b

Je
L

Fermi National Accelerator Laboratory

FERMILAB-PUB-94/413-T
NSF-ITP-94-71

String Consistency for Unified Model Building

S. Chaudhurit, S.-w. Chung*, G. Hockney*, and J. Lykken"

tInstitute for Theoretical Physics,
University of California, Santa Barbara, CA 93106

*Theory Dept., MS1086,
Fermi National Accelerator Laboratory,
P.O. Box 500, Batavia, IL 60510

ABSTRACT

We explore the use of real fermionization as a test case for understanding how specific
features of phenomenological interest in the low-energy effective superpotential are real-
ized in exact solutions to heterotic superstring theory. We present pedagogic examples of
models which realize SO(10) as a level two current algebra on the world-sheet, and discuss
in general how higher level current algebras can be realized in the tensor product of simple
constituent conformal field theories. We describe formal developments necessary to com-
pute couplings in models built using real fermionization. This allows us to isolate cases of

spin structures where the standard prescription for real fermionization breaks down.

12/94

"' e-mail : sc@itp.ucsb.edu

* e-mail : chung@fnth04.fnal.gov, hockney@fnalv.fnal.gov. and lykken@fnalv fnal.gov

Operated by Universities Research Association Inc. under contract with the United States Department of Energy



1. Introduction

It is important in string theory to develop the dictionary that translates
between four dimensional spacetime physics and the world-sheet properties of
the string vacuum [1][2]. This will enable us to understand how specific phe-
nomenological properties of possible interest in the low energy effective field
theory are realized in superstring unification [3][4]{5). Much of the work to date
in superstring phenomenology has focussed on the (Ng, Np)=(2,2) compact-
ifications [6] of the ten-dimensional Esx Ey heterotic superstring [7]. These
solutions have similar low-energy implications: the three generations of the
minimal supersymmetric standard model are embedded in the 27, 27 repre-
sentations of Eg, a hidden sector is embedded in Eg, and at generic points in
the moduli space there are a large number of massless scalar superfields with
exactly flat scalar potentials. Since many of the consequences for low-energy
physics depend on an understanding of the non-perturbative dynamics which
lifts this vacuum degeneracy, it is important to understand the nature of the
moduli space {8] and the phenomenological implications of moduli fields [9][x0).

The larger class of (2,0) vacua [9], where the restriction to ground states
with (2,0) world-sheet supersymmetry is motivated by the requirement of N=1
spacetime supersymmetr):'[ll, is interesting from the viewpoint of both the par-
ticle spectrum and the moduli spaces. There are new options for the embedding
of the low-energy gauge group, the chiral matter and Higgs representations, and
for realizing dynamical supersymmetry breaking. The phenomenology of exact
(2,0) solutions has however remained largely unexplored except for the sim-
plest abelian orbifold compactifications [11){12][13], a subset of which have an
equivalent free fermionic realization [14]{15]. The reason for this is in part tech-
nical difficulty. Furthermore, given the very large number of possibilities for the
underlying conformal field theories from which one could imagine constructing
consistent ground states of string theory, it is difficult to know which solutions
are likely to yield new physical insight.

An interesting counterpoint to the proliferation problem is the fact that
it has proven surprisingly difficult to find any solutions with a massless par-

ticle spectrum such that the gauge couplings unify perturbatively below or at
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the string scale [16][17], without making assumptions about string scale dy-
namics [18){18}[20][21]. It is of course an open question whether any classical
ground state is relevant to the true quantum ground state of string theory.
T. Banks and M. Dine have suggested [22] that the quantum ground state of
string theory, even if it is strongly coupled, is likely to share certain properties
of a nearby classical ground state, namely, its massless spectrum and tree-level
superpotential.

The string consistency conditions of modular invariance and world-sheet
supersymmetry are extremely restrictive constraints on the spectrum. This is
particularly evident in the ultraviolet finiteness of the one-loop vacuum ampli-
tude [23] which is achieved, in a supersymmetric vacuum, through cancellations
among several different twisted sectors [24). In recent work [25], we have used
real fermionization' [27][28](18] to understand how specific features of interest
in the massless spectrum and tree-level couplings of the low-energy effective field
theory are realized in exact solutions to string theory. Our starting point is the
low-energy effective field theory. We will apply our knowledge of conformal field
theory to find consistent ground states of string theory which embed spacetime
features of possible phenomenological interest. Qur preliminary results suggest
many intriguing possibilities for phenomenology that are not present in either
the (2,2) solutions or the known (2,0) orbifold compactifications. Some pre-
liminary results have also been obtained by G. Cleaver [29]. L. Ibanez and
collaborators [30] have recently begun a similar study of the phenomenological
implications of higher level current algebras within the orbifold corstruction.

One of our goals is to make contact between string theory and more conven-
tional field theoretic unification models. There are many indications that such
a cross-fertilization of ideas would be fruitful. In the coming years the detailed
exploration of the electroweak scale and the neutrino sector is likely to yield ad-

ditional clues about short-distance physics besides the preliminary evidence for

! We use the expression “real fermionization™ to distinguish this approach from free
fermionic formulations [14]{15]{26] which assume a realization of the internal conformal
field theory in either Weyl or lsing fermions, but have no unpaired Majorana-Weyl

fermions.



gauge coupling unification. In addition, increasingly accurate determinations
of the parameters of the Standard Model will provide tighter constraints on
unification schemes. The motivation for string theory is rooted in the success-
ful unification of parity violating gauge interactions, quantum mechanics, and
gravity [3}[4][5].. It is therefore important to establish to what extent the low-
energy particle Iphysics consequences of string theory are robust. It is equally
important to extract possible qualitative guidance and insights for unification
model builders by requiring string consistency of the effective field theory at
the unification scale.

Supersymmetric grand unification models |31} suggest a picture in which
radiative electroweak symmetry breaking and the large top quark mass are gen-
erated from a GUT-scale effective superpotential with a single third generation
Yukawa coupling [32]. The distinct hierarchies in the pattern of fermion masses
and mixings at the electroweak scale may be generated, in part, by higher di-
mension operators in the effective superpotential [33]. The recent results of
Anderson, Dimopoulos, Hall, Raby, and Starkman [34] illustrate that the pres-
ence of a small number of higher dimension operators in the GUT-scale effective
superpotential may be adequate to generate the observed masses and mixings.
These higher dimension operators [34] are suppressed by powers of Mg over
Mx, where M;=~10'® GeV, and My is another superheavy mass scale =z10!7
GeV. Restrictive flavor-sensitive selection rules are required in such scenarios
to eiminate unwanted higher dimension operators and Yukawa couplings from
the superpotential. Even more restrictive selection rules will be necessary in
order to generate GUT scale masses for the triplet Higgs fields while keeping
the supersymmetric Standard Model Higgs fields light [35){36]. Such restrictive
symmetries appear unnatural from the point of view of an effective field theory.
It is well-known in a general sense that string theory can provide such selection
rules [37]. Less well-known is the pessibility of realizing higher level current
algebras in string theory to produce models which resemble conventional super-
symmetric GUTs [28}{38][18]. String models which realize higher leve! current
algebras are also relevant to recent ideas about supersymmetric textures which
do not invoke GUTs [39].

Finding explicit solutions to string theory that realize the required massless
spectrum and selection rules of such mass matrix models will both provide guid-
ance to model builders [40] and eventually give deeper insight into the origin of
fermion masses and mixings. It should be noted that unification in the context
of superstring theory has broader significance than the unification of the gauge
couplings and (or)} Yukawa couplings. The dynamical supersymmetry breaking
sector, and a mechanism for feeding supersymmetry breaking to the low-energy
matter, must be built into any consistent solution to string theory. Thus, string
consistency is a powerful guiding principle in building complete supersymmetric
models, whick do not merely parametrize the weak scale effective Lagrangian
but which also specify the origin of the soft supersymmetry breaking param-
eters. This is true quite independent of the specific assumptions made about
the scale (or hierarchy of scales) for gauge coupling unification, or of the origin
of supersymmetry breaking. In particular, low energy supersymmetry break-
ing moadels [41] are not incompatible with our current understanding of the
restrictions on the spectrum and superpotential placed by string consistency.

We have emphasized the importance of understanding the world-sheet ori-
gin of the spectrum and tree-level couplings of the effective field theory derived
from string theory. The spacetime symmetries of string theory are a conse-
quence of holomorphic and anti-holomorphic operator algebras on the world-
sheet. Familiar examples are the (2,0) superconformal algebra responsible for
N=1 spacetime supersymmetry and the left-moving current algebras respon-
sible for gauge symmetry. Less familiar examples are discrete symmetries in
the effective field theory. We have little understanding of the world-sheet con-
straints that determine the content of the spectrum, except in the simplest
bosonic lattice compactifications. We will be particularly interested in the
spacetime implications of what we will call discrete holomorphic operator alge-

bras on the world-sheet.? Since the chiral matter superfields transform under

2 We will refer to the operator algebra of a conformal field theory with no spin one
primary fields, or currents, as discrete. Notice that the central charge need not be

less than one. In some cases this may be a coset algebra.
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hoth the current algebra and the discrete operator algebra, there are selection
rules on the superpotential conplings which do not have their origin in gauge
invariance. Such holomorphic discrete operator algebras appear to be a neces-
sary ingredient of the world-sheet description of vacua with lower rank gauge
symmetry and fewer moduli fields |25).

Solutions constructed via real fermionization, or via the natural generaliza-
tion to constituent conformal field theories with central charge c<1, are heterotic
string ground states with four dimensional Lorentz invariance.® The spectrum
and tree-level couplings of the low energy effective field theory are completely
specified by the realization in rational conformal field theories. The internal
target space geometries described by such solutions are likely to correspond to
asymmetric, and possibly non-abelian, orbifold compactifications [12][42]. An
important open problem is to understand the nature of their moduli spaces.

Free fermionization is one of the oldest techniques known to string the-
orists and is the basis for the Ramond-Neveu-Schwarz formulation of the su-
perstring [43](24][5]. The use of generalized GSO projections [24] to construct
new solutions to string theory, given a consistent solution, was introduced in
the context of the ten dimensional heterotic superstring in [44][45][46]. The
ten dimensional ground states include a (norn-supersymmetric) solution where
the gauge syimnmetry is realized at level two [46]. In [14][15] this technique
was applied to construct ground states with four dimensional Lorentz invari-
ance. The fermionic formulation is based on the notion of current algebras and
free fermionic representation theory [43][47]{48]. A comprehensive discussion
of non-renormalizable tree-level superpotential couplings can be found in |26).
Methods for analysing moduli dependence are given in [49][18][50], but these
require further development.

A number of models of phenomenological interest have been constructed

using free fermionization {51][20]{21). These models contain three generations

3 “Heterotic™ refers to the construction of the four dimensional solutions; it is not
necessarily the case that these solutions possess a large-radius limit which recovers

the ten dimensional heterotic superstring.

of light chiral fermions and gauge groups like SU(3)xSU(2)x U/ (1) or “Bipped”
SU(5), realized by Weyl fermions on the world-sheet as current algebras at level
one. The superpotential of the resulting low energy effective field theory has
been computed for these models, using the techniques described in [26]. One
then discovers interesting flavor-sensitive selection rules which restrict Yukawa
couplings. The rank of the full gauge group (including a hidden sector) is
reduced in these models by the introduction of Ising fermions. However these
models do not contain any unpaired Majorana-Weyl fermions, which we call real
fermions.! Real fermionization enables us to realize current algebras at higher
level, which in turn allows the appearance of adjoint Higgs in the massless
spectrum together with many other new features [28]. We thus aim to exploit
the techniques and successes of [51][20]{21]{26] while exploring a more general
construction.

A non-trivial extension of these techniques is required when the underly-
ing conformal field theory includes real fermions. The source of the difficulty is
phase ambiguities in the explicit definition of the GSO projections and higher
loop modular transformations for the real fermion conformal field theory. These
phases play a crucial role in determining the massless spectrum and tree level
couplings of the resulting models. A first attempt at resolving these ambigu-
ities was made in [27). We will fill in the gaps in that analysis by developing
additional tree-level checks for string consistency, besides the requirement of
modular invariance of the one-loop vacuum amplitude.

The outline of this paper is as follows. In section 2 we review the well-
known correspondence between gauge symmetry in spacetime and current alge-
bras on the world-sheet [7]. This introduces the notion of world-sheet constraint

algebras underlying the properties of the low energy effective ficld theory. In

* Properly speaking Ising fermions, which are right-left pairs of Majorana-Weyl
fermions, are also real fermions. However il is very convenient for our analysis to
let “real” denote only unpaired fermions, and identify Ising fermions separately. We
hope that this usage does not cause confusion with respect to references {26] and [27],

where “rcal fermions” includes Ising fermions.
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section 3 we explain in general how a higher level current algebra can be real-
ized in the tensor product of constifuent conformal field theories. We illustrate
this with a toy model. Free fermion conformal field theories that embed both
the gauge bosons and the chiral superfields transforming under such a current
algebra, can be built into a consistent solution to string theory by using the real
fermionization prescription of [27]. We explain how this works in the pedagogic
discussion in section 4, presenting two examples with distinct fermionic embed-
dings of SO(10). All of the results in this section were obtained with the use of
a symbolic manipulation package developed by us [52]. In section 5 we address
some of the formal developments necessary to understand real fermionization
at a more fundamental level than the prescription of [27]. We use Verlinde's
theorem [53] to relate the tree-level fusion algebra to the one-loop spin struc-
ture blocks in a way which allows unambiguous computation of the tree level
correlators for real fermions. Combined with the methods of, e.g., {26}, this wil}
enable us to eventually automate the extraction of the tree-level superpotential.
Our better understanding of real fermionization also allows us to probe cases of
real fermion spin structures where the prescription of [27] breaks down. In the
conclusion we make a critical appraisal of free fermionization, list some remain-
ing problems, and discuss extensions of our methodology. We do not attempt

to display any phenomenologically compelling models in this paper.

2. Spacetime symmetries and world-sheet operator algebras

The two-dimensional gauge principle of heterotic string theory is (1,0)
superconformal invariance [7}{5]. In light-cone gauge,® the decoupling of time-
like and longitudinal degrees of freedom results in a unitary conformal field
theory, with a Hilbert space of positive norm. The field content includes the
non-compact transverse spacetime coordinates, X #=X#(z)+ X#(:), u=1,2, and
their Majorana-Wey! fermion superpartuners, ¥#(%). In addition, there is an in-

ternal (1,0) unitary conformal field theory of central charge (9,22). Every

® We restrict ourselves to spacetime backgrounds with four dimensional Lorentz

invariance.

physical state corresponds to the lower component of a conformal dimension
(hr,hr)=(3,1) world-sheet superfield transforming under the (1,0) supercon-
formal constraint algebra.

The notion of finding world-sheet constraint algebras related to spacetime
properties of the low-energy effective field theory was first explored in references
[2][54]. We begin by reviewing the familiar example of gauge symmetry in order
to explain how the constraint algebra can be used to build a solution to string
theory embedding a specific low energy spectrum of fields.

In an N=1 spacetime supersymmetric vacuum all of the gauge symme-
tries are associated with the left-moving conformal field theory [7]. Then there
must exist vertex operators of conformal dimension (5‘-, 1} which transform as

spacetime vectors, corresponding to gauge bosons:
Vo(z,2) = (ur(aI(z)e* Y, (2.1)

where (¥ is the transverse polarization vector, ( - k=k - k=0, and J°(2) is a
dimension (0,1} primary field in the left-moving internal conformal field the-
ory. Gauge symmetry is therefore a consequence of an extension of the {1,0)
superconformal constraint algebra by dimension (0,1) currents. The presence
of the gauge bosons in the spectrum of massless fields implies that any chiral
superfields that appear in the spectrum must satisfy the selection rules imposed
by gauge invariance. In world-sheet language this implies strict agreement with
the fusion rules of the world-sheet current algebra.

The operator product algebra of the dimension (0,1) operators, J%(z),
determines the structure constants and Schwinger term of a current algebra®:

kb i fabc J.

(c~wf " e-w) T

Jo() M w) = (2.2)

This current algebra is, in general, based on the product of simple non-abelian
and abelian group factors. For any simple group factor, G, the f** appear-

ing in (2.2) are the structure constanis of a Lie algebra normalized to give

® We will use the term current algebra for what is often referred to as an affine
Kac-Moody algebra [55][56]. We will assume that the low energy gauge symmetry is
related to a compact Lie group.



abe gabe . 6%9, where C'4 is the gnadratic Casimir of the adjoint representa-
) 1 ] p

tion. The central charge from any simple group factor is given by the formula

k dim(G)

(G) k+1c,
2

, (2.3)
where the constant, k, appearing in the Schwinger term is a dimensionless
constant which also measures the relative strength of graviton exchange to
gauge boson exchange in the tree level scattering of four gauge bosons at the
string unification scale, M,;;ng. Thus,

GNA{E ~ kgf.‘.ring - (24)

tring

Here, ¢%,,;., is the dimensionless gauge coupling at the string scale, and
Gn=M;? is Newton's constant [57]. The constant, k, is restricted to take
integer values due to the unitarity of the conformal field theory; k is called the
level of the current algebra realization.

In order to build a solution containing a specific low-energy spectrum of
vector and chiral superfields, it suffices to find a realization of those gauge
bosons which correspond to the simple roots, and the chiral superfields corre-
sponding to the highest weights of the desired irreducible representations. The
current algebra will automatically generate complete supermultiplets in the so-
lution if care is taken to preserve the string consistency conditions of world
sheet supersymmetry and modular invariance.

Thus, Lorentz invariance, spacetime supersymmetry and gauge invariance
determine, in part, the emission vertex of any chiral superfield. Consider, for
example, the vertex operator associated with a fixed helicity of a chiral su-
perfield transforming as a spacetime fermion, V¥ (z, ). The vertex operator
corresponding ta the highest weight of an irreducible representation r will take

the form,
Vi{z,z) = S(Z)O(E)]r(z)F(z)e“"x . (2.5)

We have left unspecified the dimension (3,0) primary field, O(z), which must

occur in the Ramond sector of the internal superconformal field theory; its
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form is restricted by the spacetime supersymmetry currents. S(Z), isl a di-
mension (81,()) spin field in the Ramond sector of the conformal field theory of
the Majorana-Weyl fermions ¢#(z). The Kac-Moody primary field f.(z) is of
dimension (0, k,), and F(z) is a gauge singlet of dimension (0,1 - A,).

With higher level realizations of the current algebra, new matter represen-
tations can appear consistent with the requirement of unitarity of the underlying
conformal field theory. This introduces new options for spacetime gauge and
gravitational anomaly cancellation, depending on which chiral fermion repre-
sentations appear in the massless spectrum. A detailed tabulation of which
representations and conformal dimensions are allowed in an affine Lie alge-
bra at arbitrary level can be found in [58] and [56]. We should emphasize that,
while unitarity is a restriction on which representations can appear at any given
level, not every allowed representation need appear in a conformal field theory

described by an asymmetric modular invanant.

3. Embedding higher level current algebras

The easiest way to realize a specific spacetime gauge symmetry in a con-
sistent solution to string theory is to find an embedding of the current algebra
in the tensor product of simple constituent conformal field theories. The best
known constituents are free bosons and free fermions. However, as will become
apparent, the method can be applied more generally.

The basic idea underlying the higher level current algebra realization is very
simple. We begin by realizing the r abelian currents of the Cartan subalgebra of
the group in a conformal field theory denoted as CFT4. An abelian generator
can always be realized by a chiral boson with no loss of generality. I we are
realizing a non-abelian current algebra the chiral bosons have rational conformal
dimensions (see, for example, {56{[59]}). Thus CFT, is constructed using r chiral
bosons with conformal dimensions, h;_:pi /2=m/n, with m, n integers.

For a higher level realization it is not possible to construct the remain-
ing currents of the non-abehan current algebra using only operators of the free

boson conformal field theory, CFT4. Thus what we actually need is a tensor
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product of CFT4 with some other constituents, which we will denote ecollec-
tively as CFTy. In this paper we restrict ourselves to the cases where CFTy
is constructed using unpaired Majorana-Weyl (real) fermions. This is a strong
restriction on which gauge groups and representations can be obtained in this
"class of solutions. The obvious generalization is to allow as constituents of
CFTp any of the unitary conformal field theories with central charge c<1 [60].
These conformal field theories have a finite number of chiral primaries under the
Virasoro algebra and rational conformal dimensions, h;<1. They have no spin
one currents. The corresponding Virasoro characters, which enter the string
partition function, have well-defined modular transformation properties.

If the tensor product CFT4xCFTg successfully realizes a current algebra,
then the total central charge ca+cp must at least equal cx(G). H cq4+cp>ci(G)
this implies that we have realized, in addition to the higher level current algebra,
some other holomorphic algebra which contains no currents. We will refer to
this other algebra as a discrete holomorphic operator algebra.

Thus the (left-moving) stress tensor for a higher level current algebra re-
alization has, in general, two distinct decompositions:

T=Ta+Tsa
(3.1)
=Tkum + Thiscrete
where Ty ps denotes the Sugawara form of the stress tensor of the higher level
current algebra, and Tyiscrere denotes the coset algebra formally defined by the
relation (3.1).

Two observations of considerable practical importance are as follows. The
rank of the low-energy gauge symmetry in a four dimensional ground state is
bounded by the central charge of the left-maving internal conformal field theory,
2irank{G;) < 22. Also, the dimensions of individual matter representations

that can appear at the massless level are bounded by the condition, ¥y, h"L <1
[61)[13].
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The conformal field theory of a chiral boson, ¢{z), with rational-valued
momientum, p, is equivalent to that of a Weyl fermion, A(z), with fermionic

charge, :
¢ — :ATA:

-~

. ~ v (3.2)
p—*Q—F—;l

Here F is the fermion number operator, and the vacuum fermionic charge, v/n,
is rational-valued. The abelian current is realized by the Wey! fermion bilinear.
Fermionic representations of current algebras that utilize fermion bilinears are
well-known. The non-simply-laced algebras at level one can be realized by
Majorana-Weyl fermions. For example, the generators of SO(2n+1) are realized
by n Weyl fermions and a single Majorana-Weyl fermion, or equivalently, 2n+1
Majorana-Weyl fermions. The currents are the 2n(2n + 1)/2 Majorana-Weyl
fermion bilinear pairs.

When we realize the Cartan currents using Weyl fermion bilinears, every
distinct group weight will be realized as a unique set of fermionic charges.
This representation of weights in a basis defined by fermionic charges is fixed
once we specify the fermionic charges of the r simple roots [62]. We then
identify in CFT, holomorphic operators, ¢5 . (z) with the correct fermionic
charges (qu,...¢r) to represent all of the currents, J°(z), of the higher level
algebra. Since these primaries may not have conformal dimension 1, we then

must identify other operators in CFTp to make up the difference. Thus
1) =450 () X952 (33)
The above also holds for chiral bosons when we map weights into momenta.

3.1. Canonical Embeddings

Let us explain, from first principles, how one can identify a realization of
some given current algebra at arbitrary level, assuming explicit knowledge of the
conformal dimensions, eperator product coeflicients, and Virasoro characters of

the chiral primaries of the constituent conformal field theories,
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There are many possible free ficld embeddings of any given current algebra.
We will refer to the embedding with the lowest possible total conforinal anomaly
as the canonical embedding. One advantage of using a canonical embedding of
the roots (e.g., the standard Cartan-Weyl basis for a level one realization) is
that the model builder avoids the pitfall of unexpected extra gauge symmetry
such as U(1) factors in the final solution.

We begin with a realization of the Cartan subalgebra of the group. Each

of the r abelian currents is realized by a chiral boson
h; = 3¢, TEE B (3.4)

where r is the rank of the gauge group. These are operators of conformal
dimension one. Let us assume that the momenta of the individual chiral bosons

are quantized such that
dilor + 2w, 03} = @i(ey,02) + 2xp; . (3.5)
Consider vertex operators of non-zero momentum
VP = Ci(p): et (36)

where p; and ¢ are r dimensional vectors, and the C;(p) are cocycle operators.
This is the familiar vertex operator construction used in the Egx Eg heterotic
string {5]: if the p; lie on the root-lattice of a simply-laced group the commu-
tation relations of the vertex operators, with cocycle operators appropriately
defined, will reproduce the structure constants of the associated current alge-
bra. Given the structure constants, the level k of the current algebra realization
is fixed by the normalization of the root vectors. This determines the normal-
ization of the abelian currents.

Now consider a specific example of this construction in the context of het-

erotic string theory. Begin with five copies of the root lattice of SU(2)

(1£v2,0,0,0,0)) (3.7)
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where the square brackets denote permutations, and we have normalized the
roots to length o®=2. Let us assume that this lattice is embedded in the
22 dimensional sublattice of an even self-dual Lorentzian lattice of dimension
(6,22) [63][5]. The states corresponding to the roots of (SU(2))® given in (3.7)
will then appear at the massless level, with p} =2, hy= 1, and correspond to
spacetime gauge bosons. The realization of the gauge symmetry is at level one.
From the praperties of self-dual lattices, it follows that the weight lattices of
(sU(2y°

(£ ;‘,5,0,0, 0,0} (3.8)

are present in the (6,22) dimensional lattice [59). Ignoring the precise con-
straints from modular invariance, imagine that we perform a sequence of orb-
ifold twists accompanied by shift vectors embedded in the (SU(2))® lattice
whose net effect is to project out the individual roots and weights but leave

intact the lattice points
(*%.+75.000) (3.9)

where all permutations are included. The counting of states is correct to fill out
the adjoint representation of the group SO(10}, 5-4-2 + 5 giving a total of
45 states if we include the states corresponding to the five abelian currents.
Suppose we rescale the normalization of the abelian currents by a factor
of two. Then the length of the lattice vectors in {3.9) is exactly what is needed
for a level two realization of the gauge symmetry. The only problem is that the
states of non-zero momentum no longer appear at the massless level becanse
the (left) conformal dimension is only ,i—, . pi::}. This problem is easily fixed.
The central charge of S0(10) at level 2 can be read off from the formula (2.3)
given in the previous section, where C'4=2(2n — 2) for SG(2n). The central
charge of the embedding conformal field theory of five chiral bosons is ¢=5.
Thus, if we can find a (rational) conformal field theory with central charge ¢>4,
primary fields of conformal dimmension %, and no dimension one currents, by
tensoring together the two conformal field theories it should be possible to find

an embedding of these states at the massless level. A necessary requirement is
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that we exactly match the conformal dimensions and counting of states given
above without modifying their fusion rules.
Let us outline how to find such an embedding for our toy model.” The first
five left-moving entries of the (6,22) dimensional lattice before twisting have
1 already been determined (3.7), (3.8). Let us assume that the next eight entries
embed the root-lattice of SO(16)

(I+1,%1,0,0,0,0,0,0}) . (3.10)
Together with the spinor and conjugate spinor weights of SO(16),
(il,il,il,ii,il‘il,il,il) ; (3.11)
A S L ST L M A

one obtains the Eg lattice. This lattice is easily embedded in an even self-
dual Lorentzian lattice given by the sum of the root and weight lattices of
(SU(2)1)" x (SU(2)g)® x Ey x E} [63]. The self-dual lattice describes the
compactification of the ten dimensional Eyx Ej heterotic string on an {SU(2))®
torus.

The conformal field theory underlying the Ejy lattice has a fermionic rep-

resentation {7]|5]. The eight chiral bosons can be fermionized as follows:

B; —:MA: i=7. 14
e* — (=1)Fy (3.12)
. vy
pi — Fi - 5'1
The equivalence between momentum and fermionic charge for momentum quan-
tized in half-integer units, p; = n/2, implies that the conformal field theory of
the Weyl fermions has two sectors. The two sectors correspond to choosing

Neveu-Schwarz (antiperiodic) or Ramond (periodic) boundary conditions for

the fermions, respectively, v;=0, 1:

Ailoy +2m,02) = —e™Ai(0y,00) . (3.13)

T The reader will tecognize an obvious parallel with the asymmetric orbifold con-

struction in the discussion that follows.
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The roots of SO(16) correspond to oscillator excitations in the Neveu-Schwarz
sector. The spinor weights given in (3.11) correspond to states in the Ramond
sector, with F;=0,1, and v;=1, for all i. In the one-loop vacuum amplitude
this sector is labelled by a vector specifying the boundary conditions of the

individual fermions, v;, i = 1,--.,8,
(tr1t1111)y . (3.14)

Thus, in the absence of constraints from any other sectors, this sector con-
tributes the 2° spinor and conjugate spinor weights of SO(16) in the one-loop
vacuum amplitude.

For convenience, we can rewrite the Weyl (complex) fermions as Majorana-
Weyl fermions, A.-:qb?) + iuf;}”. The two Majorana-Weyl fermions associated
with each of the eight Weyl fermions share the same boundary condition in
every sector summed over in the one-loop vacuum athplitude. Implicitly, we
are now allowing for the possibility of Majorana-Weyl fermions which are no
longer paired into complex fermions. Some of these may be right-left paired
into Majorana (Ising) fermions. Any Majorana-Wey! fermions which are tru-
ely unpaired we call real fermions. In the absence of a complexification of
the Majorana-Weyl fermions, a conserved fermionic charge, or equivalently, a
conserved bosonic momentum, can no longer be defined. We can re-label the
sector (3.14) contributing the spinor weights of SO(16) by the corresponding

boundary condition vector {v;=1,i=1,--- 16) for sizieen real fermions:
(i1 . (3.15)

Ignoring once again the constraints from modular invariance, consider the
possibility of blocks of chiral Z; twists on the Ej lattice accompanied by the
shift vectors embedded in the (SU(2))® lattice such that all of the Es gauge
symmetry is broken to a discrete subgroup, This corresponds to introducing
new sectors in the one-loop vacuum amplitude which contribute states of non-
zero momentum in the conformal field theory of the chiral bosons, ¢;, i=1, .-,

5, corresponding to the lattice points (3.9), matched with the tensor product
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of Ramond ground states for blocks of eight real fermions chosen from the set,
disj’, i1=1,---, 8, and ; = 1, 2. In order to break all of the Eg gange symmetry
we need to include at least four sectors in the one-loop vacuum amplitude,
corresponding to the following boundary condition vectors for the sixteen real

{ermions:

(1111 1111 0000 0000)
(0000 1111 1111 0000)
(1100 1100 1100 1100)
(1010 1010 1010 1010)

(3.16)

The contribution to the left conformal dimension from the Ramond vacuum
1 1

energy in each of these sectors is 15 - 8= 3- Therefore, oscillator excitations
described by fermion bilinears of the form, : ¢;¥x :, contribute with conformal
dimension greater than one in these sectors and are pushed up to the massive
level. The sectors (3.16) also act as constraints on the untwisted sector, i.e., the
sector with all fermions in the Neveu-Schwarz vacuum, so that these dimension
one states are projected out of the spectrum by the requirement of modular in-
variance. Thus the untwisted sector does not contain any currents. Of course,
one must still be concernéd with additional dimension one states that can con-
tribute from twisted sectors. Choosing the projections on the spectrum such
that no additional dimension one currents appear requires a detailed knowledge
of the constraints from one-loop modular invariance. While this certainly could
be done, we will not pursue this toy model any further. Certain elements of the
toy model can, however, be recognized in the examples of section 4.

The embedding (3.9) of the roots of SO(10) in the doublets of five copies
of SU{2) is a special case of the embedding of the roots of SO({2n)} at level
k=2 in the fundamental weight-lattices of the group (SU(2))". The pattern
further generalizes to an embedding of the roots of $O(2n) at level k in the
momentum Jattice of n chiral bosons, with momentum quantized in units of
1/vk. Embeddings of the roots of the special unitary groups can be worked

out by the same method.
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3.2. Fermionic Embeddings

Now let us specialize to the case where the c=1 constituents of CFT4 are
Weyl fermions and the constituents of CFTp are c=% Majorana-Weyl fermions.

It is important to distinguish between a fermionic embedding and a
fermionic representation of a current algebra. A fermionic embedding is simply
a mapping of the roots of a Lie algebra into fermionic charges. A fermionic rep-
resentation is an embedding where the total conformal anomaly of the fermions
equals the central charge of the Kac-Moody algebra. An example of a higher
level fermionic representation is SU(2) at level two realized by three Majorana-
Weyl fermions.

Fermionic representations may or may not exist depending on the group
and the level of the current algebra. The orthogonal groups at level one have
fermionic representations. But the special unitary groups at level one are only
obtained in the fermionic embedding of the group SU(n)xU(1). The ‘extra’
U(1) in a fermionic embedding cannot be broken by standard stringy symme-
try breaking techniques, e.g., a Z, twist, without simultaneously breaking the
nonabelian symmetry.

These statements have counterparts for fermionic realizations of higher
level current algebras. A fermionic embedding fixes the level of the current
algebra if the abcelian generators are assumed to be canonically normalized,
This is because the embedding fixes the lengths-squared of the roots, which, as
is apparent from (2.2), are inversely proportional to the level. To be precise, let
6=(q1.q2, ... qn) denote the fermionic charges of a root; then 62 must have
the same value for all the roots (all the long roots if the group is not simply
laced). The level is then given by [28]:

k= (3.17)

2
Q2
An example of a higher level fermionic embedding is the minimal fermionic
embedding of the roots of SO(10) at level two, which requires six Weyl fermions
[28){see section (4.1)}. Since there is an additional abelian generator orthogonal

to the space spanned by these roots, the six Weyl fermions actually provide an
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embedding of SO(10)xU(1). It is also possible to find fermionic embeddings of
special unitary groups within a semi-simple group: for example SU(5)xSU(2),
with the SU(5) at level two and the SU(2} at level four, and Sp(G)xSU/(3),
with the Sp(6) at level one and the SU(3) at level two.
v A fermionic realization is a fermionic embedding or representation together
with a realization of the currents and physical states corresponding to the gauge
bosons in a consistent string vacaum. A fermionic embedding does not neces-
sarily extend to a fermionic realization, since we are restricting the constituents
of CFTpg to be real fermions. A necessary condition is that one can identify
dimension (0,1) operators with fermionic charges corresponding to all the roots.
For the types of operatorsin CFT,4 which are relevant for constructing currents,
there is a simple relation between their fermionic charges and their conformal
dimension[14):
h= ;62 ) (3.18)
Simple examples are single Neveu-Schwarz fermion operators ¥, ¥, (which
create single fermionic excitations of the Neveu-Schwarz vacuum) having h=1/2
and fermionic charge £1, and single Weyl fermion twist fields g, g, (which create
the doubly-degenerate Ramond vacua from the Neveu-Schwarz vacuum) having
h=1/8 and fermionic charge £1/2.
As will be discussed further in section 5, the c=1/2 conformal field theory of
a single Majorana-Weyl fermion contains primary fields with conformal dimen-
sion 0 (the identity), 1/16 (twist fields), or 1/2 (the Neveu-Schwarz fermion).
Thus there are a limited number of ways to construct currents. In particular,
if 6 represents the fermionic charges corresponding to some root, then the
current corresponding to that root exists only if there is a solution to
1=;-62+(’—;°’-6'-+%) (3.19)
where m,, m; are nonnegative integers.
Combining (3.19) with {3.17), we obtain an important restriction® on the

possible levels for current algebras with fermionic realizations:

k=12 4,8 orl6 . (3.20)

8 Condition (i) of section 5.3 rules out the case k=16.
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It should be noted that the higher level fermionic embedding does not
uniquely determine the fermionic realization of the current algebra. An example

is given in the next section.

4. Real Fermionization: examples

To understand in detail how the constraints from modular invariance deter-
mine the spectrum and couplings of a solution, it is useful to focus on a specific
set of constituent conformal field theories. Fermionization of the internal (2,0)
unitary conformal field theory is a relatively straightforward technique for gen-
erating explicit solutions to the string consistency conditions [14]{15]{27]. In this
section we will explain how the ideas we have introduced in the previous two
sections get implemented in the context of specific examples. These examples
have been constructed to illustrate how particular phenomenological aspects
find their realization in string theory. Although our methodology has the po-
tential of steadily leading to more phenomenologically compelling models, the
models discussed here were selected for their pedagogic value only.

The constituent fields of the internal superconformal field theory are a
collection of Majorana-Weyl fermions. Some number of these are paired into
right-moving or left-moving Weyl fermions, or into right-left paired Majorana
(Ising) fermions. The total central charge sums to (9,22) for a vacuum with
four dimensional Lorentz invariance. Including the two right-moving Majorana-
Weyl fermions with a spacetime index gives a total of 20 right-moving and 44
teft-moving constituent fermions.

The boundary conditions of the fermions about the two non-contractible
loops on the torus specifies their spin-structure. Consider first the Weyl
fermions which are obtained by a complexification of a pair of Majorana-Weyl
fermions, A(z) = ¢, (z) + iy2(z). The fermionic charge (bosoric momentum) is
allowed to take any rational vatue. The possible (twisted} boundary conditions

are denoted: _
Moy + 27,02) = —e™* Aoy, 02) W

Moy +2n,05) = —e 7" A0y, 07) )
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where v takes any rational value restricted to the domain —-1<w<l. The
boundary conditions described by eq. (4.1} reduce to a possible sign Hip for
both Majorana-Weyl fermions combined with a rotation of the Majorana-Weyl

fermions among themselves:

(o) + 2m,03) cos(wv) sin{mv}\ [ ¥i{o1,02)

(!«5’2(01 + 2m, 02)) - ("Si“(ﬂ') COS(“’)) (11'2(01,02)) - (42)

A right-moving and a left-moving Majorana-Weyl fermion paired to form a

Majorana (Ising) fermion are both either periedic (Ramond) or antiperiodic

{Neveu-Schwarz) in every sector of the partition function. Any Majorana-Weyl

fermions which are unpaired are called real fermions. Real fermions take Ra-
mond or Neveu-Schwarz boundary conditions.

In general, the one-loop vacuum amplitude (partition function) Zgermion

can be written as a sum over all possible spin structures generated from a set

of basis vectors, {V;}, i.e., the boundary condition vectors for the constituent

fermions which span the sectors summed over in the partition function:

Zrermion(T) = 3 _ CoV 250 (1), (4.3)
o,f

where {a;}, {f;} are independent sets of nonnegative integers both generating
linear combinations of the basis vectors vectors V;. The C;,"‘,/ are projection
coeflicients associated with each specification of spin structure; they determine
the phase with which the states in a particular sector contribute to the partition

function.
The ZJ(7)} for each spin structure are defined in a Hamiltonian represen-

tation as:
Zr)=Tr {(—I)U'F" exp (21rirﬁ{‘. - 21ri1'rﬁ$)} . {4.4)

For the Weyl and Ising components, the GSO projection operator, (—1)VFv,
is defined in the obvious way from the fermion number operator f‘; for real

fermions its explicit form is more complicated [27].
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The coeflicients Cg“f are conveniently rewritten as:

Cs‘t/f — p2Fil-ak B ta,s. - dis) ’ (4.5)
where the k;; are rational parameters, repeated indices are summed, and s,
takes values 0 or —1/2, depending on whether the basis vector V; contributes
spacetime bosons or fermions, respectively. To define a solution, it is only
necessary to specify koo and the ki; for i>j; the other k;; are then fixed by
modular invariance.

A solution takes the form of a definite spectrum of physical states that
survive all of the projections imposed by string consistency. The partition func-
tions for interesting solutions sum over thousands of spin structures, thus it
is clearly not practical to perform the required projections by hand. Instead
we have developed a symbolic manipulation package [52] which automatically
extracts the massless spectrum of solutions compatible with the fermionic for-
malation introduced by Kawai, Lewellen, Schwartz, and Tye (KLST)[27]. This
program takes as input a list of basis vectors, V;, and projection coefficients,
kij. It then checks for string consistency, performs the GSO projections, checks
for spacetime supersymmetry, identifies the gauge group and its embedding
from the gauge bosons in the massless spectrum, then outputs the full massless
spectruimn organized into irreps of the gauge group. The tree couplings of phys-
ical states can be inferred from their decomposition into primary fields of the
constituent conformal field theories. However, because of the new formalism
required for real fermions (as will be described in the next section) we have not
yet automated the extraction of the full tree-level superpotential.

The notion of embeddings makes such a methodology particularly well-
suited to realizing operator algebras that determine specific spacetime sym-
metries. Every model contains the untwisted (i.e. all Neveu-Schwarz) sector,
which ordinarily would contribute the gauge bosons of the group SO(44), or
its regular subgroups. In the solutions we are interested in, most of the gauge
bosons and chiral matter do not appear in the untwisted sector. Rather, the
twisted sectors embed most of the gauge bosons and the matter representations.

This is an important distinction from the familiar (2,2) compactifications, or
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Vo
Y
Vs
Vs
Vi
Vs
Va
V;
Va

(2,0) constructions that are related to (2,2) compactifications {13][64], where
the low-energy gauge symmetry is realized iz the untwisted sector.

The spin structures are specified by listing the basis vectors V;, which have
20 right-moving and 44 left-moving components separated by a double vertical
line. Since we use a 64 component Majorana-Weyl notation, Weyl fermion spin
structures are written as left-left or right-right pairs, and Ising fermion spin
structures by left-right pairs. As always 0,1 denotes Neveu-Schwarz/Ramond
boundary conditions; we also use ++ and —— to denote a Weyl fermion whose
boundary condition is Fi times itself when taken around a noncontractible loop.

The first two components of every vector refer to the right-moving fermions
with spacetime indices, ¥#(Z). Thus (00) in these slots indicates a spacetime
boson; if #(Z), X#(%), and X#(z) are not excited the resulting massless states
in such a sector are scalars. On the other hand, (11) indicates a spacetime
fermion, in this case the two possible values of the “fermionic charge”, +1/2,

distinguish the two helicity states.

4.1. Model A

This example has N=1 spacetime supersymmetry, SO(10) realized at level
two, chiral fermions, and Higgs in the 10 and 45 of SO(10}.

(111111111 || 1102810100311 18121 111 112|111 {11111111111111)
: (11100100100100100100]|000000000000|000000000000000{000{00000000000000)
: (00000000000000000000{|111111110000]111111110000000/000|00000000000000)
: (000000000000000000001|000000000000[00001 1111111000|000{00000000000000)
: (00000000000060000000]|1:0000111111]110011001100116{000|00000000000000)
: (11100100010010010010]|111100001 100{101010101010100]010{11000000000600)
: (11010010100100001001{}111100001100{101061011010011|101]00000000000000)
: (11001001001001100100§}111100001100|111 100001 111000{000)001 10000000000)
: (00110110110110000000{|000000000000/010101010101011|000|00000000000000)

Va: (0000000000000000001 1j600000000000{000000000000000{011{001100++ ¢+ ++++)

Model A
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The k;; for i>; and kog are all zero except for the following which are equal to
—1/2: kqy, kqa, kay, kg3, kas, and kgg.

Apart from the spacetime fermions, the right-movers in this model corre-
spond to 7 world-sheet Weyl fermions and 4 Majorana- Weyl fermions. Three
of the Majorana-Weyl fermions ( in slots 17, 19, 20 ) pair up with left-movers
to make 3 Ising fermions; the fourth Majorana-Weyl fermion (in slot 16 ) is
associated with 15 left-moving Majorana-Weyl fermions as a block of 16 real
fermions. There are 7 fermionic charges associated with the complex right-
movers; they take values 0, £1/2, and +1 for massless states. These charges
result in discrete symmetries in the low-energy effective theory.

The left movers are separated into four blocks, embedding the visible mat-
ter gauge quantum numbers, the real fermion spin structures, the Ising fermion
spin structures, and the hidden sector gauge quantum numbers. In this example
the first 12 left-mover slots denote 6 Weyl fermions. The 6 associated fermionic
charges take values 0, £1/2, and +1 for massless states: these charges are sim-
ply weights of the visible gauge group SO(10)xU(1), in the basis defined by the
embedding of the root lattice in the sectors which contain the gange bosons.
The 46 gauge bosons of SO(10)xU(1) are distributed in 8 sectors as shown in
Table 1,

Sector No. of gauge boson states  Real fermion b.c.’s

untwisted 10 (0000000000000000)
v 8 (1111111100060000)
Vs 4 (0000111111110000)
Vi 4 (1100110011001100)
Va+Vs 8 (1111000011110000)
Va4V, 4 (0011601111001100)
VatVy 4 (1100001100111100)
Va4 V54V, 4 {0011110000111100)

Table 1
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In the untwisted sector, massless gauge bosous arise from states with
a spacetime fermion excited and a pair of left-moving Weyl (or pseudo-
complex®) fermion modes excited. In the first 12 left-mover slots which em-
bed SO(10)xU(1), there are 66 such pairs, but only six of these survive the
projections. These six gauge bosons correspond to exciting the particle and
antiparticle modes of each of the six Weyl fermions; the resulting fermionic
charges for all six are (0,0,0,0,0,0). Obviously the six associated currents are
the Cartan clements of SO(10}xU(1); because these Cartan currents are real-
ized by fermion bilinears we can read off any weight of SO(10)xU(1) from the
six corresponding fermionic charges.

The embedding of SO(10) in these six fermionic charges is completely

characterized by the fermionic charges of the five simple roots {28):

(0, 0, 0, 1, 0, 0)
(1/2,-1/2-1/2,1/2, 0, 0)
(0 0 1, 0 0 0
( 0,1/21/2, 0-1/2, 1/2)
( 0,1/2,-1/2, 0,1/2-1/2)

It is apparent then that the U{1) weight is proportional to the sun of the
fifth and sixth fermionic charges.

There are additional gauge bosons in the untwisted sector which arise
from exciting one of the six Weyl fermions just discussed together with a
mode from one of the seven pseudo-complex left-movers comprising the block
of real fermions. There are 12 distinct fermionic charges which could result:
{+1,0,0,0,0,0), {0,£1,0,0,0,0), etc.. However after the GSO projections only
four of these appear in gauge boson states: (+1,0,0,0,0,0) and {0,£1,0,0,0,0).

Let us consider the other sectors which contain gauge bosons in turn. Mass-

less gauge bosons from V; arise when all the left-movers are in the vacuum state.

9 - - . . .
See section 5.3 for a discussion of pseudo-complexification.

25

The first 12 left-mover slots of V3 are (111111110000); the associated fermionic

charges are

1 1

1
(i%,i:-i,i +-,0,0

5 £3:0,0) (4.6)
All of these charges correspond to roots of SO(10), however, only 8 of these
16 charges appear in gauge boson states after the projections. The other 8
of these 16 charges appear in the gauge boson states in V;+V;. Note that V;
and Vo+V; differ only by the boundary conditions of the real fermions, thus
it is the real fermion structure which correlates the GSO projections in these
two sectors. Massless gauge bosons from V; require one excited left-moving
Weyl (or pseudo-complex) fermion mode. The first 12 left-mover slots of V3
are (000000000000). There are 12 possible fermionic charges for massless gauge
bosons of SO(10)xU(1): (£1,0,0,0,0,0), (0,£1,0,0,0,0), etc.. However after the
projections only four of these appear in gauge beson states: (0,0,41,0,0,0) and
(6,0,0,41,0,0).

Massless gauge bosons from V; arise when all the left-movers are in the

vacuum state; the associated fermionic charges are

(i%,ﬂ,ﬂ,:t%,i%,ﬂ:%) . (4.7
Now for a state to be neutral under the extra U(1) of SO(10)xU(1), the sum of
the 5th and 6th fermionic charges must be zero. Thus only 8 of the 16 charges
in (4.7) correspond to roots of SO(10). Of these 8, only four appear as gauge
hosons in V after the projections. The other four appear as gauge boson states
in V3+V,. Lastly, the gange bosons coming from Vo4V and Vo+Va+V, are

exactly analogous to the above discussion of V; and Vi +V,.

Table 2 summarizes the fermionic charges of the 45 SG(10) gauge bosons.
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Sector Fermionic charges
untwisted: 5x(0,0,0,0,0,0)
+(1,0,0,0,0,0) +(0,1,0,0,0,0)
Va: +(1/2,-1/2,1/2,-1/2,0,0) +(1/2,-1/2,-1/2,1/2,0,0)

(1/2,1/2,1/2,-1/2,0,0)  +(1/2,1/2,-1/2,1/2,0,0)

Vi: +(0,0,1,0,0,0) +(0,0,0,1,0,0)

Vi: +(1/2,0,0,1/2,1/2,1/2)  +(1/2,0,0,-1/2,-1/2,1/2)

Va Vs : +(1/2,-1/2,-1/2,,1/2,00) +(1/2,-1/2,1/2,1/2,0,0)
+(1/2,1/2,1/2,1/2,00)  +(1/2,1/2,-1/2,-1/2,0,0)

Va4V, : £(0,1/2,1/2,0,1/2,-1/2)  £(0,1/2,-1/2,0.-1/2,1/2)

Va4V, +(1/2,00,1/2,1/2,1/2)  £(1/2,00,1/2,-1/2,1/2)

Va4V 4V, +(0,1/2,:1/2,0,1/2,-1/2)  +(0,1/2,1/2,0,-1/2,1/2)

Table 2

Thus we have understood the gauge bosons and fermionic charges corre-
sponding te all 45 roots of SO(10); this defines an explicit embedding of the
gauge group into 6 fermionic charges. It is then easy to translate the weights
of any other irrep into fermionic charges, and thus read off the gauge quantum
numbers for all the massless states in the spectrum. Of course, because of the
N=1 spacetime supersymmetry, the massless matter fields group into chiral
supermultiplets containing a complex scalar and a Weyl spinor. Because the
gravitino resides in sector V;, the superpartner of a boson/fermion in sector
a; V; must always be in sector V;+a;V.. It is a convenient shorthand when we
count “states” in the massless spectrum to count them four at a time: two
scalars and two CPT conjugate spinor states.

In this model the embedding of SO{10)x U(1}is such that fermionic charges
(1/2,1/2,0,0,1/4,-1/4) indicate the highest weight of a 16 of SO(10), with U(1)
charge zero. It is obvious, therefore, that this model contains no neutral 16’s,
since these require boundary conditions (++——) in left-mover slots 9 through
12. On the other hand, fermionic charges (1/2,1/2,0,0,1/2,0) indicate the high-
est weight of a 16 of SO(10), with U(1) charge 1/2. Examining the basis vectors

we immediately see that sectors Vi, Vg, and Vi all potentially contribute states
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of a massless 16. After performing the projections one finds that in fact Vi and
Vs contribute the highest weights of two chiral 16’s each. However V; does not
contribute any massless states at all to the spectrum: the projection from ¥}
removes them. This feature is independent of the choice of k;;'s; it depends
only on the overlap between V; and V;.

The 16's are chiral because the helicity is correlated with the SO(10) weight

. which distinguishes the 16 from the 16. One also finds that sector V5 + V;

contributes the highest weights of two 16’s; these may couple via adjoint Higgs
in sector V3 to the two 16's in V4, making them superheavy.

It is useful to observe that if the highest weight state of a 16 resides in,
say, sector V;, then the states which fill out this irrep must reside either in V;
ot in sectors which are the sum of V; and a sector containing SO(10) gauge
bosons. Thus, e.g., for either of the two 16's whose highest weight is in V;,
the full irrep consists of four states from Vi and two states each from V3+V;,
Vi+Vs, Va4 Va4V, Va4 ViV, Va4 ViV, and Va4 V34V, 4V;. Note that no
states of the 16 come from V3+V; in this example, but in general some could.

The full gauge group of this model is SO(10)x SO(8) x[U(1)]*. SO(B) is a
hidden sector gauge group and is realized at level one. However the embedding
of SO(8) is nontrivial: the 28 gauge bosons are distributed in the 16 different
sectors which can be formed from linear combinations of V3, V3, ¥, and 2215,
Hidden sector massless fields occur in the singlet, 8,, 8,, and 8, irreps of SO(8).

The rote of the block of 16 real fermions in this model is twofold. First it
reduces the rank of the gauge group. The maximal rank for the gauge group
from the left-movers is 22; this is reduced by nine because of the three Ising
fermions and the 15 left-moving real fermions. Thus the full gauge group has
rank 13.

The second role of the real fermions is that they make it possible to embed
a higher level current algebra, simultanecusly producing a discrete holomorphic
algebra. From the discussion above of the gauge bosons it is easy to deduce
how this model realizes the 45 currents of SO(10} at level two. The Cartan
elements, as already mentioned, are fermion bilinears of the form AtA and don't

involve the real fermions. There are four other currents which are also fermion
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bilinears, but where one of the fermions is pseudo-complex. From V; we see
that there are four currents which are composites of one Weyl fermion with 8
real fermion twist fields. Lastly, there are 32 currents which are composites of
4 Weyl fermion twist fields with 8 real fermion twist fields.

To see the importance of the discrete holomorphic operator algebra, con-
sider the massless adjoint Higgs in this model. There are two 45 Higgs super-
multiplets in Model A; the scalars are distributed in sectors as shown in Table
3

Unlike the gauge bosons, these adjoint Higgs are not associated with the
$O(10) currents, rather they correspond to primary fields with respect to the
level two SO(10) Kac-Moody current algebra. These holomorphic primaries
have conformal dimension 4/5. Since the operators which create physical states
must have left conformal dimension 1, the adjoint Higgs must be a nontrivial
element of the discrete operator algebra. This is encoded in the real fermion

structure of Vj.

Sector No. of states  Real fermion b.c.'s

Va 9 (0101010101010101)
o+l 8 (1010101001010101)
Va4V 4 (0101101010100101})
VitV 4 (1001100110011001)
Va+Vi+Va 8 {1010010110160101)
Va+Vi4+ Vg 4 (0110011010011001)
Vi+Vi+Vs 4 (1001011001101001)
Va4V + V415 4 (0110100101101001)

Table §

It is interesting to note that even after fixing the embedding of SO(10) in
fermionic charges, there is still some residual freedom to adjust the accompa-
nying teal fermion structures. This can be seen by comparing Model A with
the 50(10) level two model of Lewellen [28]. Lewellen’s model can be obtained
from Model A by replacing VsV, with the following:
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Vs: {11160100010010010010([111100001100|1010101010101010|1 100006000000000)
Ve: (11016010106100001001 ||000000001111{6060000000000000(0011110000000000)

2: (00000000101 101101101}{1 111111100000000000000000000]0000000000000000)

The k;; for i>j and koo are all zero in this model.

Lewellen’s mode} embeds SO(10)xU(1) into six fermionic charges in ex-
actly the same way as Model A. However the real fermion content of the 50(10)
currents is slightly different. In particular, for Lewellen’s model the untwisted
sector contributes only the six Cartan gauge bosons, while V3 contributes eight
gauge bosons instead of four. This means that there are no currents which
are fermion bilinears and where one of the fermions is pseudo-complex; it also
means that there are eight rather than four currents which are composites of
one Weyl fermion with 8 real fermion twist fields.

Such slight differences in the real fermion structure can have important
consequences for model building. For example, Model A has a more natu-
ral embedding of SU(5)€50(10) than Lewellen's model. By simply setting
ko3=—1/2, the level two SO(10) of Model A is broken to a level two SU(5),
times a U(1). This is possible because, im Model A, all of the roots of SO{10)
which are not also roots of SU(5)xU(1) are realized as gauge bosons in sec-
tors involving V3. Modifying kg3 causes these gauge bosons to be projected
out. Notice that the central charge of SU(5) at level 2, ¢=48/7, is not half-
integer valued. Neither is that of the discrete holomorphic algebra, which has
e=12 — (48/7).

§.2. Model B

This example has N=2 spacetime supersymmetry, SO(10) realized at level
two, and Higgs in the 54 of SO(10). Asin Model A, the five Cartan currents are
realized as simple fermion bilinears in the untwisted sector. However in Model B
these currents are linear combinations of fermion bilinears corresponding to 10
left-moving Weyl fermions. The roots of SO{10) are embedded in 10 fermionic
charges, corresponding to the first 20 left-mover slots. The next 16 left-mover

slots are again a block of 16 real fermions.
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there are 2608 massless states which belong to supermaultiplets containing ei-
ther (i) a gange boson, two Weyl spinors, and a complex scalar, or (ii) two
Weyl spinors and two complex scalars. Thus the supermultiplets containing

the 108 gauge bosons of SO(10)x Fyx SO{5)xU(1) account for 864 states; the

remaining states form 218 matter supermultiplets in the following irreps:
— one 54 of SO(10),
- one 26 of Fy,
— one 5 of SO(5),

— four pairs 16+16 of SO(10) which also carry charge 1/4, ~1/4 respec-

tively under the U(1}),

~— a pair which carry only U(1} charge +1, and three which are singlets

under the full gauge group.

Sector

Fermionic_charges

untwisted:
|
Vi
Vy:

Vs :
Vo+Vs e
Va4V :
Va+Vs :
Va4V, :
Vi+Vs
Vi+Vs

5x(0,0,0,0,0,0,0,0,0,0)
+(1/2,1/2,1/2,1/2,0,0,0,0,0,0)
+(1/2,1/2,0,0,1/2,1/2,0,0,0,0)
+(1/2,1/2,6,0,0,0,1/2,1/2,0,0)
+(1/2,1/2,0,0,0,0,0,0,1/2,1/2)
+(0,0,1/2,1/2,1/2,1/2,0,0,0,0)
+(0,6,1/2,1/2,0,0,1/2,1/2.,0,0)
+(0,0,1/2,1/2,0,0,0,0,1/2,1/2)
+(0,0,0,0,1/2,1/2,1/2,1/2,0,0)
£(0,0,0,0,1/2,1/2,0,0,1/2,1/2)
+(0,0,0,0,0,0,1/2,1/2,1/2,1/2)
Table 5
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+(1/2,1/2,-1/2,-1/2,0,0,0,0,0,0)
+(1/2,1/2,0,0,-1/2,-1/2,0,0,0,0)
+(1/2,1/2,0,0,0,0,-1/2,-1/2,0,0)
£(1/2,1/2,0,0,0,0,0,0,-1/2,-1/2)
+(0,0,1/2,1/2,1/2,-1/2,0,0,0,0)
+(0,0,1/2,1/2,0,0,-1/2,-1/2.0,0)
£(0,0,1/2,1/2,0,0,0,0,-1/2,-1/2)
+(0,0,0,0,1/2,1/2,-1/2,-1/2,0,0)
4(0,0,0,0,1/2,1/2,00,-1/2,-1/2)
+(0,0,0,0,0,0,1/2,1/2,-1/2,-1/2)

For SO{10) at level two, the 54 and the 45 are the only new irreps which
can occur as massless matter states other than the irreps which also occur at
level one (the singlet, 10, 16, and 16). As was discussed above, a 45 Higgs
correspends to a level two Kac-Moody primary with conformal dimension 4/95,
and must therefore be a nontrivial element of the discrete algebra. A 54 Higgs
corresponds to a level two Kac-Moody primary with conformal dimension 1;
since the full physical vertex operator also has left conformal dimension 1, this
implies that it must be the identity element under the discrete algebra. It is
not surprising then that the states of the 54 arise in precisely the same sectors
as the SO(10) gauge bosons, which are alse trivial under the discrete algebra.
Moreover, if we construct Table 6 listing the sectors and fermionic charges of
the (scalar) states in the 54, it differs from Table 5 only by the states in the
untwisted sector.

Sector Fermionic charges

untwisted: 4x(0,0,0,0,0,0,0,0,0,0)
+(1,1,0,0,0,0,6,0,0,0)
+(0,0,0,0,1,1,0,0,0,0}
+(0,0,0,0,0,0,0,0,1,1)

+(0,0,1,1,0,0,0,0,0,0)
+(0,0,0,0,0,0,1,1,0,0)

Table 6

The highest weight states of the (nonchiral) 16's arise in sectors 3+6 or
3+6+7, reflecting that fact that with this embedding of SO(10) the highest
weight of the 16 is given by

There are many variations of Model B which preserve the realization of
S0{10) at level two. For example, we can add the following additional basis

vector:
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Vz: (11001001001001100100([6000000000001 11 100001111 |0000000000000006|0000)

The additional k;; for 1>} are chosen to be all zero except for kgs=-1/2, and
kgs=1/4.

For this model the N=2 spacetime supersymmetry of Model B is broken
to N=1. The full gauge group is given by

50(10) x $p(6) x SO(5) x SU(2) x U(1)

which is again rank 12. The SO(10) is realized at level two, and the other
factors at level one.

In closing this section on examples we should emphasize that our symbolic
manipulation package makes the construction and analysis of such models quite
easy. All of the results presented here come directly from the computer printout,
and were produced in approximately one minute on a NeXT. Anyone wlho has
gained some familiarity with the modular invariance constraints could produce

and analyze dozens of variations on Models A and B in a single afternoon.

5. Aspects of real fermionization
5.1. Tree-level Couplings

The tree-level correlation functions of the N=(2,0) superconformal field
theory are an essential ingredient in extracting the full tree-level superpotential
of the low-energy effective field theory. Any solution to string theory that
realizes a higher level current algebra must, if it has a fermionic embedding,
necessarily contain some number of real fermion constituents, i.e., Majorana-
Weyl fermions which cannot be paired into either Ising or Weyl fermionsin every
sector of the partition function. The correlators of a real fermion conformal
field theory cannot be abstracted from those of the critical Ising model or of
free bosons, and thus require an independent analysis.

In the ferinionic construction given by Kawai, Lewellen, Schwartz, and
Tye (KLST), any three sectors of the partition function allow a psendo-

complexification: a pairing of the real fermions that is consistent with their
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boundary conditions in each of the three sectors [27). This property of their
construction is motivated by requiring modular invariance of non-vanishing
two loop amplitudes in the factorization limit. Conservation of the pseudo-
U(1) charges associated with such pseudo-complexifications then provides a
prescription for computing arbitrary 3-point and 4-peint correlaters involving
real fermions. However even this prescription breaks down for general N-point
correlators, N>4. Clearly, it would be useful to have a more complete under-
standing of real fermion conformal field theories, both as a consistency check
on the limits of the validity of the KLST prescription, and with a view towards
developing direct tree-level methods that can be extended to other cases of
interest.

Let us consider an alternative starting point. For rational conformal field
theories, such as real fermions, Verlinde's theorem [53] allows us to make explicit
contact between the modular transformation properties of the chiral spin struc-
ture blocks in the one-loop partition function, and the tree-level fusion algebra
of the chiral primary field operators. The correspondence works as follows. In
a rational conformal field theory it is possible to rewrite the one-loop partition
function in terms of a finite number of holomorphic blocks, yi{7}, which are
the characters of the chiral primary fields, ¢;(z), under the Virasoro algebra (or
an extension thereof). Using the characters, one can form a suitable basis for
the action of the modular transformations, S : r——1/r, and T : r—r+1, such
that § and T are realized as finite dimensional unitary matrices. It is easy to
show that if the characters are modular functions the matrices S and T satisfy

two important consistency conditions:
(ST =8*=C . (5.1)

Here C is the conjugation matrix that takes each character to its conjugate, and
satisfies C?=1, the unit matrix. The existence of a conjugation matrix is related
to the fact that in the tree-level operator product algebra, every chiral primary

field operator is associated with a unique conjugate: let {¢:), {#{] denote the
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conformal families whose chiral primary ficlds are ¢; and ¢f, respectively, and

let [I] denote the conformal family of the identity operator. Then

[l xfeil = [1] (5.2)

defines the chiral primary field operator, ¢f, conjugate to ¢;. Of course an
operator could be selfconjugate. Verlinde’s theorem is the statement that the
matrix S, derived in an appropriate basis from the characters, diagonalizes
{(and determines) the tree-level fusion rules. Let the subscript ‘0’ denote the
conformal family of the identity operator, T. Note that in a unitary conformal
fieid theory the identity is the unique operator with conformal dimension zero.

Construct

Nije = Z &“—?:Eﬂ ) (5.3)

where the coefficients N;;. are nonnegative integers. The fusion rules are then
given by

[¢:] x [#;] = NipC*[ée} . (5.4)

The Nj;i also give selection rules on the 3-point chiral correlators since

(di(21)di(2z2)da(23)) x Nijne . (5.5)

A single left-moving Majorana-Weyl fermion corresponds to a ¢, =1/2 con-
formal field theory. The Virasoro primaries have conformal dimension 0 (the
identity, I}, 1/2 (the chiral fermion field ¥(z}), or 1/16 (the chiral twist fields).
In general (see [65]) there may be two distinct chiral twist fields () and p(z);
this is the case if we require the existence of a well-defined chiral fermion num-
ber, i.e. an operator (—1)*t which anticommutes with ¥(z):

e g V1
[ Y s} 1¥nj§ hd

—
'Gﬂ
on

et

for all modes ¢,. Acting on the Neveu-Schwarz vacuum |0}, o(0) and ;1(0) create

iwo degenerate Ramond vacua with different fermion number. Tiie Ramond
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zero mode operator yu, (¥io)*=1/2, takes one Ramond vacaum into the other.

This implies the obvious fusion rule
Wl xlel=[u] . (5.7)

To apply Verlinde's theorem, the chiral spin structure blocks of the one-
loop partition function should be rewritten in terms of the four chiral Virasoro
characters xo, Xo, X172, and x,. Of course the Virasoro characters y,(r) and
xu(7T) are actually equal, since the corresponding primaries have the same left

conformal dimension. We write [65]

23(r) = xo(r) + x12(7)
2)r) = xo(7) - x1p2(7)
Z5(1) = Xol(r) + Xul7)

ZH1) = Xolr) — Xul7)

—
[
]

—

where we have introduced the notation ¥,=x0/V?2, X,=x,/V2. If we use the
basis X0, Xoy X1/2) Xu» to construct S, then § will not be unitary; this reflects
the fact that one does noi obtain a diagonal modular invariant using aii four
characters. We have adapted Verlinde’s analysis to this case, however here we
will employ the convenient shortcut of using the modified basis xo, Xo, X1/2
Xu-

Since the Ramond-Ramond block Z}(7) vanishes, it may not seem that its

is apparent in the KLST formalism that Z](r) picks up phases under § and
T, and that these phases are vital to the construction of the partition function
for real fermions. In [27} this was understood by appealing to higher loop mod-
ular invariance: although Z](7) vanishes, it appears in the factorization limit
of certain nonvanishing two-loop amplitudes. Here we see that the modular
transformation properties of Z](7) are needed to connect the one-loop parti-
tion function to the tree-level fusion rules. Both arguments may be regarded as

appealing to the unitarity of the internal rationai conformai field theory. To be
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completely general, we will parametrize the modular transformations of Z}(r)

by two phases:
r—=tfr:  Z) 2}
2] - 2,
2y = 2
2] —e?2]
. (5.9)
Ter4l: 28 e HZ)
2} — efHZS
Zl oMzl
Z] - ei"eﬂzll

The paramcters ¢ and 5 are then fixed by combining (5.8) with {5.9) and

imposing the consistency conditions (5.1). Thus requiring (5T)*=52 gives
T ¢
T=173 . (5.10)
The constraint S*=1 has fwo distinct solutions:

¢:0! E

We thus obtain two possible forms for S acting as a 4x4 unitary matrix

on the modified basis set xo, Xos X172, and ¥,

1 1 1 1
=0 s=2t 0 T D

L
p=3 =311 o 1 4

1 —i -1 t
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Veslinde’s theorem then provides the corresponding tree-level fusion rules:
¢=0: [v}xld]=12]
[¥} x lo] = [u]
[o] x [a] = {1]
1] > [ = [T]
(o] x [p] = [¥]
vl x [¢] = [7]
[¥) x [o] =[]
o] x o] = [¥}
(] x ] = [l
[o] x 1] = [T]

We will refer to the =0 case as the s-type fusion rules, for self-conjugate twist

/e (5.12)

ra| N

fields, and the ¢=n/2 case as the c-type fusion rules. In the latter fusion algebra
the twist fields are conjugates of each other.

Our result is that in any solution obtained via real fermionization each
constituent real fermion can be labelled as s-type or c-type, where this labeling
denotes the correspending set of fusion rules. It is important to realize that
this should not be regarded as a new result in the conformal field theory of
free Majorana-Weyl fermions per se, rather it is a new result about the proper
conformal field theory interpretation of solutions to string theory obtained in
the fermionic formulation.

To emphasize this last point, we sketch how to recover the familiar fusion
rules of the Ising model. The critical Ising model does not require the existence
of a chiral (—1)fz, only of the non-chiral combination (—1)F=(—1)"1+Fa_ Thus
for the Ising model we need introduce only a single chiral twist field #7(z), where
ot(z)=(o(z)+p(2))/V2. The unitary matrix S is now computed in the new
basis provided by the four chiral Virasore characters ya, xo+. Y12, and x,-.

The result is identical for the s-type and c-type cases:

1 V2 1 o
1 VI 0 -2
P O TRV, I |

0 0 0

(5.13)

[
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Clearly 0~ (z) decouples; it can be consistently set to zero. Application of

Verlinde's theorem then gives the fusion rules:

[¥] x [¥] = {7]
[¥] x [o] = (o] (5.14)
llxlol=[T}+1¥]

where the superseript + on ¢ has been dropped. These are the familiar fusion

rules appearing in, e.g., [53].

5.2. Selection Rules

Given explicit fusion rules for the chiral primaries of the real fermions the
correlators can be obtained via the conformal bootstrap. We intend to give
a complete treatment of such computations in future work. A useful means
of finding selection rules for correlators is to introduce the notion of simple
currents (also called bonus currents), discussed for general rational conformal
field thearies in [66]){67]. A simple current is defined as any chiral primary ¢;(z)
in the chiral operator product algebra such that

S NE=1, forallj. (5.15)
k

For example, in the Ising fusion rules (5.14), ¥(z) is a simple current, but o(z)
is not.

In general simple currents are not currents, i.e. they need not have confor-
mal dimension =1. However associated with each simple current is a discrete
symmetry, and a corresponding charge which is conserved mod 1 in correla-
tors. This is easy to demonstrate for the fusion algebras (5.12) obtained above.
For any simple current ¢;(z), there must be a positive integer N such that
[(¢:)V]=I. N is called the order of the simple current. Thus for example in
the s-type algebra (5.12), o(z) is a simple current of order 2, while in the c-
type algebra o(z) is a simple current of order 4. Clearly the chiral primaries of

any rational fusion algebra can be decomposed into orbits with respect to each
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simple current. Thus in the s-type algebra, the orbits with respect to o(z) are
{I.0}, {i,¥}; for the c-type algebra, there is only one orbit: {Z,0,3,u}.

For any simple current ¢,(z}, there is a discrete charge Q; assigned Lo every
primary ¢;(z). When the matrix S is symmetric (as in (5.11)), these charges
are given by the simple expression|[67]:

niQ; _ i
™ = i i (5.16)

These charges are conserved mod 1 in correlators. This provides useful
selection rules for N-point functions involving real fermions. One of these se-
lection rules is already familiar: ¥(z) is a simple current with an associated Z
charge. This charge is the same for the s and c-type algebras. Conservation

of this charge gives the selection rule that correlators with an odd number of
Ramond fields vanish [18].

5.3. Conasistency of the KLST Conatruction

The analysis of the previous section inakes an explicit connection between
the one-loop partition function of real fermions, and the tree-level operator
algebra of the underlying conformal field theory. This allows us to perform
some consistency checks on the KLST formulation [27). We will show that
for a large class of consistent solutions, the prescription given in [27] is both
necessary and sufficient. However we will also derive the simplest case where
the KLST prescription appears to break down. The problem can be traced to
the assumed modular tranformations of the real fermion spin structure blocks.

The KLST prescription includes three constraints which apply only to the
real fermion spin structures in the partition function. These are [27]:

(1) The total number of real fermions is even.

(i1) Let O(V;,V;)} denote the number of overlaps of real fermions with the Ra-
mond boundary condition between sectors Vi and V;. Then for all V;, V;,
O(V;, V;) must be even.

(iii) Let O(Vi,V;, Vi) be the number of overlaps of real fermions with the

Rameond boundary condition common to three sectors. Then for all V;, Vj,
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Vi, O(Vi, V}, Vi) must be even. This is referred to as the cubic constraint in
[27](18]{28]. Note that, since the all-Ramond basis vector V4 is in every model,
(ii) is actually implied by (iii). By the same token, O(V;, Vi) even implies that
the total number of real fermions with the Ramond boundary condition in any
single basis vector must be even.

The KLST construction relies on pseudo-complexification of pairs of real
fermions in order to define the Fock space upon which the GSQ projection op-
erators act. Psendo-complexification means that, in every sector, real fermions
are sorted —in a sector-dependent way-—- into NS-NS or R-R pairs. Each pair
is then used to define a complex fermion, and the Fock space is constructed as
if these complex fermions were actual Weyl fermions. The resulting Fock space
is obviously a subspace of the original Fock space spanned by the real fermions.

The KLST construction also relies on the pseudo-complexification of pairs
of real fermions in order to define the modular transformation properties of
the chiral spin structure blocks of a single real fermion. The transformation
properties were assumed to be given (up to a sign) by the “square root” of

those for a Weyl fermion. Thus

T T 20— 2) 20— Z)
2320zl —e¥z)

T+741: 23—»9'!'}2? Z) e HZ
Zd eﬁz,} 2} - eﬁzll

(5.17)

One immediately notes that this does not agree with the modutar trans-
formation properties of either the s-type or the c-type cases discussed above.
However in a partition function of N real fermions, the modular transforma-
tions of relevance are those of the real fermion spin structure blocks taken N
at a time. Suppose that in a particular sector of the partition function, there
are N,, N, left-moving real fermions with Ramond boundary condition and
fusion algebra of s, ¢ type, and N,, N, right-moving real fermions with Ra-
mond boundary condition and fusion algebra of 5, ¢ type. According to the

transformation properties under S assumed in the KLST prescription (5.17),
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the corresponding real fermion spin structure blocks transform by the overall

phase

expm(N' + Ncqﬁ N, - Ne) . {5.18)

Our analysis in the previous section indicates that the overall phase should be

expm(Nc - N}

> (5.19)

Thus consistency between the two prescriptions for the modular transformation

properties is achieved if and only if
(Ne+N)—(N.+N,)=0 mod8. (5.20)

for every sector in the partition function. Since the chiral spin structure blocks
of right-moving c-type real fermions transform like those of left-moving s-type
real fermions for the purposes of this argument, we will suppress the left-right

labeling and write simply
N,—N.=0 mod8. (5.21)

This is the basic identity required for agreement between the assumed modular
transformation properties in the KLST prescription, and those derived from the
tree-level fusion rules of the real fermion conformal field theory.

Our task now is to convert this consistency equation into & list of con-
straints on the basis vectors. i.e., the set of boundary condition vectors which
span the sectors of the partition function. One obvious consequence of (5.21),
given that the sector ¥ occurs in any solution, is that the total number of real
fermions in the underlying conformal field theory must be even (thus reproduc-
ing (i) above). In a sector where N,=N, (not merely mod 8), there are as many
real fermions with Ramond boundary condition and fusion algebra of s-type as
of c-type, and as many real fermions with Neveu-Schwarz boundary condition
and fusion algebra of s-type as of c-type. Thus we have a collection of s-c pairs.
However a Weyl fermion with periodic or antiperiodic boundary condition may
also be regarded as an s-c pair of real fermions: the holomorphic operator alge-

bra of a Weyl fermion is a subalgebra of that obtained from the tensor product

44



of an s-type algebra and a c-type algebra, with only 4 chiral primaries instead
of the possible 4x4 = 16. Thus in any sector where N,=N, we can perform
a sector dependent pseudo-complexification of the real fermions. This is the
essence of the KLST prescription for real fermions.

Let us now suppose that the constraint (5.21) is satisfied by the set of basis
vectors and derive what additional constraints may follow by requiring (5.21)
for sectors which are sums of basis vectors. To do this, let R(V, +Vo+...4+ Vi)
denote the number of real Ramonds in the sector defined by the sum of basis

vectors Vj+V2+...4+V,. Then one can easily verify the following identity:

RVi+Ve+..+ V) =) R(V)-23Y OV, V)

i<y

+4 ) O(Vi,V;, V)-8 3 O(Vi,V;, Vi, Vi) +...
i<j<k i<j<k<d
(5.22)

Applying (5.21) and (5.22} to the sum of any two basis vectors, one finds:
OV, Vi) = O(Vi,V;) =0 mod 4, (5.23)

where O, and O, denote the aumbers of overlaps of real fermions with Ra-
mond boundary condition and s-type or c-type fusion algebra, respectively.
Since O(V,,V;} = O,(Vi, V;HO.(V;, V), (5.23) implies constraint (ii). How-
ever (5.23) is a somewhat stronger constraint than (ii).

Applying (5.21) and (5.22) to the sum of any three basis vectors, one finds:
O,(Vi, Vi, Vi) — OV, V;, Vi) =0 mod 2. (5.24)

This is obviously equivalent to the cubic constraint {iii).

Applying (5.21) and (5.22) to the sum of any four basis vectors, one finds:
On(“a v:ja Vksw)—oc(wv‘/:iivka ‘/1) =0 modl. (5'25)

However this is no constraint at all, since O, and O, are integers. There is
therefore no “quartic constraint™ for real fermions, a fact which was first ob-
tained by KLST |27]. Similarly looking at sums of > 4 basis vectors produces

no additional constraints,
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5.4. Spin Structures For Real Fermions

So far we have shown that the consistency condition (5.21) suffices to de-
rive the KLST constraints (i)-(iii) without making any reference to higher-loop
modular invariance. To see whether (5.21) implies any additional requirements
beyond (i)-(iii), we will consider the general form of sets of basis vectors which
describe real fermion spin-structures. We will suppress the entries of a basis vec-
tor which describe Weyl or Ising fermions, writing N dimensional basis vectors,
where N is the number of real fermions. We can also suppress the distinction
between left-movers and right-movers for the purposes of this argument. The
real fermions are of course either periodic or antiperiodic. Furthermore, the
boundary conditions have been chosen such that there are no global pairs, i.e.
no two real fermions have identically matched boundary conditions across the
entire set of basis vectors. Obviously such a pair should have been regarded as
a single Weyl or Ising fermion and thus (by assumption) suppressed.

We have already shown that the KLST constraints (i)-(iii) will follow pro-
vided that (5.21) is satisfied for any dasis vector, and that (5.23) is satisfied
for any two basis vectors. Thus our strategy will be to construct sets of basis
vectors which describe real fermions and also satisfy constraints (i)-(iii). The
set of basis vectors therefore defines a solution to string theory built consistent
with the KLST prescription. We then need to show that for any such set of
basis vectors, there exists at least one s-c labeling of the N real fermions such
that (5.21) and (5.23) are satisfied. It follows that there is an unambiguous
definition of the tree-level fusion rules for all of the real fermions. In each case
where at least one s-c labeling exists, the KLST constraints (i)-(iii) are not only
necessary but also sufficient.

Consider a set of M basis vectors describing the spin structure of N real
fermions. We will consider these as N dimensional vectors whose entries are
either 0 (denoting Neveu-Schwarz) or 1 (denoting Ramond). For simplicity we
may always assume that we have a minimal sef of basis vectors, in the sense
that if any one basis vector were to be removed, at least two real fermions would

become globally paired. We will not bother to write Vy, the basis vector with all
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real fermions in the Ramond ground state, which is always present. Applying
constraints (i}-(iii), we then derive the following results:

1. For M <3}, there are no allowed sets of basis vectors which contain real
fermions.

' 2. For M=4, there is a unigue set of basis vectors (modulo relabeling
or reshuffling the basis) which contains real fermions. This unique set of four
produces 16 real fermions:

V) (1111111100000000)

V,: (1111000011110000)

Va: (1100110011001100)

Vi: (10101010101010106)

The proof is as follows. In a collection of four vectors as above, each vertical
columnn is a 4-digit binary number from 0000 to 1111. To avoid any global
pairing, any particular 4-digit binary must appear just once or not at all. Thus
the mazsmum number of real fermions which we can describe with four basis
vectors is clearly 16. Now consider the column 1111 (the first column above).
It is easy to see that if 1111 is present, then constraints (i)-(iii) imply that all
16 columns must be present. On the other hand, if 1111 is absent, then {i)-(iii}
have no solutions. Thus 16 is also the minimum number of real fermions, and
this is in fact the unique allowed spin structure.

3. There are many s-c labelings of the structure of 16 which satisfy (5.21)
and (5.23). Two examples are

8CSCSCHCECICSCEC
(5.26)
888SCCCCI888CCCC

4. 1t is not difficult to show [68] that 16 is the minimum number of real
fermions for any M.

5. For M=5, the allowed spin structures describe either 16 or 32 real
fermions. For a collection of five basis vectors, each vertical column is a 5-digit
binary between 00000 and 11111. Thus 32 is the maximum number of real
fermions which can be produced, and in fact this unique structure of 32 also

satisfies the constraints (i)-(iii). It can be written as
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Vi: (11111111000000002 111111100000000)

Vi (11110000111100001111000011110000)

V3: (11001100110011001100110011001100)

Vi: (10101010101010101010101010101010)

Vs: (11111111111111110000000000000000)

This form makes it clear that the structure of 32 consists of two copies of the
structure of 16. The fifth basis vector merely breaks the symmetry between the
two blocks of 16. Thus to get an allowed s-c labeling for the structure of 32, we
merely take any two of the allowed labelings for the structure of 16.

To complete the discussion of M=5, we note that the constraints (i)-(iii)
are all mod 2 constraints. It follows immediately that if there is any spin
structure satisfying (i)-(iii) and describing N real fermions, then there exists
another allowed structure which describes 32— N real fermions. This second
—or “complement” — structure is obtained from the first by simply removing
the columns which appear in the first structure from th'e structure of 32 above.
Thus there are also no allowed structures with 16<N< 32,

6. For M >35, the classification of allowed spin structures for real fermions
gets more complicated. For example, for M =6, an exhaustive search shows that
there are allowed structures for 16, 24, 28, 32, 36, 40, 48, and 64 real fermions.
The structure of 64 is maximal, and may be regarded as four blocks of 16.
The structures with 36, 40, and 48 real fermions are 64— N complements of
the structures which give 28, 24, or 16 real fermions. Thus the only essentially
new structures are those giving 24'? or 28 real fermions. The structure of 24
may be thought of as two everlapping blocks of 16, and inherits a number of
allowed s-c labelings from those of the 16. More generally, although we have
not completed the classification of all allowed spin structures for M >5, it is
clear that a large class of the allowed structures are built from the basic block
of 16, and furthermore that they inherit allowed s-c labelings in an obvious way
from the component blocks.

7. The structure of 28 real fermions for M =6 is more interesting. It can

be written as

18 This structure of 24 was derived and pointed out to us by Jonathan Feng, who

has also found a different structure of 28 for M=7.
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. ([1111111100000000p00000101110)
: ([1111000011110000000000111001)
= ({1100110([1100111 1p0000000D00D)
Vi: ((101010101010110081660000D600)
: (
: (000

1111111111118111)
1111010101010p101)

This structure can be thought of as three overlapping blocks of 16: two

of the blocks correspond to the boxes shown above. The third block of 16
consists of the entries which are in vectors Vi, V;, V;, Vs and in columus
{3,4,7,8,11,12,15,16,17,18,23,24,25,26,27,28}.

The overlaps of the three blocks of 16 are sufficiently complicated that
it is not clear by inspection whether this structure inherits any allowed s-c
labelings. However an exhaustive search of all 22% possibilities shows that for
this structure of 28 there are no s-c labelings satisfying (5.21). Thus in this case
the KLST prescription breaks down: the assumed modular properties (5.18)
do not agree with (5.19). This does not necessarily mean that there are no
consistent solutions to string theory with this real fermion spin structure, but
that one must modify or go beyond the KLST construction to derive them.

QOur final result is that the original KLST construction is consistent for
a large class of spin structures which describe real fermions, but fails in other
cases. Just as importantly, we have also learned that the allowed spin structures
for real fermions are quite restricted. This is not surprising from the point of
view of rational conformal field theory, but it has important consequences for

model building.

6. Conclusions

Our work suggests a number of technical issues involving real fermioniza-
tion that need further analysis. It also suggests some valuable model building
strategies that may enable us to eventually go beyond free fermionization. Let

us begin with two technical issues which we have not yet touched on.
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1. Supercurrent constraints. Given a better understanding of the real
fermion conformat field theories it is useful to state more precisely the world-
sheet supersymmetty constraints necessary for obtaining Lorentz invariance and
N=1 spacetime supersymmetry. The supercurrent of the (1,0} internal super-
conformal field theory of central charge c=9 takes the triplet form [14][15],

[.§
Te(z) = "Z YaVari1¥aesz (6.1)

k=1

where the ¢;(z), 1=3,...

into six triplets.

20, are right-moving Majorana-Weyl fermions, grouped

Following [14]} we will consistently choose the internal conformal field theory
part of the spacetime supersymmetry currents to be embedded in the tensor
product of the six individual Ramond ground states associated with 3, ¥, th,
Y12, Y15, and ¥45. The related U(1) current is the fermion bilinear

HZ) = iPave + ez +ivhsvis (6.2)

which generates a (2,0) extension of the world-sheet superconformal algebra

[1). Thus, the supercurrent (6.1) can be split into T and Tj as follows:

3
Tr(z) = \—}—5 Y " ilbae—sver—2vek_1 + Yortars1Yersa] (6.3)
k=1 .

T [ar-2Vek—1¥se — Vor—3Ver+1Vek+2)

The U(1) current algebra is an independent constraint on the Hilbert space of
a consistent solution to string theory beyond the constraints from (1,0) world-
sheet supersymmetry alone. Thus the superconformal constraints on the basis

vectors in a model with spacetime supersymmetry are

Tek—3 + Tek—2 + Tak—1 = Tek + Tek+1 T+ Tek+2 = Tak—2 + Tok—} + rek (6.4)
=rgk-3t+Teks+1 +Toks2 = 1y =rz modl fork=1,23

Here, r; denote the i'th right-moving component of any basis vector. This is

not the usual form of the triplet constraint stated in the literature [14], but it

is equivalent in any modular invariant spacetime supersymmetric model.
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If we restrict ourselves to antiperiodic and periodic boundary conditions
alone for the right-moving fermions, the superconformal conditions (6.4) are
sufficient to guarantee a consistent sclution to string theory, assuming that the
spectrum also satisfies the modular invariance constraints. We have seen in the
previous section that this requires, in addition to (6.4), that we clearly ideatify
every right-moving Majorana-Wey! fermion as either being globally paired with
a right/left-moving Majorana-Wey! fermion to form a Weyl/Ising fermion, or as
a member of a valid spin structure block of unpaired (right-moving and/or left-
moving) real fermions. For this class of solutions, we now have an unambiguous
prescription to build fully consistent solutions to string theory whose underlying
conformal field theory description includes both urpaired and paired Majorana-
Weyl fermions. The two examples given in section 4 were particularly simple
examples of this class, since all of the real fermions were left-movers. We will
develop this class of solutions in future work. In particular, it is possible to
systematically explore the options for obtaining three generations compatible
with the gauge symmetry being realized at higher level.

It is more difficult to implement the supercurrent constraints for general
models containing a combination of Weyl, Ising, and real fermions. This is be-
cause we have the possibility of introducing twisted boundary conditions other
than periodic or antiperiodic for some of the right-moving Weyl fermions. In
this case the supercurrent constraints require that, up to an overall basis change
of the right-moving fermions, the boundary conditions in the basis vectors {V;}
describe a set of commuting automorphisms/antiautomorphisms of the super-
current [15][14]. A detailed discussion with many examples is given in [69].
An explicit prescription analogous to {6.4) for determining whether a given set
of boundary conditions is valid has not been derived, and thus this class of

solutions will require further analysis.'?

2. Verification. As noted, we have developed a symbolic manipulation pack-

age [52} to analyze models consteucted using real fermionization. The program

"' In particular, we believe that world-sheet supersymmetry is violated for the three

generation model presented in [25).

constructs the massless physical spectrum explicitly, by solving, for every sector,
the constraint equations which implement the GSO projections. The algorithm
for solving these equations is fairly involved due to the complicated form of
the GSO projection operators for real fermions [27}, which include products of
pseudo-complexified Ramond zero mode operators.

The results so obtained are of little use unless we can also develop some
convincing means for venification — both of the computer program and of the
detailed algorithms which the program implements. Fortunately there are some
powerful overall physics consistency checks at our disposal. For example, neither
the program nor the underlying algorithm “knows” about spacetime supersym-
metry or gauge invariance. Thus a strong physics consistency check is to verify
that all of the derived states in the massless spectrum assemble into appropriate
supermultiplets and gauge multiplets.

However we want to stress that no amount of checking of a single model
will ever be sufficient for verification of the results. It is essential, in addition,
to run dozens (or hundreds) of test models with the same program, purposely
attempting to generate “peculiar” results which signal either bugs in the code
or problems with the algorithm. These test models utilize spin structures that
correspond to convoluted fermionic realizations of various gauge groups and/for
extended spacetime supersymmetry. These solutions may not be of direct phys-
ical interest but are absolutely essential for gaining confidence in our detailed
implementation of string consistency. Verification thus becomes the most time-

consuming aspect of building models with free fermionization.

Free fermionization is a useful paradigm for understanding how a successful
string unification model might work. There are valuable lessons to be gained
from an in-depth understanding of this very basic tool in string theory. We
should emphasize that this does not imply that our current methodology is
necessarily the best approach to successful model building. It would be very use-
ful to obtain the class of solutions we have probed in an alternative framework,
such as the asymmetric orbifold construction, or directly via more sophisticated

rational conformal field theory methods.
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Free fermionization has its limitations. The restriction to constructing
solutions which realize only those gauge groups and representations that have a
fermionic embedding implies that one must be careful in interpreting the results.
It is essential to have the freedom to vary the underlying constituent conformal
field theories in order to avoid concluding that a desired phenomenological
outcome is “impossible”.

On the other hand, real fermionization allows us to sample many interesting
solutions to string theory in a calculable framework. Realizing the world-sheet
operator algebras in simpler constituents such as free fields provides important
technical advantages. Rather than imposing modular invariance directly on
the tensor product of characters under the necessary operator algebras, such
as current or coset algebras, we implement the much simpler task of impos-
ing modular invariance on the tensor product of Virasoro characters of the
constituents. Furthermore, since the emission vertices of spacetime fields are
realized in the primary fields of the constituent conformal field theories, their
correlation functions - which define the couplings in the superpotential - are
given by the tensor product of constituent conformal field theory correlators.

Since our interest is not in exhaustively classifying solutions to string the-
ory but rather in identifying solutions which offer new physical insight, this
repackaging of the problem will give us the capability to efficiently access phe-
nomenologically distinct solutions. Varying the choice of constituent conformal
field theories will probe distinct embeddings of the low-energy gauge group, new
possibilities for discrete symmetry groups, and different options for the massless
spectrum. It should be emphasized that, at the present time, this procedure
is implemented in detail only for free bosons and fermions. But the tree-level
methods developed in section 5 appear capable of generalization to a larger
class of conformal field theories.

It might seem that, given a sufficiently wide range of constituent confor-
mal field theories, anything and everything is possible in the spectrum and
in the superpotential. This is a misconception. As we have repeatedly em-

phasized, and as is evident in any experience with building explicit solutions,
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string consistency is a very restrictive principle. Slight changes in the underly-
ing conformal field theory embeddings can have rather drastic consequences for
the massless spectrum and the superpotential. Given the dictionary between
spacetime symmetries and world sheet operator algebras, it is probably not
difficult to construct conformal field theory structures that realize any single
phenomenological feature, assuming it satisfies the bounds on allowed conformal
dimension and total conformal anomaly [10][38]. But the final step of piecing
together many features in a consistent solution is extremely delicate. It is this
property which makes superstring unification so restrictive, but also compelling.
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