeV < u < 4 GeV has
been calculated showing that for the NDR scheme BSG/ 2) and B;?S/ 2 were # independent within an
accuracy of (2-3) %. The p dependence in the HV scheme has been found to be stronger but still
below 10 %.

Concerning B-%z) one can simply set B-(,fslz) = 1 as the matrix elementes (Q~s)o play only a
minor role in the ¢’/¢ analysis.

In summary, our treatment of (Q;)o,2, ¢ = 5,. . . 8 follows the one used in (Buras et al., 1993b).
We will set

Bii(m) =1 B{"mo)=B{M(ms) B (m)=BP(m)  (XKIX35)

and we will treat B{"/ 2)(mc) and B/ 2)(mc-) as free parameters in the neighbourhood of the values
given in (XIX.34). Then the main uncertainty in the values of {Q;)o,2, i = 5, .. . 8 resulis from the
value of the strange quark mass m¢(m.). The present estimates give
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ms(me) = (170 £ 20) MeV (XIX.36)

with the lower values coming from recent lattice calculations (Aliton et al., 1994) and the higher
ones from QCD sum rules (Jamin and Miinz, 1995), (Chetyrkin et al., 1995).

F. The Four Dominant Contributions to ¢’ /¢

PQ/2) and P@/2) in (XIX.4) can be written as linear combinations of two independent hadronic
parameters Béll 2 and Bf”' 2 (Buras et al., 1993b). This B;-expansion reads

2
a/2) — 1/2) 178 MeV (1/2) g1/2)
P ol 4 [ms ety o Bs (XIX.37)
178MevV  1°
P/ _ GG/ +[ ] /GBI 38
%o ms(mc)"’md(mc) 8 8 (XIX-38)

Here at(,l/ 2 and a,‘,sl 2 effectively summarize all dependences other than Béll ?) and B§3/ 2), espe-
cially B2 in the case of a§/?). Note that in contrast to (Buras et al., 1993b) we have absorbed
the dependence on Bg" 2 into af,l/ ?) and we have exhibited the dependence on mg which was not
shown explicitly there. The residual m, dependence present in af,l/ %) and af,sl s negligible. Set-
ting 4 = m., and using the strategy for hadronic matrix elements outlined above one finds the
coefficients a,(l/ 2) and a,(3/ ?) as functions of Agzs, m¢ and the renormalization scheme considered.
These dependences are given in tables XXX VIII and XXXIX. We should however stress that P(/2)
and P®/?) are independent of p and the renormalization scheme considered.

TABLE XXXVIII. B;-expansion coefficients for P(1/2),

LO NDR HV

_I_X_L—% [ MeV] my [ GeV] at(,ll 2 ag[ 2 a((,l/ 2 ag/ 2 al(,ll %) ag/ 2
155 -2.138 5.110 -2.251 4.676 2215 4.159

215 170 -2.070 5.138 -2.187 4.698 -2.150 4.181
185 -1.996 5.162 -2.117 4.716 -2.081 4.200

155 -2.231 6.540 -2.414 6.255 -2.362 5.389

325 170 -2.161 6.576 -2.350 6.282 -2.298 5416
185 -2.085 6.606 | -2.281 6.306 -2.229 5.439

155 -2.288 8.171 -2.549 8417 2473 6.972

435 170 -2.212 8214 -2.482 8.451 -2.406 7.005
185 -2.130 8.251 -2.409 8.480 -2.333 7.035

Inspecting (XIX.37), (XIX.38) and tables XXX VIII, XXXIX we identify the following four
contributions which govern the ratio €’/ at scales g = O(m.):

i. The contribution of (V — A) ® (V — A) operators to P(1/2) is dominantly represented by
a((f/ 2 Thistermistoa large extent fixed by the experimental value of A, and consequently
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TABLE XXXIX. B;-expansion coefficieats for P(3/2),

| l LO I NDR | HV 7,)}
ATMV]| mlCev]] & & L] B ] e

- 155 -0.797 1.961 —0.819 1.887 -0.838, - 2.114

215 170 -0.880 2.602 " -0.900 2438 -0919 2.666

185 -0.965 3.296 -0.983 3.036 -1.002 3.263

155 —0.788 2.645 -0.814 2.639 -0.837 2.894

325 170 -0.870 3422 " -0.895 3.305 0917 3.560
185 -0.956 4.264 -0.978 4.027 -1.000 4281

155 -0.779 3.425 -0.809 3.622 -0.835 3.899

435 170 -0.861 4.360 -0.889 4435 0915 4712

185 -0.947 5.372 " -0.971 5.316 -0.998 5.593

is only very weakly dependent on Agzz and the renormalization scheme considered. The weak
dependence on m, results from small contributions of electroweak penguin operators. Taking
A = 325MeV, p = m. and m, = 170GeV we have a/? ~ —2.3 for both schemes
considered. We observe that the contribution of (V — A) ® (V — A) operators, in particular
Qa, to &' [ is negative. '

ii. The contribution of (V—A)®(V +A) QCD penguin operators to P(1/?) is given by the second
term in (XIX.37). This contribution is large and positive. The coefficient agll 2) depends sen-
sitively on Aggg which results from the strong dependence of ys on the QCD scale. The depen-
dence on m; is very weak on the other hand. Taking Al(;—; = 325 MeV, my(m.) = 170 MeV
and m,; = 170 GeV and setting as an example Be(;l/ ? = 1 in the NDR and HV schemes we
find a positve contribution to ¢’/ amounting to 6.3 and 5.4 in the NDR and HV scheme,
respectively. .

iii. The contribution of the (V~A)®(V — A) electroweak penguin operators Qo and Q; to P©/2)
is represented by af”/>). Asin the case of the contribution i, the matrix elements contributing
to ag”* are fixed by the CP conserving data, this time by the amplitude A,. Consequently,
the scheme and the Aygs dependence of a§/?) is very weak. The sizeable m, dependence of

a((,3’ ?) results from the m, dependence of yg + y10. af,sl ?) contributes positively to €' [e. For
m, = 170 GeV this contribution is roughly 0.9 for both renormalization schemes and the full
range of Agg considered.

iv. The contribution of the (V — A) ® (V + A) electroweak penguin operators Q- and Qs to
PG/?) is represented by the second term in (XIX.38). This contribution depends sensitively
on m; and Ay as could be expected on the basis of y7 and ys. Taking again B§3/ D=1in
both renormalization schemes we find for the central values of A%, my and m, a negative
contribution to &' /¢ equal to —3.9 and —3.6 for the NDR and HV scheme, respecetively.

Before analysing ’/e numerically in more detail, let us just set Im); = 1.3-10~4 and Bf;l/ -
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B{®? = 1 in both schemes. Then for the central values of the remaining parameters one obtains
¢'fe = 2.0-107* and &’/e = 0.6 - 10~* for the NDR and HV scheme, respectively. This strong
scheme dependence can only be compensated for by having Bf;l/ 2 and B,?/ ?) different in the two
schemes considered. As we will see below the strong cancellations between various contributions
at m, ~ 170 GeV make the prediction for ¢’/ rather uncertain. One should also stress that the
formulation presented here does not exhibit analytically the m, dependence. As the coefficients
a&"/ ? and ags/ 2 depend very sensitively on m, it is useful to display this dependence in an analytic
form.

G. An Analytic Formula for ¢'/¢

As shown in (Buras and Lautenbacher, 1993) it is possible to cast the above discussion into an
analytic formula which exhibits the m, dependence together with the dependence on m,, Bg / ?) and
B§3/ 2. Suchan analytic formula should be useful for those phenomenologists and experimentalists
who are not interested in getting involved with the technicalities discussed in preceding sections.

In order to find an analytic expression for ¢’/ which exactly reproduces the results discussed
above one uses the PBE presented in section XIV. The resulting analytic expression for &' /¢ is then
given as follows

EI/E = Im/\tF(:Et) . (XIX.39)
where
F(z:) = Py + Px Xo(z:) + PyYo(z:) + Pz Zo(:) + PgEo(z:) (XIX.40)

with the m. dependent functions listed in section XIV. The coefficients P; are given in terms of
BYM? = B{(m,), BE¥® = BP®(m.) and my(m) as follows

2
) 178 MeV (6) gl1/2) | (&) p(3/2) 4
P=r"+ [ms(mc)+md(mc) (r, s +r; DBg ) . (XIX.41)

The F; are p and renormalization scheme independent. They depend however on Aggs. In table
XL we give the numerical values of r,(o), r,(s) and r,(s) for different values of Ay at g = m, in the
NDR renormalization scheme. Analogous results in the HV scheme are given in table XLI The
coefficients r,(o), r,(s) and r,(s) do not depend on m,(m,) as this dependence has been factored out.
r§°) does, however, depend on the particular choice for the parameter Bgl/ ? in the parametrization
of the matrix element (Q)z)o. The values given in the tables correspond to the central values in
(XIX.33). Variation of B;” ?) in the full allowed range introduces an uncertainty of at most 18 %
in the r,(o) column of the tables. Since the parameters r,(o) give only subdominant contributions to
¢'[e keeping Bz(,l /) and rgo) at their central values is a very good approximation.

For different scales p the numerical values in the tables change without modifying the values
of the P,’s as it should be. To this end also BS'/® and B{*' have to be modified as they depend
albeit weakly on p.

Concerning the scheme dependence we note that whereas ro coefficients are scheme dependent,
the coefficients r;, i = X, Y, Z, E do not show any scheme dependence. This is related to the fact
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that the m, dependence in ¢’/e enters first at the NLO level and consequently all coefficients r; in
front of the m, dependent functions must be scheme independent. That this turns out to be indeed
the case is a nice check of our calculations.

Consequently when changing the renormalization scheme one is only obliged to change appro-
priately B,(;l/ ? and B§3/ ? in the formula for Fo in order to obtain a scheme independence of ¢'/e.
In calculating P; where i # 0, B/® and B{*/ can in fact remain unchanged, because their vari-
ation in this part corresponds to higher order contributions to ¢’/¢ which would have to be taken

into account in the next order of perturbation theory.

For similar reasons the NLO analysis of &'/« is still insensitive to the precise definition of my.
In view of the fact that the NLO calculations of Im); have been done with m, = 7,(m,) we will
also use this definition in calculating F'(z;).

TABLE XL. AS = 1 PBE coefficients for various A-M—S in the NDR scheme.

AL = 215MeV | AY — 395 MeV - AY — 435 MeV
i O r® o 0 r(© ) 0 r{® e
off —2644] 4784 0876| -2.749] 6376] 0689 -2.845] 8547 0436
x|l osss| 0008 0 0521 0012 0 0495 | - 0.017 0
Y[ 0422 0037 0 0385| 0.046 0 0356| 0.057 0
z|| 0074 -0007| -4.798] 0.49| -0009] -5789] 0237 -0011| -7.064
E[l 0209| -0591] o0205| o0.181] -0727| o0265| o0152] -0892] 0342
TABLE XL1. AS = 1 PBE coefficients for various Aggs in the HV scheme.
AY = 215 MeV AY — 395 MeV *) — 435 MeV
- O a—) ® O — @ ) © ®)
2 1"- 1"- Ti 1"- Ti 1"- Ti T‘- T‘-
off -2.631] 4291 o0668| -2.735] 5548 0457| -—2.830] 7.163| 0.185
x| osss| o0.008 0 0521 0012 0 0495| 0017 0
Y| 0422] 0037 0 0385| 0.046 0 0356 0.057 0
zZ| 0074 -0007] 4798 0.149{ -0009 -5789 0237 -oo011| -706s
E|| 0209 -0591] 0205{ o0.81| -0727] 0265 0152 -0892] 0342

—

The inspection of tables XL and XLI shows that the terms involving r((,s) and r(zs) dominate the

ratio ¢'/e. The function Zy(z,) representing a gauge invariant combination of Z°- and v-penguins
grows rapidly with m, and due to rg’) < 0 these contributions suppress ¢'/e strongly for large m;
(Flynn and Randall, 1989b), (Buchalla ez al., 1990). These two dominant terms rt(,s) and rg’) cor-
respond essentially to the second terms in (XIX.37) and (XIX.38), respectively. The first term in
(XIX.37) corresponds roughly to r((,O) given here, while the first term in (XIX.38) is represented to
a large extent by the positve contributions of Xo(z:) and Yo(z). The last term in (XIX.40) repre-

senting the residual m, dependence of QCD penguins plays only a minor role in the full analysis
of €'fe.
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H. Numerical Results

Let us define two effective B-factors:

178 MeV
ﬁzs(mc) + md(mc)

’ 2
(B (me))ess = ] B(m,) XIX.42)

In fig. 14 we show &’/e form, = 170 GeV as a function of Ay for different choices of the effective
B; factors. We show here only the results in the NDR scheme. As discussed above €’ /¢ is generally
lower in the HV scheme, if the same values for Bél/ ? and B§3’ ?) are used in both schemes. In view
of the fact that the differences between NDR and HV schemes are smaller than the uncertainties in
Bg’ ? and B§3/ 2 we think it is sufficient to present only the results in the NDR scheme here. The
results in the HV scheme can be found in (Buras et al., 1993b), (Ciuchini et al., 1995).

Fig. 14 shows strong dependence of &’ /e on Ayz. However the main uncertainty originates in
the poor knowledge of (B;).ys. In case a) in which the QCD-penguin contributions dominate, &’/
can reach values as high as 1 - 1073, However, in case c) the electroweak penguin contributions
are large enough to cancel essentially the QCD-penguin contributions completely. Consequently
in this case |¢’/e| < 2-107° and the standard model prediction of £’/ cannot be distingunished from
a superweak theory. As shown in fig. 15 higher values of &’/ can be obtained for m; = 155 GeV
although still £'/e < 13 - 1074,

Form, = 185 GeV the values of ¢'/¢ are correspondingly smaller and in case c) small negative -
values are found for €’/e. In figs. 14-16 the dark grey regions refer to the future ranges for Im),.
Of course one should hope that also the knowledge of (B;).; and of Ag—% will be improved in the
future so that a firmer prediction for &’/ can be obtained.

Finally, fig. 17 shows the interrelated influence of m, and the two most important hadronic ma-
trix elements for penguin operators on the theoretical prediction of ¢’/e. For a dominant QCD pen-
guin matrix element < Q¢ > £’/¢ stays positive for all m, values considered. ¢’/e =~ 0 becomes
possible for equally weighted matrix elements < Qg >¢ and < Qg > around m, = 205 GeV. A
dominant electroweak pengiun matrix element < Qs > shifts the pointe’/e ~ 0 tom, =~ 165 GeV
and even allows for a negative ¢’/e for higher values of m,. The key issue to understand this be-
haviour of &'/e is the observation that the Q¢ contribution to €'/¢ is positive and only weakly m,
dependent. On the other hand the contribution coming from Qs is negative and shows a strong m,
dependence. '

The results in fig. 14-17 use only the e constraint. In order to complete our analysis we want
to impose also the zq-constraint and vary m,(m.), Bél/ 2 and B§3/ ? in the full ranges given in
(XIX.34) and (XIX.36).

This gives for the “present” scenario

-21-10*<€fe<13.2-107* (XIX 43)
to be compared with
-1.1-107* < €'/e < 10.4 - 1074 (XIX.44)

in the case of the “future” scenario. In both cases the z4-constraint has essentially no impact on the
predicted range for &' /¢.
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FIG. 14. The ranges of £’/c in the NDR scheme as a function of A%)S- for m¢ = 170GeV and
present (light grey) and future (dark grey) parameter ranges given in appendix A. The three pairs of ¢/ [e
plots correspond to hadronic parameter sets (a) (B,(;I/ 2)(mc))eﬁ = 1.5, (Bf'/ 2)(mc))eﬂ' = 1.0, (b)
(B (meer = 1.0, (B (me))est = 1.0, and © (B (me))eg = 1.0, (B (me))eg = 1.5,
respectively.

Finally, extending the “future” scenario to m4(m.) = (170 £ 10) MeV, A% = (325 & 50) MeV
and Bf(;l/ 2), B§3/ % = 1.0 £ 0.1 would give

03-107*<e'fe <54-1074 (XIX.45)

again with no impact from imposing the z-constraint.

163



m=155 GeV
“ee 14

o N » O ®
J

i

200'250'800 350'400'200l2504(3400'3§ol 0 450 2
Al MeV] Ajis MeV]

FIG. 15. Same as fig. 14 but for m; = 155 GeV.

Allowing for the additional variation Bg]{,zn)m(mc) = 6.6 £ 1.0 extends ranges (XIX.43)-
(XIX.45)to —2.5 - 10~ < €'fe < 13.7-107%, —1.5-10"* < ¢'fe < 10.8 - 10~* and
0.1:107* < ¢'fe < 5.8-107%, respectively.

An analysis of the Rome group (Ciuchini et al., 1995) gives Re(e’/e) = (3.142.5)-10~* which
is compatible with our results. Similar results are found with hadronic matrix elements calculated
in the chiral quark model (Bertolini et al., 1995a), (Bertolini et al., 1995b).

The difference in the range for €’/¢ presentend here by us and the Rome group is related to the
different treatment of theoretical and experimental errors. Whereas we simply scan all parame-
ters within one standard deviation, (Ciuchini ez al., 1995) use Gaussian distributions in treating the
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FIG. 16. Same as fig. 14 but for m; = 185 GeV.

experimental errors. Consequently our procedure is more conservative. We agree however with
these authors that values for ¢'/e above 1 - 10-2 although not excluded are very improbable. This
should be contrasted with the work of the Dortmund group (Frohlich et al., 199 1), (Heinrich et al.,
1992) which finds values for &'/« in the ball park of (2 — 3) - 10~3. We do not know any consistent
framework for hadronic matrix elements which would give such high values within the Standard
Model. '

The experimental situation on Re(e’/¢) is unclear at present. While the result of the NA31
collaboration at CERN with Re(e'/e) = (23 £ 7) - 10~* (Barr et al., 1993) clearly indicates direct
CP violation, the value of E731 at Fermilab, Re(¢'/c) = (7.4 +5.9) - 10~ (Gibbons et al., 1993),
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FIG. 17. The ranges of &’/¢ in the NDR scheme as a function of m, for A% = 325 MeV and present
(light grey) and future (dark grey) parameter ranges given in appendix A. The three bands correspond to
hadronic parameter sets (2) (BS"/*(mc))er = 1.5, (B&/P(me))er = 1.0, ) (B (mo))eg = 1.0,
(BE/P(me))esr = 1.0, and (©) (B (me))es = 1.0, (BE/? (me))eit = 1.5, respectively.

is compatible with superweak theories (Wolfenstein, 1964) in which ¢’/e = 0. The E731 result is
in the ball park of the theoretical estimates. The NA31 value appears a bit high compared to the
range given in (XIX.43) above.

Hopefully, in about three years the experimental situation concerning €’ /e will be clarified
through the improved measurements by the two collaborations at the 10~* level and by experi-
ments at the ® factory in Frascati. One should also hope that the theoretical situation of &’ /e will
improve by then to confront the new data.
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XX. K1, — Ks MASS DIFFERENCE AND A = 1/2 RULE

It is probably a good moment to make a few comments on the K7, — Ks mass difference given
by

AM = M(KL) — M(Ks) = 3.51- 1072 GeV XX.1)

and the approximate Al = 1/2 rule in K — =7 decays. As we have already briefly mentioned in
the beginning of section XIX A, this empirical rule manifests itself in the dominance of A = 1 /2
over Al = 3/2 decay amplitudes. It can be expressed as

ReAo
Red. = 222 (XX.2)

using the notation of section XIX A.

A.AM(KL - Ks)

The K1 — K5 mass difference can be written as
AM =2ReMyz + (AM)Lp XX.3)

with M, given in (XVIIL6) and (A M) p representing long distance contributions, corresponding
for instance to the exchange of intermediate light pseudoscalar mesons (9, 7). The first term in
(XX.3), the so-called short distance contribution, is dominated by the first term in (XVIIL6) so
that

G2 2
(AM)sp = 6—:2-F§mexM;% [X;’m% + Am] (XX.4)

where A,,, represents the two top dependent terms in (XVIIL6). In writing (XX.4) we are neglect-
ing the tiny imaginary partin \. = V;V.s. A very extensive numerical analysis of (XX.4) has
been presented by (Herrlich and Nierste, 1994), who calculated the NLO corrections to 7 and also
to 3 (Herrlich and Nierste, 1995a) which enters A,,,. The NLO calculation of the short distance
contributions improves the matching to the non-perturbative matrix element parametrized by Bx
and clarifies the proper definition of B to be used along with the QCD factors ;. In addition the
NLO study reveals an enhancement of 7, over its LO estimate by about 20%. Although sizable,
this enhancement can still be considered being perturbative, as required by the consistency of the
calculation. This increase in 7, reinforced by updates in input parameters (Ass), brings (AM)sp
closer to the experimental value in (XX.1). With A% = 325MeV and m. = 1.3 GeV, giving
ny *° = 1.38, one finds that typically 70% of AM can be described by the short distance compo-
nent. The exact value is still somewhat uncertain because 7, is rather sensitive to Agz. Further un-
certainties are introduced by the errorin By and due to the renormalization scale ambiguity, which
is still quite pronounced even at NLO. Yet the result is certainly more reliable than previous LO es-
timates. Using the old value n{° = 0.85, corresponding to m. = 1.4 GeV and Agcp = 200 MeV,
(AM)sp/AM would be below 50%, suggesting a dominance of long distance contributions in
AM. As discussed in (Herrlich and Nierste, 1994), such a situation would be "unnatural” since
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the long distance component is formally suppressed by Aéc p/m?2. Hence the short distance dom-
inance indicated by the NLO analysis is also gratifying in this respect.

The long distance contributions, to which one can attribute the remaining ~ 30% in AM not ex-
plained by the short distance part, are nicely discussed in (Bijnens et al., 1991).

In summary, the observed Ky, — Ks mass difference can be roughly described within the standard
model after the NLO corrections have been taken into account. The remaining theoretical uncer-
tainties in the dominant part in (XX.4) and the uncertainties in (AM)rp do not allow however to
use AM as a constraint on the CKM parameters.

B. The AI = 1/2 Rule

Using the effective hamiltonian in (VII.1) and keeping only the dominant terms one has

Redo _ zu(#)(@1())o + 22(1)(Qa(k))o + z6(1)(@e(10))o
ReA. 21(1)(Q1(1))2 + z2(1)(Q2(£))2

where (Q;)o,2 are defined in (XIX.8). The coefficients z;(x) can be found in table XVIIL. For the
hadronic matrix elements we use the formulae (XIX.11), (XIX.12), (XIX.16) and (XIX.21), which
have been discussed in section XIX B. We find then, separating current-current and penguin con-
tributions :

(XX.5)

Rer -
Red, = Bt B (XX.6)

r _ 5Bl — = (n) B/
4v/22, () BP?

2y =2 + Z9 (XX.7)

R, = —11.97(#)

B [ 178 MeV
z4(p) BE/?

m,(n) + md(#)] 2 |

The factor 11.9 expresses the enhancement of the matrix elements of the penguin operator Qs over
(@1,2) first pointed out in (Vainshtein et al., 1977). It is instructive to calculate R. and R, using
the vacuum insertion estimate for which B{!/? = B{!/? = B{®/? = B/ _ 1  Without QCD
effects one finds then R. = 0.9 and R, = 0 in complete disagreement with the data. In table XLIT
we show the values of R. and R, at p = 1GeV using the results of table XVIII. We have set
ms + mg = 178 MeV.

The inclusion of QCD effects enhances both R, and R, (Gaillard and Lee, 1974a), (Altarelli
and Maiani, 1974), however even for the highest values of Ag—?s- the ratio ReAo/Re A, isby atleast a
factor of 8 smaller than the experimental value in (XX.2). Moreover a considerable scheme depen-
dence is observed. Lowering 1 would improve the situation, but for 4 < 1GeV the perturbative
calculations of z;(x) can no longer be trusted. Similarly lowering m, down to 100 MeV would in-
crease the penguin contribution. In view of the most recent estimates in (XIX.36) such a low value
of m, seems to be excluded however. We conclude therefore, as already known since many years,
that the vacuum insertion estimate fails completely in explaining the AT = 1/2 rule. As we have

(XX.8)
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TABLE XLII. The quantities . and R, contributingto ReAo/ReA, as described in the text, calculated
using the vacuum insertion estimate for the hadronic matrix elements. The Wilson coefficient functions are
evaluated for various Al(\—%in leading logarithmic approximation as well as in next-to-leading order in two
different schemes (NDR and HV).

%

- 4 4 - 4
| Al = 215MeV A = 325 MeV AZ) = 435 MeV
Scheme[- LO[ NDR[ HV | 1O] NDR| HV | LO| NDR| HV
R 18] 14 16 | 20 16 18 | 24] 18 232
R, 01 03 01 02[ 05 02| 03] 10 04
—— — —— ———————_—___________________ =

discussed in section XIX the vacuum insertion estimate Béll D =1is supported by the 1/N ex-
pansion approach and by lattice calculations. Consequently the only solution to the A7 = 1 /2 rule
problem appears to be a change in the values of the remaining B; factors. For instance repeating
the above calculation with B{¥/? = 0.48, B{"/? = 5 and B*® = 10 would give in the NDR
scheme R, =~ 20, R, ~ 2 and ReAy/ReA; = 22 in accordance with the experimental value.

There have been several attempts to explain the AI = 1/2 rule, which basically use the ef-
fective hamiltonian in (VIL 1) but employ different methods for the hadronic matrix elements. In
particular we would like to mention the 1/N approach (Bardeen et al., 1987a), the work of (Pich

‘and de Rafael, 1991) based on an effective action for four-quark operators, the diquark approach
in (Neubert and Stech, 1991), QCD sum rules (Jamin and Pich, 1994), the chiral perturbation cal-
culations in (Kambor ez al., 1990), (Kambor et al., 1991) and very recently an analysis (Antonelli
et al., 1995) in the framework of the chiral quark model (Cohen and Manohar, 1984).

With these methods values for ReAo/ReA; in the range 15-20 can be obtained. It is beyond
the scope of this review to discuss the weak and strong points of each method, although at least one
of us believes that the "meson evolution” picture advocated in (Bardeen et al., 1987a) represents
the main bulk of the physics behind the number 22. In view of the uncertainties present in these
approaches, we have not used them in our analysis of ¢’ /¢, but have constrained the hadronic matrix
elements so that they satisfy the AJ = 1/2 rule exactly.
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XXI. THE DECAY K — 7%te™
A. General Remarks

Let us next move on to discuss the rare decay Kz — x%*e~. Whereas in K — = decays
the CP violating contribution is only a tiny part of the full amplitude and the direct CP violation as
we have just seen is expected to be at least by three orders of magnitude smaller than the indirect
CP violation, the corresponding hierarchies are very different for K;, — #%te~. Atlowest order
in electroweak interactions (one-loop photon penguin, Z°-penguin and W-box diagrams), this de-
cay takes place only if CP symmetry is violated. The CP conserving contribution to the amplitude
comes from a two photon exchange, which although of higher order in a could in principle be siz-
able. Extensive studies of several groups indicate however that the CP conserving part is likely to
be smaller than the CP violating contributions. We will be more specific about this at the end of
this section. ' '

The CP violating part can again be divided into a direct and an indirect one. The latter is given by the
Ks — n°%*e~ amplitude times the CP violating parameter ex. The amplitude A(Ks — n%*e™)
can be written as

A(Ks — n%%e”) = (r%* e~ |Heops|Ks) (XXL1)

where H. can be found in (VIIL 1) with the operators @4, . . ., Q¢ defined in (VL.3), the operators
Qv and Q74 given by :

Qw = (3d)v-aléely Q74 = (3d)v_a(€e)a XX1.2)

and the Wilson coefficients z; and y; calculated in section VIIL

Let us next note that the coefficients of Q7v and Q74 are O(a), but their matrix elements
(w%ete™|Q7v,a| Ks) are O(1). In the case of Q; (i = 1,..., 6) the situation is reversed: the Wilson
coefficients are O(1), but the matrix elements (x%*e~|Q;|Ks) are O(a). Consequently at O(a)
all operators contribute to A(Ks — 7°%*e~). However because Ks — n%+e~ is CP conserving,
the coefficients y; multiplied by 7 = O(A*) can be fully neglected and the operator Q74 drops out
in this approximation. Now whereas (%*e~|Q7v|Ks) can be trivially calculated, this is not the
case for (x%*e~|Q;|Ks) with ¢ = 1,...,6 which can only be evaluated using non-perturbative
methods. Moreover it is clear from the short-distance analysis of section VIII that the inclusion of
Q: in the estimate of A(Ks — 7%*e™) cannot be avoided. Indeed, whereas (r%*e~|Qrv|K, s)
is independent of ¢ and the renormalization scheme, the coefficient z7v shows very strong scheme
and p-dependences. They can only be canceled by the contributions from the four-quark operators
@;. All this demonstrates that the estimate of the indirect CP violation in K;, — #%*e~ cannotbe -
done very reliably at present. Some estimates in the framework of chiral perturbation theory will
be discussed below. On the other hand, a much better assessment of the importance of indirect CP
violation in K — #%*e~ will become possible after a measurement of B(Ks — w%te™).
Fortunately the directly CP violating contribution can be fully calculated as a function of m,, CKM
parameters and the QCD coupling constant a,. There are practically no theoretical uncertainties
related to hadronic matrix elements because (7°|(3d)v_4| K1) can be extracted using isospin sym-
metry from the well measured decay K+ — 7%*v. In what follows, we will concentrate on this
contribution.
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B. Analytic Formula for B(Ky, — 7%te™)y;,

The directly CP violating contribution is governed by the coefficients y; and consequently only
the penguin operators (3, ..., Q¢ Q7v and Q74 have to be considered. Since y; = O(as) for
i = 3,...,6, the contribution of QCD penguins to B(K;, — =%¢*e™)4;, is really O(aa,) to be
compared with the O(a) contributions of Q7v and Q7. In deriving the firial formula we will there-
fore neglect the contributions of the operators Q3, . . ., Qg, i.c. we will assume that

6
2_4i(p)(x% e |QilKL) < yrv(p)(n°e*e|QmvIKL) - (XX13)

=3

This assumption is supported by the conesponding relation for the quark-level matrix elements

6
2 vi(r){dete™|Qils) < yrv(p)(de* e |Qrv]s) | (XXL4)
=3 .

that can be easily verified perturbatively.

The neglect of the QCD penguin operators is compatible with the scheme and p-independence of
the resulting branching ratio. Indeed y74 does not depend on p and the renormalization scheme at
all and the corresponding dependences in y-v are at the level of +:1% as discussed in section VIIIE.
Introducing the numerical constant

_ 1 "'(KL)(‘J‘)2 + 0,+,) — -6
Ke—st‘r(K"') 5 B(K* — n%*v) =6.3-10 (XXL5)
one then finds
B(Ki — 7%t e )air = Ke(ImAe)? (52 + 524 (XX16)
where
= 2 (XX1.7)
yl - 27‘_yl . »

Using next the method of the penguin-box expansion (section XIV) we can write similarly to (X.5)
and (X.3)

Yo
fjﬂl = Po + - Oz(zt) -—_ 4Zo(.'l!t) + PEE()(.‘I,‘:) (XXI.S)
sin” Oy
ra = ——a—Yo(z:) (XXL9
Y7a = SinZ Ow o\ 2 9)

with Yo, Zo and Ey given in (X1.46), (XIV.2) and (V1.15). Pg is O(10~%) and consequently the last
term in (XXI.8) can be neglected. P, is given for different values of 1 and Az in table XLII.
There we also show the leading order results and the case without QCD corrections.

The analytic expressions in (XXI.8) and (XX1.9) are useful as they display not only the explicit
m¢-dependence, but also isolate the impact of leading and next-to-leading QCD effects. These ef-
fects modify only the constants F; and Pr. As anticipated from the results of section VIIIE, P,
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TABLE XLIII. PBE coefficient P of y7v for various values of A( ) and z. In the absence of QCD
Py = 8/9 In(Mw /m.) = 3.664 holds universally.

| Py |

A [MeV]|. p[Gevl| LO NDR HV
08 2073 3.159 3.110

215 10 2048 3.133 3.084
12 2.027 3.112 3.063

| 0.8 1863 3.080 3.024

325 10 1.834 3.053 2.996
12 1811 3.028 2.970

038 1672 2976 2914

435 1.0 1.640 2.965 2.899
12 || 1.613 2.939 2.872

is strongly enhanced relatively to the LO result. This enhancement amounts roughly to a factor of
1.6 & 0.1. Partially this enhancement is however due to the fact that for Ao = Azrz the QCD
coupling constant in the leading order is 20 — 30% larger than its next-to-leading order value. Cal-
culating £, in LO but with the full o, of (II1.19) we have found that the enhancement then amounts
to a factor of 1.33 + 0.06. In any case the inclusion of NLO QCD effects and a meaningful use
of Azrz show that the next-to-leading order effects weaken the QCD suppression of y7v. As seen
in table XLIII, the suppression of Py by QCD corrections amounts to about 15% in the complete
next-to-leading order calculation.

C. Numerical Analysis

In fig. 8 of section VIIIE we have shown |y7v/a|® and |y74/a|? as functions of m, together
with the leading order result for |y,v/a|? and the case without QCD corrections. From there it is
obvious that the dominant m,-dependence of B(K; — n%te™)q;, originates from the coefficient
of the operator Q7 4. Another noteworthy feature was that accidentally for m, =~ 175 GeV one finds
Yyrv = Yr4.

In fig. 18 the ratio B(Kp — n%e*e™ )4, /(ImM,)? is shown as a function of m;. The enhance-

ment of the directly CP violating contribution through NLO corrections relatively to the LO esti-
mate is clearly visible on this plot. As we will see below, due to large uncertainties present in Im),
this enhancement cannot yet be fully appreciated phenomenologically.
The very weak dependence on Az7z should be contrasted with the very strong dependence found in
the case of ’/e. Therefore, provided the other two contributions to K7 — 7%*e~ can be shown
to be small or can be reliably calculated one day, the measurement of B(K;, — #°e*e~) should
offer a good determination of ImJ;.

Next we would like to comment on the possible uncertainties due to the definition of m,. At
the level of accuracy at which we work we cannot fully address this question yet. In order to be
able to do it, one needs to know the perturbative QCD corrections to Yp(z:) and Zp(z,) and for
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FIG. 18. B(Kp — n%te Jair/(ImX;)? as a function of m, for various values of A% at scale
£ =1.0GeV.

consistency an additional order in the renormalization group improved calculation of P,. Since the
m-dependence of y7v is rather moderate, the main concern in this issue is the coefficient y74 whose
m,-dependence is fully given by Y (z:). Fortunately the QCD corrected function Y (z) is known
from the analysis of Kz — p*p~ and can be directly used here. As we will discuss in section
XXV, for m; = my(m,) the QCD corrections to Yp(z) are around 2%. On this basis we believe
that if m; = m¢(m.) is chosen, the additional QCD corrections to B(Ky — #%*e~ )y, should be
small.

Finally we give the predictions for the present and future sets of input parameters as described in
apppendix A. Tt should be emphasized that the uncertainties in these predictions result entirely from
the CKM parameters. This situation will improve considerably in the era of dedicated B-physics
experiments in the next decade, allowing a precise prediction for B(Ky, — 7%%e™)ai.

We find

o +,-y. _ J (4.26+3.03)-10"'2 no z, constraint

B(Ky - me"e )aw = { (4.48 £ 2.77) - 10~ with 2, constraint (XXL.10)
o+.—y. _ J(3.71+1.61)-10"2 no z4 constraint

B(Kp - mle"e )ar = { (4.32 £ 0.96) - 1012 with z4 constraint (XXL1D)

These results are compatible with those found in (Buras et al., 1994a), (Donoghue and Gabbiani,
1995), (Kohler and Paschos, 1995) with differences originating in various choices of CKM para-
meters.
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D. The Indirectly CP Violating and CP Conserving Parts

Now we want to compare the results obtained for the direct CP violating part with the estimates
made for the indirect CP-violating contribution and the CP-conserving one. The most recent dis-
cussions have been presented in (Cohen et al., 1993), (Heiliger and Seghal, 1993), (Donoghue and
Gabbiani, 1995), (Kéhler and Paschos, 1995) where references to earlier papers can be found.

The indirect CP violating amplitude is given by the Ks — 7%%e~ amplitude times the CP
parameter ex. Once B(Ks — n%%e™) has been accurately measured, it will be possible to cal-
culate this contribution precisely. Using chiral perturbation theory it is however possible to get an
estimate by relating Ks — n%*e™ to the K+ — n+e*e~ transition (Ecker et al., 1987), (Ecker
et al., 1988). To this end one can write .

B(Kp — 7%%*e )ingir = B(K* — n¥ete™) ((Kf’)) lexc |2r® (XX1.12)
where
2 _ T'(Ks — nte)
" T(K+ — w+eter)

(XXI.13)

With B(K* — ntete™) = (2.74 £ 0.23) - 10~7 (Alliegro et al., 1992) and the most recent chiral
perturbation theory estimate |r| < 0.5 (Ecker ez al., 1988), (Bruno and Prades, 1993) one has

B(K1 — 7°%%e Vinair = (5.9 +£0.5) - 1072r2 < 1.6 - 10~12, (XXL14) -

i.e. a branching ratio more than a factor of 2 below the direct CP violating contribution.
Yet as emphasized recently in (Donoghue and Gabbiani, 1995) and also in (Heiliger and Seghal,
1993) the knowledge of r is very uncertain at present. In particular the estimate in (XXI.14) is
based on a relation between two non-perturbative parameters, which is rather ad hoc and certainly
not a consequence of chiral symmetry. As shown in (Donoghue and Gabbiani, 1995) a small de-
viation from this relation increases  to values above unity so that B(Kz, — 7%+ e )ipai- could be
comparable or even large than B(K, — n%*e™)a;r. It appears then that this enormous uncertainty
in the indirectly CP violating part can only be removed by measuring the rate of Kg — #%te~.
It should also be stressed, that in reality the CP indirect amplitude may interfere with the vector
part of the CP direct amplitude. The full CP violating amplitude can then be written following (Dib
et al., 1989a), (Dib et al., 1989b) as follows

B(Kp — n%%e™)cp = |2.43 - 10‘61\'3”'/4 —iy/KeImAgrv|® + ke(ImA)?2§2,  (XXL15)

As an example we show in fig. 19 B(K L — 7®%%te”)cp form, = 170 GeV, A-(il = 325 MeV
and Im); = 1.3 - 10~ as a function of r. We observe that whereas for 0 < r < 1 the dependence
of B(KL — w%%e™)cp on r is moderate, it is rather strong otherwise and already for r < —0.6
values as high as 10™!! are found.

The estimate of the CP conserving contribution is also difficult. We refer the reader to (Cohen
et al., 1993), (Heiliger and Seghal, 1993) and (Donoghue and Gabbiani, 1995) where further ref-
erences to an extensive literature on this subject can be found. The measurement of the branching
ratio
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FIG. 19. B(Kp — w%%*e)cp for mi = 170 GeV, AL = 325MeV and Im); = 1.3- 10~ as a
function of r.

o (1.7£0.3) - 10~® (Barr et al., 1992)
B(Kp — 7'y7) < { (2.0 £1.0) - 10~ (Papadimitriou et al., 1991) (XXL.16)

and of the shape of the vy mass spectrum plays an important role in this estimate. The most recent
analyses give

(0.3 — 1.8) - 10~ (Cohen et al., 1993)
B(Ky, — 7%%e )eons = { 4.0-10712 (Heiliger and Seghal, 1993) (XX1.17)
(5+5)-10"12 (Donoghue and Gabbiani, 1995)

i.e. not necesarily below the CP violating contribution. An improved estimate of this component
is certainly desirable. It should be noted that there is no interference in the rate between the CP
conserving and CP violating contributions so that the results in fig. 19 and (XXI.17) can simply be
added.

E. Outlook

The results discussed above indicate that within the Standard Model B(K, — 7%%e~) could
be as high as 1 - 10~*. Moreover the direct CP violating contribution is found to be important and
could even be dominant. Unfortunately the large uncertainties in the remaining two contributions
will probably not allow an easy identification of the direct CP violation by measuring the branching
ratio only. The future measurements of B(Ks — #%*e™) and improvements in the estimate of the
CP conserving part may of course change this unsatisfactory situation. Alternatively the measure-
ments of the electron energy asymmetry (Heiliger and Seghal, 1993), (Donoghue and Gabbiani,
1995) and the study of the time evolution of K° — x%+e~ (Littenberg, 1989b), (Donoghue and
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Gabbiani, 1995), (Kohler and Paschos, 1995) could allow for a refined study of CP violation in this
decay.
The present experimental bounds

.10-? :
B(Kp — n%teT) < { 4.3-107° (Harris et al., 1993)

5.5-10~ (Ohl et al., 1990) (XXL18).
are still by three orders of magnitude away from the theoretical expectations. Yet the prospects of

getting the required sensitivity of order 10~'!-10~'2 in five years are encouraging (Littenberg and
Valencia, 1993), (Winstein and Wolfenstein, 1993), (Ritchie and Wojcicki, 1993).
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XXII1. THE DECAY B — X,y
A. General Remarks

The B — X,y decay is known to be extremely sensitive to the structure of fundamental in-
teractions at the electroweak scale. As any FCNC process, it does not arise at the tree level in the
Standard Model. The one-loop W-exchange diagrams that generate this decay at the lowest order
in the Standard Model are small enough to be comparable to possible nonstandard contributions
(charged scalar exchanges, SUSY one loop diagrams, W, exchanges in the L-R symmetric mod-
els, etc.).

The B — X,v decay is particularly interesting because its rate is of order G%a, while most of
the other FCNC processes involving leptons or photons are of order G;o?. The long-range strong
interactions are expected to play a minor role in the inclusive B — X,v decay. This is because the
mass of the b-quark is much larger than the QCD scale A. Moreover, the only relevant interme-
diate hadronic states 1 X, are expected to give very small contributions, as long as we assume no
interference between short- and long-distance terms in the inclusive rate. Therefore, it has become
quite common to use the following approximate equality to estimate the B — X,y rate:

I(BoXa) T sy)

I'(B — Xcev.) ~ [(b— cep.) = R(my 04,6) (XXIL1)

where the quantities on the r.h.s are calculated in the spectator model corrected for short-distance
QCD effects. The normalization to the semileptonic rate is usually introduced in order to cancel
the uncertainties due to the Cabibbo-Kobayashi-Maskawa (CKM) matrix elements and factors of
my, in the chs. of eq. (XXIL1). Additional support for the approximation given above comes
from the heavy quark expansions. Indeed the spectator model has been shown to correspond to the
leading order approximation of an expansion in 1/m,. The first corrections appear at the O(1/m})
level. The latter terms have been studied by several authors (Chay et al., 1990), (Bjorken et al.,
1992), (Bigi et al., 1992), (Bigi et al., 1993), (Manohar and Wise, 1994), (Blok et al., 1994), (Falk
et al., 1994), (Mannel, 1994), (Bigi et al., 1994a) with the result that they affect B(B — X,v) and
B(B — X.ep.) by only a few percent.

As indicated above, the ratio R depends only on m; and a4 in the Standard Model. In extensions
of the Standard Model, additional parameters are present. They have been commonly denoted by
§. The main point to be stressed here is that R is a calculable function of its parameters in the
framework of a renormalization group improved perturbation theory. Consequently, the decay in
question is particularly suited for tests of the Standard Model and its extensions.

One of the main difficulties in analyzing the inclusive B — X,v decay is calculating the short-
distance QCD effects due to hard gluon exchanges between the quark lines of the leading one-loop
electroweak diagrams. These effects are known (Bertolini et al., 1987), (Deshpande et al., 1987),
(Grinstein et al., 1990), (Grigjanis et al., 1988), (Grigjanis et al., 1992), (Misiak, 1991) to enhance
the B — X, rate in the Standard Model by a factor of 2-3, depending on the top quark mass. So
the B — X,~ decay appears to be the only known short distance process in the Standard Model
that is dominated by two-loop contributions.

The B — X~ decay has already been measured. In 1993 CLEO reported (Ammar et al., 1993)
the following branching ratio for the exclusive B — K*v decay
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B(B— K*y) = (4.5+1.5+0.9) x 107°, (XX11.2)
In 1994 a first measurement of the inclusive rate has been presented (Alam et al., 1995)

B(B — X,v) = (2.32+0.57 +: 0.35) x 10~* (XX11.3)

where the first error is statistical and the second is systematic.

As we will see below these experimental findings are in the ball park of the Standard Model
expectations based on the leading logarithmic approximation.

In fact a complete leading order analysis of B(B — X,v) in the Standard Model has been
presented almost a year before the CLEO result giving (Buras et al., 1994c)

B(B — X,7)ry = (2.8 £0.8) x 107 (XX11.4)

where the error is dominated by the uncertainty in the choice of the renormalization scale my, /2 <
p < 2my as first stressed by Ali and Greub (Ali and Greub, 1993) and confirmed in (Buras
et al., 1994c). Since B — X,v is dominated by QCD effects, it is not surprising that this scale-
uncertainty in the leading order is particularly large. Such an uncertainty, inherent in any finite
order of perturbation theory can be reduced by including next-to-leading order corrections. Un-
fortunately, it will take some time before the p-dependences presentin B — X, can be reduced
in the same manner as it was done for the other decays (Buras et al., 1990), (Buchalla and Buras,
1993a), (Buchalla and Buras, 1994a), (Herrlich and Nierste, 1994). As we already stated in section
IX B, a full next-to-leading order computation of B — X~ would require calculation of three-loop
mixings between the operators @, . . ., Qs and the magnetic penguin operators Q7., Qsg. More-
over, certain two-loop matrix elements of the relevant operators should be calculated in the spec-
tator model. A formal analysis at the next-to-leading level (Buras et al, 1994c) is however very
encouraging and shows that the u-dependence can be considerably reduced once all the necessary
calculations have been performed. We will return to this issue below.

B. The Decay B — X7 in the Leading Log Approximation

The leading logarithmic.ca.lculations (Grinstein et al., 1990), (Misiak, 1993), (Ali and Greub,
1993), (Ciuchini et al., 1994c¢), (Cella et al., 1994a), (Misiak, 1995), (Buras et al., 1994c) can be
summarized in a compact form, as follows:

_ T—s7) _ |[VaVul COetT ()P . |
k= T(b— cev.)  |Val? ,,f(z)l ()] (XXIL5)

where C7., (O)esf (1) is the effective coefficient given in (IX.23) and table XXVIIL, z = > and
f(z) =1—82% +82° — 28 — 22%n 2 XX11.6)

is the phase space factor in the semileptonic b-decay. Note, that at this stage one should not include
the O(a,) corrections to I'(b — ce?) since they are part of the next-to-leading effects. For the same
reason we do notinclude the O(a;) QCD corrections to the matrix element of the operator Q. (the
QCD bremsstrahlung b — s+ + g and the virtual corrections to b — s+) which are known (Ali and
Greub, 1991a), (Ali and Greub, 1991b), (Pott, 1995) and will be a part of a future NLO analysis.
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Formula (XXII.5) and the expression (IX.23) for C. (°)°f Y (#) summarize the complete leading
loganthmlc (LO) approximation for the B — X,v rate in the Standard Model. Their important
property is that they are exactly the same in many interesting extensions of the Standard Model,
such as the Two-Higgs-Doublet Model (2HDM) (Grinstein et al., 1990), (Hewett, 1993), (Barger
etal., 1993), (Hayashi ez al., 1993), (Buras et al., 1994c) or the Minimal Supersymmetric Standard
Model (MSSM) (Bertolini et al., 1991a), (Barblen and Gludlce 1993), (Borzumatl 1994). The
only quantities that change are the coefficients C{° (Mw) C'7., (Mw) and CBG (Mw) . On the other
hand in a general SU(2), x SU(2)r x U(1) model additional modifications are necessary, because
new operators enter (Cho and Misiak, 1994).

A critical analysis of theoretical and experimental uncertainties present in the prediction for
B(B — X,7v) based on the above formulae has been made (Buras et al., 1994c). Here we just
briefly list the main findings:

e First of all, eq. (XXIL.5) is based on the spectator model. As we have mentioned above the
heavy quark expansion gives a strong support for this model in inclusive B-decays. On a
conservative side one can assume the error due to the use of the spectator modelin B — X,v
to amount to at most 3-10%.

o The unéertainty coming from the ratio z = m= in the phase-space factor f(z) for the semi-
leptonic decay is estimated to be around 6%.

o The error due to the ratio of the CKM parameters in eq. (XXII.5)is small. Assuming unitarity
of the 3 x 3 CKM matrix and imposing the constraints from the CP-violating parameter ex
and B® — B° mixing one finds

I 3 bl
|Vcbt|2 = 0.95 £ 0.03 XXIL.7)

o There exists an uncertainty due to the determination of a,. This uncertainty is not small be-
cause of the importance of QCD corrections in the considered decay. For instance the differ-
ence between the ratios R of eq. (XXIL5) obtained with help of azrs(Mz) = 0.11 and 0.13,
respectively, is roughly 20%.

o The dominant uncertainty in eq. (XXIL5) comes from the unknown next-to-leading order
contributions. This uncertainty is best signaled by the strong u-dependence of the leading
order expression (XXIL5), which is shown by the solid line in fig. 20, for the case m, =
170 GeV.

| One can see that when  is varied by a factor of 2 in both directions around my, ~ 5 GeV,
the ratio (XXII.5) changes by around :1:25%', i.e. the ratios R obtained for u = 2.5 GeV and
¢ = 10 GeV differ by a factor of 1.6 (Ali and Greub, 1993).

The dashed lines in fig. 20 show the expected u-dependence of the ratio (XXII.5) once a
complete next-to-leading calculation is performed. The u-dependence is then much weaker,
but until one performs the calculation explicitly one cannot say which of the dashed curves
is the proper one. The way the dashed lines are obtained is described in (Buras ez al., 1994c).
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FIG. 20 p-dependence of the theoretical prediction for the ratio R for m¢ = 170GeV and

(5; = 225 MeV. The solid line corresponds to the leading order prediction. The dashed lines describe
possible next-to-leading results.

e Finally, there exists a +2.4% error in determining B(B — X,v) from eq. (XXII.1), which
is due to the error in the experimental measurement of B(B — X.ev,) = (10.43 £ 0.24)%
(Particle Data Group, 1994).

¢ The uncertainty due to the value of m, is small as is shown explicitly below.

Fig. 21 based on (Buras et al., 1994c) presents the Standard Model prediction for the inclusive
B — X, branching ratio including the errors listed above as a function of m, together with the
CLEO result. '

We stress that the theoretical curves have been obtained prior to the experimental result. Since
the theoretical error is dominated by scale ambiguities a complete NLO analysis is very desirable.

C. Looking at B — X,v Beyond Leading Logarithms

In this section we describe briefly a complete next-to-leading calculation of B — X, in gen-
eral terms. This section collects the most important findings of section 4 of (Buras et al., 1994c).
Let us first enumerate what has been already calculated in the literature and which calculations
are still required in order to complete the next-to-leading calculation of B(B — X sY)-
The present status is as follows:

e The 6 x 6 submatrix of 4(1) descnbmg the two-loop mixing of (Q,. .., Qs) and the cor-
responding O(a;) corrections in C(Mw) have been already calculated. They are given in
section VL.
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FIG. 21. Predictions for B — X,v in the SM as a function of the top quark mass with the theoretical
uncertainties taken into account.

o The two-loop mixing in the (Q7,, Qsc) sector of 1(!) is known (Misiak and Miinz, 1995) and
given in section IX C.

e The O(a;) corrections to the matrix element of the operators Q7 and @Qs¢ have been calcu-
lated (Ali and Greub, 1991a), (Ali and Greub, 1991b). They have been recently confirmed by
(Pott, 1995) who also presents the results for the matrix elements of the remaining operators.

The remaining ingredients of a next-to-leading analysis of B(B — X,v) are:

o The three-loop mixing between the sectors (Q,. .., Qs) and (Q7y, Qsg) which, with our
normalizations, contributes to (1),

o The O(as) corrections to Cr,(Mw) and Csg(Mw) in (IX.12) and (IX.13). This requires
evaluation of two-loop penguin diagrams with internal W and top quark masses and a proper
matching with the effective five-quark theory. An attempt to calculate the necessary two-loop
Standard Model diagrams has been made in (Adel and Yao, 1994).

o The finite parts of the effective theory two-loop diagrams with the insertions of the four-quark
operators . '

All these calculations are very involved, and the necessary three-loop calculation is a truly formi-
dable task! Yet, as stressed in (Buras et al., 1994c) all these calculations have to be done if we want
to reduce the theoretical uncertainties in b — s+ to around 10%.
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As demonstrated formally in (Buras et al., 1994c) the cancellation of the dominant U~
dependence in the leading order can be achieved by calculating the relevant two-loop matrix el-
ement of the dominant four-quark operator Q,. This matrix element is however renormalization-
scheme dependent and moreover mixing with other operators takes place. This scheme dependence
can only be canceled by calculating (%) in the same renormalization scheme. This point has been
extensively discussed in this review and we will not repeat this discussion here. However, it is clear
from these remarks, that in order to address the u-dependence and the renormalization-scheme de-
pendence as well as their cancellations, it is necessary to perform a complete next-to-leadmg order
analysis of C (#) and of the corresponding matrix elements.

In this context we would like to comment on an analysis of (Ciuchini ez al., 1994b) in which the
known two-loop mixing of @4, - . . , Q6 has been added to the leading order analysis of B — X,~.
Strong renormalization scheme dependence of the resulting branching ratio has been found, giving
the branching ratio (1.7 & 0.2) x 10~* and (2.3 £ 0.2) x 10~* at 4 = 5GeV for HV and NDR
schemes, respectively. It has also been observed that whereas in the HV scheme the u dependence
has been weakened, it remained still strong in the NDR scheme. In our opinion this partial caricel-
lation of the p-dependence in the HV scheme is rather accidental and has nothing to do with the
cancellation of the p-dependence discussed above. The latter requires the evaluation of finite parts
in two-loop matrix elements of the four-quark operators @, . . . , Q6. On the other hand the strong
scheme dependence in the partial NLO analysis presented in (Ciuchini ez al., 1994b) demonstrates
very clearly the need for a full analysis. In view of this discussion we think that the decrease of the
branching ratio for B — X, relative to the LO prediction, found in (Ciuchini et al., 1994b), and
givenby B(B — X,v) = (1.9 £ 0.2 £ 0.5) - 10~* is still premature and one should wait until the
full NLO analysis has been done.

XXIII. THE DECAY B — X,ete~
A. General Remarks

The rare decay B — X,e%e™ has been the subject of many theoretical studies in the framework
of the Standard Model and its extensions such as the two Higgs doublet models and models involv-
ing supersymmetry (Hou ez al., 1987), (Grinstein et al., 1989), (Jaus and Wyler, 1990), (Bertolini
etal., 1991b), (Ali et al., 1991), (Deshpande et al., 1993), (Ali et al., 1995), (Greub et al., 1995). In
particular the strong dependence of B — X,e*e™ on m, has been stressed in (Hou et al., 1987). It
is clear that once B — X,et*e™ has been observed, it will offer a useful test of the Standard Model
and its extensions. To this end the relevant branching ratio, the dilepton invariant mass distribution
and other distributions of interest should be calculated with sufficient precision. In particular the
QCD effects should be properly taken into account.

The central element in any analysis of B — X,e*e™ is the effective hamiltonian for this decay
given in section X where a detailed analysis of the Wilson coefficients has been presented. How-
ever, the actual calculation of B — X,e*e™ involves not only the evaluation of Wilson coefficients
of the relevant local operators but also the calculation of the corresponding matrix elements of these
operators relevant for B — X,e*e™. The latter part of the analysis can be done in the spectator
model, which, as indicated by the heavy quark expansion should offer a good approximation to
QCD for B-decays. One can also include the non-perturbative O(1/m) corrections to the specta-
tor model which enhance the rate for B — X,e*e™ by roughly 10% (Falk et al., 1994). A realistic
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phenomenological analysis should also include the long-distance contributions which are mainly
due to the J/v and 1’ resonances (Lim et al., 1989), (Deshpande et al., 1989), (O’Donnell and
Tung, 1991). Since in this review we are mainly interested in the next-to-leading short-distance
QCD effects we will not include these complications in what follows. This section closely follows
(Buras and Miinz, 1995) execpt that the numerical results in figs. 22-24 have been slightly changed
in accordance with the input parameters of appendix A.

We stress again that in a consistent NLO analysis of the decay B — X,ete™, one should on
one hand calculate the Wilson coefficient of the operator Qov = (3b)v_4(€e)v including leading
and next-to-leading logarithms, but on the other hand only leading logarithms should be kept in
the remaining Wilson coefficients. Only then a scheme independent amplitude can be obtained.
As already discussed in section X, this special treatment of Qg is related to the fact that strictly
speaking in the leading logarithmic approximation only this operator contributes to B — X,e*e~.
The contributions of the usual current-current operators, QCD penguin operators, magnetic pen-
guin operators and of Q104 = (3b)v-4(&e) enter only at the NLO level and to be consistent only
the leading contributions to the corresponding Wilson coefficients should be included.

B. The Differential Decay Rate
Introducing
(pe+ + Pe- ) _ M
me s z= - , (XX11.1)

and calculating the one-loop matrix elements of (); using the spectator model in the NDR scheme
one finds (Misiak, 1995), (Buras and Miinz, 1995)

o _ 4/d3T(b— sete™) Vio|* (1= 3)2
R(3) = T(b — cev) 47r2 Va f(Z)IC(Z) ( 2
[(1 +28) (ICs"7 P + |Crol?) + 4 (1 + ) IC8 P + 12000 Re Gy f]
where
—h(l 3) (4 c® 4400 + 3c‘°’ +CP) -  (XXIL3)

-2-h(0,.s)( cl +3c§°’) (30“” ¢’ +3¢P + ).

The general expression (XXIIL.2) with £(z) = 1 has been first presented by (Grinstein et al.,
1989) who in their approximate leading order renormalization group analysis kept only the opera-

tors @1, @2, @7y, Qov, Q104-

The various entries in (XXII1.2) are given as follows

n 8, m, 8 8 4
h(z,3) = —-§ln—;—~—91 +27+9z | (XX111.4)
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'2'(2+z)|1—:c|1/2{ (in [A=24] - in), forz =4s/3 <1
9

2arctan 7——1, forz =42%/5 > 1,
8 8 my . é 11_
k(0, s)———51n7—91n3+9z7r (XXI11.5)
f(z)=1—822+825— 22— 242%In 2, (XXII1.6)
2a, 31
s(@)=1- 28 2y oy i ] coan.)
6 =1+ —;(,"—)w(s) | oL
with
5+4s
w(8) = ——1r - —ng(s) - -—Insln(l s)— mln(l —3)—
23(1 + s)(1 — 2s) 5+ 9s — 652
309214 2s) "t AT 29)" (XXIIL9)

Here f(z) is the phase-space factor for b — ce?. «(z) is the corresponding single gluon QCD
correction (Cabibbo and Maiani, 1978) in the approximation of (Kim and Martin, 1989). 7 on the
other hand represents single gluon corrections to the matrix element of Qg with m, = 0 (Jezabek
and Kiihn, 1989), (Misiak, 1995). For consistency reasons this correction should only multiply the
leading logarithmic term in C)PR,

In the HV scheme the one-loop matrix elements are different and one finds an additional explicit
contribution to (XXTIL.3) given by (Buras and Munz, 1995)

_ €HV% (3¢ +cf - c® - 3c). (XXMI.10)

However C)'PF has to be replaced by CHZV given in (X.5) and (X.9) and consequently Cc// is the
same in both schemes.

The first term in the function A(z, 3) in (XXIII.4) represents the leading p-dependence in the
matrix elements. It is canceled by the p-dependence present in the leading logarithm in Cs. This
is precisely the type of cancellation of the u-dependence which one would like to achieve in the
case of B — X,. The p-dependence present in the coefficients of the other operators can only be
canceled by going to still higher order in the renormalization group improved perturbation theory.
To this end the matrix elements of four-quark operators should be evaluated at two-loop level. Also
certain unknown three-loop anomalous dimensions should be included in the evaluation of C"f !
and Cyy. Certainly this is beyond the scope of this review and we will only investigate the left-
over g-dependence below.

C. Numerical Analysis

A detailed numerical analysis of the formulae above has been presented in (Buras and Miinz,
1995). We give here a brief account of this work. We set first |V, / V| = 1 which in view of
(XXIL7) is a good approximation. We keep in mind that for § & m? /m, § ~ m, [m etc. the
spectator model cannot be the full story and additional long-distance contributions discussed in
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(Lim et al., 1989), (Deshpande et al., 1989), (O’Donnell and Tung, 1991) have to be taken into
account in a phenomenological analysis. Similarly we do not include 1/m? corrections calculated
in (Falk et al., 1994) which typically enhance the differential rate by about 10%.
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FIG. 2. (a) R(3) for m; = 170 GeV, ALL = 225 MeV and differents values of .

() R(3) for p = 5GeV, AL) = 225 MeV and various values of m.

In fig. 22 (a) we show R(3) for m; = 170 GeV, Az = 225MeV and different values of .
In fig. 22 (b) we set p = 5 GeV and vary m. from 150 GeV to 190 GeV. The remaining u depen-
dence is rather weak and amounts to at most £8% in the full range of parameters considered. The
m, dependence of R(3) is sizeable. Varying m; between 150 GeV and 190 GeV changes R(3) by
typically 60-65% which in this range of m. corresponds to R(3) ~ m. Itis easy to verify that this
strong m dependence originates in the coefficient Cyo given in (X.3) as already stressed by several
authors in the past (Hou et al., 1987), (Grinstein et al., 1989), (Bertolini et al., 1991b), (Deshpande
et al., 1993), (Greub et al., 1995), (Al et al., 1995), (Ali et al., 1991), (Jaus and Wyler, 1990).
We do not show the Agzs dependence asitis very weak. Typically, changing Ayg from 140 MeV
to 310 MeV decreases R(3) by about 5%.
R(3) is governed by three coefficients, Cs//, €\, and Cry (@ef The importance of various con-
tributions has been investigated in (Buras and Miinz, 1995). To this end one sets A(s) = 225 GeV,
= 170GeV and s = 5GeV. In fig. 23 we show R(3) keeping only G577, cm, C and
the Coy (O)ef ! -Cq e T interference term, respectively. Denoting these contributions by Ry, Ry9, Rz and
Rz/o we observe that the term Ry plays only a minor role in R(3). On the other hand the presence
of Cz, (Deff cannot be ignored because the interference term R, /9 is significant. In fact the presence
of tlus large interference term could be used to measure experimentally the relative sign of C7, (0)e f
andRe C;f ! (Grinstein et al., 1989), (Jaus and Wyler, 1990), (Ali et al., 1991), (Greub et al., 1995),

185

[,01]1 ()



R() [107]

01 02 03 04 05 06 07 08 09
]

FIG. 23. Comparison of the four different contributions to R(3) according to eq. (XXIIL.2).

(Ali et al., 1995) which as seen in fig. 23 is negative in the Standard Model. However, the most im-
portant contributions are By and Ry, in the full range of § considered. For m, ~ 170 GeV these two
contributions are roughly of the same size. Due to a strong m; dependence of R, this contribution
dominates for higher values of m, and is less important than Ry for m; < 170 GeV.

Next, in fig. 24 we show R(3) for 4 = 5GeV, m, = 170 GeV and Ags = 225 MeV compared
to the case of no QCD corrections and to the results (Grinstein et al., 1989) would obtain for our
set of parameters using their approximate leading order formulae.

The discussion of the definition of m, used here is identical to the one in the case of K; —
7%*e~ and will not be repeated here. On the basis of the arguments given there we believe that
if my = m,(my) is chosen, the additional short-distance QCD corrections to B(B — X,et e”)
should be small.

Our discussion has been restricted to B(B — X,7). Also the photon spectrum has been the
subject of several papers. We just refer to the most recent articles (Neubert, 1994b), (Shifman et al.,
1994), (Dikeman et al., 1995), (Kapustin and Ligeti, 1995), (Kapustin et al., 1995), (Ali and Greub,
1995), (Pott, 1995) where further references can be found.
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FIG. 24. R(3) for my = 170 GeV, ALL = 225 MeV and s = 5 GeV.
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XXIV. THE DECAYS Kt — 7#tuis AND K 1 — 7%
A. General Remarks on K+ — ntup

The rare decay K* — xtvp is one of the theoretically cleanest decays. As such it is very
well suited for the determination of CKM parameters, in particular of the element V4. K+ —
7*v is CP conserving and receives contributions from both internal top and charm exchanges. The
inclusion of next-to-leading QCD corrections incorporated in the effective hamiltonian in (X1.4)
and discussed in detail in section XI B reduces considerably the theoretical uncertainties due to the
choice of the renormalization scales present in the leading order expressions. We will illustrate this
below. Since in addition the relevant hadronic matrix element of the weak current (3d)y_ 4 can be

‘measured in the leading decay K+ — 7%, the resulting theoretical expression for B(K+ —

=*v7) is only a function of the CKM parameters, the QCD scale Azrz and the quark masses m;
and m.. The long-distance contributions to K+ — #=+v# have been found to be very small: a few
percent of the charm contribution to the amplitude at most, which is safely negligible (Rein and
Sehgal, 1989), (Hagelin and Littenberg, 1989) and (Lu and Wise, 1994).

Conventionally the branching fraction B(K+ — n*wv) is related to the expenmcntally well
known quantity B(K* — #%e*v) using isospin symmetry. Corrections to this approximation have
recently been studied in (Marciano and Parsa, 1995). The breaking of isospin is due to quark mass
effects and electroweak radiative corrections. In the case of K+ — n+vi these effects resultin a
decrease of the branching ratio by 10%. The corresponding corrections in K; — 7% lead to a
5.6% reduction of B(K, — w°v7). We have checked the analysis of (Marciano and Parsa, 1995)
and agree with their findings. Once calculated, the inclusion of these effects is straightforward as
they only amount to an overall factor for the branching ratio and do not affect the short-distance
structure of K — wvv. We shall neglect the isospin violating corrections in the following chapters,
where the focus is primarily on the short-distance physics. The effects are however incorporated
in the final prediction quoted in our summary table in section XXVIIL.

In the following we shall concentrate on a discussion of K* — xtvi within the framework
of the standard model. The impact of various scenarios of new physics on this decay has been
considered for instance in (Bigi and Gabbiani, 1991).

B. Master Formulae for K+ — rtvi

Using the effective hamiltonian (X1.4) and summing over the three neutrino flavors one finds

BUK* = w4v7) = v, [(I”“"‘X(mt))2 ’ (R"A Ry(X) + ReAtX(zt)) 2} (XXIV.1)

3a2B(K* — 7%*v)
272 sin? Ow

A8 =457-1071 XXIV.2)

Ky =
where we have used

a=—  sin®’Ow =023 B(K*—-1%'r)=482.10" = (XXIV3)
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Here A; = V;V;s with A, being real to a very high accuracy. The function X of (XI.5) can also be
written as ‘

X(z) = 9x - Xo(z) nx = 0.985 XXIV4)

where 7x summarizes the NLO corrections discussed in section XIB. Withm, = my(m:) the QCD
factor nx is practically independent of m, and Azss. Next

112, 1. |
Po(X) = 5 [5 X + R (XXIV.5)
with the numerical values for X}, given in table XXXIII. The corresponding values for Pp(X)
as a function of Azrz and m, = m.(m,) are collected in table XLIV. We remark that a negligibly
small term ~ (X3, — X% )? (~ 0.2% effect on the branching ratio) has been discarded in formula..
XXIV.1). A '

TABLE XLIV. The function Py(X) for various A% and m...

Bo(X) |
AT\ m, 1.25 GeV . 1.30GeV 1.35 GeV|
215 MeV 0.402 0.436 0472
325 MeV 0.366 0.400 0435
435 MeV 0325 0.359 0.393

Using the improved Wolfenstein parametrization and the approximate formulae (I1.23) — (11.25)
we can next write

B(K* — xtup) = 4.57- 10-11A4X'-’(zt)§ [(e%)? + (20 — 2] (XXIV.6)

where

1 2
o= (——) XXIV.7)

2
2

The measured value of B(K* — n*v7) then determines an ellipse in the (g, 7) plane centered
at (o, 0) with (Buras et al., 1994b)

Py(X)

go=1+ m (XX1V.8)
and having the squared axes
- ) o\ 2
gi=rs W= (;9) (XXIV.9)

where
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o-BR(K* — 7r+m7)] 10)

1
2 _
"0 = Hix(z,) [ 4.57-10-1
The departure of go from unity measures the relative importance of the internal charm contributions.
The ellipse defined by ro, go and o given above intersects with the circle (I1.32). This allows
to determine g and 7 with '
_ 1
T 1-o0?

0 (eo — Vo2 + (1 - o?)(rd - ozRE)) i =/ R} — p? (XXIV.11)

and consequently

RR=14+R -2 (XXIV.12)

where 77 is assumed to be positive.
In the leading order of the Wolfenstein parametrization

oc—1 7T—7 g—0 (XXIV.13)

and B(Kt — ntvv) determines a circle in the (g, n) plane centered at (g0, 0) and having the radius
ro of (XXIV.10) with & = 1. Formulae (XXIV.11) and (XXIV.12) then simplify to (Buchalla and
‘Buras, 1994a)

2 _ p2 2 _ .2
R=1+m+0 8, ,.1 (go+ d r°) (XXIV.14)
%o 2 2o
~ Given g and 77 one can determine V;4:
Vie=AN(1-g—1if) V| =ANR, | (XXIV.15)

Before proceeding to the numerical analysis a few remarks are in order:

o The determination of |V;4| and of the unitarity triangle requires the knowledge of V; (or A)
and of |V,;/Vi5|. Both values are subject to theoretical uncertainties present in the exist-
ing analyses of tree level decays. Whereas the dependence on |V,,;,/V,;] is rather weak, the
very strong dependence of B(K+ — n*v#) on A or V,; makes a precise prediction for this
branching ratio difficult at present. We will return to this below.

o The dependence of B(K* — n*vp) on m, is also strong. However m;, should be known
already in this decade within +5% and consequently the uncertainty in m, will soon be less
serious for B(K* — #x*v7) than the corresponding uncertainty in V.

» Once o and 7 are known precisely from CP asymmetries in B decays, some of the uncertain-
ties present in (XXIV.6) related to |V,,,/ V3| (but not to V;) will be removed.

e A very clean determination of sin 28 without essentially any dependence on m; and V,, can
be made by combining B(K* — =*vv) with B(K;, — 7%%) discussed below. We will
present an analysis of this type in section XXIV H.
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C. Numerical Analysisof Kt — rtvi
1. Renormalization Scale Uncertainties

We will now investigate the uncertainties in X(z:), Xnz. B(K* — ntvp), |Vig| and in the
determination of the unitarity triangle related to the choice of the renormalization scales u; and p.
(see section XIB). To this end we will fix the remaining parameters as follows

m. = m¢(m.) = 1.3GeV m; = my(m,) = 170 GeV XX1V.16)

Vo =0.040  |Vis/Vis| = 0.08 (XXIV.17)

In the case of B(K+ — ér*uﬁ) we need the values of both 7 and 7. Therefore in this case we will
work with

=0 i = 0.36 (XX1V.18)

rather than with |V,,/Va|. Finally we will set A% = 0.325GeV and ATk = 0.225GeV for
the charm part and top part, respectively. We then vary the scales uc and g., entenng m.(u.) and
m(p:) respectively, in the ranges

1GeV < p. <3GeV  100GeV < p; < 300 GeV (XXIV.19)

In fig. 25 we show the charm function Xy (for m; = 0) compared to the leading-log result
X, and the case without QCD as functions of u.. We observe the following features:

e The residual slope of Xy is considerably reduced in comparison to X, which exhibits
a quite substantial dependence on the unphysical scale g.. The variation of X (defined as
(X(1GeV) — X(3GeV))/X(m.)) is 24.5% in NLLA compared to 56.6% in LLA.

¢ The suppression of the uncorrected funcnon through QCD effects is somewhat less pro-
nounced in NLLA.

e The next-to-leading effects amount to a ~ 10% correction relative to Xy, at 4 = m.. How-
ever the size of this correction strongly depends on ¢ due to the scale ambiguity of the leading
order result. This means that the question of how large the next-to-leading effects compared
to the LLA really are cannot be answered uniquely. Therefore the relevant result is actually
the reduction of the g-dependence in NLLA .

In fig. 26 we show the analogous results for the top function X (z;) as a function of g;. We observe:

e Due to p; > p. the scale dependences in the top function are substantially smaller than
in the case of charm. Note in particular how the yet appreciable scale dependence of X,
gets flattened out almost perfectly when the O(a,) effects are taken into account. The total
variation of X (z.) with 100 GeV < p; < 300 GeV is around 1% in NLLA compared to 10%
in LLA.

o As already stated above after (XXIV.4), with the choice y; = rﬁt the NLO correction is very
small. It is substantially larger for p, very different from m,.
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FIG. 25. Charm quark function X, (for m; = 0) compared to the leading-log result X, and the case
without QCD as functions of z..

Using (XXIV.1) and varying .. in the ranges (XXIV.19) we find that for the above choice of the
remaining parameters the uncertainty in B(K+ — n*vi)

0.76 - 107'° < B(K* — x*vp) < 1.20.1071° (XX1V.20)
present in the leading order is reduced to
0.88-107'° < B(K* — n*tvy) < 1.02-1071° (XXIV:21)

after including NLO corrections. Similarly we obtain

8.24-1073 < |Vy4| £1097-10~° LLA XX1V.22)
9.23-1073 < |V;4] €10.10-10"°  NLLA (XXIV.23)
where we have set B(K+* — #tvi) = 1.1071°. We observe that including the full next-

to-leading corrections reduces the uncertainty in the determination of |V4| from +£14% (LLA) to
+4.6% (NLLA) in the present example. The main bulk of this theoretical error stems from the
charm sector. Indeed, keeping p. = m, fixed and varying only p,, the uncertainties in the deter-
mination of |V;4| would shrink to +4.7% (LLA) and £0.6% (NLLA). Similar comments apply to
B(K* — =ntvy) where, as seen in (XXIV.20) and (XXIV:21), the theoretical uncertainty due to
pe s is reduced from +22% (LLA) to £7% (NLLA).
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FIG. 26. Top quark function X (z;) as a function of . for fixed my(m) = 170 GeV with (solid curve)
and without (dashed curve) O(a;) corrections.

Finally in fig. 27 we show the position of the point (g, 7) which determines the unitarity triangle.
To this end we have fixed all parameters as stated above except for R, for which we have chosen
three representative numbers, R, = 0.25, 0.36, 0.47. The full and the reduced ranges represent
LLA and NLLA respectively. The impact of the inclusion of NLO corrections on the accuracy of
determining the unitarity triangle is clearly visible.

2. Expectations for B(K+ — ntvp)

The purely theoretical uncertainties discussed so far should be distinguished from the uncer-
tainties coming from the input parameters such as my, Vs, [Vi/Va| etc.. As we will see the latter
uncertainties are still rather large to date. Consequently the progress achieved by the NLO calcu-
lations (Buchalla and Buras, 1994a) cannot yet be fully exploited phenomenologically at present.
However the determination of the relevant parameters should improve in the future. Once the pre-
cision in the input parameters will have attained the desired level, the gain in accuracy of the theo-
retical prediction for K+ — 7+ in NLLA by a factor of more than 3 compared to the LLA will
become very important. _

Using our standard set of input parameters specified in appendix A and the constraints implied

'by the analysis of ex and By — B, mixing as described in section XVIII, we find for the K+ —
7t v branching fraction the range

0.6-107° < B(K* — z*v#) <1.5-1071° (XXIV.24)
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FIG. 27. The theoretical uncertainties in the determination of the unitarity triangle (UT) in the (g, 77)
plane from B(K+ — =tww). With fixed input parameters the vertex of the UT has to lie on a circle
around the origin with radius R,. A variation of the scales p., p; within 1GeV < u. < 3GeV and
100 GeV < p; < 300 GeV then yields the indicated ranges in LLA (full) and NLLA (reduced). We show
the cases Ry = 0.25,0.36,0.47.

Eq. (XXTIV.24) represents the current standard model expectation for B(K*+ — ntvv) (neglecting |
small isospin breaking corrections). To obtain this estimate we have allowed for a variation of the
parameters m;, |Vas)|, |Vis/Vas|, Bk, FEBp, T4 within their uncertainties as summarized in appen-
dix A. The uncertainties in m, and Azzz, on the other hand, are small in comparison and have been
neglected in this context. The above range would be reduced to

0.8-107° < B(K+ — rtv5) < 1.0-1071° (XXIV.25)

* if the uncertainties in the input parameters could be decreased as assumed by our “future” scenario
in appendix A.

It should be remarked that the z4-constraint, excluding a part of the second quadrant for the
CKM phase 6, plays an essentail role in obtaining the upper bounds given above, without essen-
tially any effect on the lower bounds. Without the z4-constraint the upper bounds in (XXIV.24)
and (XXIV.25) are relaxed to 2.3 - 1071° and 1.6 - 10729, respectively.
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D. General Remarks on K7, — %7

~ The rare decay K; — 7% is even cleaner than K+ — z+vp. It proceeds almost entirely
through direct CP violation (Littenberg, 1989a) and is completely dominated by short-distance loop
diagrams with top quark exchanges. In fact the m,-dependence of B(K — #%#) is again de-
scribed by X (z;). Since the charm contribution can be fully neglected also the theoretical uncer-
tainties presentin K+ — n*v¥ dueto m,, p. and Ayzz are absent here. For thisreason K;, — #%o
is very well suited for the determination of CKM parameters, in particular the Wolfenstein para-
meter 7.

E. Master Formulae for K; — 7%

Using the effective hamiltonian (XI.56) and summing over three neutrino flavors one finds

0, Im), : .
B(Kp — n°vo) =k, - I X(z:) XX1V.26)
KL = Ky Z((fii =1.91-1071° (XXIV.27)
with 4 given in (XXIV.2). Using the Wolfenstein parametrization we can rewrite (XXIV.26) as
B(Kp — %) = 1.91 - 107 %92 A* X?(z,) (XXIV.28)
or
B(Kp — %) = 3.48 - 10~°?|V5|* X?(z,) (XXTV.29)

A few remarks are in order:

o The determination of 7 using B(K, — #°v#) requires the knowledge of V; and m,. The
very strong dependence on V,; or A makes a precise prediction for this branching ratio diffi-
cult at present.

e It has been pointed out (Buras, 1994) that the strong dependence of B(Ky, — 7°¥) on V,
together with the clean nature of this decay, can be used to determine this element without
any hadronic uncertainties. To this end  and m, have to be known with sufficient precision
in addition to B(K; — #°%v¥). n should be measured accurately in CP asymmetries in B
decays and the value of m; known to better than £+5 GeV from TEVATRON and future LHC
experiments. Inverting (XXIV.29) and using a very accurate approximation for X (z,) (valid
for m, = 7, (m.)) as given by (XXIV.4) and (XIV.6)

X(z:) = 0.65 - 257 (XX1IV.30)

one finds
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0.39 [170 GeV1*5™ [ B(K — %)) "/*
Vo =39.3-107% : [ — ] [ (3’j1_0’_’f1””)] (XXIV31)

We note that the weak dependence of V; on B(K — n% ) allows to achieve a high preci-
sion for this CKM element even when B(Ky — = %) is known with only relatively mod-
erate accuracy, e.g. 10-15%. Needless to say that any measurement of B(K; — #%7) is
extremely challenging. A numerical analysis of (XXIV.31) can be found in (Buras, 1994).

F. Numerical Analysis of K, — 7%vp
1. Renormalization Scale Uncertainties

The scale ambiguities present in the function X (z.) have already been discussed in connection
with K* — ntvi. After the inclusion of NLO corrections they are so small that they can be ne-
glected for all practical purposes. Effectively they could also be taken into account by introducing
an additional error Am, < +1 GeV. At the level of B(K — #%v7) the ambiguity in the choice
of g, is reduced from +10% (LLA) down to £1% (NLLA), which considerably increases the pre-
dictive power of the theory. Varying s, according to (XXIV.19) and using the input parameters of
section XXTV C we find that the uncertainty in B(K;, — n°v¥)

2.68-107" < B(KL — 7%p) < 3.26. 1071 (XXIV.32)
present in the leading order is reduced to
2.80-107" < B(Kp — 7%») < 2.88.10~1 (XXIV.33)

after including NLO corrections. This means that the theoretical uncertainty in the determination of
n amounts to only +0.7% in NLLA which is safely negligible. The reduction of the scale ambiguity
for B(Kr, — #°v7) is further illustrated in fig. 28.

2. Expectations for B(Kr, — n%vi)

From an analysis of B(K L — w°vi) similar to the one described for K+ — 7+ in section
XXIV C2 we obtain the standard model expectation

1.1-107" < B(KL, — 7%w) <5.0-107! (XX1V.34)
corresponding to present day errors in the relevant input parameters. This would change into
22-107" < B(Kp — #%p) <3.6-107" (XXIV.35)

if the parameter uncertainties would decrease as anticipated by our “future” scenario defined in
appendix A.
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FIG. 28. The u;-dependence of B(K1 — 7%)/10~1 with (solid curve) and without (dashed curve)
O( ;) corrections for my(m.) = 170 GeV, |V5| = 0.04 and 7 = 0.36.

G. Unitarity Triangle from K — rvi

The measurement of B(K+ — n*vv) and B(KL — #%v¥) can determine the unitarity trian-
gle completely provided m, and V., are known. Using these two branching ratios simultaneously
allows to eliminate |V, /V.s| from the analysis which removes considerable uncertainty. Indeed it
is evident from (XXIV.1) and (XXIV.26) that, given B(K+ — x*v¥) and B(KL — #%v¥), one
can extract both Im); and Rel;. We get

Im), = \° v B, Re\ = -,\553_)‘})"()") +vB - B

X(a) X(z) (V39
where we have defined the “reduced” branching ratios
_ B(K* - ntvp) B(Kj, — 7%¥)
B =—Fron B = o100 (XXIV37)

Using next the expressions for ImA;, ReA; and Re). given in (I1.23) — (I1.25) we find
JPX)-o(Bi-B) VB ”
— AX(z) = oA X () (XXIV.38)

with o defined in (XXIV.7). An exact treatment of the CKM matrix shows that the formulae
(XXIV.38) are rather precise (Buchalla and Buras, 1994c). The error in 7 is below 0.1% and
may deviate from the exact expression by at most Ag = 0.02 with essentially negligible error for

g=1
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0<5<0.25.
As an illustrative example, let us consider the following scenario. We assume that the branching
ratios are known to within +£10%

B(K* — n*wi) = (1.0£0.1) - 107°  B(Ky — 7%5) = (2.5 £ 0.25) - 10~ (XXIV.39)
Next we take (m; = m.'(mi))
my = (170 + 5) GeV m.= (1 30 0. 05) GeV V., =0.040 +0.001 XX1IV40)

where the quoted errors are quite reasonable if one keeps in mind that it will take at least ten years
to achieve the accuracy assumed in (XXIV.39). Finally, we use

AL = (200 - 350)MeV g, = (1 —3)GeV (XXIV41)

where p. is the renormalization scale present in the analysis of the charm contribution. Its varia-
tion gives an indication of the theoretical uncertainty involved in the calculation. In comparison
to this error we neglect the effect of varying pw = O(Mw ), the high energy matching scale at
which the W boson is integrated out, as well as the very small scale dependence of the top quark
contribution. As reference parameters we use the central values in (XXIV.39) and (XXIV.40) and
ALL = 300 MeV, pi. = m.. The results that would be obtained in such a scenario for 7, |V4| and
o are collected in table XLV.

TABLE XLV. 7, [Vid| and g determined from K+ — 7+v and K7, — 7% for the scenario described
in the text together with the uncertainties related to various parameters.

I | a@r|  AmuVe)  Amo AR AW Aww

7 | 0.33}] +0.02 +0.03 £0.00 +0.00 +0.05
[Vial /1073 9.3 +0.6 +0.6 10.5 +0.4 +2.1
2 " 0.00|| +0.08 +0.09 | +0.06 +0.04 £0.27

————

There we have also displayed separately the associated, symmetn’zed errors (A) coming from
the uncertainties in the branching ratios, m. and V3, m. and AM , e, as well as the total uncertainty.
We observe that respectable determinations of 77 and |V;4| can be obtained. On the other hand the
determination of p is rather poor. We also note that a sizable part of the total uncertainty results in
each case from the strong dependence of both branching ratios on m; and V,;. There is however
one important quantity for which the strong dependence of B(K* — #tv¥) and B(KL — 7%vv)
on m, and V,; does not matter at all.

H. sin 28 from K — mvp

Using (XXIV.38) one finds (Buchalla and Buras, 1994¢)

2r,
1472

=ru(By, By) = —77—" =cotf  sin28= (XXIV.42)
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with

 r(B1, By) = Vo ! 75 'j%' FlX) (XXIV.43)

Thus within the approximation of (XXIV.38) sin 24 is independent of V,; (or A) and m;. An exact
treatment of the CKM matrix confirms this finding to a high accuracy. The dependence on V,; and
m enters only at order O(A?) and as a numerical analysis shows this dependence can be fully ne-
glected.

It should be stressed that sin 23 determmed IhlS way depends only on two measurable branching ra-
tios and on the function Po(X) which is completely calculable in perturbation theory. Consequently
this determination is free from any hadronic uncertainties and its accuracy can be estimated with a
high degree of confidence. To this end we use the input given in (XXIV.39) - (XXIV.41) to find

sin 28 = 0.60 + 0.06 £ 0.03 + 0.02 (XXIV.44)

where the first error comes from B(K* — n+v7) and B(Ky — 7% ), the second from m, and
Az7z and the last one from the uncertainty due to z.. We note that the largest partial uncertainty
results from the branching ratios themselves. It can be probably reduced with time as is the case
with the £:0.03 uncertainty related to Az;z and m.. Note that the theoretical uncertainty represented
by A(p.), which ultimately limits the accuracy of the analysis, is small. This reflects the clean
nature of the K — wvv decays. However the small uncertainty of +0.02 is only achieved by
including next-to-leading order QCD corrections. In the leading logarithmic approximation the
corresponding error would amount to £0.05, larger than the one coming from m,. and Az

The accuracy to which sin 24 can be obtained from K — =v¥ is, in our example, comparable to the
one expected in determining sin 28 from CP asymmetries in B decays prior to LHC experiments.
In this case sin 24 is determined best by measuring the time integrated CP violating asymmetry in
B9 — ¥ K5 which is given by

J5° [T(B = $Ks) = I(B - yKs)| dt
J5° [(B = ¥Ks) + T(B — ¥Ks)| df

= —sin28
1+ 232

Acp(¢¥Ks) =

(XXIV.45)
where z = Am/T gives the size of B — B} mixing. Combining (XXIV.42) and (XXIV.45) we
obtain an interesting connection between rare K decays and B physics

27‘,(31, Bz)
1 + T2(B1, B )

1+$d

= —Acp(PKs) (XXIV.46)

which must be satisfied in the Standard Model. We stress that except for Po(X) given in table
XLIV all quantities in (XXIV.46) can be directly measured in experiment and that this relationship
is essentially independent of m, and V3.
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XXV. THE DECAYS K — p*u~ AND Kt — ztutp~
A. General Remarkson Ky — p*pu~

The rare decay K, — putp~ is CP conserving and in addition to its short-distance part receives
important contributions from the two-photon intermediate state, which are difficult to calculate re-
liably (Geng and Ng, 1990), (Bélanger and Geng, 1991), (Ko, 1992).

This latter fact is rather unfortunate because the short-distance part is, similarly to K+ — »twp,
free of hadronic uncertainties and if extracted from the data would give a useful determination of
the Wolfenstein parameter . The separation of the short-distance from the long-distance piece in
the measured rate is very difficult however.

In spite of all this we will present here the analysis of the short-distance contribution because on
one hand it may turn out to be useful one day for K, — x*~ and on the other hand it also plays
an important role in a parity violating asymmetry, which can be measured in K+ — x+pu+ p . We
will discuss this latter toplc later on in this section.

The analysis of (K;, — u*p~)sp proceeds in essentially the same manner as for K+ — r+up,
The only difference enters through the lepton line in the box contribution. This change introduces
two new functions Yy, and Y (z) for the charm and top contributions respectively (section XIC),
which will be discussed in detail below.

B. Master Formulae for (K — ptp~)sp

Using the effective hamiltonian (X1.44) and relating (0{(3d)v_4|KL) to B(K* — p*v) we
find

B(Ky - w*4)sp = 5, [R"* Bede po(v) + Re*‘Y(zt)] (XXV.1)
K "‘zi (f;:;(; :,+") :((;Igi)) XE = 1.68-107° XXV2)
where we have used
= 1%5 sin? QW =023 B(K* - utv) =0.635 (XXV.3)
The function Y () of (XI.45) can also be written as
Y(z) = ny - Yo(2) ny = 1.026 % 0.006 (XXV.4)

where 7y summarizes the NLO corrections discussed in section XIC. With m; = my(m,) this
QCD factor depends only very weakly on m,. The range in (XXV.4) corresponds to 150 GeV <
m; < 190 GeV. The dependence on Az can be neglected. Next

P(Y) = YN = | . (XXVS5)
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TABLE XLVI. The function Py(Y') for various A( ) 5 and m,..

oo —— — — rt—————

Po(Y) I
AL I m, 1.25GeV 1.30 GeV 1.35 GeV|
215MeV| - 0.132 0.141 0.151
325 MeV 0.140 0.149 0.159
435 MeV 0.145 0.156 0.166

— e — ——————— — ——— —

with Yn, calculated in section XIC. Values for Po(Y ) asa funcnon of Agrzand m. = m.(m,) are
collected in table XLVI.

Using the improved Wolfenstein parametrization and the approximate formulae (I1.23) - (11.25)
we can next write

1
B(Ky — p*p~)sp =1.68- 10-9A4Y2(z,); (80 — 2)° (XXV.6)
with
_ Po(Y) (1Y
=1t Ve °° (-_—%2-) (XXV.7)
The “experimental” value of B(Ky — p*p~)sp determines the value of 5 given by
o 1 oB(Ky — ptp~)sp
— — =2
e=0o—To - 10 = Haya(y,) [ 1.68-10-° (XXV.8)

Similarly to ro in the case of K+ — x+v7, the value of 7, is fully determined by the top contri-
bution which has only a very weak renormalization scale ambiguity after the inclusion of O(a;)
corrections. The main scale ambiguity resides in g, whose departure from unity measures the rel-
ative importance of the charm contribution.

C. Numerical Analysisof (K7 — u*u~)sp
1. Renormalization Scale Uncertainties

We will now investigate the uncertainties in Y (z;), Yyz, B(KL — p*p~)sp and g related to
the dependence of these quantities on the choice of the renormalization scales y; and p.. To this
end we proceed as in section XXIV C 1. We fix all the remaining parameters as given in (XXIV.16)
and (XXIV.17) and we vary u. and g, within the ranges stated in (XXIV.19).

Fig. 29 shows the charm function Yz, compared to the leading-log result Y7, and the case with-
out QCD as a function of x.. We note the following points:

o The residual slope of Yy, is considerably smaller than in Yz, alﬁxough still sizable. The vari-
ation of Y with ¢ defined as (Y (1 GeV) — Y(3 GeV))/Y (m.) is 53% in NLLA compared
to 92% in LLA.
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FIG. 29. Charm quark function Yz, compared to the leading-log result Yz and the case without QCD
as functions of p..

e There is a strong enhancement of Y, through QCD corrections in contrast to the suppression
found in the case of Xp.

1

In fig. 30 we show the analogous results for Y'(z,) as a function of x,;. The observed features
are similar to the ones found in the case of X (z,):

o Considerable reduction of the scale uncertainties in NLLA relative to the LLA with a tiny
residual uncertainty after the inclusion of NLO corrections.

¢ Small NLO correction for the choice y; = m; as summarized by gy in (XXV.4).

Using (XXV.1) and varying ., in the ranges (XXIV.19) we find that for our choice of input para-
meters the uncertainty in B(KL — ptu~)sp

0.816-10™° < B(Ky — ptp~)sp < 1.33-107° (XXV.9)
present in the leading order is reduced to
1.02-10™° < B(K — u*p)sp <1.25-107° (XXV.10)

after including NLO corrections. Here we have assumed 5 = 0.
Similarly we find

—0.117 £ 5 £0.165 LLA (XXV.11)

202



1.15 Y T T -

1.10 e
~
~
N
~
— \\
S 105+ < .
® \\
g <
L AN
n S
£ RN
> 1.00 - \\\ 4
\\
\\
\\\
. \\\\\
095 | ' S~ -
0.90 L " i 1 L 1
100 150 250 300

200
1, [GeV]

FIG. 30. Top quark function Y (z;) as a function of y, for fixed m(m,) = 170 GeV with (solid curve)
and without (dashed curve) O(a,) corrections.

0.011 <5<0.134 -  NLLA XXV.12)

- where we have set B(Kp — p*p~)sp = 1- 1072, We observe again a considerable reduction
of the theoretical error when the NLO effects are included in the analyses. Also in this case the
remaining ambiguity is largely dominated by the uncertainty in the charm sector.
2. Expectations for B(K L — ptp)sp

We finally quote the standard model expectation for the short-distance contribution tothe Ky, —
pt = branching ratio. Using the analysis of ex and the constraint implied by B; — B; mixing in
analogy to the case of K* — =+vv described in section XXIV C2, we find

0.6-107° < B(Ky — u*p”)sp < 2.0-107° (XXV.13)

and

0.9-10"° < B(Kp, — p*tp~)sp <1.2-107° (XXV.14)

for present pafameter uncertainties and our “future” scenario, respectively. The relevant sets of
input parameters and their errors are collected in appendix A. Removing the z; constraint would
increase the upper bounds in (XXV.13) and (XXV.14) t0 3.5 - 10~ and 2.2 - 10, respectively.
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D. General Remarks on K+ — ntptp-

Obviously, the short distance effective hamiltonian in (X1.44) also gives rise to an amplitude for
the transition K+ — x%u+u~. This amplitude, however, is by three orders of magnitude smaller
than the dominant contribution to K+ — z*u*u~ given by the one-photon exchange diagram
(Ecker et al., 1987) and is therefore negligible in the total decay rate. On the other hand the coupling
to the muon pair is purely vector-like for the one-photon amplitude, whereas it contains an axial
vector part in the case of the SD contribution mediated by Z%-penguin and W-box diagrams. Thus,
as was pointed out by (Savage and Wise, 1990) and discussed in detail in (Lu et al., 1992), the
interference of the one-photon and the SD contribution, which is odd under parity, generates a parity
violating longitudinal muon polarization asymmetry

(XXV.15)

in the decay K+ — ntp*p~. Here g (I'1) denotes the rate of producing a right- (left-) handed
pt, thatis a p* with spin along (opposite to) its three-momentum direction. In this way a mea-
surement of the asymmetry Arr could probe the phenomenologically interesting short distance
physics, which is not visible in the total rate.

The K+ — nt4* vertex is described by a form factor f (s) (s being the invariant mass squared
of the muon pair), that determines the one-photon amplitude and hence the total rate of K+
7+ u* p~, butalso enters the asymmetry Az g. This formfactor has been analyzed in detail in (Ecker
et al., 1987) within the framework of chiral perturbation theory. The imaginary part Imf(s) turns
out to be much smaller than Re f(s) and can safely be neglected in the calculation of Arg. For
this reason f(s) =~ Ref(s), which depends on a constant not fixed by chiral perturbation theory,
may also be directly extracted from experimental data on K+ — ntete~ (Alliegro er al., 1992),
sensitive to | f(s)]. We follow (Lu er al., 1992) in adopting this procedure.

The dominance of Ref(s) further implies that Ay actually measures the real part of the short
distance amplitude. As emphasized in (Bélanger et al., 1993), Ay g is therefore closely related to
the short distance part of K;, — p+p~ and could possibly yield useful information on this con-
tribution, which is difficult to extract from experimental results on K;, — u*p~. Like (K —
#*p~)sp, ALr is in particular a measure of the Wolfenstein parameter p.

The authors of (Lu et al., 1992) have also considered potential long distance contributions to
Apr originating from two-photon exchange amplitudes. Unfortunately these are very difficult to
calculate in a reliable manner. The discussion in (Lu ez al., 1992) indicates however, that they are
likely to be much smaller than the short distance contributions considered above. We will focus
here on the short distance part, keeping in mind the uncertainty due to possible non-negligible long
distance corrections.

One should stress that the short distance part by itself, although calculable in a well defined
perturbative framework, is not completely free from theoretical uncertainty. The natural context to
discuss this issue is a next-to-leading order analysis, which for Az g has been presented in (Buchalla

and Buras, 1994b), generalizing the previous leading log calculations (Savage and Wise, 1990), (Lu
etal., 1992), (Bélanger et al., 1993). We w1ll summarize the results of (Buchalla and Buras, 1994b)
below.

We finally mention that other asymmetries in K+ — #+u*u~, which are odd under time re-
versal and are also sensitive to short distance contributions, have been discussed in the literature
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(Savage and VVlse, 1990), (Lu et al., 1992), (Agrawal et al., 1991), (Agrawal et al., 1992). They
involve both the p* and 4~ polarizations and are considerably more difficult to measure than Az .
Possibilities for measuring the polarization of muons from K+ — x+u*u~ in future experiments,
based on studying the angular distribution of e* from muon decay, are described in (Kuno, 1992).

E. Master Formulae for A p

The absolute value of the asymmetry Azr can be written as

|Ag| = r - [Reg| (XXV.16)

The factor r arises from phase space integrations. It depends only on the particle masses m g, M.
and m,, on the form factors of the matrix element (z+ | (3d)yv_4 | K*), as well as on the form
factor of the K+ — #+~* transition, relevant for the one-photon amplitude. In addition r depends
on a possible cut which may be imposed on 4, the angle between the three-momenta of the »~ and
the pion in the rest frame of the utp~ pair. Without any cuts one has r = 2.3 (Lu et al., 1992). If
cos @ is restricted to lie in the region —0.5 < cos@ < 1.0, this factor is increased to r = 4.1. As
discussed in (Lu et al., 1992), such a cut in cos § could be useful since it enhances Arr by 80%
with only a 22% decrease in the total number of events.
Re{ is a function containing the information on the short distance physics. It depends on CKM

parameters, the QCD scale Az;z, the quark masses m, and m, and is given by ‘

Ref = r - [Re*° By(Y)+ R‘“‘*‘Y(zt)] (XXV.17)
X =1.66-10"3 (XXV.18)
~ 2rsin 20w(1 - )

Here A = |V,s| = 0.22, 5in? Oy = 0.23, 7, = mf/M2 » A = VitV and

Py(Y) = YNL | 0 (XXV.19)

The functions Yz and Y (z;) represent the charm and the top contribution, respectively. They are
to next-to-leading logarithmic accuracy given in (X1.48) and (XI.45) and have already been dis-
cussed in chapter XIC and in the previous sections on the phenomenology of (K, — ptp~)sp.
Numerical values for Po(Y) can be found in table XLVI. From (XXV.16) and (XXV.17) we can
obtain Re), expressed as a function of |Ag|

|ALrl/re = (1- %) Py(Y)

Rels = —A°
t Y(z)

(XXV.20)

Since Re)\; is related to the Wolfenstein parameter g (see section II), one may use (XXV.20) to
extract g from a given value of |Ag|.
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F. Numerical Analysisof Arp

To illustrate the phenomenological implications of the next-to-leading order calculation, let us
consider the following scenario. We assume a typical value for Ag, allowing for an uncertainty
of +10%

App = (6.0+0.6)-1073 (XXV.21)

~ Here a cut on cos 8, —0.5 < cos § < 1.0, is understood. Next we take (m; = m;(m;))

me = (170 £ 5) GeV  m, = (1.30 £0.05) GeV V5 = 0.040 % 0.001 (XXV.22)
AL = (300 + 50) MeV (XXV.23)

Table XLVII shows the central value of p that is extracted from Ay g in our example together with
the uncertainties associated to the relevant input. Combined errors due to a simultaneous variation
of several parameters can be obtained to a good approximation by simply adding the errors in table
XLVIL

TABLE XLVIL g determined from A g for the scenario described in the text together with the uncer-
tainties related to various input parameters.

| I A(ALr)| A(my)| A(Va)| A(m.)| A(Axrs)
F; ~0.06| +0.13 | +0.05 | +0.06 | +0.01 | +0.00

These errors should be.compared with the purely theoretical uncertainty of the short distance
calculation, estimated by a variation of the renormalization scales g, and y;. Varying these scales
as given in (XXIV.19) and keeping all other parameters at their central values we find

-015<5<-0.03 (NLLA) (XXV.24)

~031<5<002 (LLA) O (XXV25)

We observe that at NLO the scale ambiguity is reduced by almost a factor of 3 compared to the
leading log approximation. However, even in the NLLA the remaining uncertainty is still sizable,
though moderate in comparison with the errors in table XLVIL. Note that the remaining error in
(XXV.24) is almost completely due to the charm sector, since the scale uncertainty in the top con-
tribution is practically eliminated at NLO.

We remark that for definiteness we have incorporated the numerically important piece z./2 in the
leading log expression for the charm function Y/, although this is strictly speaking a next-to-leading
order term. This procedure corresponds to a central value of § = —0.12 in LLA. Omitting the z./2
term and employing the strict leading log result shifts this value to 3 = —0.20. Within NLLA this
ambiguity is avoided in a natural way.

Finally we give the Standard Model expectation for Ay, based on the short distance contribution
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in (XXV.16), for the Wolfenstein parameter g in the range —0.25 < p < 0.25, V; = 0.040+ 0.004
and m; = (170 = 20) GeV. Including the uncertainties due to m., A7z, ¢ and g, and imposing
the cut —0.5 < cos 0 < 1, we find

3.0-1073 < |Azgr| < 9.6-1072 (XXV.26)

employing next-to-leading order formulae. Anticipating improvements in V,;, m; and ¢ we also
consider a future scenario in which ¢ = 0.00 £ 0.02, V;; = 0.040 + 0.001 and m; = (170 +
5) GeV. The very precise determination of ¢ used here should be achieved through measuring CP
asymmetries in B decays in the LHC era (Buras, 1994). Then (XXV.26) reduces to

4.8-1073 < |ALgr| < 6.6-107° XXV.27)

One should mention that although the top contribution dominates the short distance prediction for
|ALr|, the charm part is still important and should not be neglected, as done in (Bélanger et al.,
1993). It is easy to convince oneself that the charm sector contributes to g the sizable amount
Afcharm = 0.2. Furthermore, as we have shown above, the charm part is the dominant source
of theoretical uncertainty in the short distance calculation of Azp.

To summarize, we have seen that the scale ambiguity in the perturbative short distance contribu-
tion to Azr can be considerably reduced by incorporating next-to-leading order QCD corrections.
The corresponding theoretical error in the determination of g from an anticipated measurement of
|ALr| is then decreased by a factor of 3, in a typical example. Unfortunately the remaining scale
uncertainty is quite visible even at NLO. In addition there are further uncertainties due to various
input parameters and due to possible long distance effects. Together this implies that the accuracy
to which g can be extracted from Ar appears to be limited and Az can not fully compete with
the gold-plated” K — #»¥ decay modes. Still, a measurement of Az might give interesting
constraints on SM parameters, g in particular, and we feel it is worthwhile to further pursue this
interesting additional possibility.
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XXVIL. THE DECAYS B — Xvi AND B — ptp~
A. General Remarks

The rare decays B — X,v#, B — Xyvv and B, — p*p~, By — ptp~ are fully domi-
nated by internal top quark contributions. The relevant effective hamiltonians are given in (XL.56)
and (X1.57) respectively. Only the top functions X (z.) and Y (z;) enter these expressions and the
uncertainties due to m, and Ay affecting K+ — #+vy and K — ptp~ are absent here. Con-
sequently these two decays are theoretically very clean. In particular the residual renormalization
scale dependence of the relevant branching ratios, though sizable in leading order, can essentially
be neglected after the inclusion of next-to-leading order corrections. On the other hand a measure-
ment of these rare B decays, in particular of B — X,vv and B — Xyv# , is experimentally very
challenging. In addition, as we will see below, B(B, — p*p~) and B(B; — u*pu™) is subject to
the uncertainties in the values of the B meson decay constants Fg, and Fj,, which hopefully will
be removed one day.

B. The Decays B — X,vv and B — X vi

The branching fraction for B — X,»7 is given by

B(B — X,vp) _ 3a? Vis|? X3(z:) 7
B(B — X.ev)  4n?sin'Ow [Vs2 f(z) x(z)

(XXVL1)

Here f(z), z = m./m is the phase-space factor for B — X_.e7 defined already in (XXIL6) and
(2) is the corresponding QCD correction (Cabibbo and Maiani, 1978) given in (XXII1.7). The
factor 77 represents the QCD correction to the matrix element of the b — sv¥ transition due to
virtual and bremsstrahlung contributions and is given by the well known expression

2a,(my) (%

T=r(0)=1+—"—{

- 1:2) ~ 0.83 | (XXVL2)

For the numerical analysis we will use AJyp, = 225MeV, (XXIV.3), [Vi,| = [Vis|, me(me) =
170GeV, B(B — X.ev) = 0.104, f(z) = 0.49 and x(z) = 0.88, keeping in mind the QCD
uncertainties in B — X_eb discussed in section XVII. .

Varying 4 as in (XXIV.19) we find that the ambiguity

3.82-107° < B(B — X,vv) < 4.65- 105 (XXVL3)
present in the leading order is reduced to
3.99-107° < B(B — X,v7) < 4.09-107° - (XXVI14)

after the inclusion of QCD corrections (Buchalla and Buras, 1993a).

It should be noted that B(B — X,v7) as given in (XXVL1) is in view of |V, /V,|? =~ 0.95 +
0.03 essentially independent of the CKM parameters and the main uncertainty resides in the value
of m.. Setting all parameters as given above and in appendix A, and using (XXIV.30) we have
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B(B — X,vp) =4.1-107° Varl? [ mq(my) 1 : (XXVL5)
[Val? | 170 GeV :

In view of a new interest in this decay (Grossman et al., 1995) we quote the Standard Model ex-
pectation for B(B — X,v7) based on the input parameters collected in the appendix A. We find

3.1-10° < B(B— X,vi) <4.9-107° (XXVL6)
for the “present day” uncertainties in the input parameters and
3.6-10"°* < B(B— X,v9) <4.2-107° (XXVLT)

for our “future” scenario.
In the case of B — X v one has to replace V;, by V4 which results in a decrease of the branch-
ing ratio by roughly an order of magnitude.

C. The Decays B, — u*u~ and By — ptp~

The branching ratio for B, — I*I~ is given by (Buchalla and Buras, 1993a)

G a 2 m?
- F 2 2 _ ] * 2v2
B(B, - 1) = r(B)ZE (—-—“sinz (_)W) FB'm,mB,,ll 4 VAVl Y2 (e) OOV

where B, denotes the flavor éigenstate (bs) and Fig, is the corresponding decay constant (normal-
ized as F, = 131 MeV). Using (XXIV.3), (XXV.4) and (XIV.6) we find in the case of B, — ptpu~

' 2 3.12
+,~) = 10— 7(B,) [ Fpg, 2 [Vis| my(m,)
B(B, = p7p7) = 4.18-10 [l.ﬁps] 530MeV) |0.040| |170GeV (XXVL9)

which approximates the next-to-leading order result.
Taking the central values for 7(B,), F3,, |Vis| and m,(m,) and varying . as in (XXIV.19) we find
that the uncertainty '

3.44-10° < B(B, = p*tp~) < 4.50-10~° (XXVI.10)
present in the leading order is reduced to
4.05-10° < B(B, — ptp™) <4.14-107° (XXVI11)

when the QCD corrections are included. This feature is once more illustrated in fig. 31.
Finally, we quote the standard model expectation for B(B, — p*u~) based on the input para-
meters collected in the Appendix. We find

1.7-107° < B(B, = u*u~) < 8.4-107° (XXV1.12)

using present day uncertainties in the parameters and Fg, = 230 1 40 MeV. With reduced errors
for the input quantities, corresponding to our second scenario as defined in Appendix A, and taking
Fp, = 230 £ 10 MeV this range would shrink to
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FIG. 31. The p.-dependence of B(B, — ptpu~)[107°] with (solid curve) and without (dashed curve)
O(as) corrections for fixed parameter values as described in the text.

31-10° < B(B, — p*tpu~) < 5.0-10°° (XXVL13)

For the case of B; — ™ i~ similar formulae hold with obvious replacements of labels (s — d).
Provided the decay constants Fg, and Fp, will have been calculated reliably by non-perturbative
methods or measured in leading leptonic decays one day, the rare processes B, — u*p~ and B; —
#* u~ should offer clean determinations of |V;,| and |V;4|. The accuracy of the related analysis will
profit considerably from the reduction of theoretical ambiguity achieved through the inclusion of
short-distance QCD effects. In particular B(B, — p*p~), which is expected to be O(4 - 10-9),
should be attainable at hadronic machines such as HERA-B, Tevatron and LHC.
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XXVIL. SUMMARY

In this review we have described in detail the present status of higher order QCD corrections
to weak decays of hadrons. We have emphasized that during the last years considerable progress
has been made in this field through the calculation of the next—to-leading QCD corrections to es-
sentially all of the most interesting and important processes. This effort reduced considerably the
theoretical uncertainties in the relevant formulae and thereby improves the determination of the
CKM parameters to be achieved in future experiments. We have illustrated this with several ex-
amples.

In this review we have concentrated on weak decays in the Standard Model. The structure of
weak decays in extensions of the Standard Model will generally be modified. Although we do not
expect substantial effects due to “new physics” in tree level decays, the picture of loop induced
processes, such as rare and CP violating decays, may turn out to be different from the one presented
here. The basic structure of QCD calculations will remain valid, however. In certain extensions of
the Standard Model, in which no new local operators occur, only the initial conditions to the renor-
malization group evolution will have to be modified. In more complicated extensions additional
operators can be present and in addition to the change of the initial conditions, also the evolution
matrix will have to be generalized.

Yet in order to be able to decide whether modifications of the standard theory are required by
the data, it is essential that the theoretical calculations within the Standard Model itself reach the
necessary precision. As far as the short distance contributions are concerned, we think that in most
cases such a precision has been already achieved.

Important exceptions are the b — sy and b — sg transitions for which the complete NLO
corrections are not yet available. On the other hand the status of long distance contributions repre-
sented by the hadronic matrix elements of local operators or equivalently by various B; parameters,
is much less satisfactory. This is in particular the case of non-leptonic decays, where the progress
is very slow. Yet without these difficult non—perturbative calculations it is impossible to give reli-
able theoretical predictions for non-leptonic decays even if the Wilson coefficients of the relevant
operators have been calculated with high precision. Moreover these coefficients have unphysical
renormalization scale and renormalization scheme dependences which can only be canceled by the
corresponding dependences in the hadronic matrix elements. All efforts should be made to improve
the status of non-perturbative calculations.

The next ten years should be very exciting for the field of weak decays. The experimental efforts
in several laboratories will provide many new results for the rare and CP violating decays which
will offer new tests of the Standard Model and possibly signal some “new physics”. As we have
stressed in this review the NLO calculations presented here will play undoubtedly an important
role in these investigations. Let us just imagine that B? — B mixing and the branching ratios for -
K* — z*vp, K — %%, B — X,v7 and B, — p*p~ have been measured to an acceptable
accuracy. Having in addition at our disposal accurate values of |V,s/Vz), |Vas|, m:, Fg, Bp and
Bg as well as respectable results for the angles (a, 3, ) from the CP asymmetries in B—decays, we
could really get a great insight into the physics of quark mixing and CP violation. One should hope
that this progress on the experimental side will be paralleled by the progress in the calculations of
hadronic matrix elements as well as by the calculations of QCD corrections in potential extensions
of the Standard Model.

We would like to end our review with a summary of theoretical predictions and present experi-
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mental results for the rare and CP violating decays discussed by us. This summary is given in table
XLVIIL

"TABLE XLVIII. Summary of theoretical predictions and experimental results for the rare and CP vi-
olating processes discussed in this review. The entry “input” indicates that the corresponding measure-
ment is used to determine or to constrain CKM parameters needed for the calculation of other decays.
For B(Kr — p'tp~) the theoretical value refers only to the short-distance contribution. In the case of
B(Ky — n%%*e™) the SM prediction corresponds to the contribution from direct CP violation. The SM
predictions for K+ — x+ v and K, — »%# include the isospin breaking corrections considered in (Mar-

ciano and Parsa, 1995).

| Quantity ] SM Prediction Experiment | Exp. Reference
B f—Decays o
lex] input (2.266 + 0.023) - 10~3|(Particle Data Group, 1994)
g'/e (5.6 £7.7)-10~* (15+8)-10~%  |(Particle Data Group, 1994)
B(KL — n%%e™) [(4.5+2.8)-107!2 [CPg;] <4.3-107° (Harris et al., 1993) )
B(K* — ntvp) (1.0£0.4)-10"19 <24-107° (Adler et al., 1995)
B(K1 — 7%7p) (29+1.9)-10~11 <58-10"° (Weaver et al., 1994)
B(KL — ptp) (1.3+£0.7)-107°[SD] | (7.4%0.4)-10~° |(Particle Data Group, 1994)
[ALr(ET = afpFp)]| (6£3)-10° = —
B-Decays
T4 input 0.75 £ 0.06 (Browder and Honscheid, 1995)
B(B — X,v) (2.8+0.8)-10"* (2.32+0.67)- 10~* |(Alam et al., 1995)
B(B — X,vv) (4.0+0.9)-107° <39-101 (Grossman et al., 1995)
B(B, —» t%717) (1.1£0.7)-10"° — —
B(B, — ptp~) (5.1 +3.3)-107° <84-10"% (Kroll et al., 1995)
B(B, — e*e™) (1.2+0.8)-10713 — —_
B(By — utu) ~ 10710 <1.6-10"° (Kroll et al., 1995)
B(Bi — ete™) ~ 10714 <5.9-10"¢ (Ammar et al., 1994)

Let us hope that the next ten years will bring a further reduction of uncertainties in the theo-
retical predictions and will provide us with accurate measurements of various branching ratios for
which, as seen in table XLVIII, only upper bounds are available at present.
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APPENDIX A: COMPILATION OF NUMERICAL INPUT PARAMETERS

Below we give for the convenience of the reader a compilation of input parameters that were
used in the numerical parts of this review.

Running quark masses:

ma(me) = 8MeV i (me) = (170 £20) MeV
Mc(me) = 1.3GeV
Mo(mp) = 44GeV  mP!) = 48GeV

Scalar meson masses and decay constants:

m, = 135MeV F, = 131MeV
mg = 498 MeV Fx = 160 MeV
mp, = 5.28GeV 7(Bg) = 1.6-107%%g
mp, = 5.38GeV 7(B;) = 1.6-1072s

QCD and electroweak parameters:

ay(Mz) = 0.117£0.007  ASL = (225 £ 85) MeV
a = 1/129 Mw = 80.2GeV
simnfw = 0.23
CKM elements:
[Vas| = 0.22 Vaa| = 0.975

K -decays, K°® — K° and B° — B° mixing:

r(Ky) = 5.17-10-%s r(K*) = 1.237-10%s
BR(K* — n%%*v) = 0.0482

kx| = (2.266+0.023)-10° AMg = 3.51-10-15GeV
Redy = 3.33-1077 GeV RedA; = 1.50-1078GeV
Q. = 025

U = 1.38 - ' 72 = 0.57

s = 0.47 ng = 0.55

The values for Re A, ; have been obtained from PDG using isospin analysis.
' Hadronic matrix element parameters for K — 7

BM2A(me) = 5.7+£11  BM{p(me) = 6. 6410

for AL = 325 MeV
B2 (m,) = 62410 MS ©

BM? = B(1/2) BMD = B = pt/D — B2 — B/ — 1 (central values)
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In numerical investigations we have for illustrative purposes sometimes used actual present as
well as estimated future errors for various 1nput parameters. In the tablc below this is indicated by
labels “present” and “future”.

Quantity| Central | Present | Future
|Ven) 0.040 | £0.003 | +0.001
|Vab/Ven|| 0.08 +0.02 | +0.01
Bx | 0.75 +0.15 | £0.05.
v BiFg,|200 MeV {140 MeV|+10 MeV
zq 0.75 +0.06 | +0.03
my {170 GeV[£15GeV | £5GeV
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