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ABSTRACT 

The nature of the dark matter critically affects the large scale structure of the Universe. Under the 
assumptions that the Universe is spatially flat with zero cosmological constant and that primordial 
perturbations were adiabatic with a Hurison-W’dovich spectrum, neither hot (HDM) nor cold 
dark matter (CDM) appears consistent with the obscrvcd large scale structure. Warm dark matter 
(WDM) is an intriguing alternative from the point of view of both cosmology and particle physics. 

WC consider a one-parameter family of WDM models. The linear power spectra for these models 
is calculated and compared with the corresponding spectra for CDM, HDM and mixed dark matter 
(MDM) as well as the power spectrum derived from observations. Our linear analyses suggest that 
a model universe dominated by a particle whose mass to temperature ratio m,/T, is increased by 
a factor of two as compared with the standard HDM neutrino gives a reasonable fit to the data on 
large (> 8h’1 Mpc) scales. 

N-body simulations for this particular WDM model show features of both HDM and CDM. As 
in HDM, the first objects to collapse are large pancake-like structures. The final matter distribution 
is rather smooth and structures as small as galaxy halos are excluded. However, there appear to be 
virialized rich clusters evident in the CDM but not the HDM simulations. Unfortunately, a simple 
comparison of the matter distribution and its statistical properties with observations indicates that 
WDM, like CDM, has too much power at small scales. This is particularly evident in the small-scale 
pairwize velocity dispersion. The cluster multiplicity function has the wrong shape with too many 
rich clusters being produced, though this conclusion is based on the simple assumption that light 
traces mass in groups of gslaxies. 
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1 Introduction 

While there is ample evidence for dark matter in our Universe, its nature remains a mystery. Is this 
matter in the form of baryons, massive neutrinos, or something new and exotic? The answer to this 
question critically affects our understanding of the early Universe and in particular the formation 
of structures such as galaxies, clusters, and voids. 

For the purposes of structure formation, it is the distribution of the dark matter particles in 
velocity space that is most important. For example, in a cold dark matter (CDM)-dominated 
universe, the velocity dispersion of the dark matter at the time of matter-radiation equality (tcq) is 
negligible and structure formation begins with the collapse of relatively small objects. Larger mass 
objects form by aggregation leading to a bottom-up scenario. Hot dark matter (HDM) has large 
velocity dispersion at t,, and leads to a scenario in which large pancake-shaped objects form first 
and then fragment into smaller object6 (top-down scenario). 

HDM and CDM represent extremely simple models in that once one specifies the density of 
the dark matter, the velocity-space distribution function f(v) is fixed. Of course, to fully specify 
a cosmological model, one must include the total density (p = Rpki, = 1.05 Oh2 x 10’ eVcme3), 
the baryon density (PB. = flBp&;t), the Hubble constant today (& = 100 h kms-’ Mpc-l), the 
cosmological constant (A), and the initial power spectrum of density perturbations. (Here and 
throughout, we set r( = c,= kB = 1.) The “standard” HDM and CDM models have R = 1, A = 
0, 0.5 < h < 1.0, 0.01 < fiB < 0.1 and adiabatic primordial perturbations with P(k) a k. It 
now appears that neither of these standard models are consistent with the observations. CDM 
for example, has too little power on large (X 30 h-’ Mpc) scales relative to small (5 10 h-l Mpc) 
scales. HDM, on the other hand, has trouble forming galactic scale structures early enough to be 
in agreement with observations of high rcdshift quasars. 

One set of alternatives involves nonstandard HDM or CDM scenarios. For example, Albrecht & 
Stcbbins (1992) have shown that wake6 of cosmic strings can seed small-scale structures in an HDM- 
dominated universe thereby avoiding the problems of early galaxy formation. Other possibilities 
include non6cro A (Peebles 1984; Turner, Steigman, & Kraust 1984; Efstathiou et of. 1990; Turner 
1991), primordial perturbation6 with a tilted spectrum (i.e., P(k) a k”; n # 1) (Adams et at. 
1993), decaying particles (Bond & Efstathiou 1991; Dodelson, Gyuk, & Tuner 1994) and mixed 
hot and cold dark matter (MDM) (Shafi & Stecker 1984; Davis, Summers,.& Schlegel 1992; Taylor 
and Rowan-Robinson 1992; van Dalen & Schaefer 1992; Klypin et uf. 1993). 

Here, we consider warm dark matter (WDM) cosmologies with R = 1, A = 0, 0.5 < h < 
1.0, ftB = 0, and primordial perturbations P(k) a k. (We discuss our choice of 0s below.) By 
warm dark matter, we mean any particle whose velocity dispersion during the time of structure 
formation is non-negligible but less than the velocity dispersion for standard HDM. 

TO keep things simple, we consider a one-parameter family of distribution functions for the dark 
matter candidate which interpolate between the distribution functions for HDM and CDM. To be 
precise, we take the distribution function for the dark matter or “2” particles to be 

2 112 where T7 is the photon temperature, v = p/ (p2 + m,) and m, is the particle’s mass. The 
distribution function is specified by three parameters Q, p, and w. However, for the purposes of 
understanding structure formation, only two combinations of these are relevant, one related to R,h2 
and the other related to the shape of the distribution function. In standard HDM, a = (4/11)li3, 
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p = 1, and the remaining parameter - the mass - is chosen to set 0. This leaves no freedom for 
the shape. In CDM scenarios, the velocity dispersion ie negligible and therefore the actual form 
of the distribution function is irrelevant. For our purpo6e6, it ia useful to think of CDM particle6 
as having a distribution function given by Eq. (1) in the limiting case Q = constant, p + 0, and 
m + 00. (Equivalently, we can keep p fixed and let CY + 0 and m + co.) For the family of WDM 
model6 considered here, Q and/or /3 vary from their canonical HDM value. The model6 therefore 
have one additional degree of freedom a6 compared with standard HDM or CDM and by varying 
this parameter, one interpolate6 between CDM and HDM. The remaining parameter describe6 a 
family of models that are equivalent from the point of view of large scale structure though distinct 
in term6 of how the dark matter particles were produced. These points will be discussed in detail 
in Section 2. 

This work is, at least in spirit, similar to that done for MDM. MDM models contain an admixture 
of hot and cold particles and can also be described as a one parameter family which smoothly 
interpolates between HDM and CDM. But a6 we will see, there are both qualitative and quantitative 
differences between MDM and WDM cosmologies. 

WDM, along with CDM, was introduced in the early 80’6 (Page16 & Primack 1982; Peebles 
1982; Bond, Szalay & Turner 1982, Olive & Turner 1982) when it became clear that HDM had 
serious flaws. CDM has of cour6e received far more attention and for good reason. First, WDM, 
with an additional free parameter, is less predictive. Second, the early candidate6 for WDM were 
not particularly compelling in that they required a new particle in the 1OOeV - 1 keV range, well 
within the reach of particle accelerator6. However, both of these reasons have become obsolete. 
First, a6 mentioned previously, the standard CDM model doe6 not seem to fit the data and so 
model6 with more freedom are now in vogue. Second, a better understanding of the early Universe 
ha6 led to a number of WDM candidate6 ruch as right-handed or sterile neutrinos suggesting that, 
at least from the point of view of particle phytics, WDM is as palatable as CDM. 

The rest of the paper focures on understanding large scale structure in a WDM-dominated 
univerre and comparing the results with oboervationr. We begin with linear perturbation theory. 
In Section 3, we outline our calculation of the linear transfer function and discuss, in section 4, 
variou6 tertr uring the derived power rpectra. The rtrategy ir to use linear terts to rurvey the family 
of WDM model6 and determine which is most promising. We also use this opportunity to compare 
these model6 with the other poosibiities such as MDM. We conclude that large scale structure in a 
universe dominated by a particle whore mass to temperature ratio mJT, is roughly twice that of 
the standard HDM ir in reasonably good agreement with the data. Linear theory aSo suggests that 
there are problem6 with early galaxy formation though here, we are in the non-linear regime and so 
should use caution before reaching any conclusions. Proceeding to the next level of approximation, 
we carry out detailed N-body rimulations of a model WDM-dominated universe and compare with 
similar simulations for CDM and HDM. The result6 are di6CU66ed in Section 5. In particular, we 
visually amdy6e large scale structures, we study the (non-linear) power spectrum, the two-point 
correlation function, pairwise velocities, and the group multiplicity function. A summary and 6ome 
conclusion6 are given in Section 6. 

2 Models of Warm Dark Matter 

In this section we motivate two prototype WDM candidate6 and show that they are equahy web 
described by Eq. (1). First however, we review the standard HDM neutrino. 
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2.1 Hot Dark Matter 

The three neutrinos in the Standard Model interact with ordinary matter via the weak interactions. 
As such they decouple from the primeval electromagnetic plasma at temperature6 of order a few 
MeV and therefore, unlike the photons, are not heated when e* annihilate. To calculate the 
temperature and number density of neutrinos (Weinberg 1972; Kolb & Turner 1990) we first note 
the Universe expand6 adiabatically 60 that the entropy density 

s = Z~.(T)T~ 

scales a6 ae3. Here, a is the Robertson-Waker scale factor, T is the common temperature of 
all particle6 thermally coupled to the photons, and g.(T) is the effective number of degree6 of 
freedom of massless partides. After the neutrinos decouple, their temperature, T,,, scales as a-l 
and therefore s/T: = (2~2/45)s.(T+“v)3 remain6 constant. Prior to e* annihilation, g. = 11/2 
(counting photons, electrons, and positrons) whereas after e* annihilation g. = 2. Therefore, 
TV/T, = (4/11)“3 and the velocity-space distribution function is 

That is, the distribution, function is described by Eq. (1) with Q = (4/11)“’ and p = 1. By 
integrating Eq. (3) over alI momenta, one recover6 the well-known result (Gerstein & Zel’dovich 
1966; Cowsik & McClelland 1972; Marx & Szalay 1972): 

fl,,h= = 5 . 
93 eV (4) 

2.2 Early-Decoupled Particles 

The above rerultr can be generalized to any particle which decouples when it is still relativiotic. 
For particle6 decoupling earlier than the rtandard model neutrinos 

where To is the temperature of the Universe when the “2” particle6 decouple. g. here indudes 
contribution6 for the three standard model neutrinos (in contra6t with the g. of (2.1)) and is equal 
to 10.75 for 100 MeV s To 6 1 MeV and 106.75 for TD Z 300 GeV (Kolb and Turner 1990). The 
distribution function for a particle which decouple6 when g. X 11 will have both a lower temperature 
and lower number density relative to the standard HDM neutrino; that is, a < (4/11)1/3;p = 1. 
This in turn implies that for fixed f2,h2, the particle will have a higher mass and therefore reduced 
velocity dispersion relative to rtandard HDM. WDM of this type wa6 disCUsSed by Peeble6 (1982), 
Bond & Szalay (1983), and Bond, Szalay, & Turner (1982). At that time, the favored WDM 
candidate wa6 the gravitino, the supersymmetric partner to the graviton. 

2.3 Right-Handed Neutrinos 

Another group of WDM candidate6 are the right-handed neutrinos. In the standard model, all 
fermions except the neutrinos have both left and right chira,projections. This is at least in part 



why neutrinos in the standard model are massless. Right-handed neutrinos (one species for each 
ordinary neutrino type) are arguably the most natural additions to the rtandard model. Once 
right-handed neutrinos are added there i6 the possibility for Dirac-type neutrino mass term6 similar 
to the terms which give rise to ma6ses for the charged leptons and quarks. In addition, because 
neutrinos are electrically neutral, there is also the possibility for Majoranamass terms, and therefore 
oscillations between right and left-handed neutrinos. Oscillations of this type have been invoked 
in an MSW- (Mikheyev & Smimov 1986; Wolfenstein 1978) type solution to the solar neutrino 
problem (Barger et 41. 1991; Butler and Malaney 1992). 

Right-handed neutrinos do not interact via the strong, electromagnetic, or weak interactions 
and so it is natural to think of them as having been in equilibrium early on and decoupling at 
relatively high temperatures. If for example, they decouple before the electroweak phase transition 
(g. ry 100) then the number density, which scales as T3, will be a factor of ten smaller than that of 
standard neutrinos. To close the Universe one would therefore need a right-handed neutrino with 
amassm,zz 900h2 eV, thereby making it a perfect warm dark matter candidate. 

There are two possible problems with the above arguments, one from astrophysics and the 
other from particle physics. First, as we will see in later sections, a keV ma66 particle leads to 
phenomenology very similar to that of CDM, especially on the largest scales. (With this in mind, 
Malaney, Starkman, and Widrow (1995) have considered MDM model6 with a right-handed 1 keV 
neutrino a6 the cold component and an ordinary neutrino a6 the hot component. See also Valdarnini 
& Bonometto 1985.) Second, it was observed by Langacker (1989) that there is no reason to expect 
right-handed neutrinos to be in equilibrium at early times. In fact, an accurate calculation of the 
rate for producing right-handed neutrinos indicates that the dominant production mechanism is the 
oscillation mentioned above. The oscillation rate peaks at temperature6 w 100 MeV suggesting that 
the number of right-handed neutrinos prior to the electroweak phue transition WM negligible. (This 
calculation has evolved over the year6 starting with the work of Dolgov (1981). Manohar (1987) 
presented an interesting model which explained very nicely the quantum mechanics involved. As 
far a6 we know, Langacker’r work WRM the first to derive realirtic cosmological limits on the various 
neutrino parameters. Subsequent refinements were introduced by Barbieri & Dolgov (1990, 1991); 
Enqvirt, Kainulainen, & Maalampi (1990a,b); Enqvist, Kainulainen, & Thomson (1992); Cline, 
(1992).) 

Dodelson and Widrow (1994) considered the possibility that a nonequilibrium distribution of 
neutrinos could be produced by oscillationr. In particular, they showed that as long as g. is constant 
during the epoch when the neutrinor are produced, their dirtribution function i6 given by Eq. (1) 
with a = (4/11)1/3 and p < 1 where the value of p depend6 on the parameter6 of the neutrino 
ma66 matrix. For fixed R,, decreasing p corresponds to increasing the mass. 

2.4 Distribution Functions 

The generic WDM candidate therefore ha6 a distribution function given by Eq. (1) with three 
parameters, a, p and m. Fixing the density of the particles implies one constraint: 

(6) 

This leaves two free parameters, which we can choose to be rn=/a and Q. The former is proportional 
to m,/T, and governs the shape of the power spectrum. The remaining parameter Q generates a 
family of models that are equivalent from the point of view of structure formation though distinct if 
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one is interested in how the particles are produced. In particular, for fixed R,h2 and m,/a, one value 
of Q corresponds to early-decoupled matter and another corresponds to oscillation-produced sterile 
neutrinos though both lead to exactly the same predictions for large scale structure. Quantitatively, 
we have x 

Power SpeCt~me&-decoupled mrttatml) = Power Spectrum&h neut&ortm2) (7) 

where 

m2 = 163 (&)“3 (y)l13eV. (8) 
To close this section we mention two final points about WDM candidates. Recently Babu, 

Rothstein, & Seckel (1993) have proposed Majorons a6 another WDM candidate. Presumably this 
candidate would have a distribution function like early-decoupled matter. Finally, the distribution 
function we have taken for sterile neutrinos aS6ume6 that g. is constant during the time when the 
neutrinos are produced. while this i6 not dWay6 a good a66UmptiOn, a preliminary aIIaly6i6 Of 
model6 with a time-dependent g. doe6 not yield transfer function6 terribly different from the ones 
considered here. 

3 The Power Spectrum 7 
The growth of perturbation6 in the early Universe is governed by the Einstein equation6 coupled to 
a Boltzmann equation for each type of matter present. Our model Universe consists of three com- 
ponents: ordinary matter (photons, baryons, and electrons), ma66les6, standard model neutrino6, 
and msrsive right-handed neutrinos. At early times, the fluctuation6 in the matter field6 are 6mall 
and one can u6e linear perturbation theory (Beebles 1982; Bond and Szalay 1983) where the zeroth 
order solution describes an Einstein-de Sitter universe. In linear theory, the line element can be 
written 

ds2 = dt2 - al(t) (64 - h,+(x, t))dzadza . 

The baryon/photon/electron mix is treated as a tightly coupled ideal fluid characterised by a 
denrity field p, and a velocity field v.,. To first order, the density field can be written: 

P.lh t) = P,*OW (1+ w, t)> - 
This one-fluid approximation greatly simplifies the numerics. While it is valid prior to recombi- 
nation, a more careful treatment is required if one is intere6ted in 6rna.B angular scale microwave 
background distortions and/or if baryons play an important role in the post-recombination evolu- 
tion of the density perturbations. We leave microwave background calculation6 for future work. So 
we are implicitly assuming that nB ‘v 0. This may be in conflict with big bang nudeosynthesis 
(Copi, Schramm, & Turner 1995 and references therein) and in this respect our model6 are not as 
realistic a6 they could be. However, the difference6 between the power 6pectra of fly = 0 model6 
and those with a more realistic RB = 0.02 - 0.1 should be no more than 10%. 

We assume that there are three massless neutrino specie6 and one massive neutrino species. To 
first order, their distribution functions can be written: 

W,O 
fh’, xa t) = fi,ob, t) - p=A;(p, x, t) 
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where i = Y,Z denote6 the type of neutrino, p E IpI, and fi,e are the zeroth order distribution 
functions, given by Eq. (1) with appropriate choices for Q and p. 

In the 6ynChrOnOU6 gauge, the metric perturbation6 are encapsulated in the two function6 hu 
and h z ‘JL!r(hd). h, ha, S,, v,, A”, and A+ form a complete set of variables. We expand each in 
term6 of its Fourier component6 (e.g., &(k, t) = Jd 3zeik.xJ7(x, t)). The equation6 (with the tilde 
omitted for convenience) are (BeebIes 1982, Bond & SzaIay 1983): 

Ar + ik$$L = jr(1 - r2) + &3(3$ - 1) 

& + ikpA, = L(l - jL2) + L(3cL2 - 1) (13) 

i7 + ;ikv = f” (14) 

ir+ 
ikb, 
-= 

4 
0 

. . . 
h + % = 16wGa2 

a Pf& + f c 
.=“,t 

9iJ& [E(p)+ &] (-A$) &) 

. ha--e ‘“if + igzgi J $$+ (-P%) Ai) - 

(16) 

07) 

Some notation: E(p) E dpw where m is 6ero for the massless neutrinos and m = m, for 
massive neutrinos; G is Newton’s constant; gi is the number of degree6 of freedom for the i’th 
species (equal to two for aII the partides here); p = k . fi and dot denote6 differentiation with 
rerpect to conformsl time r = Jdt/a(t). 

The power spectrum today lJpz/p,12 can be expressed a6 an integral over A=(p): 

(18) 

where TO is the conformal time today. Actually, on very large rcales (k + 0) the power spectrum is 
independent of the type of dark matter present and depends only on the initial perturbations. It 
is therefore convenient to define the transfer function 

(19) 

where by construction, T(k) -+ 1 for k + 0. The power spectrum can then be written 

P(k) = Bk”T’(k) (20) 

where n is the spectral index for the primordiai perturbations, and B is the normalization constant. 
The transfer function6 for a representative sample of WDM models are shown in top panel of 

figure 1. Our models ail ab6ume h = 0.5, fig = 0.0 and fJ = 1.0. For definiteness, we label the 
models by the mass the neutrinos would have assuming they are produced through oscillations. 
We define me = 23 eV to be the mas6 of a standard HDM particle in such a universe. The 



Figure 1: Transfer functions for WDM (top) and MDM (bottom) models. k is in units 
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model labelled 2rrz.c therefore refers to a universe dominated by a 46 eV particle whose distribution 
function is given by Eq. (1) with a = (4/11)‘j3 and p = 0.5. 

The transfer functions in figure 1 are bracketted by the transfer functions for CDM and HDM 
(h = 0.5 and flB = 0.01) found by Holtzman (1989). For comparison, in bottom panel of figure 1, 
we show his transfer functions for MDM models. 

Perturbations on the largest scales enter the horizon after t,, and after the massive neutrinos 
have become non-relativistic. Growth on these scales is unimpeded, and the power today reflects 
directly the primordial spectrum. On smaller scales there are two effects. First, subhorizon-sized 
perturbations do not grow until t,,. This explains the break in the CDM transfer function at 
k - 0.1 Mpc-‘. Second, relativistic particles can freestream out of dense regions and therefore 
subhorizon-sized perturbations in relativistic matter fields are severely diminished. As noted by 
Bond, Efstathiou, & Silk (1980), the freestreaming scale is 

2a 
kFS = - 

AFS (21) 

We see this in the fact that the scale at which the WDM curves first deviate from the CDM curve 
decreases in scale (i.e., increases in k) as we increase the mass to temperature ratio. The neutrinos 
in MDM are much lighter and hence freestream over much larger scales. This reduces the power 
spectrum at k Z O.lMpc-’ [since MDM neutrinos constitute only a small fraction of matter, not 
aZ1 power is damped; CDM power remains]. 

We now show that the transfer function depends only on the velocity dispersion of the massive 
neutrino: m,/T, a m,/a. It is useful to carry out the computation of the transfer function in 
terms of the variable q z p/T= = p/T,&. We see that p/E = q/ + (m,a/T,a)2 depends only 
on a/m,. Moreover, we can change the integration variable in Eqs. (16) and (17) from p to q. The 
integrals can then be written as an integral over q which depends on a/m, times a’fl. For example 
the integral in Eq. (16) becomes 

Therefore, the only dependence on m,, a, /3 is through the two combinations a/m, and a’@. But 
the latter is simply related to the former via Eq. (6). S o we conclude that the power spectrum 
depends only on a/m,; in words, it depends only on the ratio of the heavy neutrino temperature 
to its mass. 

4 Linear Tests 

4.1 Fixing the mass 

We want to determine the optimal value of the WDM mass. To do this, we focus on excess power 
(EP), a quantity which measures the relative mass excess on 25h-‘Mpc and 8h-‘Mpc scales 
(Wright et al. 1992). In addition, linear theory is used to estimate the epoch of galaxy formation. 
To facilitate these calculations, we use analytic fitting functions for the transfer functions found in 
the previous section. These are given in the Appendix. 
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Figure 2: Excess power in theories interpolating between HDM and CDM. Solid curve shows how 
WDM with its free parameter m [lower axis] interpolates. Note how it quickly becomes similar to 
CDM. Dashed curve shows the interpolation of MDM with its free parameter, the energy density 
in neutrinos [upper axis]; The observationally prefered valueof EP is 1.3. 

It is generally accepted that the power in density fluctuations on 25 h-l Mpc relative to 8 h-l Mpc 
is greater in the data than in the standard CDM model. To quantify this, we first define the linear 
rms density fluctuations on a scale R: 

CR E ((AA4/A4)2)‘/2 = $P(k)W2(kR) 

where JU 2 1.2 x 10’2h’jt4~(R/Mpc)3 is the total mass in a sphere of radius R and W(z) = 
3( sin 2 - zcos z) /z3 is the top hat window function. Wright et al. (1992) introduce the quantity 
EP defined as 

EP G 3.4% . (24) 
This definition is such that EP = 1 for standard CDM (h = 0.5, fiB = 0.1, R = 1) whereas 
consistency with the APM angular distribution function (to be discussed below) requires EP = 
1.30 f 0.15. Note that EP is independent of normalization, or equivalently biasing. The results for 
our family of WDM models are shown in Figure 2. For comparison, we also give EP in MDM as 
a function of the hot dark matter fraction. As expected, EP decreases as we increase the mass of 
the WDM particle. Our results for m > mo agree with those for an fiB = 0 CDM model and we 
expect that like CDM, the EP calculated for WDM with a more realistic 0, = 0.05 - 0.1 will be 
5 - 10% higher than in the QB = 0 case. With this in mind, we conclude that an m = 2m.c WDM 
model will have sufficient large-scale power to be in agreement with the APM results. 

To go further we must normalize the power spectrum of Eq. (20). The COBE satellite (Smoot 
et al. 1992) has measured fluctuations in the cosmic microwave background on large angular scales 
where T(k) 2 1. These measurements are consistent with a spectral index n = 1 for the primordial 

10 



perturbations. This is also the value predicted in the simplest models of inflation and is the value 
used in our analysis. (See, e.g., Adams et crl. 1993 for a detailed discussion of cosmological models 
with different .values of n.) Following Efstathiou, Bond, & White (1992) (more recently, see Bunn, 
Scott, & White, 1994; Gorski et al. 1994) we use the COBE results to determine the normalization 
constant of the power spectrum in Eq. (20): 

B = (T) (&)I (Q;--)2. (25) 

Here TO = 2.726 f 0.006 (Mather et al. 1994) is the present temperature of the microwave back- 
ground. The first year COBE data gave Qmuer,, = 17pK; this is the normalization we have chosen 
for the N-Body runs described in section 5. Numerically, this gives B = 6.0 x 105h-’ Mpc’. The 
two year data have come in closer to Qrrruer,, = 20pK so we might be slightly underestimating 
the amplitude of the power-spectrum. A higher amplitude would however amplify, not alter, our 
conclusions. 

Large-scale streaming velocities measure the mass fluctuations directly and can therefore be 
used to test and constrain models. For example, Bertschinger et al. (1990) estimate the three- 
dimensional velocity dispersions of optically selected galaxies within spheres of radius 40 h-’ Mpc 
and 60 h-l Mpc and find crJ40) = 388 (1 f 0.017) km s-l and ~“(60) = 327 (1 f 0.025) km s-l. 
However, on such large scales, the power spectrum is independent of model type, at least within the 
class of models considered here, and therefore these measurements can only provide an alternative 
to COBE normalization. For the moment, the COBE measurements appear to be on firmer ground; 
streaming velocities are consistent with COBE but provide no additional constraints. 

In the simplest models of galaxy formation, there is a single biasing parameter, b such that 60~ 
gives the fluctuation in optically selected galaxies on the scale R h”Mpc. Davis and Peebles (1983) 
find that bos 2 1 and therefore l/as is a measure of the optical bias. For WDM with m = 2~, 
us = l.O(Q Fins-,/171cq, sr r.u ‘g ‘fi cantly lower than the CDM value of 1.24 (recall that this is for low 
flB)- 

Perhaps the greatest difficulty with HDM is in forming galties at sufficiently early times. One 
way to estimate early galaxy formation is to calculate the mass excess on 0.5h’1 Mpc scales, o0.s. 
This gives a rough (and probably low) estimate for the epoch at which structures on this scale went 
non-linear (see e.g. Bond & Efstathiou 1991 and Adams et al. 1993): 

1+ zgf = uo.5 (26) 
We find ~0.5 = 1, 1.7, 2.7, 3.8 for m, = me, 2rno, 4rne, and 8mo respectively. These results 
suggest that WDM will have trouble with early galaxy formation, a potential problem shared by 
MDM models with 2 30% of mass density in the hot component. Of course, galaxy formation 
necessarily involves nonlinear and non-gravitational physics (e.g. hydrodynamics) and so these 
conclusions should be used with caution. 

4.2 Linear Power Spectrum Versus Observations 

With the “best fit” mass for WDM now set at m = 27rro, we can compare the full power spectrum 
to the data. Recently, Peacock & Dodds (1994, PD) attempted to reconstruct the linear power 
spectrum P:(k) of the underlying matter distribution from the observed galaxy distribution. They 
assumed a simple linear relationship between the matter power-spectrum and the galaxy power- 
spectrum and in addition, corrected for redshift distortions and nonlinear dynamics. The results 
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Figure 3: Linear power spectra of the WDM, MDM, CDM and HDM distributions, compared to 
the observational data compiled by Peacock & Dodds (1994, PD). In left panel, the measurement 
of PD has been enhanced by a factor 1.32 to match the optical galaxy normalization (os = 1). The 
right panel is the same as the left one, but the dots are normalized to IRAS galaxies (0s = 0.75). 
The errorbars we put on the dots are also much larger than those quoted by PD (see text). The 
number in parentheses gives the value of os for the considered power-spectrum. 

of PD are displayed in figure 3, with some modifications: we do not show the very small errors 
computed by PD but instead use errorbars based on a simple visual estimate of the vertical scatter 
in their figure 6. Furthermore, in the left panel of figure 3, we multiply the amplitude of their 
e(k) by a factor b2 = 1.32 to normalize it to the optical galaxy distribution. In the right panel, 
we keep their normalization to DUS galaxies (Strauss et al. 1992). 

Figure 3 also shows the predicted power spectra for four models: CDM, WDM with m = 2~, 
MDM with 0~ 3: 0.3, and HDM. All the spectra assume afj = 0.01 except for WDM which has 
a3 = 0. CDM, MDM and HDM spectra are extracted from Holtzman (1989). The number in 
parentheses gives the linear value of os, with our assumed value of Qmu-r,, = 17pK. 

COBE normalization, together with the assumption that the IRAS galaxy distribution closely 
follows the underlying matter distribution, appears to be incompatible with CDM, HDM, possibly 
WDM and only marginally compatible with MDM. The situation improves if we normalize instead 
to optical galties. In any case, all of the models have the same power spectrum for k 5 O.lhMpc-’ 
and can be distinguished from one another only for k X O.lhMpc-l. The best fit to the data seems 
to be MDM. WDM is not too bad, although it has a bit too much power at intermediate scales 
-1.2 Z$ log,, k ;5 -0.7, particularly if the comparison of the power-spectrum is made with data 
normalized to IRAS galaxies. CDM has of course too much power at small scales and HDM not 
enough. 

5 N-Body Experiments 

This section discusses the results of our WDM, CDM and HDM N-body experiments. f 5.1, outlines 
the simulations. We make a visual analysis in 5 5.2 comparing redshift “slices” of HDM, CDM and 
WDM “galaxy” distributions with the CfA2 slice of de Lapparent et al. (1986). In 5 5.3, we 
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analyse the pairwise statistical properties of the matter distribution, such as the power-spectrum, 
correlation function and line-of-sight velocities, and compare the results to obserntions. Section 
5.4 discusses the cluster multiplicity function. 

5.1 The Simulations 

We now discuss the results of N-body simulations for WDM (m, = 46 eV; Z’, = (4/ll)‘i3), HDM, 
and CDM. Five simulations, four with the Particle-Mesh (PM) code of Moutarde et al. (1991) 
and one with the treecode (TREE) of Bouchet & Hernquist (1988, later improved by Hernquist, 
Bouchet & Suto, 1991) are run for each of the models. For the PM simulations, a 1283 grid is used 
to compute the forces with either 643 or 128j particles. The TREE simulations involve 323 particles 
and are used primarily to check the accuracy of the PM simulations at small scales. The very large 
scale regime is probed by PM simulations with 128j particles and a physical box size Lb,,= = 720 
Mpc. In these simulations, the mass of each particle is rather large (Mm = 1.23 x 10’3M,). The 
physical size of the other simulations (hereafter PMS, PMS64a, PMS64b and TREE) is &,x = 144 
Mpc, with a corresponding particle mass Mprrt = 9.88 x 10”M~(1283/N,,,) which is about the 
mass of a galaxy for Npu = 1283. Table 1 summarizes the various parameters associated with each 
simulation. 

Our models assume h = 0.5, 0~ = 0, and A = 0. Initial conditions (scale factor 4 = 1) 
are generated from the linear power spectrum by slightly perturbing a regular pattern of particles 
using the Zel’dovich approximation (Zel’dovich, 1970). The amplitude of the initial fluctuations 
is set so that the density fluctuations on 16 Mpc scales is us = l/16 = 0.0625 (0s = l/8 = 0.125 
for the TREE simulations). The simulations are then evolved until the linear power spectrum 
reaches the COBE normalization (Qrmrwr,, z 17) corresponding to a final scale factor a = 20, 16, 
12 respectively for CDM, WDM and HDM (a = 10, 8, 6 for the TREE simulations). Although we 
studied several stages of the simulations, we analyze here only the last snapshot. We have neglected 
possible free-streaming effects for WDM and HDM: they should be very small during the period 
covered by our simulations at the scales we are interested here (2 1 Mpc). 

We have checked that the measurements of the two-body correlation function and the line-of- 
sight velocity dispersion (defined in 0 5.3.3) for our CDM simulations are in reasonable agreement 
with those of Gelb & Bertschinger (1994) and Zurek et al. (1994), who did high resolution CDM 
simulations with large numbers of particles. We have not yet compared the results of our WDM and 
HDM simulations to large high resolution simulations (this is left for future work). We may in fact 
be underestimating the small scale velocities dispersions (5 5.3.3), though a preliminary comparison 
of a TREE simulation to a PM simulation, both starting from the same initial conditions and using 
643 particles, suggests that the discrepancy will be less than 30%. The discrepancy between high 
and low resolution codes should be much less pronounced for analysis of the statistical properties 
of the density distribution. 

5.2 Visual impression 

Figure 4 displays thin (f&,/64 thick) li s ces of the simulations PML and PMS. The panels from top 
to bottom correspond to CDM, WDM and HDM. Figure 5 is the same, but the slices are thicker 
(Lb,/32 in the left panels and Lb,,/4 in the right ones) and only overdense regions are kept. These 
regions are found using one of the following two methods: 

(i) For the large PML simulations (left panels), we assume that galaxies form in weakly evolved 
over dense regions. We take this epoch of “galaxy formation” to be when a = 2 corresponding 
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Table 1: Characteristics of the simulations 

Name Lin(Mpc) ’ &at b hx( MPc) ’ 
PML 5.625 1283 720 
PMS 1.125 128j 144 
PMS64a 1.125 64j 144 
PMS64b 1.125 643 144 
TREE 0.225 323 144 

l spatial resolution. For the PM code, this scale corresponds to the size of a  grid cell. For the 
treecode, this scale corresponds to the short range softening parameter e. 

b mass resolution (number of matter particles). 
c simulation box size. 

to a redshift z,+ = 9, 7, and 5 for CDM, WDM and HDM respectively. At this scale factor, we 
select particles that have at least one neighbour closer than A = 0.95 times the mean interparticle 
distance d and follow them until the present time. This procedure amounts to selecting overdense 
regions bounded by isosurfaces with densities at zd of order p 1~ - 2/A3 - 2.33. The corresponding 
density contrast at the present epoch (if one naively applies linear theory) is Jp/p - 27, 20, 16 for 
CDM, WDM and HDMyrespectively. 

(ii) For the PMS simulations (right panels), we consider the present epoch and use the friends- 
of-friends algorithm of Efstathiou et ul. (1988, hereafter EFWD) to select connected groups of 
particles in which each element has at least one neighbour closer than A = 0.2 times the mean 
inter-particle distance. These groups define regions of density larger than p/p - 2/A3 - 250. They 
are displayed in the right panels of figure 5 and will be used later to study the cluster multiplicity 
function. 

A useful exercise is to make a direct comparison with the CfA redshift survey (de Lapparent, 
Gellcr & Huchra 1986; Geller & Huchra 1989). CfA-like slices are extracted from the catalogs of 
points displayed in the left panels of figure 5 and displayed in figure 6 along with the observed 
galaxy distribution (de Lapparent et ul. 1986). The observer is assumed to be at the bottom of 
each slice. The slices have a depth of 12,800 km/s in redshift space, or 256 Mpc with our choice 
of He. The synthetic slices account for redshift distortions induced by the peculiar velocities of 
the galaxies. In addition, we model selection effects as follows: given the magnitude limit 15.5 of 
the CfA survey and the Schecter form (Schechter 1976) for the galaxy luminosity function (with 
parameters measured by de Lapparent et crl,, 1991) we compute the average number density nD of 
selected galaxies in a thin shell at a distance D from the observer. The probability that a matter 
particle at a distance D is included in the synthetic survey is then ng/nS where ns is the average 
number density of “galaxies” in the N-body sample. When D is small, we can have ng > ns 
indicating that we undersample the real galaxy distribution. The contour ?zD = ns is indicated by 
a dashed line on each figure. 

To facilitate comparisons between WDM, CDM and HDM, we use the same random numbers 
to set the initial conditions for each simulation. By construction, the power spectra have the 
same normalization at the COBE scale and therefore each model should present similar features 
at very large scales. This is indeed the case. The WDM model considered here is, as expected, 
pancake-like rather than hierarchical with a smooth density distribution similar to the one found 
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Figure 4: Thin slices L&32 thick extracted from the simulations PML (lefts panels) of physical 
size Lbox = 720 Mpc and the simulations PMS (right panels) of physical size &ox = 144 Mpc. The 
top, middle and bottom panels correspond respectively to the CDM, WDM and HDM model. 
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Figure 5: Same as in figure 4, but only overdense regions, where galaxies are expected to remain, 
have been kept and the slices are thicker. In the left panels, the slices are Lb,,/32 thick; the matter 
particles belonging to regions of density larger than p/p z 2.33 have been selected at a weakly 
evolved stage Q = 2 and followed until present time. In the right panels, the slices are Lb,,/4 
thick; each point represent a connected group of particles belonging to regions of density larger 
than p/p cy 250. 
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Figure 6: CfA-like redshift slices of the observed galaxy distribution. The observer is located at the 
bottom of each slice. The slices are 256 Mpc deep (with our choice of the Hubble constant). The 
top panel represents a slice of the real observed galaxy distribution (courtesy V. de Lapparent). 
The others panels correspond to artificial catalogs built from the simulations, taking into account 
redshift-space distortions and selection effects (see text). F’rom top to bottom, one passes from 
CDM to WDM and HDM. Th e central slices have the same geometry as the CfA slice, i.e. are 
covering the declination range 26.5O < d < 32.5O. The left slices are the adjacent slices with 
20.5’ < b < 26.5’ and the right ones are the adjacent slices with 26.5’ < 6 < 32.5’. All the slices 
are projected on the plane 6 = 0, and resealed so that they have all the same apparent size. The 
small dotted arcs of a circle determine a limit below which we undersample the observed galaxy 
distribution (see text). 
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in the HDM simulations. However, as in the CDM cabe, the WDM distribution exhibits rich, dense 
and almost spherical clusters which are certainly virialized. Such clusters are absent, or at best 
very rare, in our HDM simulations. Indeed the dense regions in the HDM simulations are still 
sheet-like or filamentary, i.e., not yet virialized. One can also see (right panels of figure 5) that 
the WDM distribution presents nice large filamentary structures. This is also the case in the CDM 
distribution (e.g. West, Villumsen & Dekel 1991), but there the filaments tend to be broken into 
clumpy substructures. 

We also see from figure 5 that the apparent size of the underdense regions or voids increases as 
one passes from CDM to WDM and HDM, in agreement with earlier studies (e.g., Melott 1987). 
HDM appears to be ruled out because the voids are too large as comp;ued with the CfA data (Zeng 
& White 1990). The voids in the WDM simulation 6re still a bit too large. On the other hand, 
CDM nicely reproduces the qualitative features of the CfA slice, as already stated by White et al. 
(1987). 

The dense structure in the center of the CfA slice corresponds to the Coma cluster. The fact 
that it is elongated is due to the high internal velocity dispersion of this cluster. We do not have 
such strong effects in our synthetic slices, not because our models do not produce such clusters 
(we shall see later that on the contrary, the small scale velocity dispersions are quite large), but 
because our PM code tends to underestimate small scale velocities. Indeed, the resolution of the -- 
simulations used to build the slices is about 6 Mpc, which is typic6,lly the size of a rich cluster. 

5.3 Matter distribution properties 

This section is devoted to the pairwise properties of the matter distribution. In particular, we 
consider the evolved power-spectrum P(lc) E (j&12) (§5.3.1), the two-point correlation function 
(§5.3.2), and the pairwise velocity dispersion ($5.3.3). When comparing with the data, we must 
remember that the simulations give information only on the ma86 distribution, while observations 
probe the distribution of galaxies. In 55.3.4, we discuss briefly how the difference between the two 
- so-called biasing - influences our interpretation. Our basic conclusion is that non-linear effects 
EubStantially tarnish the optimistic view we gained in section 4, when we included only linear 
effects. 

5.3.1 Power spectrum 

Figure 7 shows P(k) for WDM, CDM and HDM. For each simulation, we compute the density 
field p(z) in a grid of resolution 1283 using a Cloud-In-Cell (CIC) scheme (see, e.g., Hackney & 
Eastwood 1981). The power spectrum is then obtained by fast fourier transform. The calculation 
is done for 2x/Lb,, S k ;S &,,/3.2 w h ere the results are only weakly contaminated by nonphysical, 
numerical effects, such as white noise or the smoothing introduced by the CIC affectation. Here 
k,, is the Nyquist frequency of the grid used to compute the power spectrum. The curves represent 
averages over all simulations (including TREE) and the errorbars correspond to the rms dispersion. 

The nonl.ine6.r power spectra are much closer to each other than are the linear ones. In particular, 
it is difficult to distinguish WDM from CDM. This is not so surprising: as already noticed for 
example by EFWD, an expanding collisionless medium subject to gravitational instability seems to 
evolve towards self-similar behavior that is only weakly dependent on initial conditions. Essentially, 
power cascades down from large scales to small scaes as the system enters the nonlinear regime. 
Since the initial power spectra considered here have roughly the same shape at large scales the 
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Figure 7: Power spectrum measured in the WDM, CDM and HDM simulations. For logI k 5 
l.lh-‘Mpc, linear theory is used (non-linear effects are negligible on such scales). The dots corre- 
spond to the data used by Peacock & Dodds (1994, PD), enhanced by a factor 1.32 to match the 
optical galaxy power-spectrum. The errorbars on the dots are our own and are much larger those 
quoted by these autors (see f 4.2). 

differences between CDM, WDM and HDM tend to decrease with time as the system relaxes. Our 
first important conclusion then is that non-linear effects make the pourer-spectrum of WDM look 
very much like CDM. 

The data points in figure 7 correspond to the nonlinear power-spectrum P&,(k) infered from 
Pf(k) using the mapping of PD. In other words, to be able to compare our nonlinear power-spectra 
to their mea6uments, we omit the step in their calculation which consists of going back in time to 
obtain the linear power-spectrum. In principle, figure 7 should lead to the same conclusions found 
in figure 3 (left panel) where we used the linear power spectra, P’. This is approximately true 
for CDM, but not quite for WDM and HDM, particularly at the smallest scales shown in figure 
7. However, this is not very surprising since the mapping of PD is expected to be less accurate 
for pancake models. We therefore expect the non-linear comparison in figure 7 to give the more 
realistic comparison between our models and the measurements. 

Even with our generous errorbars, the CDM distribution has too much power at small scales 
confirming earlier findings. WDM, like CDM, seems to systematically overestimate the observations 
for log,, k X -1.0, particularly around log,, k = -1. The HDM distribution provides a very good 
fit at large scales (log,,, k & -0.7) but with too liittle power on small scales. Biasing, as will be 
discussed in 5 5.3.4, or normalization of the data point to IFUS galaxies (see f 4.2), probably 
worsens the situation for WDM. 

5.3.2 Correlation function 

Figure 8 displays the two-body correlation function (z(L) E (6(x)6(x + C)) where 6 s 6p/p is the 
density contrast. Since the two-body correlation function is just the fourier transform of the power 
spectrum (see, e.g., Peebles 1980), we expect similar conclusions. For each simulation (except 
PML), we measure (z(f) and average the results. The analysis is done for Lb,,/128 5 f 5 LboX/9, 
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Figure 8: Measured two body correlation function in our WDM, CDM and HDM simulations. The 
dashed line is the power-law fit of Davis & Peebles (1983) in the observed galaxy distribution. 

where the lower bound corresponds to the spatial resolution of the PM code and the upper one is 
imposed to avoid possible contsmination due the finite size of the simulation box. The errorbars 
represent the rms dispersion of the simulations. The dashed line is the power-law fit (f(t) = 
(C/10.8)“-” of the two-body correlation function measured by Davis & Peebles (1983) in the 
optical galaxy distribution. 

As expected, the results are similar to those of 0 5.3.1. In particular, the function (6 measured 
in the WDM distribution is very close to the one measured in the CDM distribution, although its 
overall logarithmic slope is doser to the observed one. In both cases, the measurements overestimate 
by a significant amount the optical correlation function and therefore require some “antibias” 
between the galaxy distribution and the matter distribution, i.e. [c(C) = b’(f)&(f), with b(f) < 1. 
For example, at the correlation length of the optical gs.laxy distribution & z 10.8 Mpc, we measure 
b(6) = 0.8 for CDM and WDM, and b(b) = 0.9 for HDM. We return to this point in 5 5.3.4. 

5.S.3 Pairwise velocities 

The line-of-sight pairwise velocity dispersion 

q(t) G $ ([v(x + r) - v(x)12y2 (27) 

provides another probe of structure on galaxy and cluster s&es. Here, v(x) stands for the peculiar 
velocity of the matter measured in our simulations. ur(t) calculated in the synthetic data can be 
compared (with caution) to measurements in the gslaxy distribution as is done in figure 9. The 
analysis for the simulations is similar to the one used to calculate the two-body correlation function. 
The errorbars, which represent the rms dispersion over all of the synthetic data sets, are quite large 
especially for r < 10 Mpc where or is dominated by rare, large, and hot (high internal velocity 
dispersion) clusters (see also GB). 
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Figure 9: The quantity ~1 (defined in Eq. [27]) as unc f t ion of separation f measured in our N-body 
experiments, compared to measurements in the observed galaxy distribution. The two dashed lines 
at the bottom left correspond to the measurement of Davis & Peebles (1983) on the CfAl catalog 
and the thick vertical segment to a compilation of the more recent measurements of MO et ~2. 
(1993) on various galaxy catalogs (see text). 

Once again, we see that the results for WDM and CDM are fairly close. Even HDM gives 
similu results at small scales. This last point apparently contradicts the results of the previous 
sections, which looked at the statistics of the density distribution. However, the collapse of large 
clurter-like object6 can produce large velocity dispersions at small separations, particularly just 
after the first shell crossing (see also Gelb, Gradwohl, & Frieman 1993). 

The dashed lines at the bottom left of figure 9 bracket the observed values of the line-of- 
sight pairwise velocity dispersion uf (Davis & Peebles 1983) a6 measured in the CfAl galaxy 
catalog (Huchra et crl. 1983). The thick vertical line corresponds to a compilation of more recent 
measurements made by MO, Jing & BGmer (1993) using both the CfAl and CfA2 catalogs (Huchra 
et ~2. 1990) as well as the’SSRS catalog (da Costa et al. 1991) and the 1.930 Jy redshift survey 
of IRAS galaxies (Strauss et crl. 1992). For separations 0.8h” Mpc 5 t S 1.6h-1 Mpc, we have 
280 km/s s of 5 700 km/ a with the one exception being the result for the CfA2 catalog that we 
did not take into account while drawing the vertical line. Indeed, this last catalog is dominated by 
the coma cluster 0: w 1400 km/s, a value close to the one we measure in our N-body experiments. 
Except for this particular measurement, the observed uf is significantly less than the o1 found in 
the simulations. 

The models exhibit sm6lLscales velocities more than a factor two larger than those observed in 
the galaxy distribution suggesting that they are excluded by the data. However, there are still large 
uncertainties in the measurements (Zurek et al. 1994; MO et al. 1993). In addition, there is the 
USUd problem that the velocity dispersion measured for g6.laxies may be different from the velocity 
dispersion for the underlying matter distribution. We now turn to this everpresent question of 
biasing. 
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5.3.4 Biasing 

The preceding subsections have all illustrated that non-linear effects substantially enhance the 
power in a WDM model at scales k X O.lhMpc -l. The observations of galaxy distributions seem 
to indicate that there is Zess power on these intermediate scales than the model predicts. One way 
to reconcile this discrepency would be to invoke “anti-biasing,” i.e. assume that Ps/P and of/or 
are less than one. There are two problems with this solution. First, the extensive studies of biasing 
in CDM models suggest that the biasing parameter b s (Ps/P)‘i2 is larger than unity. One might 
argue that WDM may be biased differently since it is not a “hierarch.ical” model like CDM. This 
leads to the second problem: there have been some studies of biasing in pancake models and these 
suggest that the bias factor b is hoper than in hierarchical models. The situation for velocities is 
slightly better. The velocity bias parameter defined here as b, E $/al is expected to be less than 
unity for it is difficult to imagine a mechanism which can accelerate the baryonic matter but not 
the dark matter. Both merging (Couchman & Carlberg 1992) and dynamic friction inside clusters 
(Carlberg & Dubinski 1991) may significantly decelerate the galaxies relative to the dark matter 
thereby leading to a low b,. 

We first review the work on biasing. Perhaps the simplest method (i) is to assume that galaxies 
form in regions with densities larger than a given threshold and that their distribution follows the 
matter distribution in these regions (e.g. Einasto, Klypin, & Saar 1986 and references therein). 
This is basically the method used to generate the left panels of figure 5, though there the “galaxies” 
were selected at some reasonable epoch of galaxy formation and then followed until the present. A 
more elaborate approach (ii) is to assume that galaxies form in the peaks of the matter distribution 
(see, e.g., Davis et ~1. 1985; Bardeen et of. 1986). These two methods lead to values of b larger 
than unity (at least for gaussian initial fluctuations). Another procedure (iii), which makes use of 
a friends-of-friends algorithm to select connected groups of particles to identify halos of galaxies 
(FYenk et crl. 1988), can lead to antibias b < 1, particularly at small scales. However this result 
depends strongly on the way large halos are treated. If large halos have significant substructure 
and correspond to several galaxies rather than only one then the bias will be larger and probably 
greater than unity (Gelb t Bertschinger 1994, hereafter GB). Further refinements can be added 
to the above recipies (see for example White et 42. 1987; Klypin et ~2. 1993 and Nolthenius et crl. 
1994; Gelb & Bertschinger 1992; Carlberg 1988,199l; Fry & Gazta8aga 1993). In addition, one can 
attempt to treat the collisional nature of the luminous matter (e.g., Katz; Hernquist & Weinberg, 
1992, Cen & Ostriker, 1992). In general, one finds that b is larger than unity. The bias is however 
deeply related to the merging history of galaxies and to the way galaxies form in clusters: values 
of b smaller than one are still not excluded for CDM (see, e.g., Couchman & Carlberg 1992, Zurek 
ef al. 1994). 

Velocity bias has been studied in detail for the CDM model, but there is no real agreement yet 
in the scientific community. Current estimates indicate 0.5 5 b, s 1 (e.g., Couchman & Carlberg 
1992; Cen & Ostriker 1992; Katz, Hernquist & Weinberg 1992; Carlberg 1994, Zurek ef al. 1994, 
GB). The first two methods (i) and (ii) of galaxy selection invoked above, which assume that 
galaxies form in overdense regions or in the peaks of the density distribution, lead to a velocity bias 
only slightly smaller than unity. Friends-of-friends algorithms (iii) can lead to a significant velocity 
bias of order b, w 0.5 or even smaller. Indeed, the selected objects can be rich halos with high 
internal velocity dispersions whereas ~1 takes into account only the average (barycentric) velocity. 
If however very massive halos fragment into smaller components, (i.e., correspond to several galaxies 
instead of just one) the velocity bias would be larger and probably close to unity (GB). 
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It is not obvious how to implement biasing in a pancake model. The difficulty is that the matter 
is organized in thin sheets and so it is difficult to identify halos. The most naive approach (i) is to 
assume that galaxies form in the overdense parts of the matter distribution. This leads to the second 
left panel of figure 5. The power spectrum of this WDM distribution is approximately twice as 
large as the one directly measured in the fuIl WDM distribution. The idea that the power spectrum 
is strongly enhanced in WDM if galaxies form in the overdense parts of the matter distribution 
agrees with earlier studies of HDM (White, Frenk, & Davis 1983; Braun, Dekel & Shapiro, 1988). Of 
course, processes of galaxy formation are not simple, and one can find arguments that reduce such 
an enhacement, such as the feedback from the first generation of formed objects in the luminous 
distribution (Braun, Dekel & Shapiro 1988). Recent analyses of the HDM model, including the 
hydrodynamics of the gaseous component (Cen & Ostriker 1992) seem however to confirm the above 
simple view that the galaxy power-spectrum is larger than the matter power-spectrum in pancake 
models. 

To summarize, with the current observational data, the models we are studying require b < 1, 
b, s 0.5. While certainly not impossible, this seems rather unlikely. 

5.4 Group multiplicity function 

The multiplicity function. (Gott & Turner 1979), essentially the density of groups and clusters as a 
function of the number of objects they contain, can be quite useful in testing structure formation 
scenarios. Following Weinberg & Cole (1992), we measure the multiplicity function in our N-body 
experiments and compare the results to those of Moore, Frenk & White (1993, hereafter MFW) for 
the CfA galaxy catalog. 

By definition, a group of particles in our synthetic data will have the multiplicity X if it involves 
N members with 2x’1 < N 5 2x. The multiplicity function n(X) is then the number density 
of groups with multiplicity X. The groups themselves are selected with the friends-of-friends 
algorithm of EFWD and are thus connected sets of particles for which each member has at least 
one neighbour closer than A = 0.2 times the mean interparticle distance. Right panels of figure 5 
display the groups selected in this way from our PMS N-body simulation. 

The measurement of the multiplicity function in the observed galaxy distribution is quite a 
delicate matter. Indeed, in three dimensional galaxy catalogs, the apparent number density of 
galaxies decreases with distance due to selection effects. In addition, peculiar velocities of galaxies 
distort estimates of their distances. MFW correct for these effects and derive a luminosity function 
Ti(L) of groups. To do this, they used a friends-of-friends algorithm similar to the one of EFWD 
but modified in order to take into account observational effects (see also Huchra & Geller 1982, 
Geller & Huchra 1983, Nolthenius & White 1987). We use the measurements of MFW for groups 
with similar overdensity to the one of our groups ap/p - 250 (De = 1.0 Mpc in their notations, see 
their Table 2). In order to convert their luminosity function to a multiplicity function, one must 
make some assumptions about the mass to light ratio for the groups. The simplest assumption is 
that M/L is the same for ail objects. We use M/L = 123 Ma/La as estimated by MFW. 

For the simulations, we assume that each matter particle corresponds to one member (i.e., 
galaxy) in a group. We determine n(X) in each simulation (except TREE) and average the results. 
The analysis is made for X 1 6 as the assumption that the mass to light ratio is the same for all 
group members may work only for groups with large numbers of objects. Figure 10 shows n(X) for 
both the N-body simulations and the data. The error bars represent the rms dispersion between 
all the measurements. No errorbar indicates that there was only one measurement available. 
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multiplicity multiplicity 

Figure 10: The multiplicity function measured in our N-body, experiments (curves with errorbars, 
see text) compared to the measurement in the CfA galaxy catalog by Moore, Frenk & White 
(1993) (circles). W e assume here that groups and clusters have a constant mass to light ratio 
M/L = 123M~/L~, where Ma/ La is the mass to light ratio of the sun. The unit of mass choosen 
to compute the multiplicity is M = 2.88 10” solar masses. A cluster of mulplicity X has a mass 
comprised between 2X’1M and 2XM. 

The multiplicity function for WDM is closer to HDM than CDM, an indication that structure 
formation begins with the formation of large pancake-like objects. None of the models agree with 
the data at large multiplicity, at least for the mass to light ratio we choose. We can choose a 
different M/L but this does not really help. In particular, n(X) for WDM and HDM have the 
wrong shape and the one for CDM is not much better. In figure 11 we plot the mass to light 
ratio as a function of multiplicity required if the N-body results are to agree with the data. For 
X ;S 10, the M/L required by CDM is comparable to the observed M/L = 150 f 50Ma/L0 (see, 
e.g., Peebles 1992) whereas the M/L required by WDM and HDM are too small. At larger X, the 
required ratio M/L increases with X and becomes unrealistically large for all the models. 

The above analysis indicates that the WDM, CDM and HDM models considered here all produce 
too many rich clusters. Moreover, WDM and HDM clearly exhibit the wrong shape for n(X) 
provided one assumes that the mass to light ratio of clusters is constant or only weakly varying 
with richness, as is currently suggested by observations (see also Weinberg & Cole 1992). However, 
our analysis is rather crude and needs to be improved before making any final conclusions. 

6 Conclusion 

Warm dark matter is an interesting and viable alternative to the standard CDM and HDM cos- 
mologies. Quite generally, WDM refers to any particle whose velocity dispersion is non-negligible 
(for the purposes of structure formation) but less than the velocity dispersion for the standard 
HDM neutrino. We have studied a one-parameter family of WDM models where the distribution 
function for the dark matter candidate is given by Eq. (1). Here, we summarize our results. 
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Figure 11: The mass to light ratio (in units of the mass to light ratio of the sun) that would be 
required for the multiplicity function measured in our N-body experiments to fit the one measured 
by Moore, Frenk & White (1993) on the CfA catalog (see Fig. 10). 

1. By definition, m = me corresponds to HDM. As m is increased, the linear transfer function 
approaches that of CDM in a way that is qualitatively different from MDM models. 

2. Linear analysis suggests that the m = 2m~ WDM model satisfies observational tests which 
probe structure on scales greater than 25 h e-1 Mpc. These tests include EP (excess power 
on 25 h’ ’ Mpc as compared with 8 h” Mpc) and bulk velocities on 40 h” Mpc - 60 h-’ 
Mpc. In addition, the COBE normalized linear power spectrum provides a better fit to the 
data than either HDM or CDM. However, WDM may have problems in forming galaxies at 
sufficiently early times. 

3. Detailed N-body simulations for CDM, HDM and WDM (m = 2%) are used to compare the 
models in the non-linear regime. As one might expect, WDM has properties of both HDM 
and CDM. In particular: 

l Structure formation in the WDM model studied is pancake-like rather than hierarchical. 
The density distribution is rather smooth and structures as small as galaxy halos are 
excluded. 
Rich, dense, almost spherical, and certainly virialized clusters appear. These are evident 
in the CDM simulations but not in the HDM simulations. 
Simple visual analyses of the large scale structures such as filaments, sheets and large 
void suggest that WDM reproduces well the observed ones, although the voids may be 
slightly too large, but still significantly smaller than in HDM. 

l The pairwise statistical properties of the WDM distribution look pretty much like in 
CDM (power-spectrum, correlation function, line-of-sight velocity dispersion). It thus 
presents more “power” at small scale than observations, implying an antibias b < 1 
between the galaxy distribution and the matter distribution. 
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Ail models predict velocities on small scales that are much higher than the velocities 
measured in the data though there are a number of both theoretical and observational 
uncertainties which could explain t& discrepancy. 

l The group multiplicity function, which estimates the density of groups or clusters of 
gaities as a function of the number of objects they contain, is calculated for the three 
models and compared with the multiplicity function for the CfA galaxy catalog derived 
by Moore et d. (1993). Th e multiplicity function for WDM is similar to that of HDM 
illustrating the pancake-like nature of gravitational collapse in a WDM universe. Neither 
the HDM or WDM multiplicity functions have a shape in agreement with the data. CDM 
is not much better. 

The primary purpose of this paper has been to see how the velocity space distribution function of 
the dark matter affects the formation of structure. We have therefore made a number of simplifying 
assumptions which allow for easy comparisons among the models. In particular, we set h = 
0.5, i&# = 0, h = 0 and assumed a simple form for the primordial perturbation spectrum. 
Our tentative conclusions are that within this context, warm dark matter does not agree well with 
the data. By varying these assumptions/parameters, however, WDM could do better. The results 
enumerated above may help discover a more fitting context for warm dark matter. 
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Appendix 

It is often useful to have an analytic fit for the linear transfer functions calculated in Section 2. 
Since our models range from HDM to CDM and some care must be taken if a single functionai 
form is to be used for all models. We choose analytic functions of the form 

210gloT(k) = 5~; (h-‘k)” 
i=l 

where k is measured in units of Mpc-’ and q = i/6. The fitting functions are valid for k S 
0.5 Mpc’l The vaiues of the parameters p; for the models considered are given in the table 2. 

Table 2: 
mass Pl P2 P3 P4 PS P6 
mo -13.73 112.0 -345.9 505.6 -348.7 85.18 

2mQ 0.4449 -10.22 56.25 -122.8 115.0 -42.20 
4mo -12.78 94.30 -257.4 328.1 -200.4 45.42 
87~1 5.271 -49.26 173.0 -280.7 206.9 -57.63 
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