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Abstract 

We investigate the low-energy dynamics of SU(N) gauge theories with one 

antisymmetric tensor field, N - 4 + Nf antifundamentals and Nf fundamentals, 

for Nf 5 3. For Nf = 3 we construct the quantum moduli space, and for Nf < 3 we 

find the exact quantum superpotentials. We find two large classes of models with 

dynamical supersymmetry breaking. The odd N theories break supersymmetry 
once appropriate mass terms are added in the super-potential. The even N theories 

break supersymmetry after gauging an extra chiral U(1) symmetry. 
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1 Introduction 

There are two motivations for studying non-perturbative supersymmetry (SUSY) breaking. 

Firstly, it could explain why the electroweak scale (M w is so much smaller than the GUT ) 

or Planck scale (Mpl). Thi s could happen if the supersymmetry breaking scale is tied to the 

electroweak breaking scale [l]. Th e non-perturbative breaking would then relate Mw/Mpl 

to the logarithmic running of dimensionless coupling constants. Supersymmetry would thus 

provide an explanation for both the fine tuning and naturalness problems associated with the 

ratio Mw/Mpl. Secondly, since only chiral gauge theories can undergo dynamical supersym- 

metry breaking, its study could shed some light on the behaviour of non-perturbative chiral 

gauge theories - a subject of interest from other points of view as well 

The past year has seen some spectacular progress in our understanding of the non-perturbative 

behaviour of SUSY gauge theories (for a review see [2] and references therein). Most of it has 

been in vector-like theories. In this paper we extend these ideas to some chiral gauge theories 

as well, uncovering in the process several examples of dynamical supersymmetry breaking. 

We will present some of our important results along with a few details here. More results and 

details will follow in a subsequent paper. 

Our general strategy is as follows. We will restrict ourselves to theories in which the scale 

of supersymmetry breaking is lower than the strong coupling scale (A) of the gauge theoryr. 

In such theories the heavy degrees of freedom can be integrated out at the scale A and a 

supersymmetric effective theory can be constructed in terms of the light fields. This effective 

theory can then be used to study the breaking of supersymmetry. If one is interested in 

explicitly calculating the vacuum energy and the spectrum, knowledge of both the KBhler 

potential and superpotential are necessary. However the KZhler potential is not needed in 

detail if one only wants to show that supersymmetry is broken. For this purpose it is enough 

to ensure that the KE.h.ler potential has no singularities in terms of the light fields, i.e. the 

moduli. Supersymmetry breaking can then be established by analyzing the superpotential. 

Fortunately, a great deal can be said about the superpotential non-perturbatively, while the 

K&ler potential in N = 1 SUSY gauge theories remains poorly understood. Guided by these 

observations we first identify the correct moduli fields in the low-energy effective lagrangian 

and argue that the K&ler potential does not contain any singularities (strictly speaking, we 

will only establish the absence of singularities for finite values of the moduli). Then we turn 

our attention to the superpotential and investigate the question of supersymmetry breaking. 

The strategy discussed above is very similar to that of Intriligator, Seiberg and Shenker [3]. 

In this paper, we consider some simple chiral gauge theories [4] - those with gauge group 

lI.n practice we will achieve this by adding appropriately small terms in the superpotential. 
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SU(N) and one antisymmetric tensor field, Nf fields in the fundamental and N - 4 + IV, 

fields in the antifundamental representations. While the analysis is quite different for N odd 

and even, we find that in both cases for Nf = 3 these theories have a smooth moduli space 

in terms of appropriately identified variables. The classical singularities (present for example 

at the point where the gauge symmetry is restored) get smoothed out quantum mechanically. 

Our results in this regard are analogous to those obtained by Seiberg for SUSY QCD with _ 

Nf = NC [5J. 

Having established the quantum moduli spaces for these cases, we then add various terms 

to the superpotential and study the behaviour of these theories. In particular, by adding 

mass terms we find the quantum superpotentials for theories with Nf < 3. In fact we find 

that for appropriate mass terms the SU(2lc + 1) theories break supersymmetry. This yields a 

large class of models which exhibit supersymmetry breaking, some of which (with Nf = 2) are 

calculable. For the SU(2k) case we have not found any examples of SUSY breaking in this 

manner. However by starting with the SU(2k + 1) th eories and breaking the gauge symmetry 

down to SU(2k) x U(1) one arrives at a closely related set of theories. An investigation shows 

that with appropriate Yukawa terms they dynamically break supersymmetry. 

This letter is organized as follows. In sections 2, 3 and 4 we consider the SU(2k + I), 

SU(2k) and SU(2k) x U(1) th eories respectively. We end in section 5 with conclusions and 

some comments. 

2 SU(2k+l) 

In this section we consider the nonperturbative low-energy dynamics of models based on the 

gauge group SU(2k + l), with an antisymmetric tensor Ad, 2k - 3 + Nf antifundamentals 

&, (i = 1, . . . ,2k - 3 + Nf), and Nf fundamentals Q$ (a = 1, . ..Nf). In this paper we restrict 

ourselves to Nf 5 3. In the absence of any superpotential the classical SU(N) theory has 

a global SU(Nf)L x SU( N - 4 + Nf)R x U( 1)~ x U(l)4 x U(l)A x U( 1)~ symmetry. The 

charges of the fundamental fields and the coefficients of the anomalies (i.e. the “charges” of 

the strong coupling scale Ah, with b o = 2N + 3 - Nf the first coefficient of the beta function) 

of the U(l)-symmetries are: 

u(l)Q WQ u(l)A WR 
Q 1 0 0 0 

8 0 1 0 0 

A 
(2.1) 

0 0 1 0 

Abe Nf N-4+Nf N-2 S-2Nf. 

We start with the Nf = 3 case. Subsequently, we will add mass terms and flow to theories 

with a fewer number of flavors. The classical Nf = 3 theory has flat directions and hence 
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infinitely many inequivalent ground 

following gauge invariant operators*: 

states. These flat directions can be described by the 

Y" = Q:2k,1 ?‘-“2k+1 Aa,a2...AQ2k-IP21 

z 
(2.2) _ 

= P *-‘=Zk+l A 
=34a2...~2~2c-a Q&k-, Qt,, Q:2k+, ‘%bc . 

The inequivalent ground states correspond to different expectation values of these modub. Not 

all the fields in (2.2) are independent. There is one constraint relating them, which follows 

from the Bose symmetry of the superfields. It is given by3: 

Y.M2.Xk-’ = CZPfX, (24 

where PfX F ei1**.i2kXi1i2 .,.Xi2L--li2t) Y * M2 . Xk-’ E cakYaM: M;i ~‘l...‘*kXisir ...Xi2k-1i2, and 

c = k/3. 

Symmetry arguments show that for Nj = 3 no superpotential can be generated dynami- 

tally. Thus the vacuum degeneracy must persist and the quantum theory must have a moduli 

space of ground states. Considerations similar to those in supersymmetric QCD with Nj = N, 

[5] suggest that the classical constraint (2.3) is modified by non-perturbative effects, and be- 

comes 

y . M2. XL-’ - c 2 PfX = AdkS2 , (2.4) 

with A being the strong coupling scale of the theory. 

As in the case of supersymmetric QCD this quantum modification meets several non-trivial 

tests. For example the fields on the quantum-deformed moduli space saturate the ‘t Hooft 

conditions for the unbroken global symmetries at various points of enhanced symmetry (the 

maximal enhanced symmetry is sum x SP(2k)R x U(~)R x U(1)). Furthermore, as we show 

below, on integrating out one of the quark flavors the instanton generated superpotential for 

the Nf = 2 case is correctly reproduced. We regard these tests as fairly persuasive and so will 

assume that the modified constraint (2.4) is correct. This constraint can be implemented by 

adding a term in the superpotential of the form: 

WNtz3 = L ( Y . M2 + Xk-’ - c 2 PfX - A4k+2 ) , 

with L being a Lagrange multiplier. 

P-5) 

The low-energy effective Lagrangian can then be described in terms of the moduli fields 

(2.2) subject to the constraint (2.5). The quantum modification to the constraint (2.5) results 

21t can be shown that all other invariants in this theory are products of the ones given in (2.2). 
3This constraint is also needed to correctly account for the total number of degrees of freedom. 
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in smoothing out the singularities present classically at points of partially enhanced gauge 

symmetry. Therefore no fields other than the moduli become massless in any finite region 

of the quantum moduli space. Since singularities of the K&,.ler potential are due to the 

appearance of extra massless states, we are lead to conclude that the K&ler potential in 

terms of fields (2.2) is not singular for any finite values of the moduli. 

One caveat needs to be added to the discussion of the previous paragraph. Strictly speak- 

ing, the points of partially enhanced gauge symmetry are removed from the quantum moduli 

space (2.4) only for finite moduli vevs. But these points can still be reached when some mod- 

uli become infinite (while others go to zero, in a way consistent with the quantum-modified 

constraint)4. In this limit some subgroup H of the gauge group is restored, with both the H 

gauge coupling and the H-breaking vevs tending to zero. The massless, weakly coupled gauge 

bosons of the restored gauge group descend into the low-energy theory, causing a singularity 

in the KZhler potential’. The correct low-energy degrees of freedom are then given by the 

weakly coupled quark and vector superfields. We will need to worry about these singularities 

at infinity in our discussion of supersymmetry breaking below. 

Having understood the quantum moduli space and identified the appropriate moduli fields 

we now turn to perturbing this theory by adding various terms to the superpotential. By 

adding a mass perturbation for the third flavor and integrating out the heavy fields, we find 

the superpotential for the Nf = 2 theory : 

A’&3 

wN,=2 = 
(2) 

E,, Ya Mji P+j=-~ Xj2j3sssXj21-2j2k-, (2.6) 

where we have absorbed a numerical coefficient in the definition of the low-energy A (A$” = 

n~h~~+~). The fields app earing in W are the Nf = 2 analogues of the fields appearing in (2.2). 

This superpotential has the simple physical interpretation of being induced by a one instanton 

term in the gauge theory. 

Let us now perturb the Nj = 2 superpotential (2.6) by adding mass and Yukawa terms 

6W = ITL~M~ + X’jXij m P-7) 

If SUSY is to remain unbroken, the superpotential must be an extremum with respect to all 

the fields. On extremising with respect to the mesons M;C we find that : 

rn: = 
A4k+3 

( y . M . >(2k-2)/2 >’ x Eij20aej2k-1 xi2 j2 --sxj2&-2j2&, ' P-8) 

‘We thank M. Dine and Y. Shirman for a related discussion. 
5This weak-coupling singularity can be explicitly seen in some N = 2 models, where the Kihler potential 

is known [S]. 
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But these equations cannot be satisfied for a rank 2 mass matrix. To see this consider starting 

with a diagonal mass matrix (with the index i in (2.7) taking only two values, 21c - 2 and 

21c - 1 respectively). Then (2.8) can be satisfied only if two contradictory conditions are met: 

K 
- 0, and 2 = 0. 

yz- K 
(2.9) 

Clearly this is impossible for any values of Yl and Y2. Since we have already argued that 

the K%.ler potential has no singularities for finite values of the moduli 6, we conclude that 

there is no SUSY preserving minimum in this region of moduli space. However, to establish 

SUSY breaking we need to also rule out the possibility that SUSY is restored when some of the 

moduli go to infinity. As was discussed above, sometimes the KBhler potential may be singular 

along such runaway directions. Thus, even though the superpotential cannot be extremized, 

the vacuum energy may vanish and SUSY may be restored. However, since these theories 

with the superpotential (2.7) h ave no classical flat directions, the appearance of such runaway 

directions is extremely improbable. We thus expect that these theories break supersymmetry. 

We close this section with a few comments. 

Firstly, for small m << A, X << 1, the minimum of the scalar potential of the Nj = 2 theory 

is expected to be in the semiclassical region and the resulting models are therefore calculable. 

Readers primarily interested in examples of SUSY breaking may note that these models can 

be understood simply without recourse to the preceding discussion of moduli space etc. In 

this case the gauge symmetry is completely broken and the non-perturbative superpotential 

can be understood as simply arising from a a single instanton effect. 

Secondly, it has long been suggested [4], [7], that the SU(2k + 1) theories ?th 21c - 3 

antifundamental fields break supersymmetry. These theories can be thought of as the m >> A 

limit of the theories discussed above. In this limit we cannot strictly speaking make any 

definite statements, nevertheless our results indicate that supersymmetry breaking persists in 

this case as wel17. 

3 SU(2k) 

In this section we investigate the even-N theories with antisymmetric tensors. We keep the 

discussion brief since it closely parallels that in the previous section. Once again we restrict 

“Although this was strictly shown for the theory with Nt = 3 and without any mass terms in the superpo- 
tential, we expect the conclusion to be true even after the mass terms are added. After giving mass to some 
fields one expects some of the moduli fields to get mass rather than extra massless states to appear. In fact, 
arguments similar to the ones following eq.(2.8) hold for the three-flavor case as well. 

7Murayama[8] had suggested that the SU(5) model in this class can be analysed by adding an extra flavor 

with a mass term. Our analysis above is very close in spirit to his. We have chosen to elaborate on the Nj = 2 
case since this yields calculable models. 
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ourselves to Nf 5 3. We find a quantum moduli space for Nj = 3, and dynamically generated 

superpotentials for Nf < 3. From the point of view of constructing models for SUSY breaking 

the results of this section will be primarily interesting as a stepping stone for constructing the 

SU(2k) x U(1) models discussed in the next section. 

The fundamental fields of the SU(2Ic) theory are the antisymmetric tensor Aa~, 2k-4-t Nj 

antifundamentals QF, (; = 1, . . . . 2k - 4 + Nj), and Nf fundamentals Qz, (a = 1, . . . . Nj). The 

classical moduli space for Nj = 3 is described by the following gauge invariant fields8: 

M; = 0; Ql 

Xij = Aao @ @ 

Y, = acQ:, Qf P--~*~ Ax,,, -4~2kL--1~2k 

PfA = ea’“*=*’ AaIa2...Aa2C--1Q21 . 

(34 

These invariants are subject to a constraint, which is modified by nonperturbative effects and 

becomes: 

Xk-’ . M . y - b M3. Xk-2 PfA = A4k . (3.2) 

Here M3 - Xkm2 G &bcM,~M,~M,:eil...i*‘-lX~il...Xi2i-2i2~--I, Xksl * M * Y E YaM,yXi,i, ... 

X. *2t--2i2k--l 
& ~b-1 and b = (k - 1)/(3k). ‘t Hooft’s anomaly matching conditions are saturated 

by the moduli fields subject to the constraint (3.2) (th e maximal enhanced symmetry in this 

case is SV(S), x SP(2k - 4) x U(~)R). 

The dynamical superpotentials for Nf < 3 g can be found by integrating out the extra 

flavors. For Nf = 2 we find the instanton induced superpotential 

Ark+1 

wNf=2 = 
(2) 

YPfX - 3b ~a,M,y M,:~~l.*~*k~-*Xi,i, e--X i2c-3i2re2PfA ’ 
(3.3) 

The singularity at Y PfX = M2 mXkD2PfA reflects the existence of points on the moduli space 

with an unbroken SU(2) gauge symmetry. For Nj = 1 the superpotential is due to gaugino 

condensation in the unbroken SU(2) gauge group: 

wNt=l = 

A$+1 

[ Mi, Xiais ssmXi2,-,i2~-s Eil***i*k-3 Pf A Ii2 ’ 1 
Finally, the Nf = 0 superpotential is induced by SP(4) gaugino condensation [4]: 

wN,=O = 
AIz+3)‘3 

[ PfA PfX ]1’3 ’ 

(3.4) 

P-5) 

*As in the odd case, one can show that all other invariants are products of (3.1). 
‘The moduli fields appearing in the superpotentials for Nj < 3 are simply the restrictions of the Nt = 3 

invariants (3.l)to a smaller number of flavors. 
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We have investigated these theories by adding various terms to the superpotentials, (3.3), 

(3.4) and (3.5), but h ave not found any examples of SUSY breaking. For example on adding 

a perturbation SW = PfA $ X’jXij to (3.5) we can see that the Nj = 0 theory has a super- 

symmetric ground state. 

4 SU(2k) xU( 1) 

In this section we investigate the behaviour of theories with gauge group SU(2k) x U(1) 

and find a large class of models that do break SUSY. These theories can be obtained by 

starting with the SU(2k + 1) th eories of section 2, and breaking the gauge symmetry down 

to SU(2k) x U(1). Th e s y mmetry breaking can be accomplished, for example, by adding an 

additional heavy field in the adjoint of SU(2k + 1). S ince the SU(2k + 1) theory is expected 

to break SUSY the resulting SU(2k) x U(1) th eor y is a natural candidate for SUSY breaking. 

As we show below SUSY breaking does indeed occur in these models. 

Our starting point will be the SU(2k + 1) models of section 2 with Nf = 0. The SU(2k) x 

U(1) theory resulting from symmetry breaking is then given by the SU(2k) theory with N, = 1 

of section 3 with additional 2k - 3 SU(2k) singlets, Si, (i = 1, . . ..2k - 3). The U(1) charges 

of the fields are $ - -1, S - 2k, A - 2, Q - 1 - 2k. 

We will only consider theories where the U(1) gauge coupling is weak at the scale at 

which the SU(2k) coupling gets stronglO. In this case the low energy lagrangian can be 

simply constructed in two steps. First one can neglect the U(1) interaction and construct 

the effective lagrangian of the SU(2k) theory. Th en one can gauge the U(1) symmetry in 

this lagrangian, integrate out the resulting heavy particles and construct the final low energy 

lagrangian. Since the first step was already carried out in section 3 (the additional SU(2k) 

singlets clearly do not pose any problems) we can directly turn to gauging the U(1) symmetry 

in the lagrangian containing the SU(2k) moduli fields, (3.1) and the singlets, Si. 

If the U(1) y s mmetry is broken the relevant degrees of freedom in the low energy lagrangian 

are the U( 1) invariants built out of the SU(2k)-invariant moduli. The SU(2k) invariant moduli 

fields have charges PfA - 2k, Mi - -2k, Xij - 0, and Si - 2k under the U(1) symmetry. 

Out of them we can build three types of SU(2k) x U(1) invariants 

Ai = Mi PfA, Bij = SiMj 7 and Xij . (4.1) 

These fields are not all independent but obey the constraints l1 

BijAk - BikAj = 0. (4.2) 

loSince the U(1) coupling is irrelevant in the infrared it only gets weaker at lower energies. 
“These constraints are not all independent. However, adding a redundant set of constraints only amounts to 

redefining the Lagrange multipliers for the independent constraints and does not alter any of the conclusions. 
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Unlike the cases encountered previously, these constraints are not modified quantum - me- 

chanically. This is expected due to the non-asymptotically free nature of the U(1) gauge 

interaction and can also be seen explicitly by symmetry considerations. The mod& fields in 

the final low energy theory are thus given by Xii, A; and Bij subject to (4.2). The K&.ler 

potential in terms of these fields has singularities which occur on the submanifold where the 

U(1) symmetry is restored. There extra massless particles (e.g. the U( 1) gauge boson) de- 

scend into the low energy theory resulting in the singular Kghler potential. In our analysis of 

SUSY breaking we will have to consider this submanifold separately. 

The dynamical superpotential (3.4) can be written in terms of the U(1) invariant fields as: 

wd, = 
A$r 

Ai,Xi2i,...Xi2,_,;2,_,~il...i2k-2 Ii2 ' 1 
Let us add to this the Yukawa couplings 

W t+ce = Y’jXij + Xi’Bij, 

(4.3) 

(4.4) 

and implement the constraints (4.2) via a Lagrange multiplier, 

W -tt = Lfl...12h-5 k1eea’2h-3 &2,-,42,-, - 

We are now ready to show that the SU(2k) x U(1) model breaks supersymmetry. For 

simplicity, we first take k = 3. In this case Wcon,tt = LiEik’BikAl and the equations of motion 

for Bij are LiEk’jAl = X’j . Solving the i = 2,3 equations for L: and Li, and substituting 

back into the i = 1 equation we find three conditions; Xl1 + i412(A2/Al) + A13(A3/Al) = 0, 

for I = 1,2,3. Clearly these cannot be satisfied when X’j has rank three (to see this consider 

going to a basis where X’j is diagonal). This argument can now be easily generalized for k > 3. 

Solving the equations of motion for the Lagrange multipliers one obtains a similar consistency 

condition x’l+ 2k3 x;j(Aj/Al) = 0, i = 1, . . 
j=2 

,2k - 3, which again cannot be satisfied by a non 

- degenerate Yukawa matrix. Thus, in all these models with nondegenerate Yukawa couplings 

we expect that SUSY is broken. We should add though, that, as in the SU(2k + 1) case 

we cannot strictly rule out the possibility of runaway directions. Such directions might arise 

since the KZhler potential can become singular when some of the moduli vevs go to infinity. 

The vacuum energy then may go to zero, even though the superpotential is not extremized. 

However, as in the SU(2k + 1) case, the SU(2k) x U(1) th eories with superpotential (4.4) 

have no classical flat directions and we do not expect such runaway directions to be induced 

quantum-mechanically. We thus expect that supersymmetry is broken. 

As mentioned earlier, we need to consider the submanifold on which the U(1) symmetry is 

restored separately (on this submanifold the vevs of all U(l)-charged SU(2k) moduli, Mi, S; 
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and PfA, go to zero). The correct degrees of freedom around any point in this submanifold 

are the SU(2lc) moduli fields and the U(1) gauge field. By varying the full superpotential, 

which is the sum of (4.3) and (4.4), with respect to the SU(2lc) moduli it is easy to see, that 

there is no way in which .S;,M; and PfA can tend to zero while preserving supersymmetry12. 

Thus supersymmetry cannot be restored on this submanifold and these theories do indeed 

break SUSY. 

The case k = 2 corresponds to the simplest model in this class. It is worth discussing in 

some more detail. The theory has a gauge group SU(4) x U(l), and only three SU(4) moduli 

fields, denoted by M, PfA and S respectively 13. The full superpotential (corresponding to a 

sum of the terms (4.3) and (4.4) ) is given by: 

w= *h, 
&irE-Ti + XSM. (4.5) 

The U(1) invariants correspond precisely to the two combinations M PfA and S M and no 

constraints are needed in this case. Extremising the superpotential with respect to these fields 

clearly shows that SUSY is broken 14. This model is among the simplest examples of SUSY 

breaking we know of. The superpotential (4.5) preserves an R-symmetry. On adding another 

term, M PfA, one finds that SUSY breaking persists even though the R-symmetry is now 

broken. This is another example of supersymmetry breaking without R-symmetry [9]. 

We end this section by commenting on the importance of correctly incorporating con- 

straints (for example (4.2)) into the analysis when testing for SUSY breaking, especially with 

respect to runaway directions. As a toy model, consider a theory with the nonsingular Kghler 

potential K = X*X + Y’Y and superpotential W = X + L(XY - 1). If we first solve the 

constraint for Y, Y = l/X, and then minimize the superpotential with respect to X, we would 

conclude that the theory breaks supersymmetry since dW/dX = 1. However, by solving the 

constraint we introduced a singularity in the K&hler metric, Kxx= - l/(X*X)’ at X t 0, 

or Y t 00. Therefore the inverse KZhler metric has a zero eigenvalue and the model has a 

runaway direction. Had we kept the constraint, this behaviour would follow solely from the 

superpotential. 

5 Conclusion 

In this letter we studied the low-energy dynamics of chiral SU(N) gauge theories with one 

antisymmetric tensor and N - 4 + Nf antifundamental and Nf fundamental fields. We found 

12This is trut eyen if one allows for runaway directions. 
131n this case the field Xii (3.1) is absent. 
14We do need to consider the points of restored U(1) s y 

the conclusion. 

mmetry separately but as above they do not change 
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the quantum moduli spaces and exact superpotentials for the models with Nf 5 3. We also 

found two large classes of models that broke supersymmetry dynamically. For the odd-N 

models this breaking occurred when suitable mass terms were added to the superpotential. 

For the even-N models the supersymmetry breaking occurred after gauging an additional 

chid U(1) y s rnmetry. These results suggest that, perhaps, the set of theories which undergo 

dynamical supersymmetry breaking is quite large and might even be a fairly large subclass of 

all chiral SUSY gauge theories. 

Clearly, much more needs to be done to further these investigations. In the short run it 

would be interesting to extend this analysis to a larger number of flavors, Nf > 4,15 hopefully 

in the recently proposed framework of duality [lo], [ll), [12]. From a phenomenological point 

of view it would be interesting to incorporate these theories into visible sector SUSY extensions 

of the standard model [l3]. In the longer run one would like to understand better the essential 

ingredients required for supersymmetry breaking and attempt a more systematic construction 

of the possibly large class of theories that exhibit this phenomenon. 

While completing this paper, we became aware of the recent preprint [14] where some of 

our results were obtained. 
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