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Abstract 

We explore the cosmological implications of an ultra-light pseudo-Nambu- 

Goldstone boson. With global spontaneous symmetry breaking scale f z 

10’s GeV and explicit breaking scale comparable to MSW ncutrino masses. 

M - 1O-3 eV, such a field, which acquires a mass m+ - M*/f - Ho, would 

have become dynamical at recent epochs and currently dominate the energy 

density of the universe. The field acts as an effective cosmological constant 

for several expansion times and then relaxes into a condensate of coherent 

non-relativistic bosoms. Such a model can reconcile dynamical estimates of 

the density parameter, R, - 0.2, with a spatially flat universe, and can 

yield an expansion age Hoto N 1 while remaining consistent with limits from 

gravitational lens statistics. 
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Recently, a cosmological model with substantial vacuum energy-a relic cosmological 

constant A-has come into vogue for several reasons. First, dynamical estimates of the 

mass density on the scales of galaxy clusters, the largest gravitationally bound systems, 

suggest that n2, = 0.2 f 0.1 for the matter (m) which clusters gravitationally (where the 

density parameter fI is the ratio of the mean mass density of the universe to the critical 

Einstein-de Sitter density, n(t) = 87rGp/3H2) (11. H owever, if a sufficiently long epoch 

of inflation tool; place during the early universe, the present spatial curvature should be 

negligibly small, Qlot = 1. A form of dark, homogeneously distributed energy density with 

RI, = 1 - fit,, , such as a cosmological constant, is one way to resolve the discrepancy between 

Q,, and ntol. 

. The second motivation for the revival of the cosmological constant is the ‘age crisis’ for 

spatially flat R, = 1 models. Current estimates of the Hubble expansion parameter from a 

variety of methods, most recently Cepheid variable stars in the Virgo cluster [2], are (with 

some notable exceptions) converging to relatively high values, HO N, 80 f 15 km/sec/Mpc (31, 

while estimates of the age of the universe from globular clusters are holding at t,, N 13 - 15 

Gyr or more [4]. Thus, the ‘expansion age’ Hoto = l.l4(Ho/80km/sec/Mpc)(to/l4Gyr) 

is uncomfortably high compared to that for the standard Einstein-de Sitter model with 

n m = 1, for which Hoto = 2/3. On the other hand, for models with a cosmological constant, 

Hoto can be significantly larger: for example, for fin E A/3Hi = 0.8 = 1 - n2,, one finds 

Hot0 = 1.076. Third, cosmological constant-dominated models for large-scale structure 

formation with cold dark matter (CDM) and a nearly scale-invariant spectrum of primordial 

density perturbations (as predicted by inflation) provicle a better fit to the observed power 

spectrum of galaxy clustering than does the ‘standard’ R,, = 1 CDM model [5]. 

While they provide a number of theoretical benefits, models with a relic cosmological 

constant have problems of their own. A cosmological constant for which, e.g., fltl\ - 1 

corresponds to a vacuum energy density pvac = .4/87rG N (0.003 eV)4. Within the context 

of quantum field theorjr, there is as yet no understanding of why the vacuum energy density - 

arising from zero-point fluctuations is not of order the Plan& scale, AI;,, or at least of 
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order the super-symmetry breaking scale, A&&,,,,. N TeV4, both many orders of magnitude 

larger. Within the context of classical field theory, there is no understanding of why the 

vacuum energy density is not of the order of the scale of one of the vacuum condensates, 

such as -MiUT, -M&,su, -M& sin4 &/(47r~r)~ N (175 GeV)4, or -fi N (100 MeV)4. 

Thus, a vacuum density of order (0.003 eV)4 appears to require cancellation between two 

(or more) large numbers to very high precision. In addition, it implies that we are observing 

the universe just at the special epoch when C!,,, is compa.rable to fly, which might seem to 

beg for further explanation. 

Moreover, such models now face strong observational constraints from gravitational lens 

statistics: in a spatially flat universe with non-zero A, the lensing optical depth at moderate 

redshift is substantially larger than in the Einstein-de Sitter model with R, = 1 [G]. In 

the Hubble Space Telescope Snapshot Survey for lensed quasars, there are only four lens 

candidates (thought to be lensed by foreground galaxies) in a sample of 502 QSOs; from this 

data, the bound RA =S 0.6 - 0.8 has been inferred [7]. For 0~ = 1 - $20 < 0.7, the expansion 

age satisfies Hata < 0.96. With a cosmological constant saturating this bound, the globular 

cluster age to 1 14 Gyr implies HO < 67 km/sec/Mpc, within the uncertainties of but below 

the central value of recent Hubble parameter determinations. 

It is conventional to assume that the fundamental vacuum energy of the universe is zero, 

owing to some as yet not understood mechanism, and that this new physical mechanism 

‘commutes’ with other dynamical effects that lead to sources of energy density (after all, 

there is gravitational energy density acting on cosmological scales). This is required so that, 

e.g., at earlier epochs there can temporarily exist non-zero vacuum energy which allows 

inflation to take place, but the situation in reality could be more comples. Nonetheless, if 

this simple hypothesis is the case, then the effective vacuum energy at any epoch will be 

dominated by the heaviest fields which have not yet relased to their vacuum state. At late 

times, these fields must be very light. This is a big asumption: the cosmological ‘constant’ 

may be in the process of relaxing in a self-consistent way which leaves a residual effect at 
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any scale, and we can only hope that this hypothesis approximates this possibility. 

Adopting this working hypothesis, in this Letter we esplore the consequences of an 

ultra-light pseudo-Nambu-Goldstone boson (hereafter, PNGB) field which is (i) currently 

relaxing to its vacuum state and which (ii) dynamically dominates the energy density dur- 

ing the epoch in which it relaxes. PNGB models are characterized by two mass scales, a 

spontaneous and an explicit symmmetry breaking scale; we will see that the two dynami- 

cal conditions above essentially fix these two mass scales to values which are ‘reasonable’ 

from the viewpoint of particle physics. Since these scales can have a plausible origin in 

particle physics models, we may have an esplanation for the ‘coincidence’ that the vacuum 

energy is dynamically important at the present epoch. Moreover, in these models, the cos- 

mological constant is evanescent, within a few expansion times converting into scalar field 

oscillations which subsequently redshift as non-relativistic matter. Thus, unlike cosmologi- 

cal constant-dominated models, the universe is not now entering a phase of exponential de 

Sitter expansion, but has rather undergone a brief hiatus of quasi-accelerated expansion. 

As a byproduct, we shall see that the gravitational lens constraints on Hoto in this model 

are slightly less severe than for cosmological constant models, allowing an expansion age as 

large as Hoto 2 1.05. 

In particle physics, the best known example of a PNGB is the ordinary ?r meson (the 

longitudinal W and 2 bosons are actually exact Nambu-Goldstone bosons in association 

with gauge fields). -411 example of a very light hypothetical PNGB is the axion, associated 

with the Peccei-Quinn symmetry introduced to solve the strong CP problem [8]. Asions arise 

when a global U( 1) PQ symmetry is spontaneously broken by the vacuum espectation value 

of a complex scalar at the scale fa, (+) = faei”lfa ; at this scale, the axion, the angular field a 

around the infinitely degenerate minimum of the potential, is a massless Nambu-Goldstone 

boson. QCD instantons explicitly break the global symmetry at the scale fr - 100 Me\‘, 

generating the axion mass, nz, N O(nt,f,/f,). Since its couplings and mass are suppressed 

by inverse powers of fa, the anion is very light and very weakly interacting. Nevertheless, * 

it can play an important role in astrophysics and cosmology; indeed, astrophysical and 
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cosmological arguments constrain the global symmetry breaking. scale to lie in a narrow 

window around fa - 10” - 1012 GeV. Thus, the axion mass m, N 10-5eV(10’2GeV/f,), 

and its Compton wavelength is macroscopic, X, w ( f,.,/10i2GeV) cm. 

Although motivated by the strong CP problem, the axion is a particular instance of a 

. 

more general phenomenon that includes familons, majorons, [9] and more exotic objects [lo]. 

In all these models, the key ingredients are the scale of spontaneous symmetry breaking 

f (at which the effective Lagrangian still retains the symmetry) and a scale of esplicit 

symmetry breaking ~1 (at which the effective Lagrangian contains the esplicit symmetry 

breaking term). The mass of the PNGB is then rnb N /12/f. Ref. [l l] introduced a class of 

PNGBs closely related to familons (called ‘schizons’), with masses nt+ 21 m2fe,,i0*/ f. Models 

in which mfcrmion is associated with a hypothetical neutrino mass, m, N 0.001 - 0.01 eV, 

and f N h&T - AIpl N 1015 - 10’” GeV, were studied in ref. [12] in the contest of late 

time phase transitions [13] and form the theoretical basis for the present work. In this case, 

the PNGB Compton wavelength mT1 is comparable to cosmological distance scales. 

From the viewpoint of quantum field theory, pseudo-Nambu-Goldstone bosons *are the 

only way to have naturally ultra-low mass, spin-0 particles. In this regard, ‘technically’ 

natural small mass scales are those which are protected by symmetries, such that when the 

small masses are set to zero, they cannot be generated in any order of perturbation theory, 

owing to the restrictive symmetry. For generic PNGBs, when the symmetry breaking scale 

p is set to zero, the symmetxy becomes esact, and radiative corrections do not yield an 

esplicit symmetry breaking term (the radiative corrections are “multiplicative” of the scale 

1-1 in this situation). In the ultra-light PNGB models mentioned above, the small mass 

rnd is protected by fermionic chiral symmetries (and additional discrete symmetries) and is 

therefore technically natural. That is, when certain fermion mass terms are set to zero in 

the Lagrangia.11, the PNGB mass goes to zero; the fermion mass terms will not be generated 

in any order of perturbation theory. 

As an example, consider the Z,v-invariant low-energy effective chiral Lagrangian for N 
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neutrinos [ 121, 

where I are respectively right- and left-handed projections, I = (1 f 7’)~/2. The 

term proportional to e can arise from a Yukawa coupling g6Lv& + h.c., where the comples 

scalar field <p has a non-zero vacuum espectation value, (a) = f ei4/f /a, and E E 9 f / fi. 

The term proportional to ~?r.~ is an esplicit breaking which usually comes from some deeper 

breaking in the theory. In the limit r??.o + 0, this is a familiar chiral Lagrangian, possessing 

a continuous U( 1) chiral symmetry. The U( 1) c iiral symmetry is broken to a residual 2,~ 1 

discrete symmetry: 

uj.’ Uj-l-1 ; UN-1 + UO ; q5-+ 4-62?rjflN. 

The induced one-loop correction, with cutoff A < f, is 

c l-loop = 

where 

A4; 4 2r.i 
=nz~+~2+2nzoecos -+- 

( ) f N ’ 

(2) 

(3) 

(4) 

which respects the.discrete symmetry. For N = 2, the leading contribution is log divergent, 

and the induced PNGB mass is of order nz+ - ntoe/ f; if e - mo - m,, then rnb - nzz/ f. 

For N > 2, the sum CjM: is independent of 4; thus, the &dependent term is independent 

of the cutoff A, and for N > 2 we can write the l-loop effective potential, 

V(4) = -c %llAd.~ . 
j 1G?r2 (5) 

In this case, the &potential 

potential with mass scale nt& 

is explicitly calculable, and one again finds a quasi-periodic 

We are thus led to study the cosmological evolution of a light scalar field 4 with effective 

Lagrangian 

c = +m#l- M4[cos(~/p) + l] . 6) 
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The theory is determined by two mass scales, M, which from (1.) is espected to be wit.hin 

an order of magnitude of a light fermion (neutrino) mass, and f, the global symnletry 

breaking scale. Since 4 will turn out to be estremely light, we assume that it is the only 

classical field which has not yet reached its vacuum expectation value. Thus, in accordance 

with our working hypothesis;the constant term in the PNGB potential has been chosen to 

ensure that the vacuum energy vanishes at the minimum of the 4 potential. We focus upon 

the spatially homogeneous, zero-momentum mode of the field, 4(t) = (@(5, t)), where the 

brackets denote spatial averaging. WC are assuming that the spatial fluctuation amplitude 

64(2, t) is small compared to 4(t), as would be espected after inflation if the post-inflation 

reheat temperature TRH < f: in this case, aside from inflation-induced quantum fluctuations 

(which correspond to isocurvature density perturbations [15]), the field will be homogeneous 

over many present Hubble volumes. Since we will be interested in the case f - it/r,, (see 

below), this is not a significant restriction. Finally, for simplicity we assume that any 

finite-temperature corrections to the potential V(4) in (6) are unimportant at the epochs 

of interest (this is different from the case of asions, for which finite-temperature corrections 

do affect the axion field evolution). The scalar equation of motion is then 

i + 3H4 + dV(~)/cl~ = o , (7) 

where the Hubble parameter is given by H2 = (k/~)~ = (8r/3M&)(pm + ~4) for a spatially 

flat universe, R, + II, = 1, u(t) is the cosmic scale factor, and O,, is the density parameter 

of non-relativistic matter (e.g., baryons and/or weakly interacting massive particles). We 

will focus on recent epochs, when the radktion energy density is negligible compared t.o 

non-relativistic matter. 

The cosmic evolution of 4 is essentially determined by the ratio of its mass, 7726 - M2/ f, 

to the instantaneous espansion rate, H(t). For ??I& 2 3H, the field evolution is overdamped 

by the expansion, and the field is effectively frozen to its initial value. Since Q is initiall) 

laid down in the early universe (at a temperature T N f >> A3) when its potential was 

dynamically irreleva.nt, its initial value in a given Hubble volume will generally be displaced 
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from its vacuum espectation value &,,, = rf (vacuum misalignment). Thus, at early times, 

the field acts as an effective cosmological constant, with vacuum energy density and pressure 

Pb z -% N Ad4. At late times, nt4 >> 3H(t), the field undergoes damped oscillations 

about the potential minimum; at sufficiently late times, these oscillations are approximately 

harmonic, and the stress-energy tensor of 4 averaged over an oscillation period is that of 

non-relativistic matter, with energy.density pb N ue3 and pressure pd N 0. 

Let t, denote the epoch when the field becomes dynamical, 172~ = 3H(t,), with cor- 

responding redshift 1 + Z, = (4to)/4tz)) = W’/3Hof) 2/3* for comparison, the universe t 

makes the transition from radiation- .to matter-domination at z eg N 2.3 x 10412,,h2 [where 

h = Ho/(100 km/sec/Mpc)J. The f - A4 parameter space is shown in Fig. 1. .To the right 

of the diagonal line In& = 3H0, the field becomes dynamical before the present epoch and 

currently redshifts like non-relativistic matter; to the left of this line, 4 is still frozen and 

currently acts like a cosmological constant (the region denoted by ‘A’). In the dynamical re- 

gion, the present density parameter for the scalar field is approximately 04 N 24?r( f /A4p02, 

independent of A4 (12]( assuming the initial field value di = 0( 1)f); thus, the horizontal line 

at f = 1.4 x 1018 GeV indicates the cosmic density limit fl+ = 1. In the frozen (A) region, 

on the other hand, Rd is determined by M4, independent of f, and the bound 124 = 1 is 

indicated by the vertical line. 

Focus on the dynamical region in the right-hand portion of Fig. 1. If 4 dominates the 

energy density of the Universe, the growth of density perturbations is strongly suppressed 

for physical wavenumbers larger than the ‘Jeans scale’ [lG] k~ z nt~(&(t)/A4p,)1/2, where 

4hl(t> - f[U + 4W/(l + G)13’2 is the amplitude of the homogeneous field oscillations 

at z(t) < zeq. If this Jeans scale is too large, perturbations on galaxy and cluster scales 

would not grow at high redshift, lea.ding to a power spectrum with an unacceptably large 

coherence scale. We can espress the resulting perturbation power spectrum in terms of the 

standard cold dark matter (CDM) spectrum as P(k) = Pcd,,(k)F2(k); for 2, > teq, the 

relative suppression factor due to the scalar field is [17] 
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excluded: density 

= [(lloA!ev) (1h&-I)] 
5[(1-72.4(f/Mp,)?)‘l’-IJ 

Here, 1 + z.(k) = [(n/rlk)(3H0/A4~c)“~]~ is the redshift at which the physical wavenumber 

kph$ts = k( 1 + .z) drops below I;J, so that scalar perturbations on that scale can begin to grow. 

Thus, A4 sets the scale where the power spectrum turns down from the CDM spectrum, and 

f (through Q) determines the spectral slope ~1 of the suppression factor, F(k) m k-” with 

-4 5 n 5 0 (note that for f& S 0.2, n 2 120+/5). For galas& and quasars to form at 

moderate redshift, the power at small scales should not be very strongly suppressed compared 

to standard CDM. We therefore impose the apposimate bound F(k = l.GhMpc-‘) > 0.3, 

which corresponds to the curved boundary in Fig. 1: the region above this curve is escluded. 

To the right of this region (in the area markecl CDM), o acts as a.11 ordinary cold dark matter 

candidate, a lighter version of the dark matter asion. In the area marked MDM, the effects of 

4 on the small-scale power spectrum a.re simi1a.r to those of a light neutrino in the mised dark 
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matter model: at the point marked by the star, the variance of the density field smoothed 

with a top-hat window of radius k = 811-l Mpc is US(~) N 0gd”‘/2. When the amplitude is 

normalized to COBE on large scales, this yields as(d) N O.G, as suggested by the abundance 

of rich clustem of galaxies and the small-scale pairwise velocity dispersion of galaxies. In 

this region of parameter space, the neutrinos of mass m, - A4 - several eV could play a 

dynamical role in structure formation as well. 

For the remainder of this Letter, we focus on the parameter region near the bullet in 

Fig. 1, in which the field becomes dynamical at recent epochs, Z= - 0 - 3, or in the near 

. future: this has new consequences for the classical cosmological tests and the expansion 

age, and it does not lead to the small-scale power suppression above. We thus impose the 

constraint rn# = M*/f d 3Ho. The second condition is that the PNGB energy density be 

dynamically relevant for the recent espansion of the universe, which implies pd( to) - pnit( to), 

or M4 N 3H,fA4;,/8?r. Combining these two constraints determines the two mass scales 

in the theory to be f X Mpl/(24n)‘i2 N 10’s GeV and M N 3 x 10-3h’/2 eV. As argued 

above, we can con$ruct particle physics models for light PNGBs with these mass scales: the 

spontaneous breaking scale f is comparable to the Plan& scale, and the explicit breaking 

scale M is comparable to that expected for light neutrinos for the MSW solution to the 

solar neutrino problem. The mass of the resulting PNGB field is miniscule, mb S 4 x 1O-33 

eV, and (by construction) its Compton wavelength is of order the current Hubble radius, 

X4 = rngl = H,-l/3 X lOOOh-’ Mpc [18]. Tl lis is a generic feature of scalar field models for 

relic vacuum energy that satisfy V(&) = 0. 

Figure 2 shows several examples of the evolution of the scalar field [Eqn.(7) with the 

potential of Eqn.(G) and the Hubble parameter given by the expression immediately below 

Eqn.(7)]. We show St,,, = 1 - 04 as a function of the expansion age Ht, for different. initial 

values of the field &/f (assuming 4; = 0, since the field is Hubble-damped at early times). 

The numerical evolution starts at pn,/hf4 >> 1, i.e., at the top of the figure (0, N 1 >> Q,) 

in the matter-dominated epoch. At early times, the field is effectively frozen to its initial 

value by the Hubble damping term in Ecp1.( 7), and the evolution tracks that of a cosmological 
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constant model (curve labelled ‘vat’ in Fig. 2). At t - t,, the field begins to roll classically; 

on a timescale initially comparable to the expansion time, the expansion age Ht reaches a 

maximum and subsequently falls toward 2/3 (indicated with the vertical dashed line) as the 

field undergoes Hubble-damped oscillations about the potential minimum. The evolutionary 

tracks are universal: a shift in the mass scale f accompanied by an appropriate resealing 

of the initial field value 4; leads to essentially identical tracks, i.e., a given track actually 

corresponds to a family of clloices of (@i , f ). 

0.6 - 

0.6 - 

%a 
0.4 - 

0.2 - 

a .6 
Ht 

Fig. 2: The non-relativistic mass density R,, = 1 - Rb vs. Ht, for f = Mp,/&. The solid curves 

correspond to several initial values for the field, 4i/f = 1.4, 1.5, l.G, and 1.75. The evolution starts at the 

top of the figure and cuds at the lower left. The vertical dashed line shows the Einstein-de Sitter expansion 

age Ht = 2/3, the horizoutal dashed liue sl~owvs the lower bound R,, = 0.1 from dynamical mass estimates, 

the dotted curve (labelled ‘vat’) slloms the evolution for a cosmological constant model, and the long-dashed 

curve correspouds to au opeu model with R6 = 0. The dot-dashed curves (labelled O.G. 0.7, 0.8) bracket the 

constraints from lensed QSOs in the HST snapshot survey (see text). 

The observational consequences of this model follow when one identifies the present epoch 
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to on an evolutionary track- this implicitly corresponds to fixing the mass scale M. For a 

given expansion age. Hot,, one can choose the upper branch, where the field is still frozen and 

thus nearly identical to a cosmological constant, or the lower (dynamical) branch, for which 

the recent evolution will be intermediate between vacuum- and matter-dominated and which 

has qualitatively new features. Dynamical estimates of the mass in galaxy clusters indicate 

the lower bound R,, X 0.1 for the mass density in non-relativistic matter. Consequently, the 

lower branch is escluded if the initial value of the field is below some value, e.g., @i/f N 1.3 

for f = J4,,/&. Physically, for such small values of @i/f, the universe undergoes several e- 

foldings of inflation before the field begins to oscillate, diluting the density of non-relativistic 

matter. Consequently, to achieve large expansion times in this model, Hoto - 1, the present 

epoch must be in the vicinity of the ‘nose’ of the evolutionary track, which corresponds 

approximately to the condition t, m to imposed above. 

As with vacuum-dominated models, these scalar field models can in principle reach ar- 

bitrarily long expansion ages, Ht >> 1, if &i/f is sufficiently small. However, this region 

of parameter space is excluded by the observed statistics of gravitationally lensed quasars. 

The 3 dot-dashed curves in Fig. 2 show the observed constraints on the incidence of lensed 

QSOs. We computed the number of lensed QSOs expected in the HST Snapshot survey [19] 

for cosmological constant models with QA = OX, 0.7, and 0.8; along the 3 curves in Fig. 

2, the number of expected lensed QSOs in the PNGB models are equal to these 3 values. 

Since different assumptions about galaxy models yield different lensing fractions, we show 

the limits corresponding to these three cases to cover the spread of quoted limits in the 

literature [7] (the region to the right of each curve is excluded). For a given lensing limit, 

the upper bound on the espansion age Hoto is increased in the sca.lar field models compared 

to the cosmological constant model; imposing the lower bound fl,,, > 0.1, the bound on Hoto 

can be relaxed by 7 - 10%. Thus, the scalar field models are relatively more successful than 

a cosmological constant at easing the ‘age crisis’ while remaining within the observational 

constraints, provided fi,,, is fairly low. 

We have presented a class of models which give rise to (technically natural) ultra-light 
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pseudo-Nambu-Goldstone bosons. With spontaneous and explicit symmetry breaking scales 

comparable to those plausibly expected in particle physics models, the resulting PNGB 

becomes dynamical at recent epochs and currently dominates the energy density of the 

universe. Such a field acts as a form of smoothly distributed dark matter, with a stress 

tensor at the current epoch’intermediate between that of the vacuum and non-relativistic 

matter. Such a model ‘esplains’ the coincidence between matter and vacuum energy density 

in terms of particle physics mass scales, reconciles low dynamical mass estimates of the 

density parameter, C?,,, N 0.2, with a spatially flat universe, and does somewhat better than 

a cosmological constant at alleviating the ‘age crisis’ for spatially flat cosmologies while 

remaining within the observational bounds imposed by gravitational lens statistics. 

This work was supported by the DOE and NASA grant NAG5-2788 at Fermilab. JF 

thanks Lloyd Knox for his scalar field evolution code and Richard Watkins for discussions. 

After this work was completed, we became aware of related work by Fukugita and Yanagida 

[20], which considers an axion model for the non-dynamical (A) region of Fig. 1. 
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