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Abstract

A rigorous QCD analysis of the inclusive annihilation decay rates of heavy
quarkonium states is presented. The effective-field-theory framework of non-
relativistic QCD is used to separate the short-distance scale of annihilation,

which is set by the heavy quark mass M, from the longer-distance scales asso-
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ciated with quarkonium structure. The annihilation decay rates are expressed
in terms of nonperturbative matrix elements of 4-fermion operators in non-
relativistic QCD, with coefficients that can be computed using perturbation
theory in the coupling constant as(M). The matrix elements are organized
into a hierarchy according to their scaling with v, the typical velocity of the
heavy quark. An analogous factorization formalism is developed for the pro-
duction cross sections of heavy quarkonium in processes involving momentum
transfers of order M or larger. The factorization formulas are applied to the
annihilation decay rates and production cross sections of S-wave states, up
to corrections of relative order v3, and of P-wave states, up to corrections of

relative order v2.
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I. INTRODUCTION

Calculations of the decay rates of heavy quarkonium states into light hadrons and into
photons and lepton pairs are among the earliest applications of perturbative quantum chro-
modynamics (QCD) [[,B,B.[. In these early analyses, it was assumed that the decay rate
of the meson factored into a short-distance part that is related to the annihilation rate of
the heavy quark and antiquark, and a long-distance factor containing all the nonpertur-
bative effects of QCD. The short-distance factor was calculated in terms of the running
coupling constant as(M) of QCD, evaluated at the scale of the heavy-quark mass M, while
the long-distance factor was expressed in terms of the meson’s nonrelativistic wavefunction,
or its derivatives, evaluated at the origin. In the case of S-waves [ff and in the case of
P-wave decays into photons [[], the factorization assumption was supported by explicit cal-
culations at next-to-leading order in . However, no general argument was advanced for
its validity in higher orders of perturbation theory. In the case of P-wave decays into light
hadrons, the factorization is spoiled by logarithmic infrared divergences that appear in the
QQ annihilation rates at order o [[1J§). Logarithmic infrared divergences also appear in
relativistic corrections to the annihilation decays of S-wave states [§]. These divergences
cast a shadow over applications of perturbative QCD to the calculation of annihilation rates
of heavy quarkonium states.

In this paper, we present a rigorous QCD analysis of the annihilation decays of heavy
quarkonium. We derive a general factorization formula for the annihilation rates of S-wave,
P-wave, and higher orbital-angular-momentum states, which includes not only perturbative
corrections to all orders in «ayg, but relativistic corrections as well. Factorization occurs in
the annihilation decay rates because the heavy quark and antiquark can annihilate only
when they are within a distance of order 1/M, where M is the heavy-quark mass. Since,
in the meson rest frame, the heavy quark and antiquark are nonrelativistic, with typical
velocities v < 1, this distance is much smaller than the size of the meson, which is of order

1/(Mwv). Factorization involves separating the relativistic physics of annihilation (which



involves momenta p ~ M) from the nonrelativistic physics of quarkonium structure (which
involves p ~ Mwv). A particularly elegant approach for separating relativistic from nonrela-
tivistic scales is to recast the analysis in terms of nonrelativistic quantum chromodynamics
(NRQCD) [[], an effective field theory designed precisely for this purpose. NRQCD con-
sists of a nonrelativistic Schrodinger field theory for the heavy quark and antiquark that
is coupled to the usual relativistic field theory for light quarks and gluons. The theory is
made precisely equivalent to full QCD through the addition of local interactions that sys-
tematically incorporate relativistic corrections through any given order in the heavy-quark
velocity v. It is an effective field theory, with a finite ultraviolet cutoff of order M that
excludes relativistic states — states that are poorly described by nonrelativistic dynamics.
A heavy quark in the meson can fluctuate into a relativistic state, but these fluctuations are
necessarily short-lived. This means that the effects of the excluded relativistic states can
be mimicked by local interactions and can, therefore, be incorporated into NRQCD through
renormalizations of its infinitely many coupling constants. Thus, nonrelativistic physics is
correctly described by the nonperturbative dynamics of NRQCD, while all relativistic effects
are absorbed into coupling constants that can be computed as perturbation series in as(M).

The main advantage offered by NRQCD over ordinary QCD in this context is that it is
easier to separate contributions of different orders in v in NRQCD. Thus, we are able not
only to organize calculations to all orders in «ay, but also to elaborate systematically the rel-
ativistic corrections to the conventional formulas. Furthermore, we provide nonperturbative
definitions of the long-distance factors in terms of matrix elements of NRQCD, making it
possible to evaluate them in numerical lattice calculations. Analyzing S-wave decays within
this framework, we recover, up to corrections of relative order v2, the standard factorization
formulas, which contain a single nonperturbative parameter. At relative order v2, the decay
rates satisfy a more general factorization formula, which contains two additional indepen-
dent nonperturbative matrix elements. Our results for P-wave decays into light hadrons are
even more striking, as we have discussed in Ref. [[. Up to corrections of relative order v?,

the factorization formula for these decay rates is the sum of two terms. In addition to the
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conventional term, which takes into account the annihilation of the Q@ pair from a color-
singlet P-wave state, there is a second term that involves annihilation from a color-octet
S-wave state. The infrared divergences encountered in previous calculations are absorbed
into the matrix element of the color-octet term.

Our presentation is organized as follows. In Section [, we first review NRQCD in gen-
eral, emphasizing the velocity-scaling rules, which are used in separating contributions of
different orders in v. We then discuss the space-time structure of the annihilation of heavy
quarks and antiquarks and explain how the effects of annihilation can be taken into account
in NRQCD by adding local 4-fermion operators to the effective lagrangian. In Section [T,
we analyze the matrix elements of the 4-fermion operators. We discuss their scaling with
v, the constraints on them that follow from heavy-quark spin symmetry, their relations to
Coulomb-gauge wavefunctions, and their dependences on the factorization scale. In Sec-
tion [V], we apply our formalism to the annihilation decays of S-wave quarkonium states, up
to corrections of relative order v3, and to P-wave decays, up to corrections of relative order
v2. In Section V], we sketch the derivation of our results in a more conventional perturbative
approach to factorization. In Section V1|, we develop an analogous factorization formalism
for calculating the production cross sections of heavy quarkonium. In the concluding section,
we compare our formalism with previous approaches to the annihilation and production of
heavy quarkonium, and we summarize the current status of calculations of annihilation and

production rates.



II. NRQCD

We begin this section with a brief discussion of the various momentum scales involved
in heavy quarkonia. Nonrelativistic QCD (NRQCD) [ is our major tool for resolving the
different momentum scales involved in their annihilation decays. We review this effective
field theory and its application to heavy-quarkonium physics. Then we discuss the space-
time structure of the Q@ annihilation process and develop a general factorization formula

for the annihilation decay rates of heavy quarkonia in terms of matrix elements of NRQCD.

A. Energy Scales in Heavy Quarkonium

In a meson containing a heavy quark and antiquark, there are several different momentum
scales that play important roles in the dynamics. The most important scales are the mass M
of the heavy quark, its typical 3-momentum Mwv (in the meson rest frame), and its typical
kinetic energy Mv?. The heavy-quark mass M sets the overall scale of the rest energy of the
bound state and also provides the short-distance scale for annihilation processes. The size
of the bound state is the inverse of the momentum Mwv, while Mv? is the scale of the energy
splittings between radial excitations and between orbital-angular-momentum excitations.
Spin splittings within a given radial and orbital-angular-momentum excitation are of order
Mv*, but this scale plays no significant role in the dynamics.

The typical velocity v of the heavy quark decreases as the mass M increases. If M is
large enough, v is proportional to the running coupling constant a(M), and it therefore
decreases asymptotically like 1/log(M). Thus, if M is sufficiently large, the heavy quark and
antiquark are nonrelativistic, with typical velocities v << 1. We assume in this paper that
the mass M is heavy enough that the momentum scales M, Mv and Muv? are well-separated:
(Mv?)? < (Mv)?* < M?. Quark potential model calculations indicate that the average value
of v? is about 0.3 for charmonium and about 0.1 for bottomonium [[1], and these estimates

are confirmed by lattice QCD simulations. Thus, the assumption (Mv?)? < (Mv)* < M?



is very good for bottomonium, and reasonably good even for charmonium. For lighter
quarkonium states, such as the ss system, our analysis does not apply.

Another momentum scale that plays a role in the physics of heavy quarkonium is Agep,
the scale associated with nonperturbative effects involving gluons and light quarks. It de-
termines, for example, the long-range behavior of the potential between the heavy quark
and antiquark, which is approximately linear, with a coefficient of (450 MeV)? [I1]. We
can use this coefficient as an estimate for the nonperturbative scale: Agcp ~ 450 MeV.
For both charmonium and bottomonium, the first radial excitation and the first orbital-
angular-momentum excitation are both about 500 MeV above the ground state. Taking this
value as an estimate for the scale Mv?, we see that Agep and M v? are comparable for both
charmonium and bottomonium.

Our analysis of heavy quarkonium annihilation is based on separating the effects at
the momentum scale M from those at the lower momentum scales Mv, Mv? and Agep.
The effects at the scale M are taken into account through the coupling constants of 4-
fermion operators in the lagrangian for NRQCD. We assume that as(M) < 1, so that these
coupling constants can be calculated using perturbation theory in ag(M). The assumption
that as(M) < 1 is well-satisfied for bottomonium, for which as(M) & 0.18, and reasonably
well-satisfied for charmonium, for which a(M) ~ 0.24.

The effects of the lower momentum scales Mv, Mv? and Agep are factored into matrix
elements that can be calculated using nonperturbative methods, such as lattice-QCD simu-
lations. These matrix elements are organized into a hierarchy in terms of their dependence
on v. Our final expression for the annihilation rate therefore takes the form of a double
expansion in az(M) and v. These expansion parameters are not independent for quarko-
nium. The typical velocity v of the heavy quark is determined by a nonperturbative balance
between its kinetic energy Mv?/2 and the potential energy, which, for sufficiently large M,
is dominated by a color-Coulomb term proportional to as(1/r)/r. Setting r ~ 1/(Mwv) in

the potential and equating it with the kinetic energy, we obtain the identification



v~ as(Mv). (2.1)

This equation can be solved self-consistently to obtain an approximate value for the typical
velocity v. The identification (B.J]) has a simple, but important, implication for calculations
of annihilation rates. Since the running coupling constant in QCD decreases with the mo-
mentum scale, v is greater than or of order as(M). Thus relativistic corrections of order
(v*)™ can be expected to be more important than perturbative corrections of order o"(M).
In particular, there is little to be gained by calculating perturbative corrections at next-to-
next-to-leading order in as(M), unless relativistic corrections through relative order v? are

included as well.

B. The NRQCD Lagrangian

The most important energy scales for the structure and spectrum of a heavy quarkonium
system are Mv and Mv?, where M is the mass of the heavy quark @ and v < 1 is its average
velocity in the meson rest frame. Momenta of order M play only a minor role in the complex
binding dynamics of the system. We can take advantage of this fact in our analysis of heavy-
quark mesons by modifying QCD in two steps.

We start with full QCD, in which the heavy quarks are described by 4-component Dirac
spinor fields. In the first step, we introduce an ultraviolet momentum cutoff A that is of
order M. This cutoff explicitly excludes relativistic heavy quarks from the theory, as well as
gluons and light quarks with momenta of order M. It is appropriate to our analysis of heavy
quarkonium, since the important nonperturbative physics involves momenta of order Muv
or less. Of course, the relativistic states we are discarding do have some effect on the low-
energy physics of the theory. However, any interaction involving relativistic intermediate
states is approximately local, since the intermediate states are necessarily highly virtual
and so cannot propagate over long distances. Thus, generalizing standard renormalization
procedures, we systematically compensate for the removal of relativistic states by adding

new local interactions to the lagrangian. To leading order in 1/A or, equivalently, 1 /M these
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new interactions are identical in form to interactions already present in the theory, and so
the net effect is simply to shift bare masses and charges. Beyond leading order in 1/M, one
must extend the lagrangian to include nonrenormalizable interactions that correct the low-
energy dynamics order-by-order in 1/M. In this cutoff formulation of QCD, all effects that
arise from relativistic states, and only these effects, are incorporated into renormalizations
of the coupling constants of the extended lagrangian. Thus, in the cutoff theory, relativistic
and nonrelativistic contributions are automatically separated. This separation is the basis
for our analysis of the annihilation decays of heavy quarkonia.

The utility of the cutoff theory is greatly enhanced if, as a second step, a Foldy-
Wouthuysen-Tani transformation [[J] is used to block-diagonalize the Dirac theory so as
to decouple the heavy quark and antiquark degrees of freedom. Such a decoupling of parti-
cle and antiparticle is a familiar characteristic of nonrelativistic dynamics and is quite useful
in our study of heavy quarkonium. The net effect is that the usual relativistic field theory of
four-component Dirac spinor fields is replaced by a nonrelativistic Schrodinger field theory,
with separate two-component Pauli spinor fields for the heavy quarks and for the heavy

antiquarks. This field theory is NRQCD [f]]. The lagrangian for NRQCD is
Lxrqep = Liight + Lheavy + 0L. (2.2)
The gluons and the ns flavors of light quarks are described by the fully relativistic lagrangian

1 .
»Clight = _§trG,uVGHV + Zqzﬂ% (23)

where G, is the gluon field-strength tensor expressed in the form of an SU(3) matrix, and ¢
is the Dirac spinor field for a light quark. The gauge-covariant derivative is D#* = o* +igA*,
where A* = (¢, A) is the SU(3) matrix-valued gauge field and g is the QCD coupling
constant. The sum in (P3) is over the n; flavors of light quarks. The heavy quarks and

antiquarks are described by the term

, D? , D?
*Choavy = Q/}T <2Dt‘|’ m) 'l/] + XT (ZDt - m) X (24)



where 9 is the Pauli spinor field that annihilates a heavy quark, y is the Pauli spinor field
that creates a heavy antiquark, and D; and D are the time and space components of the
gauge-covariant derivative D*. Color and spin indices on the fields @ and y have been
suppressed. The lagrangian Liignt + Lheavy describes ordinary QCD coupled to a Schrédinger
field theory for the heavy quarks and antiquarks. The relativistic effects of full QCD are
reproduced through the correction term 0L in the lagrangian (P-3).

The correction terms in the effective lagrangian for NRQCD that are most important for

heavy quarkonium are bilinear in the quark field or the antiquark field:

5£bilinoar = ;ﬁ (wT(Dz)zw - XT(D2)2X)
+ 8;22 (W(D -gE—gE-D)y + x'(D-gE —gE- D)x)
+ 8;22 (W(iD x gE — gE x iD) - oy + x'(iD x gE — gE x iD) - ax)
+ 527 (V9B o) — X'(9B- o)), (2.5)

where E' = G% and B* = %eijijk are the electric and magnetic components of the gluon
field strength tensor G**. By charge conjugation symmetry, for every term in (-7) involving
1), there is a corresponding term involving the antiquark field y, with the same coefficient ¢;,
up to a sign. The operators in (R.5) must be regularized, and they therefore depend on the
ultraviolet cutoff or renormalization scale A of NRQCD. The coefficients ¢;(A) also depend
on A in such a way as to cancel the A-dependence of the operators. Renormalization theory
tells us that NRQCD can be made to reproduce QCD results as accurately as desired by
adding correction terms to the lagrangian like those in (B.J) and tuning the couplings to
appropriate values [[[J.

Mixed 2-fermion operators involving x and 1 (or 9" and ) correspond to the annihila-
tion (or the creation) of a QQ pair. Such terms are excluded from the lagrangian as part of
the definition of NRQCD. If such an operator annihilates a Q@) pair, it would, by energy con-
servation, have to create gluons (or light quarks) with energies of order M. The amplitude
for annihilation of a Q@ pair into such high energy gluons cannot be described accurately

in a nonrelativistic theory such as NRQCD. Nevertheless, as is discussed in Section [TH, the
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effects of such annihilation processes on low energy amplitudes can be reproduced by adding
4-fermion operators such as ¥y x ' to the effective lagrangian.

Operators containing higher-order time derivatives, such as TD?%, are also omitted
from the effective lagrangian as part of the definition of NRQCD. These operators can be
eliminated by field redefinitions that vanish upon use of the equations of motion. Because
of these field redefinitions, the off-shell Green’s functions of NRQCD need not agree with
those of full QCD, but the two theories are equivalent for on-shell physical quantities.

The coefficients ¢; in (B.F) must be tuned as functions of the coupling constant as,
the heavy-quark mass parameter in full QCD, and the ultraviolet cutoff A of NRQCD, so
that physical observables are the same as in full QCD. The coefficients are conveniently
determined by matching low-energy scattering amplitudes of heavy quarks and antiquarks
in NRQCD, calculated in perturbation theory in o and to a given precision in v, with the
corresponding perturbative scattering amplitudes in full QCD. It is necessary to use on-shell
scattering amplitudes for this purpose, because the equations of motion have been used to
simplify the effective lagrangian for NRQCD by eliminating terms with more than one power
of D;. The scattering amplitudes can be calculated using perturbation theory in aj, since
the radiative corrections to the coefficients in the NRQCD lagrangian are dominated by
relativistic momenta. These coefficients therefore have perturbative expansions in powers of
as(M) [BL4]. The coefficients in (R.5) are defined so that ¢; = 1 + O(a).

The explicit factors of M in (R.§) were introduced in order that the coefficients ¢; be
dimensionless. These coefficients therefore depend on the definition of the heavy-quark
mass parameter M. Our definition of M is specified by the lagrangian (2.4): 1/(2M) is the
coefficient of the operator 1)TD?. If a different prescription is adopted for M, then all the
¢;’s must be changed accordingly. The simplest way to determine the mass parameter M is to
match the location of the pole in the perturbative propagator for a heavy quark in NRQCD
with that in full QCD. In both NRQCD and full QCD, the kinetic energy for a heavy quark of
momentum p in perturbation theory has the form E = p®/(2Mpoie) —p*/(8M7,1.) +- - ., where

M0l is the perturbative pole mass. In Appendix B, the self-energy of the heavy quark
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is calculated in NRQCD to order a, and to leading order in v. If we use a regularization
scheme in which power divergences are subtracted, then the energy-momentum relation gives
M = Mye(14+0(a?)). The corresponding calculation using a lattice regularization has been
carried out by Morningstar [[§). The perturbative pole mass can be related to any other

definition of the heavy-quark mass by a calculation in full QCD.

C. Velocity-scaling Rules

In principle, infinitely many terms are required in the NRQCD lagrangian in order to
reproduce full QCD, but in practice only a finite number of these is needed for precision
to any given order in the typical heavy-quark velocity v. We can assess the relative im-
portance of various terms by using velocity-scaling rules that were derived in Ref. [[4] and
are summarized in Table . This table lists the fields and operators from which terms in
the NRQCD action are built, together with the approximate magnitude of each for matrix
elements between heavy quarkonium states that are localized in space. The scaling rules
were derived in Ref. [[4] by analyzing the equations of motion for the quantum field opera-
tors of NRQCD. The typical heavy-quark velocity v is determined dynamically by a balance
between the kinetic and potential terms in the equation of motion for the heavy-quark field,
and v can be used as an expansion parameter in order to analyze the importance of other
terms. The scaling rules are certainly correct within perturbation theory in ag, but, since
they are based on the self-consistency of the field equations, they should also be valid in the
presence of nonperturbative effects.

There is an important caveat to the velocity-scaling rules that involves ultraviolet-
divergent loop corrections. Loop corrections to an operator give rise to power ultravio-
let divergences, as well as to logarithmic divergences. The logarithmic divergences modify
the scaling rules by factors of log(A/Mwv). The power divergences can contribute factors of
1/v™, and the scaling rules apply only after such 1/v™ divergences have been subtracted. The

subtracted expression is the relevant one for the following reason. The power-divergent con-
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tributions to a given operator O that yield factors of 1/v™ have the form of renormalizations
of lower-dimension operators. When the coefficients of NRQCD are tuned so as to repro-
duce full QCD, the coefficients of the lower-dimension operators are adjusted so that their
contributions to physical quantities cancel the contributions of the 1/v™ power-divergent
loop corrections to the operator 0. Consequently, the inclusion of a given operator in the
NRQCD lagrangian yields a net correction to any physical quantity that is in accordance
with the velocity-scaling rules, up to logarithmic corrections.

The estimates for the magnitudes of g¢ and gA in Table [| hold in Coulomb gauge.
Coulomb gauge is a natural gauge for analyzing heavy quarkonium, because it avoids spu-
rious retardation effects that are present in covariant gauges, but cancel out in physical
quantities [[]. Coulomb gauge is also a physical gauge, that is, a gauge with no negative
norm states. Thus, it allows a sensible Fock-state expansion for the meson. The dominant
Fock state is of course |QQ), but the meson also contains the Fock state |QQg), which
includes a dynamical gluon, and higher Fock states as well.

The estimates in Table [] were derived assuming that one can do perturbation theory in
the typical heavy-quark velocity. This perturbation theory relies on the fact that soft gluons
have a weak coupling to heavy quarks, not because the coupling constant oy is small, but
because the interaction is proportional to the heavy-quark velocity v. In the derivation of
the magnitude of gA in Ref. [[4], dynamical gluons were assumed to have typical momenta
of order Mwv, which is the inverse size of the quarkonium. The perturbative estimate for the
magnitude of the operator gA is as(k)vk for a dynamical gluon of momentum k. For k of
order Muv, we can set a, ~ v and recover the estimate Mv? given in Table [. For k of order
Muv?, we can set a, ~ 1, and we again obtain the estimate Mwv3. This estimate relies on
perturbation theory, which may be suspect because of the strong coupling between gluons
with momenta on the order of Mv? However such gluons necessarily have wavelengths of
order 1/(Mwv?) or larger, which is much larger than the typical size 1/(Mv) of the quarko-
nium. For such long-wavelength gluons, the multipole expansion, whose validity transcends

that of perturbation theory in the coupling constant, can be used to justify the estimate for
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gA in Table [| [[7].

The velocity-scaling rules in Table [ show that the terms in 0 Lpitinear in (B-5) all give con-
tributions that are suppressed by O(v?) relative to those from the leading lagrangian Lecavy-
Recalling that mixed 2-fermion operators, such as 1'(D?)?y, and operators involving higher
time derivatives, such as T D?, are omitted as part of the definition of NRQCD, we see that
0 Lpilinear contains all the 2-fermion NRQCD operators of relative order v2. The lagrangian
Liight + Lheavy + 0 Lpilinear can therefore be used to calculate NRQCD matrix elements be-
tween heavy-quarkonium states with an error of order v*. If an error of order v? is sufficiently
accurate, then the matrix elements can be calculated by using the lagrangian Liight + Lheavy-

It is instructive to contrast the relative magnitudes of the NRQCD operators in the case
of a heavy quarkonium with the relative magnitudes of the same operators in the case of
a heavy-light meson. (In the meson rest frame, the lagrangian for NRQCD is identical to
that for Heavy Quark Effective Theory, which is the standard formalism for treating heavy-
light mesons [[§].) In a heavy-light meson, the typical 3-momentum of the heavy quark is
of order Agep, and is independent of the heavy-quark mass. The binding energy is also
of order Agep, and is much larger than the heavy-quark kinetic energy, which is of order
Aéc p/M. Thus, in a heavy-light meson, the 3-momentum and the energy of the heavy-quark
are both of order Agep, in contrast with the situation in a heavy quarkonium, in which the
3-momentum is of order Mv and the energy is of order Mv?. Consequently, in a heavy-light
meson, the effects of operators of dimension d are of order (Agcp/M)%* relative to the
effects of the dimension-4 operator ¥1iDy). The leading term 7iD;) describes a static
heavy quark acting as a source of gluon fields. All effects of relative order Ageop/M can be

taken into account by adding the dimension-5 operators ¢'D%*) and ¥TgB - o).

D. Quarkonium in NRQCD

Several qualitative features of heavy quarkonium can be inferred directly from the

NRQCD lagrangian by exploiting the heavy-quark velocity v as an expansion parameter.
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Expansions in powers of v are possible in ordinary QCD, but they are complicated by the
need to make a nonrelativistic expansion of each individual Lorentz-invariant operator in
order to separate the various powers of v. Relativistic effects have been unraveled to a large
extent in NRQCD, with the leading v-dependence of each operator being specified by the
velocity-scaling rules in Table |].

The most distinctive phenomenological feature of heavy quarkonium is that, for many
purposes, it is accurately described by the quark potential model, in which the heavy quark
and antiquark are bound by an instantaneous potential. This model is a tuned phenomenol-
ogy, rather than a theory, but it is far simpler than a full field-theoretic description based
on NRQCD or QCD. Its validity rests upon two essential ingredients of heavy-quarkonium
physics. The first is that the dominant effect of the exchange of gluons between the heavy
quark and antiquark is to produce an instantaneous interaction. The reason for this is that
the most important gluons have momenta of order Mv and energies of order Mwv?. Such
gluons are off their energy shells by amounts of order Mwv, which are much greater than the
typical kinetic energy Mwv? of the heavy quark. Consequently, the interaction times of the
gluons are shorter by a factor of 1/v than the time scale associated with the motion of the
heavy quarks, and the gluons’ interactions are, therefore, instantaneous as far as the heavy
quarks are concerned.

The second essential ingredient underlying the quark potential model is that the prob-
ability of finding dynamical gluons (those that are not part of the potential) in the meson
is small. This is important because dynamical gluons with very low energy produce effects
that are not instantaneous and are not readily incorporated into the quark potential model.
In particular, gluons with energies of order Mv? have interaction times comparable to that
of the heavy quarks, and their exchange therefore leads to significant retardation effects.
The probability for the Fock state |QQg) of the meson can be estimated by considering the
energy shift of a quarkonium state |H) that is due to the presence of a Fock-state component
|QQg). In Coulomb gauge, the only terms that connect the dominant Fock state |QQ) to

the Fock state |QQg) are terms that involve the vector potential A. At leading order in v,
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the contributions to the energy shift come from the term igA - TV /M in Lyeavy:
1
AB = —— (H] /d%; igA -tV |H). (2.6)

Using the velocity-scaling rules in Table [] and taking into account the relevant integration
volume 1/(Mwv)3, we obtain the estimate AE ~ Muv?. This energy shift can be written
in a different way — as the product of the probability Pz, for the QQg state multiplied
by the energy Egg, of that state. For gluons with momenta k of order Mv, the energy
of the QQg state is dominated by the energy of the gluon, and we find that Pog, ~ v3.
For dynamical gluons with very low energies of order Mv? or less, the energy of the QQg
state is of order Mv? and we obtain the estimate P, ~ v*. For heavy quarkonium, QQg
states are therefore suppressed relative to the dominant QQ state by a factor of order v?
in the probability. Hence, for most quantities, effects due to Fock states like |QQg) that
contain dynamical gluons are suppressed by powers of v. This might be expected from the
phenomenological successes of the quark potential model. However, there are quantities,
such as the decay rates of P-wave states into light hadrons [[{], for which the effects of the
Fock state |QQg) are of leading order in v and the quark potential model fails completely.

The above estimates for the probabilities of |QQg) Fock states apply if the spin state of
the QQ pair is the same as in the dominant |QQ) Fock state. If the spin state is different,
we must replace gA - V in (2.6) with gB - o to obtain a nonzero matrix element. Using
the velocity-scaling rules of Table I, we again obtain an estimate AE ~ Muv* for the energy
shift, implying that the probability for a |QQg) state containing a gluon with momentum
on the order of Mv is Fyg, ~ v3. However, in the derivation of the velocity-scaling rules in
Ref. [14], it was assumed that dynamical gluons have momenta of order Mwv. If the gluon has
a much smaller momentum k, then the estimate M?v* for the operator ¢gB in Table I should
be replaced with k%v2. Using this to estimate the energy shift from a |QQg) Fock state
containing a gluon with momentum of order Mv?, we obtain AE ~ Mv® and P,g5, ~ v*.
Thus, gluons with very low momenta exhibit the suppression that is characteristic of the

multipole expansion. We conclude that a |QQg) Fock state that can be reached from the
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dominant |QQ) Fock state by a spin-flip transition is dominated by dynamical gluons with
momenta of order Mv and that the probability of such a Fock state is Pz, ~ V3.

Another important feature of quarkonium structure is its approximate independence
of the heavy-quark spin. This feature follows immediately from the structure of the
NRQCD lagrangian, which exhibits an approximate heavy-quark spin symmetry. The lead-
ing term Lyeavy is completely independent of the heavy-quark spin. With just this term,
states that differ only in the spins of the heavy quark and antiquark have identical proper-
ties; heavy-quark spin is conserved and can be used to label the energy eigenstates. Spin-
dependence enters first through the bilinear terms in (B.5) that contain Pauli matrices, and
they give corrections that are of relative order vz.ﬂ Thus, spin splittings for quarkonia should
be smaller than splittings between radial and orbital-angular-momentum excitations, with
the ratios of these splittings scaling roughly as v?. This familiar feature of the spectra of
charmonium and bottomonium reinforces our confidence in the power-counting rules and in
the utility of a nonrelativistic framework for studying quarkonium.

The total angular momentum J, the parity P, and the charge conjugation C' are exactly
conserved quantum numbers in NRQCD, as well as in full QCD. Thus, the energy eigenstates
|H) of heavy quarkonium can be labelled by the quantum numbers JX¢. By the arguments
given above, the dominant component in the Fock state expansion of |H) is a pure quark-
antiquark state |QQ). The Fock state |QQg), in which a dynamical gluon is present, has a
probability of order v2, and higher Fock states have probabilities of order v* or higher. Since

our primary interest is in processes in which the @ and @ in the quarkonium annihilate,

n perturbation theory, ladder-like Coulomb-gluon exchanges between the quark and antiquark
give a factor of order o, /v for each ladder rung. The spin-flip contribution is down by v? relative
to this Coulomb-ladder contribution. For example, in a two-loop calculation, the Coulomb ladder

gives a factor of order (as/v)?, while the ladder with one Coulomb exchange and one spin-flip

2

exchange gives a factor of order v?(as/v)? = 2.
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we concentrate on the state of the QQ pair in the various Fock-state components. For a
general Fock state, the Q@ pair can be in either a color-singlet state or a color-octet state.

2541 ;. where

Its angular-momentum state can be denoted by the spectroscopic notation
S = 0,1 is the total spin of the quark and antiquark, L = 0,1,2,... (or L = S, P, D, ...)
is the orbital angular momentum, and J is the total angular momentum. A Q@ pair in a
2541 ; state has parity P = (—1)L*1; if it is in a color-singlet state, it has charge-conjugation
number C' = (—1)E+5.

In the Fock state |QQ), the QQ pair must be in a color-singlet state and in an angular-
momentum state 2°*1L; that is consistent with the quantum numbers J¢ of the meson.
Conservation of JP¢ implies that mixing is allowed only between the angular-momentum
states 3(J — 1); and 3(J + 1);. For example, a 3S; QQ state can mix with a D, state.
However, such mixing is suppressed because operators that change the orbital angular mo-
mentum must contain at least one power of V. In general, up to corrections of order v?,
we can regard the Q@Q component of the meson as being in a definite angular-momentum
state 2F'L;. Of course, if the contribution of the dominant angular-momentum state is
suppressed in a given process, then the contribution of the subdominant states takes on
increased importance. We will present examples of this phenomenon in the discussions of
the decay and production of P-wave states.

We turn next to the Fock state |QQg) of the meson, which includes a dynamical gluon
and has a component whose probability is of order v2. In spite of the fact that the dynamics
of the soft gluon is nontrivial, NRQCD tells us much about the quantum numbers of the
QQ pair in the QQg component whose probability is of order v2. The pair must of course
be in a color-octet state. Heavy-quark spin symmetry implies that the total spin quantum
number S for the QQ pair is the same as in the dominant Fock state |QQ). But NRQCD
also tells us that the orbital state of the QQ pair is closely related to that in the Fock
state |QQ). The reason for this is that the coupling of the soft gluon can be analyzed

using a multipole expansion, and the usual selection rules for multipole expansions apply.
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The leading interaction that couples the dominant Fock state |QQ) to the state |QQg) is
the electric-dipole part of the operator ¥)TgA - Vi) in Lyeayy, and this changes the orbital-
angular-momentum quantum number L of the Q@ pair by £1. Higher multipoles bring in
additional powers of v, as does second-order perturbation theory. Thus, if the Q@ pair in
the dominant Fock state |QQ) has angular-momentum quantum numbers 25t ;, then the
Fock state |QQg) has a probability of order v? only if the Q@ pair has total spin S and
orbital angular momentum L+ 1 or L — 1. For example, if the dominant Fock state consists
of a QQ pair in a 35 state, then the Fock state |QQg) has a probability of order v? only if
the QQ pair is in a color-octet state with angular-momentum quantum numbers 3P, 3P},
or 3P,. If the dominant Fock state consists of a QQ pair in a ! P, state, then the Fock state
|QQg) has a probability of order v? only if the QQ pair is in a color-octet 1Sy or 1D, state.

The above discussion applies to Fock states |QQg) in which the QQ pair has the same
total spin quantum number S as in the dominant |QQ) state. The probabilities for Fock
states |QQg) that can be reached from the dominant Fock state by a spin-flip transition also
scale in a definite way with v. The probability for such a Fock state to contain a dynamical
gluon with momentum of order Mwv is of order v?, just as in the case of a non-spin-flip
transition. However, in the case of a spin-flip transition, this momentum region dominates
because, as we have seen, gluons with softer momenta, on the order of Mwv?, are suppressed
by the multipole expansion. Thus, if the Q@ pair in the dominant Fock state has angular-
momentum quantum numbers 2°T1L; then the Fock state |QQg), with the QQ pair in a
color-octet state with the same value of L but different total spin quantum number, has a

3. For example, if the dominant Fock state consists of a Q@ pair in

probability of order v
a 35 state, then the Fock state |QQg) with the Q@ pair in a color-octet 1Sy state has a
probability of order v3. If the dominant Fock state consists of a QQ pair in a ' P, state, then
the Fock state |QQg) with the QQ pair in a color-octet 3P; state has probability of order

v3.
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E. Space-Time Structure of Annihilation

As we will explain in this subsection, the annihilation of a heavy Q@ pair into gluons
(or light quarks) occurs at distances that are typically of order 1/M, that is, at momentum
scales of order M. Because of the large momentum scales involved, the details of the annihi-
lation process cannot be described accurately within a nonrelativistic effective theory such
as NRQCD. Nevertheless, as we will argue in the next subsection, the effects of annihila-
tion can be incorporated into NRQCD through 4-fermion operators in the term 0L in the
NRQCD lagrangian. To show that the required operators are local, it is sufficient to show
that the interactions they account for occur over short distances of order 1/M. Strictly local
operators are then obtained by expanding the short-distance interaction in a Taylor series
in the 3-momentum p of the heavy quark multiplied by the characteristic size 1/M.

Now we wish to argue that the annihilation process is indeed local, i.e. that the anni-
hilation does occur within a distance of order 1/M. We note that any annihilation must
result in at least two hard gluons (or light quarks), each with momentum of order M. This
has two consequences. First, the heavy quark and antiquark must come within a distance
of order 1/M in order to annihilate. That is because the emission of a hard gluon from,
say, the heavy quark puts it into a highly virtual state, which can propagate only a short
distance before the quark must annihilate with the antiquark. Thus, the total annihilation
amplitude can be expressed as the sum of point-like annihilation amplitudes, where the sum
extends over the possible annihilation points inside the meson. The annihilation rate is
the square of the total annihilation amplitude, summed over all possible final states. The
second consequence of the hard gluons is that there is no overlap between one annihilation
amplitude and the complex conjugate of another if the two annihilation points are sepa-
rated by a distance greater than about 1/M. This might seem surprising, since the gluons
are, in effect, on their mass shells (that is, they fragment into jets with invariant masses
much less than M). There is no highly virtual state to constrain the distance between the

annihilation points for two amplitudes that produce the same final-state jets. Nevertheless,
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the annihilation points must be in close proximity to each other in order for there to be an
overlap between the final states. In order to see why this is so, we note that, in classical
mechanics, we could trace the two final-state jets back to the annihilation vertex, and there
would be no ambiguity whatsoever as to its space-time position. In quantum mechanics,
the uncertainty principle tells us that we can know the position of the annihilation vertex
only to a precision of order 1/M, since the jet momenta are of order M. Hence, in quantum
mechanics, Q@ annihilation is not a point-like process, but it is a localized process, with a
size of order 1/M.

In a field-theoretic calculation of the annihilation rate at leading order in «y, the local-
ization of the annihilation process would manifest itself as follows. The annihilation rate
involves the imaginary part I'(P,p,p’) of the scattering amplitude for a Q@ pair with to-
tal momentum P and initial and final relative momenta p and p’. Consider the Fourier

transform of I'( P, p, p’) with respect to all three momentum variables:
/ d'Pd'pd'y e XX (w2 g =w2) (P, ). (2.7)

Here, 1 and x5 correspond to quark and antiquark interaction points in one annihilation
amplitude, =} and zf, correspond to quark and antiquark interaction points in the complex
conjugate of a second annihilation amplitude, and X = (21 + z2)/2 and X' = (2} + %) /2
are average annihilation points for the first and second amplitudes. The fact that I'(P, p,p’)
is insensitive to changes in p and p’ that are much less than M implies that, in the Fourier
transform, 7 () is localized to within a distance of order 1/M of x5 (24). Similarly, the
fact that I is insensitive to changes in P that are much less than M implies that the first and
second amplitudes have significant overlap only if X and X’ are separated by a distance of
order 1/M or less. Note that, if one puts a restriction in the annihilation rate on one of the
components of the jet momentum, then I' becomes sensitive to that component of P, and
the annihilation vertices are no longer localized along that direction. This is a consequence
of the uncertainty principle, which says that knowledge of a component of the jet momentum

along a given direction reduces our potential knowledge of the position of the annihilation
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vertex along that direction.

The radiation of soft or collinear gluons might seem to violate this simple localization
picture that appears at leading order in the coupling constant. Gluon radiation from the
initial Q@ pair is not a problem, since infrared divergences can be factored into the long-
distance matrix elements of the 4-fermion operators that mediate the annihilation process
in NRQCD, and collinear divergences are controlled by the heavy-quark mass. We must,
however, worry about infrared or collinear divergences from the radiation of gluons from
the final-state hard gluons. In the presence of such soft or collinear radiation, the hard
gluon can propagate almost on its mass shell from the annihilation point to the emission
vertex. The energetic final-state gluon jet points back to the emission vertex, rather than
to the annihilation point, which may be far away. In perturbation theory, infrared and
collinear divergences occur in individual Feynman diagrams and produce a sensitivity to
the heavy-quark momenta in I".  However, the Kinoshita-Lee-Nauenberg (KLN) theorem
[[9 guarantees that, when one sums over the contributions of all nearly degenerate final
states, as is done in forming the inclusive annihilation rate, the infrared divergences cancel
between diagrams involving real and virtual gluon emission. We can think of this KLN
cancellation as a consequence of a generalized form of the uncertainty principle: we can
localize the annihilation point, provided that we do not require too much knowledge about
the final state—that is, provided that we do not distinguish between the various states that
contribute to the inclusive cross section.

The locality of the annihilation process is spoiled if the final-state gluons form a narrow
resonance, such as a glueball. This is because the jets produced by the decay of the resonance
point back to the place where the resonance decayed. If the resonance is narrow, this
may be far from the point where the heavy quark and antiquark annihilated. That is why
perturbation theory cannot be applied directly to the cross section for e*e™ annihilation into
hadrons in the region of the charmonium or bottomonium resonances. In a field-theoretic
calculation, the resonance partially spoils the KLN cancellation of infrared and collinear

divergences. While contributions from gluons that have exactly zero momentum or are
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exactly collinear still cancel, the real and virtual contributions no longer cancel for soft gluons
whose energy is comparable to the resonance width or collinear gluons whose transverse
momentum is comparable to the resonance width. In the case of eTe™ annihilation, one can
deal with this problem by forming a suitable average of the cross section over the resonance
region [PJ]. In perturbation theory, the effect of this smearing is to allow virtual soft or

collinear emission at one value of the ete™ center-of-mass energy /s to cancel real soft or
collinear emission at a slightly higher value of /s, but the same value of the energy of the
resonating Q@) pair. This solution of smearing in the energy is not available to us in the case
of quarkonium annihilation. Fortunately, there are no known narrow glueball resonances in

the charmonium or bottomonium region, so we do not expect the resonance issue to be a

problem in practice.

F. Annihilation into Light Hadrons

Since the annihilation of a Q@ pair necessarily produces gluons or light quarks with ener-
gies of order M, the annihilation amplitude cannot be described accurately within NRQCD.
Nevertheless, the annihilation rate, which is the square of the amplitude summed over fi-
nal states, can be accounted for in NRQCD. Since the annihilation rate of the QQ pair
is localized within a distance of order 1/M, the annihilation contribution to a low-energy
Q0 — QQ scattering amplitude can be reproduced in NRQCD by local 4-fermion operators
in 0L involving v, x', x, and ¥'. The optical theorem relates Q) annihilation rates to
the imaginary parts of QQ — @QQ scattering amplitudes. This relation implies that the
coefficients of the 4-fermion operators in J£ must have imaginary parts. These imaginary
parts are the manifestation of annihilation in NRQCD.

The 4-fermion interactions that represent the effects of Q@ annihilation in NRQCD have

the general form

/ "(A)4 O, (M), (2.8)

554—f0rmion - ZMdn_



where the O,, are local 4-fermion operators, such as 1"y ). The naive scaling dimensions
d,, of the operators can be obtained by counting the powers of M using Table [. The factors
of M%~*in (P-§) have been introduced so as to make the coefficients f,, dimensionless. The
operators O, must be regularized, and they therefore depend on the ultraviolet cutoff or
renormalization scale A of the effective theory. The natural scale for this cutoff is M, since
1/M is the distance scale of the annihilation process. However, all results are independent
of A, since the coefficients f,,(A) depend on A in such a way as to cancel the A-dependence
of the operators. The coefficients can be computed in full QCD as perturbation series in
as(M), in which individual terms may depend on log(M/A).

If the analysis of annihilation rates were carried out completely within full QCD, then
the scale A would arise as an arbitrary factorization scale that must be introduced in order
to separate the momentum scale M from smaller momentum scales of order Mwv or less.
The factorization scale A should not be confused with the renormalization scale p of the full
theory. The coefficients f,,(A) are independent of p if they are computed to all orders in
as(p), although some p-dependence is introduced as usual by the truncation of the pertur-
bation series. Unless we explicitly specify otherwise, we always make the choice p = M in
this paper.

The dimension-6 4-fermion terms in 0L are

(0L4—termion) g = ! 15\1450) 0:1(1S,) + f lj(;fl) 0,(35;)
+ % Os("So) + fﬁfl) Os(*S)), (2.9)
where the dimension-6 operators are
O1(1So) = ¥ix xM, (2.10a)
O1(°81) =¢lax - xloy, (2.10D)
Os('S0) = I\ XT, (2.10¢c)
Os(3S1) = YTaT - x'aT™. (2.10d)

The subscript 1 or 8 on the operators and on their coefficients indicates the color structure of
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the operator. The arguments 'L indicate the angular-momentum state of the QQ pair
which is annihilated or created by the operator. Normal-ordering of the 4-fermion operators
O,, will always be understood, so that matrix elements of O,, receive contributions only from

annihilation of the ) and Q). The dimension-8 terms in the lagrangian for NRQCD include

01 monazs = 2 0,07 + DL 0,0 o AR g,y

+ flj(;f” O.CP) + glj(;fo) Pi('Sy) + glj(;fl) Pi(S1)

- %ﬂ(?’sﬁm) + ... (2.11)
The dimension-8 operators included explicitly in (ET1) are

O1('P) = ¥}(—£D)x - x}(— D)o, (2.12a)
0,(R) = —w D -o)x\'(~iD o), (2.12b)
O\(Py) = % WH(=4D x o) - (2D x o), (2.120)
O1(Py) = 1 (—iDCo?)x x(— Do), (2.12d)
Pi('So) :% S (—4D)% + el (2.12)
Pi(39)) = % _wTax . XTU(—%H)zw + h.c.] , (2.12f)
P38, %Dy) %:waixx%j(—gff)(if)% + hel, (2.12¢)

where D is the difference between the covariant derivative acting on the spinor to the right
and on the spinor to the left: XTBw = xT(Dy) — (Dx)fy. We have used the notation 7%
for the symmetric traceless component of a tensor: 7)) = (T% + T7%) /2 — T*% 5% /3. For
each of the operators shown explicitly in (2.11)), there is a corresponding color-octet operator
Og or Ps, which contains color matrices T inserted between 1" and y and between y' and
. This exhausts the list of the dimension-8 operators that contribute at tree level to QQ
scattering in the center of momentum frame. There are other dimension-8 operators, such
as V(¢Ty) - (XTBw) or D(¢™T%y) - D(xT%)), in which a derivative acts on the product
of 9" and y or on the product of x" and 1. Matrix elements of operators such as these

are proportional to the total momentum of the Q@ pair, and therefore do not receive any
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contributions from the dominant Fock state |QQ) in the meson rest frame. They do, however,
receive contributions from higher Fock states, such as [QQg), in which the total momentum
of the QQ pair is nonzero.

According to the velocity-scaling rules in Table [, the dimension-6 terms in (R.9) scale
as v relative to the leading term Lycavy in the NRQCD Lagrangian. Thus, if we consider
only the dependence on v, the terms in (P.9) appear to be more important than the terms in
8 Lbilinear, Which scale as v? relative to the terms in Lyeavy. However, the contributions from
4-fermion operators contain extra suppression factors, owing to the operator coefficients,
whose imaginary parts are of order a?(M) or smaller. Thus, the contributions to annihilation
widths from (R.9) are of order o?(M)v or smaller relative to the scale Mv? of the splittings
between radial excitations and between orbital-angular-momentum excitations. Similarly,
the contributions to annihilation widths from the dimension-8 operators in (B.11]) are at most
of order o?(M)v? relative to the scale Mv? of splittings between energy levels. Thus, the
annihilation decay rates for heavy-quarkonium states are tiny perturbations on the energy
levels. This is certainly true empirically. In the charmonium system, the ground state 7. has
the largest annihilation width, but it is less than 3% of the splitting between the 7. and the
first radial or orbital-angular-momentum excitations. For bottomonium, the annihilation
widths are always less than 1% of the corresponding splittings.

In order to obtain an expression for the annihilation rate, we recall that the decay
rate is —2 times the imaginary part of the energy of the state. The contribution to the
imaginary part of the energy that corresponds to annihilation into light hadrons comes from
the expectation value of —0L4_fermion, whose coefficients have imaginary parts. Thus, we see

that the annihilation rate of a heavy-quarkonium state H into light hadrons is
I'(H — LH) = 2Im (H|0L4—termion| H), (2.13)

where LH represents all possible light-hadronic final states. The expectation value is taken

in the rest frame of the quarkonium, where its total momentum P vanishes. The state |H) =
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|H(P = 0)) is an eigenstate of the NRQCD hamiltonian.f It has the standard nonrelativistic
normalization: (H(P')|H(P)) = (27)35*(P — P’). Inserting the expansion (P.§) into (P-13),
we obtain

2 Im fu(A)

P(H —LH) = > =

n

(H|O,(A)|H). (2.14)

The equation (PR.14) is our central result for the annihilation decays into light hadrons. It
expresses the decay rate as a sum of terms, each of which factors into a short-distance coef-
ficient Im f,, and a long-distance matrix element (H|O,|H). The coefficients Im f,, in (R.14))
are proportional to the rates for on-shell heavy quarks and antiquarks to annihilate from
appropriate initial configurations into hard gluons and light quarks, and can be computed
as perturbation series in a,(M). The matrix elements (H|O,|H) give the probability for
finding the heavy quark and antiquark in a configuration within the meson that is suitable
for annihilation, and can be evaluated nonperturbatively using, for example, lattice simula-
tions. The dependence on the arbitrary factorization scale A in (P-I4) cancels between the

coefficients and the operators.

2Radial and orbital-angular-momentum excitations of a quarkonium may decay through the her-
mitian part of the NRQCD lagrangian to lower-lying quarkonium states plus light hadrons. An
example is the decay of ¥(2S) into ¢y7rwr. In this example, the spectrum of states in NRQCD con-
tains a continuum of 7w scattering states, each of which includes a small admixture of the bare
1(2S5) state, and a discrete state, which is mostly the bare ¢(2S) state, but which also contains a
small admixture of bare 77 scattering states. The 1)(2S5) Breit-Wigner resonance in, for example,
the amplitude for ete™ — pp~ results from the contributions of the complete spectrum of states.
However, the resonance in the amplitude can be reproduced by a single state, with complex energy,
that is an eigenstate of the nonlocal effective Hamiltonian that one would obtain by integrating
out the light-hadron states in NRQCD. One should identify the state |H) in (R.14)) with such an
eigenstate in applying (R.14) to an excited quarkonium state that decays through the hermitian

part of the NRQCD lagrangian into a lower-lying quarkonium state.
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In some calculations of the matrix elements in (P.14), such as lattice simulations, it may
be useful to approximate the states |H) by eigenstates of the hermitian part of the NRQCD
Hamiltonian. We note that corrections to this approximation first appear at third-order in
perturbation theory in Im 0 L4 fermion, since second-order perturbation theory does not give
an imaginary contribution to the energy. The corrections are therefore of order (I'/Muv?)?T.
This is of relative order al(M)v? or smaller, since the leading terms in I' scale like Muv3
and are multiplied by short-distance coefficients of order (M) or smaller. This level of
accuracy is sufficient for most practical purposes.

Applying the velocity-scaling rules of Table [| to the matrix elements (H|O,,(A)|H), one
finds that the expression (R.14)) for the annihilation decay rate can be organized into an
expansion in powers of v. Only a finite number of operators contribute to any given order
in v. The coefficients f,,(A) can be calculated as perturbation series in as(M), so (B.14) is
really a double expansion in as(M) and v. The simultaneous expansion in a,(M) and v is
useful to the extent that these two parameters are both small. Of course, as(M) and v are
not independent for heavy quarkonium. According to (B]), v can be identified with as(Mv),
which is larger than a,(M). This implies that it would be futile to consider corrections to
the coefficients Im f,, of relative order o (M) unless matrix elements (H|O,|H) of relative
order v™ have already been included.

The relation between v and a, (M) implied by (R.1) follows from the dynamics of heavy
quarkonium. The factorization formula (R.14]) is actually an operator equation, and it can
equally well be applied to other problems in which the relation between v and a,(M) is
different. An example in which v and a4(M) are independent is the annihilation of a pair
of heavy-light mesons, such as D and D mesons, at small relative velocity v < 1. As long
as v is much larger than Agecp/M, which is the typical relative velocity of a heavy quark
in the heavy-light meson, it can be identified with the velocity of the heavy quark and the

scaling rules of Table [] apply.
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G. Electromagnetic Annihilation

In addition to annihilating into light hadrons, heavy-quarkonium states can also annihi-
late into purely electromagnetic final states containing only photons and lepton pairs. The
energies of the final-state photons and leptons are of order M. In NRQCD, the effects of
electromagnetic annihilation can be accounted for in the same way as the effects of annihi-

lation into light hadrons: by adding 4-fermion terms LM to the effective lagrangian.

4—fermion
The primary difference is that in the case of electromagnetic annihilation, the final state, as
far as the strong interactions are concerned, is the QCD vacuum state |0). The 4-fermion
operators that reproduce the effects of electromagnetic annihilation therefore differ from

those in (R.9) and (R.I1]) by the insertion of an operator |0)(0| that projects onto the QCD

vacuum state. The dimension-6 terms that must be added to the lagrangian are

fem('So) fem(®Sh)

(5‘64 forrmon)d_6 T wT |0> <0|XT'¢ + M2 ¢T0X|0> ’ <0|XT0”1/} (215)

Note that color-octet operators, such as 1T%|0)(0|x"T"%), are omitted because they can-
not contribute to matrix elements between color-singlet heavy-quarkonium states. The

dimension-8 terms that must be added to the lagrangian include

(3 i), = P2 Lt 5B o) (01 (—4D) - o0
+ ICR) i3 Bo)x0) (0 (~2D0)
4 CS Lt 0y 01! (—5)%0 + e
+ %5 [Wfox|0) - (OxTo(—iD)* +he] + ... (216)

We have shown only four of the possible dimension-8 terms. In particular, there are terms
corresponding to each of the operators shown explicitly in (B.II]). The coefficients of the
operators in (2.15) and (B.If) can be computed as perturbation expansions in a,(M).

The decay rate of a heavy quarkonium state H into electromagnetic final states (EM)
can be expressed in a factored form that is analogous to that given in (R.I4)) for decays into

light hadrons:
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P(H —EM) = 3 =2

n

(H|UTICX(A)]0) (O Kntp (A)|H), (2.17)

where KC,, and K] are products of the unit color matrix, a spin matrix (the unit matrix or
o"), and a polynomial in the covariant derivative D and other fields, as in (R.1§) and (R.14).
The possible electromagnetic final states EM include the multiphoton states vy and 3y and

the lepton pairs £t¢~, where { = e, u, T

H. Computation of the Coefficients of the 4-Fermion Operators

The nonperturbative long-distance dynamics of QCD is described equally well by full
QCD and by NRQCD. The perturbation expansions for full QCD and NRQCD also give
equivalent descriptions of the long-distance dynamics, although the description is incorrect.
For example, perturbation theory allows quarks and antiquarks to appear as asymptotic
states. However, because the coefficients of the NRQCD operators are insensitive to the long-
distance dynamics, we can exploit the equivalence of perturbative QCD and perturbative
NRQCD at long distances as a device to calculate the coefficients of the four-fermion opera-
tors. We compute in perturbation theory in full QCD the annihilation part A(QQ — QQ) of
the scattering amplitude for an on-shell quark and antiquark with small relative momenta.
Then we use perturbation theory in NRQCD to compute the matrix elements of 4-fermion
operators O,, between on-shell QQ states. The short-distance coefficients are determined by

the matching condition

(M)]QQ) : (2.18)

pert. QCD n pert. NRQCD

A(QQ — QQ)

By expanding the left and right sides of (B.1§) as Taylor series in the relative momenta p
and p’ of the initial and final QQ pairs, we can identify the coefficients of the individual
operators. These correspond to the infrared-finite parts of the parton-level amplitudes for
QQ scattering. Because of the equivalence of NRQCD and full QCD at long distances, all
of the infrared divergences contained in A(QQ — QQ) on the left side of (R-I§) reside on
the right side in the NRQCD matrix elements (QQ|0,,(A)|QQ).
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The application of the matching condition (R.I§) is illustrated in Appendix A. The
imaginary parts of the coefficients f, that enter into the annihilation rates of S-wave states
through relative order v? and the annihilation rates of P-wave states at leading order in v
are computed to order a?. In order to illustrate the use of the matching condition (P13

beyond leading order in ay, we also calculate the coefficient Im f1(1Sp) at next-to-leading

order in a.
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III. MATRIX ELEMENTS FOR HEAVY QUARKONIUM

The factorization formula (B.14) expresses the decay rate of an arbitrary heavy quarko-
nium state H into light hadrons as a sum over all 4-fermion operators O,,. If we truncate
the expansion at a given order in the heavy-quark velocity v, then only finitely many of
the operators contribute. In this section, we show how the number of independent matrix
elements can be reduced further by exploiting heavy-quark spin symmetry and by using the
vacuum-saturation approximation. We identify the matrix elements that contribute to the
decays of S-wave states through relative order v? and the matrix elements that contribute
to the decays of P-wave states at leading order in v. We also discuss the relation between
these matrix elements and Coulomb-gauge wavefunctions, as well as the dependence of the
matrix elements on the factorization scale. For the sake of clarity, we use the lowest S-wave
and P-wave states of charmonium for the purpose of illustration. However, our results apply
equally well to other sets of S-wave and P-wave states, and they can be extended readily
to higher orbital-angular-momentum states as well. The lowest-lying S-wave states in the
charmonium system are the J¢ = 0=+ state 7. and the 17~ state J/¢ (henceforth referred
to simply as ). The lowest-lying P-wave states are the 17~ state h, and the J*T states

XeJs J = 0, 1,2.

A. Powers of Velocity

We wish to determine the relative importance of the matrix elements (H|O,|H) of 4-
fermion operators O, for a heavy quarkonium state |H). The velocity-scaling rules in Table ||
suggest that (H|O,,|H) is of the same order in v for all the dimension-6 operators in (B.9), and
that all the dimension-8 operators in (P.11]) are down by a power of v2. There can, however,
be additional suppression by powers of v, depending on the quantum numbers of the state
H. The velocity-scaling rules in Table I give the correct result only if the operator O,

annihilates and creates a color-singlet Q@ pair with the same angular-momentum 251 ; as
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the QQ pair in the dominant Fock state |QQ) of the state |H). (In the notation for 4-fermion
operators used in (2.9) and (B.I1]), the subscript 1 or 8 and the argument 2°*1L; indicate
the color and angular-momentum state of the QQ pair that is annihilated and created by
the operator.) The matrix element (H|O,|H) is suppressed by only one additional power

2 relative to the velocity-scaling rules in Table 1, if O, annihilates and creates QQ

of v
pairs in the same color-spin-orbital state as appears in one of the Fock states |QQg) whose
probability is of order v2. In particular, if the dominant Q@ component is 2*1L;, the QQ
pair in the component |QQg) must be in a color-octet state with spin quantum number S
and orbital-angular-momentum quantum number L + 1. The matrix element is suppressed
by v? relative to the velocity-scaling rules in Table I if O,, annihilates and creates QQ pairs
in the same color-spin-orbital state as appears in one of the Fock states |QQg) that can be
obtained from the dominant Fock state by a spin-flip transition. In such a Fock state, the
QQ pair must be in a color-octet state with the same orbital-angular-momentum quantum
number L as in the dominant |QQ) state, but with different total spin quantum number.
In all other cases, the matrix element is down by v? or more relative to the velocity-scaling
result from Table I.

If perturbation theory remained accurate down to the scale Mv, then the spin-flip ma-
trix elements would be suppressed by an additional power of v. The reason for this is that
the contribution to a spin-flip matrix element that is suppressed by only v? relative to the
velocity-scaling rules is power ultraviolet divergent. Therefore, one could carry out a renor-
malization of the matrix element in which this contribution is subtracted. The corresponding
contribution to the decay rate would then reside in the short-distance coefficient of the ma-
trix element that is associated with the dominant Fock state. (Such a subtraction is carried
out automatically if dimensional regularization is used to cut off the ultraviolet divergences
in the matrix element.) Once the subtraction has been made, the leading contribution to
the spin-flip matrix element comes from the scale Mwv?. It is subject to the usual multipole

suppression and scales as v? relative to the velocity-scaling rules. In practice, one usually
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makes such subtractions perturbatively. It is not clear, in the charmonium and bottomo-
nium systems, that perturbation theory is sufficiently accurate at the scale Mv to remove
the v? contribution completely. Therefore, we assume in the error estimates below that the
spin-flip matrix elements scale as v* relative to the velocity-scaling rules.

We can now identify the operators that contribute to the annihilation of the 7. into light
hadrons through relative order v2. The JFC = 0=* state |n.) consists predominantly of the
Fock state |QQ), with the QQ pair in a color-singlet 1Sy state, but it also contains, with
probability of order v?, the Fock state |QQg), with the Q@ pair in a color-octet ‘P, state.
The QQ pair in the dominant Fock state |QQ) is annihilated and created by the leading
operator O1(1Sy) = ¥TxxT, and by the operator P;(1Sy) = wTXXT(—%B)zw + h.c., which
is down by v?. All other operators are suppressed by v® or more relative to O1(1Sp). For
example, the operator Og(1 P;) = wT(—%B)Tax-XT(—%H)T“w scales as v? relative to O (1Sp),
but it contributes through the Fock state |QQg), which gives an additional suppression by
v% The operator O;(3S1) = Yoy - x'ov scales as O1(1S), but it contributes through the
Fock state |QQgg), and is therefore suppressed by an additional probability factor of v*. As
a final example, the operator V (¢/7x)-V(x¢) scales as v? relative to O1(1Sy), but its matrix
element is proportional to the total momentum of the Q@ pair, which vanishes for the Fock
state |QQ) in the meson rest frame. Thus, there are only two operators that contribute to
the decay rate of the 7, into light hadrons through relative order v?:

2 Im fi (1S
= 2IAE) 40,0 Smd

2 Im g (' So)
LA Y7

I'(n. — LH)

Me|P1(*So)|me) + O(W°T). (3.1)

The analysis of the operators that contribute to the decays of the v is similar to that for
the n.. The 17~ state |+/) consists predominantly of the Fock state |QQ), with the QQ pair
in a color-singlet 3S; state, but it contains, with a probability of order v2, the Fock state
|QQg), with the QQ pair in a color-octet 3Py, 3Py, or P, state. At leading order in v, only
the operator O;(35]) contributes to the decay rate of the ¢ into light hadrons. At relative

order v?, the only additional contribution comes from the operator P;(®S;). As in the case
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of the 7., all contributions from Fock states containing dynamical gluons, such as [QQg),
are of order v®I" or higher.

We next determine the operators that contribute to the annihilation decays of the P-
wave states at leading order in v. In contrast to the S-wave states, we find that Fock
states containing dynamical gluons play an important role. The 1%~ state |h.) consists
predominantly of the Fock state |QQ), with the Q@ pair in a color-singlet 1P, state, but it
has a probability of order v? for the Fock state |QQg), with the QQ pair in a color-octet 1Sy
or 1D, state. The Fock state |QQ) is created and annihilated by the dimension-8 operator
O0,(1P) = wT(—%B)X . XT(—%B)w. The Fock state |QQg), with the QQ pair in a color-
octet 1Sy state, also contributes to the decay at the same order in v through the operator
Os(1Sy) = YT x'T%). The operator scales as v~2 relative to O;(*P;), but there is also
a suppression factor of v? from the probability for the QQg state. Thus, the Fock state
|QQg), which contains a dynamical gluon, contributes to the decay rate into light hadrons
at the same order in v as the dominant Fock state |QQ). The resulting expression for the
decay rate is

_ 2 Imfl(lPl)

I'(h. — LH) A (el 1) he)
- %82(150) (helOs(*So)|he) + O(v'T). (3:2)

The analysis of the operators that contribute to the decays of the x., Xe1, and yeo is
similar to that for h.. The J*+ state |x.;) consists predominantly of the Fock state |QQ),
with the QQ pair in a color-singlet ?P; state. It also contains, with a probability of order
v?, the Fock state |QQg), with the Q@ pair in a color-octet 3S;, 3Dy, 2Ds, or 3Dy state.
The Fock state |QQ) contributes to the annihilation at leading order in v through the
dimension-8 operator O (*Py). The Fock state |QQg), with the Q@ pair in a color-octet 35,
state, also contributes to the annihilation rate at the same order in v, through the operator
Os(*S1) = PlaTx - xteT .

The analysis of the electromagnetic operators that contribute to the decays of S-wave

and P-wave states is identical to that of the operators that contribute to the decays into
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light hadrons, except that there are no color-octet operators. We find, therefore, that there
are two operators that contribute to the decay of the 7. into two photons through relative
order v2: Ty|0)(0|xT¢ and wa|0>(O|XT(—%H)2w + h.c.. Thus, the decay rate for 7. — vy
is

21 LS
2L L5 | opy g

2Im gw(lso)
R Vi

2

F(nc - ’77) =
Re ((nelvx[0)0Ix! (—£D)*¢ln.)) + O('T).  (3.3)

Here, it is expressed in terms of the vacuum-to-n. matrix elements (0|x¢|n.) and
(O|XT(—%H)2w|nc>. Similarly the decay rate for ¢y — ete™ can be computed at relative
order v? in terms of (0|x'o|)) and (0|XTU(—%H)2w|w>. For the decay x. — 77, the
only operator that contributes at leading order in v is QN(—%B : a)x|0>(O|XT(—%[H) - o)),
so the decay rate can be expressed in terms of the single vacuum-to-y. matrix element
(0|XT(—%B - 0)1|xe0). Similarly the decay rate for y. — 77 can be calculated to leading

order in v in terms of the matrix element <O|XT(—%B(iO’j))'{/J|X02> only.

B. Heavy-Quark Spin Symmetry

Heavy-quark spin symmetry provides approximate relations between matrix elements for
the various spin states of a given radial and orbital excitation of heavy quarkonium. The
leading violations of heavy-quark spin symmetry come from the spin-flip terms in (P.3),
whose effects are of relative order v2. Consequently, the equalities that follow from heavy-
quark spin symmetry hold only through relative order v2. Nevertheless, these relations
can significantly reduce the number of independent matrix elements that contribute to the
decays of the various spin states.

When applied to the S-wave states, heavy-quark spin symmetry relates the n. and the
3 spin states of the ¢. For the matrix elements that contribute to their decays into light

hadrons through relative order v2, the spin-symmetry relations are
W01y = (el O1(*So)ne) <1+0(02)>, (3.4a)
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WIPCS)I) = lPr(So)lne) (1 +0<v2>). (3.4D)

The 12 spin states of the P-wave states h., X0, Xe1, and Yo form a spin-symmetry multiplet.
The spin-symmetry relations between the matrix elements that contribute to the decays of

the P-wave states into light hadrons at leading order in v are
(Xes|O1CPy)Xer) = (he|OL('P1)|he) (1 +0(vz)>, J =012, (3.5a)
(Xes|0s(S1)xer) = (he|Os("So)|he) (1 + 0(vz)>, J =012 (3.5b)

Heavy-quark spin symmetry also relates the matrix elements that contribute to the
electromagnetic annihilation decay rates. For the matrix elements that contribute to the

decays of 1. and v, the spin-symmetry relations are

e - O avlo(e)) = OxIn.) (1 ; o<v2>), (3.6a)
& - (0P or(=2B)((e) = O (—iB)2win) (1 ; o<v2>), (3.6b)

where the polarization vector € satisfies €* - € = 1. For the matrix elements that contribute

to the decays of the y. and y. into two photons, the spin-symmetry relations are

O DYoo) = % (01 (3D - 0)¢|x0) (1 + O(v2>), (3.7)

where the symmetric polarization tensor ¢/ satisfies tr(e) = 0 and tr(efe) = 1.

C. Vacuum-Saturation Approximation

The 4-fermion operators in (£.9) and (R.11]) that contribute to the decays of heavy quarko-
nium into light hadrons are distinct from those in (B.15) and (R.IG) that contribute to elec-
tromagnetic annihilation. The electromagnetic matrix elements can be obtained from the
corresponding light hadronic matrix elements by making use of the “vacuum-saturation ap-
proximation”: insert a complete set of light hadronic states 3y |X)(X| between x' and

x and assume that the sum is “saturated” by the lowest-energy state, the QCD vacuum
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|0). The vacuum-saturation approximation has been used in many other contexts in parti-
cle physics, but it is usually just a simplifying assumption without any rigorous basis. In
the case of heavy quarkonium, we can show that the vacuum-saturation approximation is
actually a controlled approximation.

Consider the matrix element of a color-singlet operator of the form O,, = YK/ xx K1),
where IC,, and K/ are products of a unit color matrix, a spin matrix (the unit matrix or
o"), and a polynomial in D and other fields. The vacuum-saturation approximation to the
matrix element (H|O,|H) is obtained by inserting a complete set of states |X) between x
and x', and assuming that the sum is well approximated by the term involving the vacuum
state |0):

(H[|On|H) = ; (H[ G x| XX X H)

~ (HHC, x[0) (0] x"ICoyp | H) (3.8)
If the last step in (B.§) is to be a controlled approximation, we must show that the contri-
butions from all other states, such as multigluon states, are suppressed by powers of v. One
example for which this can be done is the matrix element (n.|¢Txx"|n.). In the vacuum-
saturation approximation, the last line of (B.§) reduces to |[(0]x|n.)|?. This approximation
would be exact if the 1, were a pure 1Sy QQ state. The point-like operator 1) would then
annihilate the 7, completely, leaving the vacuum state. However, the 7. also has Fock-state
components, such as |QQg) and |QQgg), which include dynamical gluons. Corrections to
the vacuum-saturation approximation can be attributed to contributions from intermedi-
ate states |X) containing such dynamical gluons. For the matrix element (n.|v™xx (0.,
a single-gluon intermediate state is forbidden by color conservation, so the leading correc-
tions to the vacuum-saturation approximation come from two-gluon intermediate states |gg).
The leading contribution to (n.|v'"x|gg)(9g|x ¥ |n.) comes from the |QQgg) component of
the 7., which has a probability of order v*. Thus, the vacuum-saturation approximation for
(ne|v™xxT|ne) holds up to corrections of relative order v?.

The vacuum-saturation approximation holds up to corrections of relative order v* for
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any matrix element in which the operator creates and annihilates the dominant Q@ compo-
nent of the quarkonium state. For the matrix elements that contribute to the decay rates
of the S-wave states into light hadrons through relative order v2, the vacuum-saturation

approximation gives

(el 01(S0) 1e) = [(O1x e |

<1 Lo ) (3.9)

WO CS)I) = [OhT ol <1+0 (3.9b)
(0P (Sl = Re (o0 00 (-5B)vlan) (14007 (3.9¢)
WIPESI) = e (i) Oha-5BRuw) (1+00Y). G

In the case of P-wave states, the vacuum-saturation approximation can be applied to the

matrix elements of the color-singlet 4-fermion operators of dimension 8:

(he]OL( P1)[he) = (01X (~ 5D D)|he)

(1 + O(v4)>, (3.10a)

(O Rl = 5 [0 (-5B -yl 1+ 00 (3.10b)
(X1 |O1CPY)|xe) = % ’(0|XT(—%B X U)¢|Xc1>’2 (1 + O(v4)>, (3.10¢)
(Xe2| 01 P2)|xe2) = Z ’<0|XT(—%B(in))¢|Xc2>’2 (1 + O(v4)>. (3.10d)

The vacuum-saturation approximation cannot be applied to matrix elements of color-octet
operators, such as (h.| T\ T%)|h.), because the matrix element (X |xT%)|h,.) vanishes

if (X| is the vacuum or any other color-singlet state.

D. Relation to Wavefunctions

In most previous work on the annihilation decays of heavy quarkonium, the nonperturba-
tive factors in the decay rates were expressed in terms of wavefunctions, or their derivatives,

evaluated at the origin. These “wavefunctions” were often identified with the Schrédinger
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wavefunctions calculated in potential models for heavy quarkonium. The wavefunction fac-
tors were never given rigorous field-theoretic definitions, so the accuracy of the approxima-
tions that were involved was always vague. By expressing the decay rates in terms of matrix
elements of NRQCD, we have provided a rigorous field-theoretic definition of the nonper-
turbative factors in the decay rates. Since heavy quarks and antiquarks are described in
NRQCD by a Schrodinger field theory, the nonrelativistic wavefunctions can also be given
rigorous field-theoretic definitions, and their relations to the nonperturbative factors in the
decay rates can be clarified.

Nonrelativistic Coulomb-gauge wavefunctions can be defined naturally as NRQCD
Bethe-Salpeter Q@ wavefunctions, evaluated at equal time. For example, the radial wave-

function R, (r) for the 7, can be defined as

é_ﬂ _ ﬂlw O] (—1/2) ¥(+1/2)n.)

R,.(r) (3.11)

Coulomb

The Pauli spinor fields ¢(r/2) and x'(—r/2) are understood to be evaluated at the same
time ¢ = 0. The factor 1/v/47 on the left is the spherical harmonic Yyo(t), while the factor of
V2N, on the left takes into account the traces of the spin wavefunction 6™+™%/4/2 and the
color wavefunction 6% /v/N, of the |QQ) component of the 7.. In the absence of a regulator,
the wave function or its derivatives may be singular as r — 0. We can define regularized

“radial wavefunctions at the origin” R, (A) for 7. and Ry(A) for ¢ by

Ry (0) =[5 Ow(d)lng), (3.120)
) €= /5 Ol ov(D)li(e) (3.120)

where € is the polarization vector of the ). The local operators ¢ (A) and xTo¢)(A) can be
defined by dimensional regularization with scale A, together with minimal subtraction. They
can also be defined by a lattice regulator, or any other convenient regularization scheme. As
is suggested by the overline, the intuitive interpretation of R, (A) and Ry(A) is that they

are the radial wavefunctions averaged over a region of size 1/A centered at the origin. Note
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that the regularized matrix elements in (B.12) are precisely those that enter into the decay
rates for for n. — vy and ¥ — eTe™ at leading order in v.

The matrix element (0| XT(—%H)2w|77€> that contributes to the decay rate for . — v at
relative order v? can also be related to the Coulomb-gauge wavefunction defined in (B17)).
By the velocity-scaling rules of Table [, it differs from the matrix element <O|XT(—%%)2w|nc>
in Coulomb gauge only at relative order v?. With appropriate regularization, the latter
matrix element can be identified with the limit as r — 0 of —V2R(r), where R(r) is the
radial wavefunction defined in (B.11]). The operator XT(%%)zw contains a linear ultraviolet
divergence proportional to xT(A), which we subtract, and a logarithmic divergence that is
cut off at the scale A. This subtraction and cutoff define a renormalized laplacian of the

radial wavefunction at the origin, which we denote by V2R, :

() \/fvz (Ol (29)2(4) )

(3.13)

Coulomb

The analogous quantity V2R, for the ¢ can be defined in a similar way. The corresponding

gauge-invariant matrix elements differ from V2R, and V2R, only at relative order v*:
T iTy)2 Ne N 2
O (=gD)*$(N)lne) = =/ 5= V2R (A) (1 + O(?) ). (3.14a)

e Do (D uute) - | o T 1+ 002) (3.14b)

The intuitive interpretations of V2R, (A) and V2R,(A) are somewhat obscured by the
subtractions needed to define the renormalized matrix elements.
Heavy-quark spin symmetry implies that the wavefunctions of the 7. and 1 are identical

up to corrections of relative order v?:

Ry(r) = R,.(r) (1 + O(v2)>. (3.15)

It is convenient to introduce an average radial wavefunction Rg(r) for the 1S states . and

1), which can be used when the differences of relative order v? can be neglected:

Rs(r) = R”C(T)Z?’Rw(r). (3.16)
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Because of the heavy-quark spin symmetry, the regularized quantities R, (A) and Ry(A)
differ only at relative order v2, as do the renormalized quantities V2R, (A) and V2R, (A).
Weighted averages Rg(A) and V2Rg(A) for the S-wave states can be defined as in (B.16).
The S-wave radial wavefunction that is computed in nonrelativistic potential models can
be interpreted as a phenomenological estimate of the wavefunction (B.1q). Thus, the value
Rs(r = 0) that is obtained from potential models can be used as an estimate of the reg-
ularized quantity Rs(A) at a scale A of order Mv. The relation between V2Rg(A) and
V?Rgs(r = 0) in potential models is more obscure, because of the subtraction that is re-
quired to define the renormalized matrix element in (B:I3), and because V?Rg(r) diverges
linearly as r — 0 if the potential is Coulombic at short distances.

Nonrelativistic wavefunctions for the P-wave states can be defined through matrix ele-

ments in Coulomb gauge that are analogous to (B.I1]). For example, the radial wavefunction

Ry, (1) for the h. can be defined as

R (1) (@ ) = g O (/) (/2 )

where the polarization vector satisfies € - €* = 1. A regularized derivative of the radial

, (3.17)

Coulomb

wavefunction at the origin Rj, (A) can be defined by

2T

B (0) e = /o O GV lhe(e))

(3.18)

Coulomb

Analogous quantities K(A) can be defined for the y.; states. Since no subtractions are
required in order to define the operator on the right side of (BI§), the quantity R}, (A)
has a straightforward intuitive interpretation as the derivative of the radial wavefunction
averaged over a region of size 1/A centered at the origin. In the gauge-invariant analog of
the matrix element (B.1§), the derivative V is replaced by the covariant derivative D. From
the velocity-scaling rules of Table [, we see that these matrix elements differ only at relative

order v?:

(O[x' (AD)e(A) he(€)) = y 32]7\:(" R, (A)e (1 + O(v2)>, (3.19)
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5 OB )0 n) = | 5 ) (14 0% 3.19b)
5 OB x pulate) = | S B e (14 062). @1
(O1x! (ADV6D)ib(A)[xeale)) = 32]7\:(" R (A) ¢V (1 + O(v2)>. (3.19d)

By heavy-quark spin symmetry, R—;LC(A) differs from %(A), J =0,1,2, only at relative
order v2. For applications in which v? corrections can be neglected, these wavefunctions can
all be replaced by the average over the 16 P-wave spin states, which we denote by Rp(A).
The value R)5(0) for the derivative of the radial wavefunction at the origin that is obtained
from nonrelativistic potential models can be interpreted as a phenomenological estimate of
the regularized quantity R(A) at a scale A of order Muv.

The vacuum-saturation approximation discussed in Section [ITJ allows the matrix ele-
ments of some 4-fermion operators to be expressed in terms of the regularized and renor-
malized wavefunction parameters defined above. Combining (B.9) with (B.12) and (B.14),
we obtain the following expressions for the matrix elements that contribute to the decays of

the n. and the ¢ into light hadrons:

o sind = 52/ (14 0w (3,200
wioes)l) = el (1 + 0et) (3.200)
(ne|P1(*So)|me) = —% Re(Rs* V2Rg) (1 + O(v2)>, (3.20c)
WIPLCSIY) = -3 Re(Rs ) (1 + 007 ) (3.200)

In (B:20d) and (B:20d), we have used heavy-quark spin symmetry to replace R,  and R,

by their weighted average Rs and to replace V2R, and V2R, by V2Rs without any loss
of accuracy. If we were to make the same replacement in (B.20d) and (B.20D]), the relative
accuracy would be decreased to v2. For the decays of the P-wave states into light hadrons
at leading order in v, the vacuum-saturation approximation together with heavy-quark spin

symmetry can be used to express all the color-singlet matrix elements in terms of the average
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regularized quantity R/p. Combining (BI0) with (B-IJ), we obtain the approximations

3N, |——
0Pl = SR (14 06), (3.21a)
3 3NC / 2 2
<XCJ|01( PJ)|XCJ> = o RP 1 + O(U ) 5 J: 0,1,2. (321b)

E. Factorization-Scale Dependence

The matrix elements (H|O,|H) that appear in the factorization formula (B.14)) are ultra-
violet finite only if the 4-fermion operators O,, are properly regularized. The regularization
introduces dependence on the ultraviolet cutoff A of NRQCD, and this cutoff-dependence
must be understood in order to make quantitative predictions. We assume that the operator
O,, is normal-ordered: (0/0,|0) = 0. This guarantees that in the matrix element (H|0,|H),
the operator O,, annihilates the heavy quark and antiquark in the initial quarkonium state
|H). In addition to normal-ordering, regularization is needed to control power and logarith-
mic divergences. If a cutoff A is imposed on loop momenta, there are power divergences in
(H|O,,|H) that are proportional to A?, where p = 1,2, .... If the operator O,, has dimension
d,, then the coefficient of A? is, by dimensional analysis, the sum of matrix elements of
4-fermion operators of dimension d,, — p or larger. If the dimension is larger than d,, — p, the
extra dimensions are balanced by powers of 1/M. Similarly the coefficients of logarithmic
divergences are proportional to matrix elements of 4-fermion operators of dimension d,, or
larger.

The power and logarithmic divergences associated with loop corrections to NRQCD
operators can be regularized by a variety of means. A convenient regularization scheme
for analytic calculations is dimensional regularization with minimal subtraction. The scale
associated with the dimensional regularization then plays the role of the NRQCD cutoff A.
An advantage in using a mass-independent regulator, such as dimensional regularization, is
that power divergences are automatically discarded. In other approaches, such as lattice

regularization, the regularized operator may contain divergences that are proportional to
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powers of A. These power divergences are simply artifacts of the regularization scheme and
have no physical content. Since physical quantities are renormalization-group invariants,
they have no dependence on A. Hence, any power divergences in NRQCD operator matrix
elements must ultimately be cancelled by power divergences in operator coefficients.

Once one has removed the power divergences, either by employing a mass-independent
regularization scheme or by making explicit subtractions, the 4-fermion operators satisfy

simple evolution equations of the form

d 'Ynk(A)
Ad—AOn(A) = zkj Njdr—d Ok(A), (3.22)

where the sum ranges over all 4-fermion operators Oy (A) with dimensions dy > d,,. The
anomalous-dimension coefficients v,x(A) are computable as power series in the running cou-
pling constant a,(A). For d,, = dy, the coefficients 7, are of order a?, because logarithmic
ultraviolet divergences in one-loop diagrams in NRQCD arise only from transverse gluons,
whose coupling to the heavy quark lines brings in a factor of v. The coefficients 7, for
d, = 6 and dy = 8 are computed to order o in Appendix B.

By taking the matrix elements of (B.23) between heavy quarkonium states |H), we obtain
the evolution equations for the matrix elements (H|O, (A)|H) that appear in the general
factorization formula (R.14):

o,y = 3 2

A—
dA — N

(H|Ox(A)|H). (3.23)

The leading v behavior of the matrix elements can be determined by using the velocity-
scaling rules developed in the previous sections. At any given order in v, there is only
a finite number of terms that contribute to the evolution equation (B.23). The evolution
equations for the dimension-6 4-fermion operators are calculated to order o in Appendix B.
The operator evolution equations for O1(1Sy) and O;(3S;) are given in (BI{) and (BI94).
Taking the matrix elements of these equations and keeping only those terms on the right

sides that are of relative order v?, we find that only the operators P; survive, and we obtain
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AL O Sl = ~ 22 (i) ), (3.210)
d 3 __8CFas(A) 3
A WIOICS)IY) = —— 5 WIPCS)IY), (3.24b)

where Cr = (N? — 1)/(2N,). If the evolution equations are truncated at leading order
in v, the right sides of (B:24d) and (B-24H) vanish and we find that the matrix elements
e|O1(1S0)|ne) and (p|O1(351)|1) are renormalization-scale invariant through order a,. The
dimension-8 matrix elements (n.|P1(*So)|n.) and (1|P1(3S1)[)) are also renormalization-

scale invariant through order a, and at leading order in v:

d
Ad—A(

d 3 B
AT WIPCS)lY) = 0. (3.25b)

1e|P1(*So)[ne) = 0, (3.25a)

Truncated at order «g, the evolution equations can be solved analytically for the A-

dependence of the matrix elements. For example, the solution to (B.24q) is

80]:‘ 1 OZS(A(])
3ﬁ0M2 Qg (A)

where Gy = (11N, — 2ny)/6 is the first coefficient in the beta function for QCD with n;

(1| O1(*So; M) [ne) = (neO1(*So; Ao)lrne) —

) P So) )+ (3.26)

flavors of light quarks: p(d/dp)as = —foa? /7 + .. ..
We next consider the evolution of the matrix elements that contribute to P-wave
annihilation at leading order in v. The color-singlet dimension-8 matrix elements are

renormalization-scale-invariant to this order in a:

d

ATl OL( PG =0, (3.27a)
d
Ad_A<XcJ|Ol(3PJ)|XcJ> =0, J=0,1,2. (3.27b)

Taking the matrix elements of (BI1) and (BI9H) in Appendix B, we find that the color-octet

dimension-6 matrix elements have nontrivial scaling behavior at order a:

d 1 o 4CFQS(A) 1
Ad—A<hc|Os( So)lhe) = W(MQ( Pr)lhe), (3.28a)
d 4Crag(A
Ad_A<XcJ|O8(351)|XcJ> = 3]\1;07_(_]\(42) <XCJ|OI(3PJ)|XCJ>. (32813)
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To this order in ay,, we find that the evolution equations can be solved analytically. For

example, the solution to (B:284) is

4C s(A
(he|Os(*So; M) [he) = (e Os(*So; No)|e) + STEl (a( v

3N .LBoM? as(A) ) <h0|01(1P1)|hc>.

(3.29)

The solution (B.29) to the evolution equation can be used to provide a crude estimate of
the color-octet matrix element (h.|Og(*Sp; A)|h.) in terms of the color-singlet matrix element
(he|O1(1Py)|h.). Suppose that we approximate (B-29) by the evolution term on the right side.
The evolution term is largest, relative to the matrix element (h.|Og(*So; Ag)|he), when the
scales Ay and A are as widely separated as possible. However, the logarithmic evolution
holds only down to scales of order Mwv. Thus, we choose Ag = Mv. Then, setting A = M,
neglecting the initial matrix element in (B.29), and assuming that as(Ag) = as(Mv) ~ v,
we find that (B.29) reduces to

4C
(0K M) ~ gt ton () (ORI (3:30

The same method can be used to obtain crude estimates for the corresponding matrix

elements for the y.; states:

OAOCS M) ~ S (s ) Gl ORI - (33)

3N G M?

The terms that we have retained in obtaining these estimates are enhanced by one power
of log[v/as(M)] relative to the terms that we have neglected. Since this is not a large
enhancement factor, particularly in the case of charmonium, these estimates should be

regarded as giving only the orders of magnitude of the matrix elements.
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IV. ANNIHILATION DECAYS OF HEAVY QUARKONIUM

In Section [II, we derived a factorization formula (B.14)) for the decay rates of heavy
quarkonium states into light hadrons. In this section, we apply this formula to the decays
of S-wave states, up to corrections of relative order v3, and to the decays of P-wave states,
up to corrections of relative order v2. We also treat the decays into the electromagnetic
final states by using the analogous formula (2.17). As in Section [TI], we use the lowest-lying

S-wave and P-wave states of charmonium for the purpose of illustration.

A. S-wave Annihilation

Most previous treatments of the annihilation rates of the S-wave states of heavy quarko-
nium have been restricted to leading order in v. In these analyses, long-distance effects were
absorbed into a nonperturbative factor |Rg(0)|?, where Rg(0) is the radial wavefunction at
the origin. We improve on these previous treatments by providing a rigorous definition of the
nonperturbative factor in terms of matrix elements of NRQCD. We also extend the analysis
of the decay rates to relative order v?, and show that 3 independent nonperturbative factors
are sufficient to calculate all the S-wave annihilation rates through this order.

We first consider the decays of the JP“ = 0=F state 7, and the 17~ state v into light
hadrons. As was shown in Section [ITA], there are only two operators that contribute to
each of these decay rates through relative order v2. According to (2.14), the decay rates into
light hadrons are therefore

2 Tm f;(1So) 2 Tm g1 (1)

L(ne — LH) = ——5—— (nc|O1("So)lme) + i (elPi(So)lne)

+ O(v°I), (4.1a)
P — LH) = 2ERACS) 10,05y o+ 2ERICS) i, 05,1

+ O(°T). (4.1b)

The imaginary parts of the coefficients in (f£]]) are calculated at order o2 in Appendix [KX 3,

and Im f;(1Sp) and Im f;(3S) are given through next-to-leading order in a4 in Appendix [A 3.

48



According to the factorization formula (P.I7) for electromagnetic annihilation, the decay

rates for 7. — vy and ¢ — ete™ are

I — ) = ) ool

+ 21%1(50) e ((nel'x[0){0]x"(— D)2 ln)) + O@'T), (4.22)
I'(y —eTe”) = %‘”2(51) ’<0|XTU¢|¢>’2

" %(S)R (twlgfox|0) - (Ox'o(—4D)%plv)) + O@'T).  (4.2b)

The decay rate for ¢ — ~7v7 is given by an expression that is identical to (f.2H), but
with coefficients f3,(*S1) and gs,(*S1). The imaginary parts of the coefficients in ([£3) are
calculated at order o in Appendix [A4), and order-a; corrections are given for Im f..(1Sp),
Im fee(*S1), and Im f3,(357). The matrix elements in (f])) and (f-2) can be computed using
lattice simulations of NRQCD. Since matrix elements of relative order v have been omitted,
there is nothing to be gained by computing the dimension-6 matrix elements to an accuracy
of better than v?. Similarly, the dimension-8 matrix elements need be computed only at
leading order in v.

At the level of accuracy in (fL.I]) and ([L.F), the matrix elements are not all independent.
The vacuum-saturation approximation (B.9) can be used to express the 4-fermion matrix ele-
ments in ([L.1)) in terms of the vacuum-to-quarkonium matrix elements in (f.3). Furthermore,
the heavy-quark spin-symmetry relation (B.g) can be used to equate the matrix elements in
the second terms on the right sides of (.2d) and ([L.2H). The net result is that the 8 matrix
elements in ([L1]) and ([3) can be reduced to 3 independent nonperturbative quantities,
which we can take to be |R,.|%, |Ry|?, and Re(Rs* V2Rg). The resulting expressions for the

decay rates are

2 NC Imgl(lSo)

N, Im f1 (1S, E—

L(n. — LH) = % ’ el T T A Re(Rs* V2Rs) + O(U?T), (4.3a)
N Imf1 351 —_— NC Imgl(?’Sl) S« =95 3

Py — LH) = ==~ 5= ] ] ——— i Re(fs"V2Rs) + O(W’T),  (4.3b)
N.1 S 2 N, Im LS, — =

(e =) = TTJ{}E( o) ] el — Wj}“g( 0) Re(Rs* V2Rs) + O(v'T), (4.3¢c)
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N, Im foo(3S1) N, Im geo(3S1)

(6 —eter) = === [Ry| - =52 Re(Rs" V2Rs) + O(u'T).  (4.3d)

The quantities R, , Ry, and V2Rg are defined in Section [ITD in terms of vacuum-to-
quarkonium matrix elements in NRQCD, and can, therefore, be calculated using nonpertur-
bative methods, such as lattice simulations. They can also be estimated using the wavefunc-
tions that are obtained from nonrelativistic potential models of quarkonium. Alternatively,
since there are more decay rates than there are parameters, they can be treated as purely
phenomenological parameters, to be determined by experiment.

The approximations to the matrix elements that have been made in ([.J) imply restric-
tions on the order in a, (M) to which the coefficients can be included meaningfully. Because
of the identification of v with ag(Mwv) in (R.1), we should consider v to be less than or of
order as(M). There is no point in calculating the coefficients to relative order af unless we
have included all operators whose matrix elements are of relative order v™ or less. Hence,
there is no gain in accuracy if the coefficients of |R,.|* and |Ry|? are calculated beyond
relative order o2, or if the coefficients of Re(Rs V2Rg) are calculated beyond relative order
Q.

If we require accuracy only to leading order in v, then the decay rates in ([.J) can be
simplified further. The difference between R, and Ry is of relative order v?, so both can be
replaced by their weighted average Rg. The factor Re(Rs* V2Ry) is of order v? relative to
|Rs|? and can therefore be set to 0. We thereby recover the familiar factorization formulas

assumed in previous work:

N Imf1

P(ne — LH) = =5 ]RS] + O(), (4.4a)
N Imfl 351 02
N, Im f.,(1S0)
(. — vy) = ﬂ@g 0) ]R ] + O(™T), (4.4c)
T — ete) = e Iﬁj{p C) 175 + owr) (4.4d)

Because corrections of relative order v? have been neglected in (f4), there is no point in

calculating the regularized wavefunction at the origin Rg to an accuracy of relative order v2.
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Similarly, because of the identification of v with as(Mw), there is no increase in accuracy
if the coefficients of |Rg|? in ([4) are calculated beyond next-to-leading order in . The
effects of matrix elements of relative order v? are probably more important than perturbative

corrections to the coefficients that are of relative order a?.

B. P-wave Annihilation

In most previous work on the annihilation decays of P-wave states, it was assumed that
long-distance effects could be factored into a single nonperturbative quantity | R»(0)|?, where
R’,(0) is the derivative of the radial wavefunction at the origin. By explicit calculation,
Barbieri et al. [[§ found that the coefficients of |R/»(0)|? depend logarithmically on an
infrared cutoff on the energies of the final-state gluons. In subsequent phenomenological
applications of these calculations, the infrared cutoff has been identified with the binding
energy of the quarkonium state, which is of order Mwv?, the inverse of the radius of the bound
state, which is of order Mv, or the inverse of the confinement radius, which is of order Agcp.
It should be clear, however, that the infrared divergence is a signal of the breakdown of the
factorization assumption upon which the calculation is based. The solution to the problem of
infrared divergences in the calculation of the P-wave decay rates into light hadrons was first
presented in Ref. [I0J]. We will review the resolution of this problem later in this subsection.

As was shown in Section [IT A], there are two 4-fermion operators that contribute to the

decay rates of any of the P-wave states into light hadrons at leading order in v. According to

our factorization formula (B.14)), the decay rates of the four P-wave states into light hadrons

are
I'(h. — LH) = %ﬂflpﬂ (he|O1(* Py) e
1
+ ZIAES) oyt sing + o) (4.52)
3
D — LH) = 2IAEB) (0 o,0p)1v)
: Imﬁ§ Sl) <X0J|O8(351)|X0J> + O(Uzr)’ J = 0’ 1’ 2. (45b)
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The imaginary parts of the coefficients f1(*Py), fi(®P), fs(*So), and fs(®S1) are calculated
in order a? in Appendix A2. The color-octet matrix elements in the factorization formulas
(EH) represent contributions to the annihilation rates from the Fock states |QQg). Thus,
we see that the decays of P-wave (and higher orbital-angular-momentum states) can probe
components of the meson wavefunction that involve dynamical gluons. For the decays of the

Xeo and Yo into two photons, there is only one operator that contributes at leading order

in v:
21 ) 1
(o — 79) = 220 Lot 45 oyl + 00, (4.60)
F(Xcz N fw) M Z’ 0| T ZD(in))Q/J|Xc2>’2 + O(Uzr). (4.6b)
ij

The coefficients Im f.,(* ) and Im f.,(®P) are calculated at order o in Appendix [A4,
and the order-ay corrections are given as well. There is no increase in accuracy if the matrix
elements in (7)) and (@) are calculated to an accuracy of relative order v?, since matrix
elements of relative order v? have been omitted. Because of the identification (E11]) of v with
as(Mw), there is no increase in accuracy if the coefficients in ([L7]) and ([LG) are calculated
beyond next-to-leading order in as(M). Perturbative corrections of relative order a?(M)
are probably less important than contributions of other matrix elements of relative order v2.

To the order in v that is being considered in (f.5) and ([.G), the matrix elements are
not all independent. The vacuum-saturation approximation (B.I() can be used to express
the matrix elements of O;(*P;) and O1(3Py) in ([£H) in terms of vacuum-to-quarkonium
matrix elements. These matrix elements can be related to regularized derivatives of radial
wavefunctions at the origin by using (B.19). Because of the heavy-quark spin symmetry,
the derivatives of the radial wavefunctions at the origin can all be replaced by the average
value R}, for the 12 spin states of the P-wave system, without any loss of accuracy. The
heavy-quark spin-symmetry relation (B-5H) also implies that the matrix elements of Og(1Sp)
and Og(*S1) in (f]) are the same, up to corrections of relative order v2. Thus, the decay
rates ([£]) and ([6) can all be expressed in terms of two nonperturbative quantities |R’|>

and (h.|Os(*Sp)|h.) (or, alternatively, the average of the color-octet matrix elements for the
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12 P-wave spin states):

3N, Im f,(1P,) 2 Im f5(1S
r(h, — i) = DR AC ity 2B oyt ing + 06D, (@)
M4 M?
3N Imf1 3PJ 7 2 Imfg(?’Sl)
P(xes — LH) = = ]R + i (el Os("So)lhe)
+ 0@ T), J=0,1,2, (4.7b)
3N, 1 5P)) (=2
L(xes = 77) = r;j\j;’z( v) Ry + O(@°T), J=0,2. (4.7¢)

Since R’ is proportional to a vacuum-to-quarkonium matrix element, it can be calculated
more easily in lattice NRQCD simulations than can (h.|Og(*Sp)|h.), which is a matrix
element between quarkonium states.

As we have already mentioned, in the calculations of Barbieri et al. of the P-wave decay
rates into light hadrons [[],§,2]], a logarithmic dependence on an infrared cutoff appeared in
the coefficients of |R}(0)|?>. We now explain why this infrared-cutoff dependence is absent
in the factorization formulas (f7). The coefficients of |Rp|? in (1) depend logarithmically
on the NRQCD cutoff A. In these coefficients, A plays the same role as did the infrared
cutoff in the Barbieri et al. calculations. According to the evolution equation (B:28d),
the matrix element (h.|Og(1Sp)|h.), also depends logarithmically on A. In this case, A
plays the role of an ultraviolet cutoff. Because physical quantities, such as decay rates,
are renormalization-group invariants, the A-dependence in (h.Og(*Sp)|h.) cancels the A-
dependence in the coefficients of |R%|? in (f7). Thus, we see that the inclusion of the
color-octet term proportional to (h.|Og(*Sp)|h.) in the factorization formulas removes the
dependence of the decay rate on an arbitrary infrared cutoff.

The factorization formulas ([L.7) for the annihilation decays of P-waves at leading order

in v were first given in Ref. [[[]] in the form
I'(h. — LH) = H, [1(QQ('P,) — partons) + Hg Is(QQ(*Sy) — partons), (4.8a)
(Xes — LH) = Hi T (QQ(*Py) — partons) + Hg I's(QQ(*S1) — partons),
J=0,1,2, (4.8D)
L(xes = 77) = Hi T1(QQ(Py) = v7),  J=0,2 (4.8¢)
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The coefficients Ty and T's in (E§) are proportional to the annihilation rates of on-shell QQ
pairs in color-singlet P-wave and color-octet S-wave states, respectively. The nonperturba-
tive parameters H; and Hg that were introduced in Ref. [[(] can be defined rigorously in

terms of matrix elements in NRQCD:

Hy = o (O POIR (4.92)
Hy(A) = 15 (RO S0)[he) (4.90)

The factors of 1/M* and 1/M? in (f.94d) and (E.9H) were chosen in Ref. [[{] so that H;
and Hg would be the combinations of NRQCD matrix elements and quark masses that are
determined in experimental measurements of the P-wave decay rates.

In retrospect, the choice made in Ref. to include factors of 1/M in the definitions of
H, and Hy in (.9) was unfortunate. The factors of 1/M are more properly associated with
the coefficients I'; and fg, since they involve short-distance physics at scales of order 1/A
or less. The factorization formulas ([.7) are, therefore, to be preferred over the forms ([L.§),
because they incorporate all effects of the short distance scale 1/M into the coefficients,

leaving matrix elements that depend only on physics at length scales 1/(Mwv) and longer.
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V. PERTURBATIVE FACTORIZATION

In this section, we sketch the connection between the NRQCD approach and conven-
tional perturbative methods for demonstrating the factorization of cross sections involving
large momentum transfer in QCD. In perturbative proofs of factorization, the aim is to
demonstrate that, to all orders in perturbation theory, infrared and collinear divergences
either cancel or can be absorbed into well-defined nonperturbative long-distance quantities.
Some familiar examples of such nonperturbative quantities are parton distributions in the
case of deep-inelastic lepton-hadron scattering and fragmentation functions in the case of
inclusive hadron production at large transverse momentum in ete™ annihilation. The cross
sections can be written as sums of products of long-distance quantities with infrared-safe
(i.e., short-distance) parton-level cross sections. Our factorization formula for heavy quarko-
nium annihilation rates is also of this form, and it is illuminating to see how it could be

derived from a more conventional perturbative analysis.

A. Topological Factorization

We remind the reader that, in QCD, infrared (or soft) divergences are logarithmic and
arise only from the emission of a gluon for which all components of the 4-momentum are
small. Collinear divergences (or mass singularities) are also logarithmic, and arise when one
parton (gluon or light quark) splits into two or more partons and all of their 4-momenta are
parallel. Collinear divergences are cut off by quark masses, which necessarily introduce a
non-parallel component into the 4-momenta of the splitting partons.

Let us focus first on the infrared divergences that arise in the radiation of gluons from
final-state partons and on the collinear divergences that arise in the splitting of a final-state
parton into collinear partons. The Kinoshita-Lee-Nauenberg theorem [[J] guarantees that
all such divergences cancel when one sums over those final-state cuts of a given diagram

that contribute to an inclusive cross section. For example, the diagram shown in Fig. []
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has three cuts that correspond to gluonic final states, and each cut contains infrared and
collinear divergences. However, these divergences cancel when one adds the real-emission
cut of Fig. f(b) to the virtual-emission cuts of Figs. [[(a) and [[(c). This step in the proof
of perturbative factorization is related to the localization of the annihilation vertex, which
was discussed in Section [TH.

Next, let us consider the radiation of gluons from the heavy-quark lines. Such contribu-
tions are protected from collinear divergences by the heavy-quark mass, so we need consider
only the possibility of infrared divergences. One key to analyzing the infrared divergences is
the concept of a “controlling momentum”. The essential idea is that the infrared divergence
associated with an integration over propagators and vertices in some portion of a Feynman
diagram is cut off by the largest external momentum that enters the propagators. For exam-
ple, an infrared divergence could potentially arise from the square of the diagram in Fig. fl(c)
when all components of the 4-momentum of the middle gluon become small. However, be-
cause of simple kinematics, the other two final-state gluons must both carry large momenta,
some of whose components are of order M. That large momentum must flow through the
heavy-quark propagator to which the soft gluon attaches, and, consequently, it cuts off the
potential infrared divergence.

In this example, and in general, the concept of a controlling momentum tells us that an
infrared divergence can never arise from a soft gluon that attaches to a propagator that is
off-shell by order M. That means that the infrared-divergent part of a Feynman diagram
can always be separated from the “short-distance part” by cutting through heavy-quark
propagators that are off the mass shell by amounts that are much less than M. (By the
short-distance part, we mean that part of the diagram that includes the hard final-state
partons and all propagators that are off-shell by order M.) This “topological factorization”
is the crucial step in a perturbative demonstration of factorization. It implies that the
infrared divergences can be disentangled from the short-distance part of the diagram and
absorbed into the long-distance part of the diagram, which also includes the quarkonium

wavefunctions.

56



The topological factorization of the annihilation rate of heavy quarkonium is represented
schematically in Fig. P]. The shaded ovals represent the wavefunction for a quarkonium state.
A typical Fock state contains a Q@ pair and zero or more gluons or light quark pairs. The
short-distance part of the annihilation rate is represented by the circle labelled H (for hard).
At leading order in v, the only lines that attach to the short-distance part are the incoming
Q and @ and the outgoing @ and @. The long-distance part includes the wavefunction of
the initial meson and its complex conjugate. These wavefunctions are connected by any
extra partons that may be present in the Fock state, which are represented in Fig. P by
gluon lines. The long-distance part also includes soft-gluon interactions between the extra
partons, which are represented by the circle labelled S (for soft).

Once topological factorization has been demonstrated, two additional steps are required
in order to complete the proof of perturbative factorization. First, one must decouple the
relative 4-momentum p of the heavy quark and antiquark from the short-distance part of
the amplitude by expanding the short-distance part as a Taylor series in p. Second, one
must decouple the Dirac indices and color indices that connect the short-distance part to
the long-distance part. This can be accomplished by making use of Fierz rearrangements.
In the factored decay rate, the long-distance parts correspond to the matrix elements of the
NRQCD 4-fermion operators in the quarkonium state; the short-distance parts correspond
to the imaginary parts of the coefficients of those operators in the NRQCD lagrangian.

In order to see in more detail how the perturbative analysis leads to the results that we
have obtained from NRQCD, let us consider two examples: annihilation of S-wave and P-
wave quarkonium at leading nontrivial order in v and through order o in QCD perturbation
theory. We use the specific example of decays into 2 and 3 gluons in the discussions below.
However, the essential ingredients of the discussion apply also to decays into a light quark-

antiquark pair and decays into a ¢g pair and a gluon.
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B. Annihilation of S-wave Quarkonium

The first step in the analysis of annihilation of S-wave quarkonium is to identify the short-
distance part in the topological factorization of the amplitude. The dominant component
of the bound-state wavefunction consists of a heavy quark and antiquark in a color-singlet
state. We take the Q@ pair to have total 4-momentum P and relative 4-momentum 2p. We
assume that, owing to the bound-state dynamics, the @ and ) have inverse propagators
(3P £p)? — M? of order M?v?, with v? < 1. In the meson rest frame, the energies 1 Py & py
of the Q and @ then differ from the mass M by order Mv? and their momenta %P +p are of
order Mv. At order a2, the Q@ pair can annihilate into two gluons through the diagrams in
Fig. B By energy conservation, the two gluons must both have momenta of order M. At this
order, the topological factorization of the annihilation rate is trivial. The Q@ annihilation
amplitude belongs entirely to the short-distance part of the annihilation rate in Fig. P, while

the quarkonium wavefunction belongs to the long-distance part.

3

We next consider the annihilation rate of the Q@ pair at order o®. This rate has con-
tributions from the annihilation into three gluons through the diagrams in Fig. f], and also
from the annihilation into two gluons, due to the interference between next-to-leading or-
der diagrams such as those in Fig. f] and the leading-order diagrams in Fig. ], We begin
by examining the infrared divergences in the diagrams for the emission of a real gluon of
4-momentum [ shown in Fig. fl. As we have already explained, the diagram in Fig. f(c)
contains no infrared divergence. For the diagrams in Figs. fi(a) and (b), we identify the
infrared contribution that is leading in v by assuming that Py ~ 2M, that [, = 1|, P, and
p are of order Muv, and that pg is of order Mv? The emission vertex for the gluon with

momentum [ and the two adjacent heavy-quark propagators can then be approximated as

follows:

(£3P+p) v+ M (F5PHpF) A+ M
(E1P+p)? - M2+ic | (E1P+pFl1)?— M2 +ic
~ M(1 =+ 70) AH M(1 = )
(3P +p)>— M2 +ie © —2Mly+ ic
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_ M(1 £ ~) <i9“0> (5.1)

(3P +p)2 — M2 +ie \ —|]
where the upper and lower signs correspond to Fig. f|(a) and Fig. fi(b), respectively. (In
the case of the lower sign, the order of the gamma matrices should actually be reversed,
but the last line is unaffected.) The factor +¢#° is called the “eikonal vertex”, and the
factor 1/(—lop+i€) = 1/(—[1]) is called the “eikonal propagator”. Their product is called the
“eikonal factor”. We see that the eikonal factor for the contribution of Fig. f(a) is equal and
opposite in sign to the eikonal factor for the contribution of Fig. fi(b). All other propagator
and vertex factors in the two diagrams are the same. If the QQ pair is in a color-singlet state,
then the color factors in the two diagrams are also the same, and the infrared contributions
from the region |1| — 0 cancel. This cancellation is a consequence of the fact that, in the
infrared limit, the soft gluon couples to the color charges of the quark and antiquark. Since
the quarkonium is a color singlet, the quark and antiquark have opposite color charges.

Because of the infrared cancellation, the topological factorization of the real-emission
diagrams in Fig. [l is trivial. The amplitudes for QQ) — ggg all belong to the short distance
part of the annihilation rate in Fig. [}, while the quarkonium wavefunction belongs to the
long-distance part.

Now let us turn to the virtual-gluon-emission diagrams shown in Fig. f]. Once again, we
can identify the infrared part by neglecting [ and p compared to M. As in the preceding
example, the eikonal vertices are proportional to g" times the quark (or antiquark) charge.
For Fig. f(a), the eikonal propagator factors associated with the exchange of the gluon with
momentum [ are [1/(—ly + i€)][—1/(ly + i€)]. Each of the diagrams of Figs. f|(b) and (c)
contains a mass renormalization, which we subtract. The remaining contribution is a wave-
function renormalization, half of which we absorb into the quarkonium wavefunction. The
other half yields the eikonal propagator factor (—1/2)[1/(—lo + i€)]®.. (The squared prop-
agator appears after subtraction of the mass-renormalization contribution.) The eikonal
factors from the three diagrams would cancel, were it not for the #¢’s in the propagator

denominators. Instead, the eikonal factors yield
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1 —1 1 1 2mid () 1
— —= e — .
—l() + 1€ l() + i€ —l() + 1€ —l() + i€ 0 —lo + i€

(5.2)

The 6(lp) contribution arises because of the pinch in the [y integration contour in the con-
tribution of the diagram of Fig. fj(a). This 6(ly) contribution corresponds to the exchange
of a space-like gluon with temporal polarization between the quark and antiquark. That is,
it corresponds to the Coulomb scattering of the quark and antiquark. Note that the factor
multiplying 6(ly) is divergent at l; = 0. This somewhat unexpected divergence has arisen
because we have neglected the relative momentum p of the heavy quark and antiquark.
Had we retained that momentum in the propagator denominators, we would have obtained
a 1/v singularity, where v is the relative velocity of the quark and antiquark. [This 1/v
contribution is calculated in detail in (A20)—([A22).] Ordinarily, in the absence of a collinear
singularity, the phase space for two partons to be moving with small relative velocity would
be unimportant. Here, that region of phase space is important by virtue of the quarkonium
bound state. (In fact, it is the 1/v singularity that builds up the bound-state wave function
in a perturbative analysis of the Bethe-Salpeter equation for positronium.)

At this point, the topological factorization of the virtual-emission diagrams can be carried
out. For the diagrams in Fig. |, one factors the following contributions into the long-
distance part: the wavefunctions, with which we associate the square root of each quark
or antiquark wavefunction renormalization, and the 1/v singularity that arises from the
diagram of Fig. f(a). The remaining contributions from these diagrams are factored into
the short-distance part.

Many discussions of perturbative factorization make use of the Grammer-Yennie tech-
nique [ for analyzing infrared divergences. As an aside, let us indicate briefly how that
technique would apply to the example at hand. From our previous discussion, we see that,
in the infrared limit, the infrared-gluon vertex V* is well approximated by ¢*°Vy. Then we

can write

Vi

VH a~ g0
)
lo — i€

(5.3)
provided that [y is not small compared with the other components of [. This is always
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the case for real emission. For virtual emission, we can eliminate the region of small [y by
deforming the [y contour of integration into the lower half of the complex plane. As can
be seen from an examination of the propagator denominators, all of the singularities in the
lower half of the complex plane are order M° away from the origin, except in the diagram
of Fig. fi(a). This is the momentum-space manifestation of the fact that a space-like gluon
(with small ly) can be exchanged causally only between co-moving particles. In carrying out
the contour deformation for the diagram of Fig. fi(a), and only in this case, we unavoidably
pick up the residue of a pole at Iy & 0. This residue yields the 1/v singularity in (5.3) that
was noted earlier. Along the deformed contours, the Grammer-Yennie approximation ([.3))
is valid. Substituting (B.3) for the infrared vertices, we can make use of Ward identities
(current conservation) to show that the contributions of the deformed contours cancel. In
order to obtain this Ward-identity cancellation, one needs, in addition to the Grammer-
Yennie contributions of Figs. f] and [, Grammer-Yennie contributions in which the infrared
gluon attaches to the short-distance part of the process. But, as we have already argued,
these diagrams give contributions that vanish in the infrared region, so there is no harm in
applying the Grammer-Yennie approximation to them.

After topological factorization, the short-distance and long-distance parts of the anni-
hilation rate are still tied together by integrations over the relative 4-momenta p and p’ of
the QQ pairs entering and leaving the short distance part and by sums over the color and
Dirac indices associated with the heavy-quark propagators. To complete the factorization,
we must decouple these integrals and sums.

The decoupling of the integration over p and p’ is accomplished simply by expanding the
short-distance contribution in a Taylor series in p and p’. Taking p and p’ to be of order Mv
and py and pf, to be of order Mv?, we see that the Taylor expansion of the short-distance
part corresponds to an expansion in powers of v. All of the dependence on p and p’ is now
in the long-distance part and in the explicit powers of p and p’ from the Taylor expansion.
To analyze S-wave decays at leading order in v, we need keep only the zeroth order terms

in the Taylor expansion, which amounts to setting p = p’ = 0. In the meson rest frame, the
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QQ pair has total energy P, which differs from 2M by an amount of order Mv? | and total
momentum P of order Mv. At leading order in v, we can set Py = 2M and P = 0 in the
short-distance part of the annihilation rate. Thus the incoming quark and antiquark can be
taken to be on their mass shells and at threshold.

The decoupling of the color indices connecting the short-distance and long-distance parts
of the annihilation rate is straightforward. The short-distance part is a color tensor Cj; i,
with color indices ¢ and j for the incoming @ and @) and j and k for the outgoing @ and Q.

The indices 7 and j can be decoupled from the tensor by using the Fierz rearrangement
1 a a
5@"@' 5jj/ = ﬁc 5jz' 5i’j’ + 2 sz’ Ti’j" (54)

A similar rearrangement can be used for the indices k and [. By color symmetry, T}5Cj; kk
must vanish and T;;kaﬂﬂ must be proportional to the unit tensor §%. The resulting

rearrangement formula is

1 4
m 5) (Ci’i’,j’j/) 5kl + ch 1

[

Cism = 15 (Th Corgr v T ) T (5.5)

The indices have been decoupled from the tensor by decomposing it into a term in which
both pairs of indices are projected onto a color-singlet state and a term in which both pairs
of indices are projected onto a color-octet state. For S-wave quarkonium, the dominant
Fock state contains a color-singlet Q@ pair, so only the first term on the right side of (f.5))
contributes at leading order in v.

The Dirac indices connecting the short-distance and long-distance parts of the amplitude
can be decoupled in a similar way, although the algebra is a little more cumbersome than
it is for the color indices. Having set p = p’ = 0 and P = (2M, 0) in the short-distance part
of the amplitude, we find that the numerators of the four propagators connecting it to the
long-distance part reduce to M (o + 1) for the quarks and M(—~ + 1) for the antiquarks.
The Dirac structure of the short-distance part of the amplitude is therefore a tensor I';; ;, in
which the Dirac indices i and & of the quarks are contracted with projectors Py = (147)/2,
and the Dirac indices j and [ of the antiquarks are contracted with projectors P = (1—70)/2.

The indices ¢ and j can be decoupled from the Dirac tensor by using the Fierz rearrangement
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1 a a
(75P+)jz' (75P—)i/j/ + B) (o 75P+)jz' (o 75P—)i/j/> (5.6)

N | —

(Py)ii (P_)jj, =

where o' = (i/2)e*[y7 ~*]. A similar Fierz rearrangement can be used to decouple the
indices k£ and [ from the Dirac tensor. Since all 3-momenta have been set to 0 in the Dirac
tensor I'* there is no 3-vector on which I'?*¥ can depend. Its transformation properties
under rotations then imply that the vector (o%ysP-)i;jIij (75 P+ )i must vanish, while the
tensor (0%ysP_);;lij 1 (0%v5 Py )i, must be proportional to the Cartesian unit tensor §0.

Consequently, one obtains the rearrangement formula

(P—I-)i’i (P—)jj’ Fi’j’,k’l’ (P-l—)kk’ (P—)l’l

1

7 P [(P)iy Togrr (5P| (v P-)ig
1

(@™ Py )i (0L )y p0 Tirrwor (5P )y | (05 P- ) - (5.7)
j j

+12

This rearrangement of the Dirac indices corresponds to the decomposition of the Dirac tensor
into spin-singlet and spin-triplet pieces. The Dirac matrix 5 P- = P,7s projects a Q@ pair

at rest onto a state with total spin 0, as can be seen from the identity

_ 1
T;{(O, 013, m; 5, m) UpUpy = 7 (vsP-), (5.8)

where u,, and v, are Dirac spinors evaluated at zero 3-momentum. Similarly, the Dirac

matrix o'ys P- = P,o'ys projects a QQ pair at rest onto a state of total spin 1:

1
1 .1 — _
%{(17M|§>ma §>m/> UmUm! = ﬁ

where UM? is the unitary matrix that transforms from the Cartesian basis to the basis of

uMi (ai%P_) , (5.9)

angular-momentum eigenstates.

Now that we have decoupled the integrations over p and p’ and the sums over color and
Dirac indices, the factorization of the annihilation rate is complete. In the rearrangement
identity (p.7), the factors on the right side that are enclosed in square brackets belong to the
short-distance part of the annihilation rate. They correspond to the operator coefficients

in the NRQCD approach. The remaining factors to the right and to the left of the square
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brackets belong to the long-distance part. It is evident that the long-distance parts of the
annihilation rate can be reproduced by matrix elements of local operators in the quarkonium
state. The two operators that contribute to the annihilation of S-wave states at leading order

in v may be identified as
— U Py WUy P ~ 01(*S), (5.10a)
Vo PV - Yoy P U ~ O(°9)), (5.10b)

where W is the Dirac field for the heavy quark. For matrix elements between quarko-
nium states, these operators reduce at leading order in v to the NRQCD operators
O01(1Sy) = ¥ixxT and O1(35)) = ¥Tox - xTo1, respectively. Thus, perturbative factoriza-
tion yields the same operator matrix elements as appear in the NRQCD analysis. It should
be noted, however, that the identifications (p.10) are not unique. For example, the operator
— U5 W50, when sandwiched between quarkonium states, also reduces at leading order

in v to O1(1Sy) and both —Vovy;¥ - Wovys ¥ and —P~yW¥ - U ¥ reduce to O1(3S)).

C. Annihilation of P-wave Quarkonium

Now let us analyze the annihilation of P-wave quarkonium at leading nontrivial order
in v. First we note that, because the spatial part of the P-wave quarkonium wavefunction
transforms under rotations like a vector, the p-independent part of the Q@) annihilation
amplitude vanishes on carrying out the angular part of the integration over p. Thus, we
must retain terms with one factor of p in the annihilation amplitude, which means that the
leading amplitude is down by one power of v relative to the S-wave case.

At order o, the annihilation proceeds through the diagrams in Fig. B In this case, the
factor of p in the Q@ annihilation amplitude can come only from expanding the propagator
of the virtual heavy quark, which is off its mass-shell by an amount of order M. The
topological factorization is therefore trivial. The amplitude for QQ) — gg belongs to the
short-distance part of Fig. P, and the quarkonium wavefunction belongs to the long-distance

part.
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We next consider the annihilation at order o2, which receives contributions from the
real-emission diagrams in Fig. ] and from the virtual-emission diagrams in Fig. . The
factor of p can come from one of two sources: the purely short-distance (infrared-safe) part
of the diagram, or the potentially infrared-divergent part, which consists of the soft gluon
and the heavy-quark propagators to which it attaches.

If the factor of p comes from the short-distance part of the diagram, then the analysis
of the infrared divergences goes through exactly as in the S-wave case. Infrared divergences
cancel between the real-emission diagrams, but the exchange of a virtual gluon between the
Q and Q [Fig. fl(c)] results in a 1/v singularity. Topological factorization is trivial, except
for this 1/v singularity. It must be factored into the long-distance part of the annihilation
rate.

We proceed to consider the case in which the factor of p comes from the potentially
infrared-divergent part of the diagram. We consider separately the cases of virtual-gluon
emission and real-gluon emission.

The diagrams for virtual-gluon emission are shown in Fig. [l The potentially infrared-
divergent part of the amplitude includes the factors in the first line of (p-1)). The required
factor of p can come either from a p -« in the numerator of a propagator or from ex-
panding out the denominator. The terms with a factor of p that comes from a propagator
denominator are easily seen to be suppressed by a power of v. The terms that contain a
p - v in the numerator are also suppressed by a factor of v because of the Dirac structure.
To see this, first consider the case of a soft gluon with temporal polarization. From the
identity P,p -~ = p - ~vP_, one can see that the factor p - v connects “large” components
of Dirac matrices to “small” components. This gives rise to the suppression by a factor of
v. Now consider the case of a virtual gluon with spatial polarization vector €. Both of the
spatial-gluon vertices bring in factors of € - 7. The combined effect of these two factors and
the factor of p - 7 is again to connect large and small components, which costs a factor of
v. Thus for virtual-gluon emission, there are no infrared divergences at leading order in

v. The topological factorization is therefore trivial. The amplitude for QQ — gg belongs
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entirely to the short-distance factor in the annihilation rate, aside from the square root of
each heavy-quark or heavy-antiquark wavefunction renormalization, which we associate with
the quarkonium wavefunction.

Finally, we consider the case of real-gluon emission through the diagrams in Fig. [l Let
us examine the infrared limit of the diagrams in Fig. f(a) and f|(b) for the case in which the
soft gluon with momentum [ has spatial polarization vector €. The emission vertex and the

adjacent heavy-quark propagators can be approximated as follows:

(£3P +p) v+ M . (£3P +pFl) v+ M
(E1P+p2—M2+ic &V (EIP+pFl)2— M2 +ic
M(1+v)—-p-v M(1+v)—-p-7

Y EIP+p2—M2ric S T 2Mly + e

- M(1 =+ ) 2p-e
T (EIP+p2 - M2t \ |l )

(5.11)

The upper and lower signs apply to Figs. f|(a) and f|(b), respectively. (For the lower sign, the
order of the Dirac matrices should actually be reversed.) In the last line of (5.11]), we have
retained only those numerator terms that contain one power of p. The factor 2p - €/(—|1|)
is the infrared-emission factor. In contrast with the S-wave case, the infrared contributions
from the two real-emission diagrams add, rather than cancelling. Because we have retained
one power of p, the soft gluon couples to the color current of the heavy quark, rather than
to the color charge. Since the heavy quark and antiquark have opposite color charges and,
in the CM frame, opposite momenta, their color currents are equal. Note that, because
of the vector p in the infrared-emission factor, the emission of the soft gluon changes the
orbital-angular-momentum quantum number of the QQ pair by one unit, but it does not
flip the spin of the quark or antiquark. Thus, it converts the heavy quark and antiquark
from a color-singlet P-wave state to a color-octet S-wave state.

In the decay rate, we must integrate the infrared emission factors from the square of the
sum of the amplitudes over the phase space of the gluon. Keeping only the logarithmically

divergent part of the integral, we find the result

M o3l 1 (2p-€)\ [(2p € dp - €p’ - €* M A
4/ _ - (1 el —), 5.12
e () (5 e %y Tley) OB
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where A is an infrared cutoff of order Mwv, and we have arbitrarily set the upper limit on |1
to M. We have introduced a factorization scale A to separate the infrared divergence from
the short-distance part of the integral. The long-distance contribution that is proportional
to log(A/A) in (p-I7) can be interpreted as the probability for a heavy quark and antiquark
in a color-singlet P-wave state to make a transition to a color-octet S-wave state by radiating
a soft gluon.

We can now carry out the topological factorization of the diagrams in Fig. f] for real gluon
emission. The square of the amplitude for QQ — ggg, integrated over phase space, belongs
to the short-distance part of the annihilation rate in Fig. [, except for the second term
on the right side of (5.17). This term, which contains the infrared divergent contribution
that arises from the emission of the soft gluon in Figs. fl(a) and f(b), is included in the
long-distance part, along with the quarkonium wavefunction. The soft gluon is an example
of a light parton that connects the initial and final wavefunctions in Fig. fJ. Note that, in
this contribution to the annihilation rate, the heavy quark and antiquark enter the short-
distance part in a color-octet S-wave state. We call this contribution to the annihilation rate
the “color-octet contribution”. In all the other contributions to the P-wave annihilation rate
at this order, the heavy quark and antiquark enter the short-distance part in a color-singlet
P-wave state. We refer to those contributions as the “color-singlet contribution”.

At this point, we have identified the long- and short-distance parts in the topological
factorization of the annihilation rate. It remains only to decouple the integrations over the
relative momenta p and p’ of the QQ pairs and the sums over color and Dirac indices.

We first discuss the color-singlet contribution. The color indices of the short-distance
and long-distance parts are easily decoupled by using the rearrangement identity (p.J). Only
the first term on the right side of (F.5§) contributes, since the QQ pair is in a color-singlet
state. In order to decouple the integrals over the relative momenta p and p’ of the initial
and final QQ pairs, we expand the short distance part as a Taylor series in p and p’. At

leading order in v, we set pg = py’ = 0 and keep only those terms linear in both p and p’.
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The resulting amplitude has the structure pmfgfélp’ " in which the Dirac indices i and k of
the quark are contracted with projectors P, and the Dirac indices j and [ of the antiquarks
are contracted with projectors P_. The Dirac indices of the initial and final QQ pair are
decoupled from the short distance factor I/}, by applying the Fierz identity (B-6)) to both the
initial and final indices. The resulting rearrangement identity can be greatly simplified by
making use of the fact that the Fierz-decoupled short-distance parts transform like tensors
under rotations and the fact that there are no three-vectors on which I/, can depend. For
example, the tensor (v5 Py )i;1'73% (75 Py )i must be proportional to the unit tensor 6™, and
the tensor (%5 Py )i; 3% (v5 P4 )i must be proportional to the totally antisymmetric tensor
e, Since (05 Py )i; 71 (05 Py )ik is a Cartesian tensor in 3 dimensions with 4 indices,
it can be decomposed into a linear combination of the three tensors §4m§*", e@m@ebn®  and

%(5“1’5’”" + dangmby) — %5“’”51’", which correspond to total angular momentum 0, 1, and 2,

respectively. Consequently, one obtains the rearrangement formula

(Py)yi (P)j (P T3 0) (P e (P

1 m aa m
12 (p 75P+)jz’ [(75P—)i/j/ Fi’j’,k’l’ (75P+)l/k/} (Pl 75P—)kl

Uk

+ i (p- 0'75P+)ji [(UCL%P—)i/y F(il’g",k’l’ (Ub%PJr)l,k,} (p'- ovs P )y
+—w@xaw%mm[@%ﬁﬂwmww(ﬂ%ﬂ%J<@waw%ﬂm
20 Ji Kl
24

36
1
24
1 a m n
+ 5= (P70 Py ) [(0(“75P—)i,j, L3y (0775 Ps ) ] (»"o™sP-)
1 m
— (P x @)™ 5Py, [ (0“9 P )iy T o (5P ] (9795 P-)
1 m aoc a C m
op 0P [ (5P T (09P ] (B % @)™ P-)y - (5.13)

We use the notation 7 for the symmetric traceless part of a tensor 7% and Tl® =

(T — T*) for the antisymmetric part.

At this point, the factorization of the color-singlet contribution to the annihilation rate
is complete. The factors in square brackets on the right side of (5.I3) belong to the short-
distance part, while the factors to the right and to the left of the square brackets belong

to the long-distance part. It is apparent from the rearrangement identity (F.13) that the
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long-distance parts can be reproduced by matrix elements of the following local operators:

—T(—iD)ys Py W - T(—iD)rs P ~ 0,('P), (5.14a)
—LP(~iD o) PV T(—iD- o) PV~ O(R), (5.14b)
—1P(—iD x o) PV - U(—LD x o)1 P- U ~ O,(*P)), (5.14c)
—(—iDlo)ys Py U T (—iDlg) ), P U~ O)(*P), (5.14d)
—G(—iD)ys Py - U(—iD x 0)y PV, (5.14e)
—T(—iD x o)ys P - T(—iD)ys P 0. (5.14f)

The matrix elements of the last two operators vanish for a quarkonium state that is a charge-
conjugation eigenstate. The other four operators reduce at leading order in v to the NRQCD
operators O(1P;) and O(3Py), J = 0,1, 2, respectively.

Finally, we consider the factorization of the color-octet contribution to the annihilation
rate, for which the short-distance part involves the annihilation of a Q@ pair in a color-
octet S-wave state. The color indices of the short-distance and long-distance parts are easily
decoupled by using the rearrangement identity (p-J). Only the second term on the right side
of (B-3) is non-vanishing for the color-octet contribution. The decoupling of the momentum
integrations and the Dirac indices proceeds along the same lines as for S-wave quarkonium,
which was discussed in subsection VB. The momentum integrations are decoupled by
Taylor-expanding the short-distance part in p and p’, and setting p = p’ = 0. The decoupling
of the Dirac indices is accomplished by using the rearrangement formula (p.7). The factors in
square brackets in (B.7) belong to the short-distance part of the annihilation rate, while the
factors to the right and to the left belong to the long-distance part. From the rearrangement
identities (p.3) and (B.7), it is evident that the long-distance parts are reproduced by matrix

elements of the operators

Q

—ﬁ’}/g)TaP_F\If@’}/g)TaP_\If 08(150)7 (515&)
—VoysT P,V - Vo TPV ~ Og(39)). (5.15Db)
These operators reduce, at leading order in v, to the operators Og(1Sy) = T\ T*) and
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Os(3S1) = Y1aT% - x'oT%) in the NRQCD analysis. The matrix elements of Og(*S;) and
Os(351) include the probability factor proportional to log(A/A) in (F-13). The logarithmic
dependence on A is reflected in the evolution of these operators, which is given in (B.284d)
and (B-28H). Thus, the factorization scale A in the perturbative approach can be identified

with the ultraviolet cutoff of NRQCD.
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VI. PRODUCTION OF HEAVY QUARKONIUM

In this section, we present a general factorization formula for computing inclusive heavy-
quarkonium production rates in high-energy processes that involve a momentum transfer
Q? that is of order M? or larger. In the case of S-wave quarkonium, our factorization
formalism coincides with the “color-singlet model” for quarkonium production B3| in the
nonrelativistic limit, but it also allows the systematic calculation of relativistic corrections
that are suppressed by powers of v. In the case of P-wave quarkonium, our formalism
reveals that the color-singlet model is incomplete, even at leading order in v, and must be

supplemented by including the “color-octet mechanism” for P-wave quarkonium production

B3

A. Factorization of the Production Rate

Our goal, as in the discussion of heavy-quarkonium annihilation, is to express the inclu-
sive production rate for a quarkonium state in a factored form. That is, we wish to write
the production rate as a sum of terms, each of which consists of a short-distance part, which
can be calculated in QCD perturbation theory, multiplied by a long-distance part that can
be expressed as a matrix element in NRQCD. Our arguments for the factorization of the
production rate are based on the all-orders properties of QCD perturbation theory. In this
sense, the level of rigor of these arguments is comparable to that in the proofs of factoriza-
tion for the Drell-Yan process for lepton pair-production in hadron-hadron collisions [25].
These arguments are less rigorous than those that we have given for the factorization of
the quarkonium annihilation rate. The latter arguments rely only on the general space-
time structure of the annihilation process and on the validity of the effective-field-theory
approach. Their level of rigor is comparable to that in the proofs of factorization in deep-
inelastic lepton-hadron scattering, which can be formulated in terms of the operator-product

expansion.
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When a quarkonium state is produced in a process that involves momentum transfer
Q? of order M? or larger, the production of the Q@ pair that forms the bound state takes
place at short distances of order 1/M or smaller. A simple example of such a process,
which the reader can keep in mind throughout the following discussion, is the production in
ete” annihilation at a center-of-mass energy /s > M of a heavy quarkonium H, with 4-
momentum P, recoiling against two light hadron jets. At leading order in QCD perturbation
theory, the relevant parton process is eTe™ — QQgg. We take the Q) and ) to have momenta
P/2+pand P/2— p. The relative 3-momentum p must be of order Mv in the P = 0 frame
in order for the Q@ pair to have a significant probability for forming the bound state H.
The amplitude for the production of the Q@ pair is insensitive to changes in the relative
4-momentum p that are much less than M, and therefore the quark and antiquark are
produced with a separation of order 1/M or less. Similarly, the square of the amplitude
is insensitive to changes in the the total 4-momentum P of the heavy pair that are much
less than M. Thus, the product of one amplitude and the complex conjugate of a second
will contribute significantly to the QQ-production cross section only if the corresponding
production points are separated by a distance of order 1/M or less. We therefore conclude
that the production of the QQ pair is indeed a short-distance process that takes place within
a distance of order 1/M.

In the framework of NRQCD, the effect of the short-distance part of a production ampli-
tude is simply to create a QQ pair at a spacetime point. The formation of the quarkonium
state H from the QQ pair takes place over distances that are of order 1/(Mv) or larger in the
quarkonium rest frame, so it is described accurately by NRQCD. Therefore, in NRQCD, the
production rate (the square of the amplitude summed over final states) involves the creation
of a QQ pair at a spacetime point, its propagation into the asymptotic future, where the
out state includes the quarkonium H, and, finally, the propagation of the Q@ pair back in
time to the creation point. That is, the long-distance part of the production rate is given
in NRQCD by vacuum matrix elements of local 4-fermion operators. The effects of the

short-distance parts of the production rate are taken into account through the coefficients
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of the 4-fermion operators. Since the final state must include a quarkonium, the 4-fermion
operators that appear in production cross sections involve projections onto the space of
states that contain, in the asymptotic future, the quarkonium state H plus anything else.
The generic form of a production operator is

01 — Ko (zz H o X)(H + X|) K

X my
= XV (alyan ) ¥, (6.1)
where the sums are over the 2J + 1 spin states of the quarkonium H and over all other final-
state particles X. In the second line of (B.1), the projection has been expressed compactly
in terms of the operator al; that creates the quarkonium H in the out state. A sum over
the angular-momentum quantum numbers m is implicit in al;ay. The factors K, and K/
in the operator are products of a color matrix (either the unit matrix or 7'*), a spin matrix
(either the unit matrix or ¢?), and a polynomial in the covariant derivative D and other
fields. The overall operator OX is invariant under color and spatial rotations.] We assume
that any matrix elements of O will be evaluated in the quarkonium rest frame; otherwise
the factors K,, and K] may depend on the 4-momentum of the quarkonium.
It is convenient to introduce notation for the production operators that is analogous
to that for the decay operators defined in (I7]) and (B-I3). The production operators of

dimension 6 are

O (*50) = x4 (GIHGH) iy, (6.2a)
01(*S1) = x'o' (afan) ¥fo'y, (6.2b)
O (*So) = x'T°¢ (alyam) w17, (6.2¢)

3Here we consider explicitly only unpolarized production of heavy quarkonium. In the case of
polarized production, aL would create a state of definite polarization, and K,, and K/, would,

in general, depend on one or more vectors associated with the incoming particles, such as the

directions of their spins and momenta.
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O3Sy = xTo' T (aLaH) Yo' Ty. (6.2d)

Some of the color-singlet production operators of dimension 8 are

O (' P) = x! (=4 D) (afam ) w! (—1 DY)y, (6.3a)
O () = 5 X (4D o) (alyarr) (5D - o). (6.3b)
O () = 5 X(~4D x @) (ayar) /(- 1D x o), (6.3¢)
Of (*Py) = X} (4 DUo? )y (alyan) ¥ (— D7)y, (6.3d)
PU(S0) = 5 [x' (aan) o' (~4D)x + he], (6.3¢)
PHES)) = % o'y (aban) Yot (—ED)’y + hel. (6.3f)

Given that the long-distance part of the production rate can be expressed in terms of
vacuum matrix elements of operators of the form given in (p.]), the inclusive production

cross section must have the form

() = X 1 01020, (6.4
where it is understood that the matrix element is to be evaluated in the quarkonium rest
frame. The short-distance coefficients F),, depend on all the kinematic variables of the pro-
duction process, but they are independent of the quarkonium state H. Equation ([.4) is the
equivalent for production of our factorization formula (R.14) for quarkonium decay.

Beyond leading order in perturbation theory, interactions involving soft (infrared) gluons
and gluons collinear to the final-state jets potentially spoil this factorization picture, both
by making the QQ-production process long-ranged and by making connections between the
outgoing quarkonium and the final-state jets that destroy the topological factorization. In
the case of quarkonium decay, we were able to use the KLN theorem to argue that such
final-state soft and collinear interactions cancel in the inclusive decay rate. In the case of
quarkonium production, the KLN theorem does not apply directly because we have specified

that the final state contain the quarkonium: some of the cuts in the KLN sum are missing.

Cuts are missing only for diagrams in which a soft or collinear gluon attaches to one of the

74



heavy @Q or @ lines. If only one end of a gluon attaches to a () or ) line and the other end
attaches to a final-state jet, then the sum over cuts along the jet line is sufficient by itself
to effect the KLN cancellation. If both ends of a soft gluon attach to a heavy @ or @ line,
then there is no KLN cancellation. However, this contribution is part of the matrix element
of the NRQCD 4-fermion operator.

In the case that O is a color-octet operator, one might worry that, because the inter-
mediate states in the first line of (f-]]) carry net color charge, the factorization of the cross
section in (p.4) is not valid. Owing to the property of confinement, such colored states have
infinite energy. (Their energies would be finite in a finite volume, however.) Of course,
the complete final state is color neutral and contains only color-singlet hadrons. One can
picture the color neutralization of the partons in perturbation theory as a process involving
soft-gluon exchanges between the partons. In particular, there can be color-neutralizing
soft-gluon exchanges between partons that are comoving with the quarkonium and partons
in other hadron jets produced by the short distance process. However, the KLN argument
tells us that, at least in perturbation theory, the infrared and collinear divergences from such
soft interactions cancel in the inclusive quarkonium production rate. That is, for purposes
of computing the inclusive quarkonium production rate, the colored partons can be treated
as if they were unconfined. Of course, the complete operator O is invariant under color
rotations, and one can deal with it without referring to the troublesome colored intermediate
states by making use of the form given in the second line of (b.I]). This approach might be
useful in lattice measurements of the production matrix elements.

If we consider production of quarkonium in hadron-induced processes, then a host of
new difficulties arise in proving that the production rate factors. These include exchanges of
soft, collinear, and Glauber (quasi-elastic) gluons involving spectator partons in the initial
state and exchanges of soft and collinear gluons involving active partons in the initial state.
Rather than discuss the resolution of these difficulties here, we will merely assume that

the Glauber divergences cancel, that the only noncancelling infrared divergences are those
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associated with the matrix elements of the 4-fermion operators, and that the noncancelling
collinear divergences can be absorbed into initial parton distributions. We refer the reader
to the proofs of factorization of the Drell-Yan cross section [PH,PG for detailed discussions
of these points. Given these assumptions, the factored form (f4) holds to all orders in
perturbation theory. It should be noted that, in the case of hadron-hadron collisions, there
is a limit to the precision of the factored form of the cross section. Generally, because of
soft exchanges between spectators, one can prove only that a factored form holds through
next-to-leading order in an expansion in inverse powers of the large momentum transfer Q>

[Bd]. Beyond that order, factorization is known to fail [27].

B. Relation of Production Matrix Elements to Decay Matrix Elements

The NRQCD matrix elements that appear in the production rate (f.4) are related to the
NRQCD matrix elements that appear in decay rates through a crossing of the quarkonium
from the final state to the initial state. This relation is analogous to the one between parton
distribution functions and parton fragmentation functions [B§]. In general, the crossing
relation is very complicated. There are, however, two instances in which one can obtain
simple results.

Through order a; in QCD perturbation theory, the crossing relation between (H|O,,|H)
and the corresponding production operator (0|O|0) is a simple equality, up to a factor of
2J +1 for the number of spin states. Finite-order perturbation theory is usually of little help
in dealing with long-distance matrix elements. It does tell us, though, that, to leading order
in ag, the evolution equations for the production operators are the same as the evolution
equations for the corresponding decay operators. For example, the evolution equation for the
production matrix element (0]OF<(15,)|0) in terms of (0]O%(1P)|0) is identical at leading
order in a, and in v to the evolution equation (B.284) for the corresponding decay matrix

elements:

d

401:045(/\)
AalA

he (1 _
0IO (15010) = s

(0|03 (*F1)[0). (6.5)
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When O is a color-singlet operator, the vacuum-saturation approximation can some-
times be used to simplify the matrix element. Assuming that the sum over states in the first

line of (6.]]) is dominated by the quarkonium state H plus the vacuum, we obtain

(0107 10) ~ (O Kt (Z |H><H|)w/c;x|o>

= (2J + D)(H[¢KC,x[0) (O Ko | H)

~ (27 + 1)(H|O,|H), (6.6)

where O,, = ¢¥TK! xx'K,1. In the second line, we have used the rotational invariance of the
operator K’ x|0)(0|xTK,1, which implies that the matrix element is identical for each of
the 2J 4+ 1 angular-momentum states H that differ only in the quantum number m;. In
the last line, we have used the vacuum-saturation approximation (B.§) for the decay matrix
element (H|O,|H).

For the vacuum-saturation approximation to be a controlled approximation, we must be
able to show that the contributions of all the other states in the sum in (B.]) are suppressed
by powers of v. This is in fact the case if the operator O creates and annihilates the QQ
pair in the angular-momentum state that corresponds to the dominant Fock state of the
meson H. In this case, the vacuum-saturation approximation result (f.6) is correct up to
an error of relative order v?.

In the case of a color-octet operator, the states |H + X) in the first line of ([.I) have
nonzero color, and the vacuum-saturation approximation is not applicable. In perturbation
theory, we can approximate the sum by retaining only the terms involving intermediate
states |H + g) that contain a single gluon. Similarly, we can approximate the sum for
the corresponding decay matrix element by retaining the terms that involve single-gluon
intermediate states |g). The resulting matrix elements (O|x"KC,o|H + g) and {(g|x"KC, 0| H)
are related by crossing. Unfortunately the crossing relation is a simple equality only at
leading order in perturbation theory. In the absence of any rigorous relation between them,
we treat the matrix elements of the color-octet production operators and the color-octet

decay operators as independent nonperturbative quantities.
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C. Computation of the Operator Coefficients

The short-distance part of the quarkonium production rate is insensitive to the long-
distance Q@ dynamics. Therefore, following the same reasoning as in Section [TH], we can
exploit the equivalence of perturbative QCD and perturbative NRQCD at long distances
as a device to calculate the coefficients of the matrix elements in (f-4). We compute the
production rate for an on-shell Q@ pair with small relative momentum using perturbation
theory in full QCD. Then we use perturbation theory in NRQCD to compute the matrix
elements of 4-fermion operators (935, which are analogous to those in (B.1]) except that the
projection is onto on-shell Q@ states. The short-distance coefficients are then determined

by the matching condition

o(QQ) = - ) ojogaa) . (6.7

pert. QCD pert. NRQCD

By expanding the left and right sides of (6.7) as Taylor series in the relative momentum
p between the @Q and @, we can identify the coefficients of the individual operators. They
correspond to the infrared- and collinear-finite parts of cross sections for Q@) production.
One useful way to evaluate the left side of (B.7) is to express the projection of the product
uw(P/2 + p)v(P/2 — p) of the Q and @ spinors onto a particular angular momentum state
in Lorentz-invariant form. We refer the reader to Ref. for examples. Then the left side
of (6.1) can be evaluated in any convenient frame, such as the CM frame of the overall
production process. It is understood, of course, that the matrix elements on the right side

of (B.7) are to be evaluated in the rest frame of the quarkonium.

D. S-wave Production

We now apply the factorization formalism to the production of S-wave quarkonium
through relative order v2. For definiteness, we use the lowest-lying S-wave levels of charmo-
nium for the purpose of illustration. Of course, the results that we give generalize imme-

diately to other S-wave quarkonium systems. According to (B.4), the cross section for the
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inclusive production of S-wave charmonium is

o) = L) o sy + AU opresyo + o). (68
o) = Flj(\ﬁl) (0[OY (BS)]0) + Glj&fl)mm#(gslﬂm + O(v*0). (6.8b)

The vacuum-saturation approximation ([.6) can be used to reduce the 4-fermion matrix
elements to products of matrix elements between the vacuum and the quarkonium state.
These can, in turn, be related to the quarkonium wavefunctions given in Section [ITD]

Finally, heavy-quark spin symmetry can be used to reduce the matrix elements to the same

three nonperturbative parameters that appear in charmonium decay: |R,.|?, |Ry|?, and
Re(Rs* V2Rg). Taking into account factors of 2J + 1 for the number of spin states, we find

that the cross sections are

No Fi(1S0) e NeGi("S0) o ooy oo

o(ne) = # ’ ne| # Re(Rs* V2Rg) + O(v’0), (6.9a)
BN, Fi(*S) (o BN.GH(S)) | o

o(¥) = W ’Rw’ - # Re(Rs* V2Rg) + O(v’0). (6.9b)

If we require only accuracy to leading order in v, then we can simplify the production
rates in (.9) further by dropping the terms proportional to Re(Rs* V2Rg) and replacing R,
and Ry, by their weighted average Rg. We then recover the familiar factorization formulas

used in most previous work:

N, F1(1Sp) ——2

o(ne) = # ’Rs’ + O(vza), (6.10a)
3N, F1(3S51) |—2

o(¢) = W Rs| + 0(0). (6.10Db)

In applying the factorization formula (b.4), one should keep in mind that the short-
distance coefficients F,(A) depend not only on as(M) but also on dimensionless ratios of
kinematic variables. For example, in the case of production of heavy quarkonium at large
transverse momentum pr, the coefficients F;,(A) depend strongly on p2/M?. In determining
the relative importance of the various terms in (p.4)), one must take into account not only the

size of the matrix element and the leading power of as(M) in the short-distance coefficient,
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but also the dependence of F,,(A) on dimensionless ratios of kinematic variables. The terms
given explicitly in (6.§) may not be the dominant contributions to the cross sections if the
coefficients of the matrix elements are sufficiently suppressed relative to the coefficients of

other matrix elements that are of higher order in v.

E. P-wave Production

We next apply the factorization formalism to the production of P-wave quarkonium to
leading order in v, using the lowest-lying P-wave levels of charmonium for the purpose of
illustration. According to our factorization formula (f.4), the inclusive production rates for
P-wave charmonium are

_ R('P) Fs(1Sp)

o) = T ot ) + BU gorts) + 00%e), (611a)
olxr) = TLED ojopes o) + U o)

+O(?r), J=0,1,2. (6.11b)

The vacuum-saturation approximation (p-.G) can be applied to the color-singlet matrix ele-
ments to express them in terms of vacuum-to-quarkonium matrix elements. These matrix
elements can be expressed in terms of regularized derivatives of radial wavefunctions at the
origin by using (B.19). Because of heavy-quark spin symmetry, they can all be replaced,
without loss of accuracy, by their weighted average R)». Heavy-quark spin symmetry also
implies that the color-octet matrix elements in (6.11]) are proportional to 2J + 1, up to
corrections of relative order v?. Thus, the P-wave charmonium production rates can all
be expressed in terms of the two nonperturbative parameters |R}|? and (0|O%<(*S)|0) (or,

alternatively, the average over the P-wave states of 3/(2J 4 1) times the color-octet matrix

elements):
IN, Fi(*P) =2 Fx(*S
U(hc) = W ’Rp + 8j(\420) <0|O§c(150)|0> + O(vza), (6.12&)
(2J + 1)3N, Fi(CPy) (=2 =~ (27 + 1)F5(39) e
o (Xer) = T Re| + i (010¢("50)[0)
+ O(v?o), J=0,1,2. (6.12b)
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Note that the color-octet matrix element (0]Og¢(*Sp)|0) in (F.19) cannot be identified with
the decay matrix element (h.|Os(*So)|h.) in (7).

The first application of the factorization formulas (f-I7) was to the inclusive production
of P-wave charmonium states in B-meson decay [R4]. The factorization formulas were given

in the form

r'b—h.+X) = H I, (b — ce(*Py) —I—X,,u)
+ 3 H{(p) Ts (b — ce("So) + X) (6.13a)

T(b— Xes+X) = Hi Ty (b= cc(®Py) + X, 1)
+ (2] + 1) Hy(u) Ts (b — cc(*S1) + X) . (6.13b)
The coefficients I'; and Ty are proportional to the production rates for on-shell QQ pairs
in color-singlet P-wave and color-octet S-wave states, respectively. The factors Hy and H}
can be expressed in terms of NRQCD matrix elements divided by appropriate factors of the

heavy-quark mass:

1

Hy = o (0101 (\R)lo), (6.14a)
HL(A) = s (008 (5[0} (6.14b)

The definitions (b.14d) and (6.14H) were chosen in Ref. [R4] so that H; and Hf would
coincide as closely as possible with the decay matrix elements H; and Hg. Using the vacuum-
saturation approximation (.4), we see that the definition of H; given in (p.144) is equal to
that given in ([£94)), up to corrections of relative order v. A crude estimate for Hg(M) in
terms of H; is given in (B.30). A similar estimate of H{(M) in terms of H; can be obtained
by solving the evolution equation (B.5) and assuming that (0]Og°(1Sp; A)|0) can be neglected
at some initial scale A = Ag. With the normalizations in ([L.9H) and (p.14H), the resulting
estimates for Hg(M) and H{(M) are equal. However, there is no apparent rigorous relation
between these two matrix elements.

As we have already remarked in connection with the decay matrix elements, the factors

of 1/M in (pb.14al) and (6.14H) are more properly associated with the operator coefficients,
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since they involve short-distance physics at distance scales of order 1/A or less. Therefore,
the factorization formulas (p.12) are preferable to the forms given in (p.13).

In Ref. [P4], which discusses the decay of a B meson into a charmonium state, the NRQCD
cutoff A was set equal to the scale of the large momentum transfer in the process, which
is the bottom-quark mass m;. This choice of cutoff is inappropriate because the NRQCD
evolution equation (p.5) accurately reflects the behavior of full QCD only for cutoffs A that
are less than M. That is, the NRQCD evolution equation cannot be used to sum logarithms
of Q?/M?, where Q? is the large momentum transfer in a production process. Therefore,
a more appropriate choice of NRQCD cutoff for the process analyzed in P4 is A = m,,
where m. = M is the charmed-quark mass. Note, however, that a change of NRQCD cutoff
from my, to m, does not affect the short-distance coefficients in the leading-order calculation

presented in [B4], and is, in general, insignificant numerically.
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VII. DISCUSSION AND OUTLOOK

The factorization approach that we have developed in this paper provides a systematic
theoretical framework for understanding the annihilation and production of heavy quarko-
nium. In this section, we discuss the relation between our approach and previous models
for quarkonium production and annihilation. We also summarize the current status of the-

oretical calculations of annihilation rates and production cross sections.

A. Comparison with Previous Approaches

We have presented a rigorous formalism for calculating the inclusive annihilation rates
of heavy quarkonia. It is based on the use of NRQCD to separate the annihilation rate
into short-distance parts, involving distance scales on the order of 1/M, and long-distance
parts. The short-distance parts are identified with the imaginary parts of coefficients in
the NRQCD lagrangian, and can be computed as perturbation expansions in as(M). The
long-distance parts are expressed as matrix elements of 4-fermion operators in NRQCD and
can be computed nonperturbatively by using lattice simulations. We have also developed
an analogous formalism for computing inclusive production rates of heavy quarkonia in
processes involving large momentum transfers. The cross sections are factored into short-
distance parts, which can be computed perturbatively, and long-distance parts, which are
expressed as NRQCD matrix elements.

The factorization approach provides a firm theoretical foundation for calculations of the
annihilation and production rates for heavy quarkonium. It can be used to assess the degree
of validity and the limitations of models used in previous work on heavy quarkonium produc-
tion and annihilation. The most thoroughly developed model for the calculation of produc-
tion rates is the “color-singlet model” [BQ,BT,B2,B3]. Most calculations of annihilation rates
have also been carried out within this model. In the color-singlet model, the quarkonium

state is modeled by a color-singlet Q@ pair that is in the appropriate angular-momentum
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state and has vanishing relative momentum. Nonperturbative effects are assumed to fac-
tor into a single nonperturbative quantity that is proportional to the square of the radial
wavefunction, or one of its derivatives, evaluated at the origin.

The factorization formalism represents a significant advance over the color-singlet model
in several respects. First, it provides a systematic framework for calculating perturbative
corrections to the short-distance factors to arbitrarily high orders in a,. The infrared di-
vergences that are encountered at any order of the perturbation expansion can be factored
into specific nonperturbative matrix elements. Perturbative calculations in the color-singlet
model are based on the assumption that all infrared divergences can be factored into a single
nonperturbative quantity. In the case of S-waves, calculations at next-to-leading order in
as (NLO) provide empirical support for the assumption that long-distance effects can be
factored into the quantity |Rs(0)[?. Our formalism reveals that this assumption is, in fact,
correct for any specific S-wave process in the nonrelativistic limit to all orders in a. It has of-
ten been assumed, in addition, that the same quantity | Rs(0)|* describes processes involving
both the 0~" and 17~ S-wave states. Our formalism shows that this additional assumption
is correct only up to corrections of relative order v2. The assumption that the same quantity
|Rs(0)|? describes annihilation into light hadrons and electromagnetic annihilation also fails
at relative order v?, as does the assumption that the same quantity |Rs(0)|* describes both
annihilation and production processes. In the case of P-waves, explicit calculations of the
decay rates into light hadrons reveal that the assumption of a single long-distance factor
|R)»(0)]? fails at leading order in s (LO) for h, and x. [g] and at NLO for x. and x. [[-
In the context of our formalism, these results follow simply from the existence of a second
independent matrix element that contributes to the annihilation rates of P-wave quarkonia
in the nonrelativistic limit.

The factorization formalism also improves upon the color-singlet model by allowing the
systematic calculation of relativistic corrections to annihilation and production rates. Rela-
tivistic corrections are incorporated by including nonperturbative matrix elements that scale

as higher powers of v. In the case of S-waves, our formalism for computing the v? corrections
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is similar at leading order in «; to a model for relativistic corrections developed by Keung
and Muzinich [B4]. The major differences are that the factorization formalism provides non-
perturbative definitions for the long-distance factors, it allows the short-distance coefficients
to be calculated beyond leading order in «,, and it can be used to treat corrections of order
v3 and higher.

Another advantage of the factorization formalism is that it provides unambiguous field-
theoretic definitions of the long-distance factors in annihilation and production rates. This
allows one to compute them nonperturbatively using, for example, lattice simulations of
NRQCD. Previous approaches have relied either on determining the long-distance factors
phenomenologically or on relating them to potential-model wavefunctions. Both of these
approaches are of limited utility. The purely phenomenological approach can be applied
only in situations in which the number of accurately-measured experimental observables is
greater than the number of nonperturbative matrix elements. Potential-model estimates
can be used for color-singlet matrix elements that have simple potential-model analogs, but
they cannot be used for other matrix elements, such as the color-octet matrix elements
that contribute to the annihilation of P-wave states into light hadrons at leading order in
v. It is also difficult to gauge the accuracy of potential-model estimates in the absence
of a rigorous connection to QCD. Since our formalism provides unambiguous definitions of
the long-distance factors in annihilation and production processes, it allows us to quantify
relations between these matrix elements and Coulomb-gauge wavefunctions in NRQCD. It
also allows us to quantify the differences between matrix elements for decays into light
hadrons and matrix elements for decays into electromagnetic final states, as well as the
differences between annihilation matrix elements and production matrix elements.

A final advantage of the factorization formalism is that it takes into account the complete
Fock-space structure of the quarkonium. In the color-singlet model, the quarkonium is
assumed to be simply a QQ pair in a color-singlet state with definite angular-momentum

2S+1LJ

quantum numbers However, a quarkonium also has a probability of order v? to be in

a QQq Fock state, and it has probabilities of order v* or smaller for the higher Fock states.
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In the case of P-waves, the factorization formalism reveals that the QQg component can play
just as important a role in annihilation and in production as the dominant Q@ component.
In the case of S-waves, the higher Fock states can be ignored in the nonrelativistic limit, and
even at relative order v?, but the factorization formalism indicates that they do contribute
at relative order v3.

The factorization formalism for describing the annihilation of heavy quarkonia is in many
ways similar to the operator-product-expansion formalism for calculating the inclusive decay
rates of heavy-light mesons [B]. These decay rates can be factored into short distance parts,
which involve the weak decay of a heavy quark or its weak annihilation with an antiquark
in the meson, and long-distance parts, which can be expressed as NRQCD matrix elements.
The main difference between heavy-quarkonium annihilation and heavy-light meson decay
is in the relative importance of the various matrix elements. Since the typical momentum of
a heavy quark in a heavy-light meson is of order Agcp and is independent of M, the relative
importance of matrix elements is determined strictly by the dimension of the operator.

Operator-product-expansion methods have also been used to treat exclusive decays of
heavy quarkonium into light hadrons at leading order in v [B]. The NRQCD formalism
might prove to be useful in extending such analyses to include relativistic corrections. In
exclusive processes, a factorization theorem holds, not only for the decay rate, but also for
the decay amplitude. Thus, just as in the case of electromagnetic annihilation, the relevant
NRQCD matrix elements for exclusive decays are vacuum-to-quarkonium matrix elements
of color-singlet operators of the form ykC,2).

Operator-product-expansion methods have also been used in a completely different con-
text in heavy quarkonium physics [J,B1]. These methods have been used to treat the in-
teractions of heavy quarkonium with light hadrons whose momenta are small compared to
the scale Mv of quarkonium structure. Voloshin has used this approach to calculate
nonperturbative corrections to quarkonium annihilation rates that are proportional to the

gluon condensate. In our factorization formula, the gluon-condensate contribution would
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appear in the long-distance matrix element. In some of the cases considered by Voloshin,
the corresponding short-distance part involves the annihilation of the Q@ pair in a color-
octet state. His approach can therefore be used as a framework for estimating the matrix
elements of color-octet operators.

The general factorization formula (f-4) for the production cross section of any specific
quarkonium state H takes into account the short-distance production of color-singlet Q@
pairs and color-octet Q@ pairs in all angular-momentum states. In this respect, our ap-
proach has some elements in common with the “color-evaporation model” for quarkonium
production [BY]. In this model, the total inclusive cross section, summed over all quarkonium
states H, is obtained by integrating the perturbative cross section for inclusive Q@ produc-
tion from the quark threshold 2M up to the physical threshold for the production of a pair of
heavy-light mesons. No constraints are imposed on the color and angular momentum states
of the QQ pair. Under the hypothesis of “semilocal duality”, the nonperturbative QCD
effects that are responsible for the formation of a color-singlet bound state containing the
QQ pair are assumed to be negligible after one sums over all quarkonium states H. In the
factorization approach, the nonperturbative effects are not neglected, but are factored into
long-distance matrix elements (0|O|0). In the color-evaporation model, the production
cross section for a specific quarkonium state H is obtained by multiplying the total quarko-
nium cross section by a purely phenomenological fraction fz. The relative production rates
of different quarkonium states are, therefore, not predicted. In the factorization approach,
the relative production rates can be calculated by using perturbative QCD, once the values

of the dominant matrix elements (0|0 |0) have been determined.

B. Present Status of Calculations

The possible applications of the factorization formalism for heavy-quarkonium annihi-
lation and production are almost limitless, since heavy quarkonia play a role in so many

high energy processes. In order to highlight some of these applications, we discuss below
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the present status of calculations of annihilation and production rates.

In the case of S-wave decays, NLO perturbative corrections have been calculated for all
the annihilation rates. In many cases, the NLO corrections are uncomfortably large. In
order to develop a better understanding of the origin of these large corrections, it would
be desirable to have calculations at NNLO, at least for the simplest processes 1) — ete™
and 7. — 77y. Relativistic corrections to the S-wave annihilation rates have been studied
by Keung and Muzinich [B4]. From their results, one can extract the coefficients of all the
matrix elements of relative order v? at leading order in a,. A phenomenological analysis
of the decay rates of the lowest-lying S-wave states of charmonium, including the next-to-
leading order corrections in a,(M) and the corrections of relative order v?, is in progress
Q).

In the case of P-wave decays, complete NLO perturbative corrections are available only
for the electromagnetic decays x.o — 77y and x. — 7. For the decays of P-wave states
into light hadrons, complete results are known only to order o? [[J. The coefficients of
| R|? have been calculated to order o [, but they contain logarithmic infrared divergences
that should be factored into matrix elements of the operators Og(1Sy) and Og(®S;). There
are constants under the logarithms that should also be factored into the matrix elements.
Unfortunately, these constants cannot be determined readily from the existing calculations.
The relativistic corrections to P-wave annihilation rates have not yet been analyzed.

In the case of D-wave decays, the only complete LO calculations are those for the elec-
tromagnetic decays of the 3D; state into e*e™ and the ' Dy state into v [B]. For the decay
of the D, state into light hadrons, the coefficient of the matrix element corresponding to
|R/5(0)]? has been calculated at LO [[J]. For the decays of the D, states into light hadrons,
only the logarithmic infrared divergence in the coefficient of |R;(0)]* has been extracted
[ET]. This divergence should be factored into other matrix elements that contribute to the
annihilation rate in the nonrelativistic limit. These matrix elements can be identified by
using the methods of Section [ITA], and their coefficients can be calculated by using the

methods illustrated in Appendix A.
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The status of calculations of the production of heavy quarkonium has been reviewed
recently in Ref. 3], although many aspects of that review are superceded by the develop-
ments described in the present paper. In the case of S-waves, most production processes
have been computed only to LO. The only processes for which complete NLO calculations
are available are ¢ and 7. production in B-meson decay [[[J] and inclusive 7. production
in hadron collisions [[3,23]. It would be desirable to have calculations of complete NLO
corrections for more production processes, in order to develop a better understanding of the
size and behavior of the perturbative corrections. It is also important to calculate the rela-
tivistic corrections, which are expected to be typically on the order of 30% for charmonium.
Relativistic corrections have been calculated for the photoproduction of the ¢ [E4] within
the model of Keung and Muzinich [B4]. The factorization formalism can be used to express
those results in terms of well-defined NRQCD matrix elements.

For the production of quarkonia at large transverse momentum pr, the contributions
that are leading in 1/pr sometimes come from beyond leading order in the perturbation
expansion, and they can be computed without complete calculations of the NLO or NNLO
corrections. These contributions come from fragmentation and can be expressed in terms
of process-independent fragmentation functions D;_p(z,p) for a parton ¢ with invariant
mass 1 to produce a jet containing the quarkonium H with light-cone momentum fraction
z. The fragmentation contribution to a production cross section sometimes appears in
a LO calculation, but it often appears first at NLO and sometimes even at NNLO. The
fragmentation functions for producing S-wave quarkonia from the fragmentation of gluons
B3 and heavy quarks [l have been calculated at LO in a.

For P-wave quarkonia, there are many production processes for which complete calcu-
lations are not even available at LO. For most processes, the coefficient of |R’|?> has been
calculated [23. Complete LO calculations, including the coefficient of (0|0 |0), are avail-
able only for the production of P-wave charmonium in B-meson decays [B4], T decays [[7],
gluon fragmentation [[[g], and charm fragmentation [I9. Relativistic corrections to P-wave

production processes have not been studied.
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In the case of production of D-wave quarkonia, the only perturbative calculations that
are available are those for the coefficients of |R7,(0)|? in the decay rates for Z° — Hvy, where
H represents any of the ' Dy or 3D states [5(].

In the factorization approach, nonperturbative long-distance effects are organized system-
atically into well-defined NRQCD matrix elements. This allows one to go beyond potential
model estimates or phenomenological determinations of the long-distance factors. Instead,
they can be calculated from first principles using lattice simulations of NRQCD. Such calcu-
lations are still in their infancy. At present, the only vacuum-to-quarkonium matrix elements
that have been calculated are (0|xT|n.), (0|xTo1)|v), and (O|XTﬁx|hc>, and their analogs for
the bottomonium system [BI,59]. The only 4-fermion matrix elements that have been cal-
culated thus far are (n.|O1(*So)|ne), (he|O1(1Py)|he), and (h.|Os(1Sy)|h.) and their analogs
for the bottomonium system [J]. Thus far, all matrix elements have been calculated only
up to corrections of relative order v? and in the absence of dynamical light quarks. Pro-
duction matrix elements are much more difficult to calculate through lattice simulations,
unless they can be related to annihilation matrix elements through the vacuum-saturation

approximation.

C. Concluding Remarks

Heavy-quark mesons have long been the best understood of hadrons. Until recently,
our understanding has been based almost exclusively on phenomenological quark potential
models that are motivated by QCD. Now, lattice QCD simulations are providing systematic
analyses that are based directly upon the QCD lagrangian [p3]. Heavy-quark systems are
particularly well-suited to lattice simulations, and, consequently, they are now of central im-
portance to our exploration of nonperturbative QCD. This new role for quarkonium studies,
as a rigorous testing ground for nonperturbative QCD, demands a much higher degree of
rigor than was necessary in older phenomenological analyses. Approximations are necessary

in tackling most hard problems, but it is essential in a fundamental analysis that there be
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systematic procedures for improving the approximations. In this paper, we have developed
a formalism for studying annihilation decays of heavy-quark mesons that meets this stan-
dard. With our formalism, we can improve upon the nonrelativistic quark potential model
by including relativistic corrections in a systematic way. We can also go beyond the quark
model to include the dynamical effects of gluons. Thus, we can, for the first time, begin
to confront the full richness of nonperturbative QCD in analyses that are systematic and

rigorous.
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APPENDIX A: COEFFICIENTS OF 4-FERMION OPERATORS

The coefficients in the lagrangian for nonrelativistic QCD can be determined by match-
ing scattering amplitudes in NRQCD with those in full QCD [[4]. In this Appendix, we
use these techniques to determine the coefficients for some of the 4-fermion operators that
contribute to quarkonium annihilation rates. In Section [AT], we illustrate the method by
calculating the coefficients of dimension-6 operators to order as. In Section[A 2, we apply the
method to calculate the imaginary parts of the coefficients of dimension-6 and dimension-8
operators to order a2. In Section K3, we demonstrate how the imaginary parts of some of
the coefficients can be extracted at next-to-leading order from existing calculations of the
decay rates of bound states. We also record coefficients that can be extracted from existing
calculations in the literature. Finally, in Section A4, we give the corresponding coefficients

for electromagnetic annihilation rates.

1. Coefflicients at Order o

We wish to determine the coefficients of the dimension-6 and dimension-8 4-fermion
operators at order a; by using the matching condition (B-1§). We consider QQ scattering
amplitudes, with the momenta of the heavy quarks and antiquarks small compared to the
heavy quark mass M. In full QCD, there are two Feynman diagrams for Q@ scattering at tree
level. The gluon exchange diagram in Fig. fj(a) is also present in NRQCD. The annihilation
diagram in Fig. fI(b) is not present in NRQCD, so its effects must be reproduced by adding
4-fermion terms to the effective lagrangian. We calculate the annihilation contribution to
the amplitude for QQ scattering in the center of momentum frame. We take the incoming
Q@ and @Q to have momenta p and —p, while the outgoing @ and @ have momenta p’ and
—p’. By conservation of energy, we have |p’| = |p| = p.

The scattering amplitude (T-matrix element) in full QCD corresponding to the diagram
in Fig. {(b) is
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Qs _

Moy = 5 aP)V T (=p") 0(=p)3T u(p), (A1)

where £ = /M? + p?>. We have suppressed the color indices on the 4-component Dirac
spinors. Following Ref. [[4], we express the 4-component Dirac spinors in the Dirac repre-

sentation in terms of 2-component Pauli spinors via the substitutions

E+M §
u(p) =\ = , (A2a)
E+M€
(=p)O
E+ M n
v(-p) = | T (A2b)

n

where ¢ and n are 2-component spinors with suppressed color indices. The Dirac spinors
u(p’) and v(—p’) have similar expressions in terms of Pauli spinors ¢ and 7’. The spinors
(AZ4)) and (JA2H) represent fermion states with the standard nonrelativistic normalization.
Expanding to second order in the velocity v = p/E, we find that the annihilation contribution
to the scattering amplitude ([AT]) from full QCD reduces to

TO
M2

1 o
Mﬁ(b) ((1 o U2)§/T0'Ta77/ . 77T0.Ta€ o 5 ('UZ'UJ + V' /J)ngO’ZTan/ n O.JTa€> ( )

where v = p/E and v/ = p//E. It is convenient to suppress the spinors and write the above
matrix element as a direct product of color matrices multiplied by a direct product of spin

matrices:

Tl
M2

M) (T*°®T |(1-v*)o"®c" — 2( v'? 0" et @ ol | . (A4)

One can read off the dimension-6 term in the scattering amplitude in terms of the pa-
rameters of NRQCD by substituting &, &7, 7', and nf for v, ¥f, x, and x' in the effective

lagrangian (P.9):

Mis =75 (101 [A('S) 101 + [L(°S) o' o]
+ % (T°®T) [fs('So) 1@ 1 + fs(*S1) o' @ 0] . (A5)

Comparing ([A4) and (A7), we find that only one of the four terms in (R.9) has a nonvanishing

coefficient at order as:
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fs(3S1) = —mas(M). (A6)

The coefficients of the remaining three terms in (E-9) are of order a?.
To determine the dimension-8 coefficients, we need the scattering amplitudes from the

term (R.11)) in the effective lagrangian:

HCP)+ fCPR)

Mdzgzm(l(g)l) APV -vI®l + 5 vi.vo®d
+ f1(3P0) ; f1(3P2) vVi.o®v-o + f1(3P2) g fl(gpl) v.oeVv . .o
+ ('S v’ 1®1 + 301050 _51(351’31)1) v’ o' ® o
- 9:(51,°D1) (v + 0"V @0l + ... (A7)

2

There are similar terms with color structure 7% ® T* and coefficients fs and gs. Comparing

with ([A4), we find that

5(*5) = (M), (Asa)
gg(?’Sl,?’Dl) = WO(S(M). (A8b)

The color-singlet coefficients g; and the remaining color-octet coefficients vanish at this order

in as(M).

2. Imaginary Parts at Order o?

We now turn to the calculation of the imaginary parts of the coefficients at order o?.
They can be determined by matching the imaginary parts of Q@ scattering amplitudes in full
QCD and NRQCD in accordance with (R.I1§). In full QCD, the annihilation contributions
to the imaginary parts at order a? come from the one-loop diagrams in Fig. [ We will
determine the imaginary parts of the coefficients of the dimension-6 operators in (R.9). We
will also determine the imaginary parts of the coefficients of the dimension-8 operators that
contribute to the annihilation of P-wave states at leading order in v and S-wave states

through relative order v?. The dimension-8 terms in the lagrangian are given in (R.11)). To
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determine the coefficients, we consider Q@ scattering in the center of momentum frame,
with the @ and Q momenta small compared to the heavy-quark mass M. We calculate the
imaginary parts of the diagrams in Fig. [] in Feynman gauge. After making the substitutions
(A2) for the Dirac spinors, we expand in powers of the velocity v.

Below, we list the results for the imaginary parts of each of the diagrams, suppressing
the spinors as in (A4)). The diagrams in Fig. [](a) and [J(b) yield, on expansion through

second order in the velocity v,

T arb brpa 4 2 1 /
ImM7(a)—2M2 (7T ®TT)[(1—§U —|—§V-V>1®1
L (1 1, L 2 ,) g
- — = V-V
375 5 7w
2 ... 11 . . 11 . .
+ (gvlv’” + E’U/Z’Uj -3 — (v'v? + " ’”)) o' ® a’], (A9a)
Im M e (T“Tb ® T°T") (1 A 1L v'> 1®1
) = 5ap 3V 73
(1 1, 2 ) oiao
—z—=v"=—2v-V') o'®0o
3 5 )
2 .. 11 . . 11 . .
+ (gvlv’” + E’U/Z’Uj + 30( v + 0" ”)) o' ®a’]. (A9b)
The color matrices can be simplified as follows:
Cr N2 -2
T°T" @ TT* = 11 T°® T A10
® 2Nc ®1 + 2Nc X ( a)
Cr 1
T°T" @ T*T" = 11 — —T°®T A10b
“ o, N® (A10D)

where Cr = (N?—1)/(2N.) is the Casimir for the fundamental representation. The diagrams

in Fig. [](c) and [§(d), which involve the triple-gluon vertex, yield

N ma? 11 S 1 1 . :
Imj\/l7(c) = 6]7\1-40;5 (Ta®Ta) [(1 _ E,U2> O'Z®0'Z _ (5’11 'UJ + 2'U/Z /J) 0’Z®O'J] ,
(Alla)
N, 11 , , 1 1 : ,
Im M) 6]\7:[O; (T*®T?) [(1— EU2> o'Qot — (22; vl + 521” ") al®a’].
(A11D)
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From the gluon-loop diagram in Fig. [](e) combined with the associated ghost loop diagram

in Fig. [1(f), we obtain

5N .o . . 1 .. o :
Im (M7(O) + /\/l7(f)) = — 12]\72055 (T2 T [(1 -0’ ®a" — i(vlv’ + ") o' @ 0’| .
(A12)
The quark loop diagram in Fig. [i(g) gives
2
Im Mz = ng]c[o;s (T°®T" |(1-vH)o'®0" — i(vlv’ + 0"t @ 0’| . (A13)

Adding the amplitudes (A9), and (AT1])-(AT3) and comparing with (A5), we can read off

the imaginary parts of the coefficients of the dimension-6 operators:

Imﬁmm:Z%%ﬁMy (Alda)
tm (1) = e =2z, (Al4b)
hnjgésa)::fgic@(Afy (Aldc)

The imaginary part of the coefficient f;(*S1) vanishes at order a?. Comparing with (A7),

we see that the coefficients of the color-singlet dimension-8 operators are

37TCF
Im f,(3Py) = 2\ Al
m f1(*Fy) N, o (M), (Alba)
Im £ (Py) = 259 02, (A15b)
5N,
27‘[‘0}:
Im g1 (*Sp) = — 2(M). Al
mgi(5o) = = a2(0) (A15¢)

The imaginary parts of the coefficients fi(*Py), fi(®P1), g1(3S1) and ¢;(3S1,3D;) vanish at

order o?.

3. Imaginary Parts at Higher Order in «;

According to the matching condition (R.I§), the coefficients of the 4-fermion operators
can be computed at next-to-leading order in «; by calculating scattering amplitudes at next-

to-leading order in full QCD and equating them to the scattering amplitudes in NRQCD,
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calculated to next-to-leading order in as. For some of the 4-fermion operators, the imaginary
parts of the coefficients can be extracted at next-to-leading order in a, from calculations of
heavy-quarkonium annihilation rates that already exist in the literature.

As an illustration of our factorization approach, we discuss in detail the calculation of
Im f1(1Sp) at next-to-leading order in a,. In order to determine Im f;(*Sp), we consider the
matrix element M for the forward scattering of a Q@ pair above threshold in a color-singlet
spin-singlet state with relative velocity 2v. The imaginary part of M can be expressed as
a sum over cuts through the Feynman diagrams for forward scattering. The annihilation
contribution to Im M is the sum over cuts through gluon and light quark lines only. It has

been calculated in full QCD at next-to-leading order in ag and in the limit v — 0 by Barbieri

et al. [{:

7Cra?(2M) I 199  13x? 8 | as

where C'4 = N, is the Casimir for the adjoint representation, as(M) is the QCD coupling
constant in the modified minimal subtraction (MS) renormalization scheme for QCD with
ny flavors of light quarks, and M is the perturbative pole mass of the heavy quark. We have
corrected apparent errors in Ref. [{] of 2/3 in the overall coefficient and 1/2 in the coefficient
of the 7%/v term. The next-to-leading order correction contains a Coulomb singularity
proportional to 1/v, which gives an infrared divergence in the limit v — 0.

In order to determine Im f;(*Sp), we must calculate the corresponding contribution to
Im M in NRQCD at next-to-leading order in a,. The relevant Feynman diagrams are
shown in Fig. §. They contain a 4-fermion vertex that corresponds to the term 1Ty x in
the effective lagrangian. The annihilation contribution is the sum over all cuts that pass
through that vertex. The Cutkosky rules specify that a cut passing through the 4-fermion
vertex is computed by taking the imaginary part of the coefficient fi(1Sy) and complex-
conjugating the part of the diagram to the right of the cut. The incoming and outgoing

states consist of a QQ pair in a color-singlet spin-singlet state with relative velocity v — 0.
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Explicitly, the in state is

|QQ Z \/—C ZJ Z Z0'2 mm’|Q(p7m Z)@(_p’m/7j)> ) (A17)

mm’

where p = Mv is the momentum of the quark in the center of momentum frame. The quark
states |Q(p,m, 7)) with momentum p, spin quantum number m = £1/2, and color i have

the standard nonrelativistic normalization:
Q' ,m,H)|Q(p,m,i)) = §95™™ (21)36°(p' — p) . (A18)

For the leading-order diagram in Fig. §(a), the cut through the 4-fermion vertex gives simply
the imaginary part of the coefficient f;(*Sy)/M?:

. 2NC Im fl(IS(])

Im Ms(a) 2

(A19)

It is convenient to calculate the next-to-leading order diagrams in Figs. §(b) and B(c) by
using Coulomb gauge, since then only Coulomb exchange contributes in the limit v — 0.

For the diagram in Fig. §(b), we obtain

1 4
<Im/\/l> _ 2NeIm /1(%50) (—i47TCFOés)/ 4
8(b)

1
M? (27)* o
1 1
E+q —(p+q)?/2M +iec E—qo— (p+q)2/2M + ie’

(A20)

where E = p?/2M. After using contour integration to integrate over the energy gqo of
the exchanged gluon, we find that the contribution reduces to an integral over the gluon’s

3-momentum:

2N, 1 1 3 1 1
mM| = m /1(50) 47TCFQSM/ d € . (A21)
8(b) M? 322 +2p-q—ie

The integral is infrared divergent, and can be regularized by using dimensional regularization.
The integral over q is analytically continued to D = 3 — 2¢1x spatial dimensions. Evaluating
the regularized integral in ([A2]]), we obtain

2N, Im f1(1Sy) 7Cras
I = 1 —
( m,/\/l>8(b) e 10 [

(1 2M
i(——I—log(47r)—7—210,53; U)] ,
T \ €IR HIR

(A22)
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where v is Euler’s constant and pr is the arbitrary regularization scale introduced with
dimensional regularization. The logarithmic infrared divergence appears as a pole in €g.
The subscripts IR on € and p serve as a reminder that they are associated with infrared
divergences. Note that (A27) is complex valued. The imaginary part of (R27) arises because
it is possible for the incoming quark and antiquark to scatter on-shell before annihilating at
the 4-fermion vertex. After summing over all diagrams, one must, of course, obtain a real
result for Im M. The diagram in Fig. §(c) is evaluated in the same way as Fig. §(b), except
that the Cutkosky cutting rules require the complex-conjugation of the part of the diagram

that involves the Coulomb-gluon exchange. The result is

. 1 s ) 1 2M
<Im./\/l> = 2N Im f1(050) mCra [1 + L (— + log(4m) — v — 2log U)] .
8(c)

M?2 4o T \ €IR UIR

(A23)

Note that the imaginary part of (A23) cancels that of (A23). Adding (AI19), (A22), and

(A23), we obtain the complete result for Im M through next-to-leading order in a:

. QNC Im fl(IS(])
™

o«
1+ —Cp—=] . A24
v 5or] (A24)
Comparing (A16) and (A24), we can read off the imaginary part of fi(1Sy) through

next-to-leading order in ay:

& ? 199 1372 8 .
i) = Gzttt + (T -s)er + (-5 o0 - ] )

Note that the factorization approach reproduces the standard prescription of simply drop-
ping the 1/v terms in the perturbatively calculated annihilation rate [p4]. The factorization
approach puts this prescription on a rigorous footing, and makes it clear how to extend the
calculation systematically to higher orders in ag and in v.

In (A29), as(M) is the MS coupling constant with renormalization scale M. If we make a
different choice for the renormalization scale p of a(pt), then we must differentiate between

the MS coupling constant AR () for full QCD with ny flavors of light quarks and a heavy
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quark and the corresponding coupling constant aé"f )(,u) for only ny flavors of light quarks,

which is the appropriate running coupling constant below the heavy-quark threshold. These
coupling constants satisfy the matching condition [5F] ozgnf)(M) = ozgnfﬂ)(M) + O(a?). If
we wish to use a different renormalization scale pu # M for o, in (JA25), then we must make

one of the following substitutions:

as(M) =l ) |1+ folog 122 + 0(a?)] (A26a)
an(M) =l ) [1 4 (- 5 ) log 222 1 0(a?)]. (A26b)

where Gy = (33 — 2ny)/6 is the first coeflicient in the beta function for QCD with n; flavors
of light quarks: p(d/dp)as(pu) = —Bea? /7 + . . ..

The coefficient of the operator O;(1Sp) in the NRQCD lagrangian is fi(1Sy)/M?, and
the perturbation series for fi(1Sy) depends on the definition of the heavy quark mass M.
The order-a? correction in ([A28) corresponds to the choice M = Mo, where M, is the
perturbative pole mass, i.e., the location of the pole in the heavy-quark propagator in per-
turbation theory. An alternative choice is the running mass M () in the MS renormalization

scheme. Its relation to the pole mass through order a; is [B4]

— 300 2 Qs 2
Mpolo — M(,U) [1 + (1‘|‘ 210g M) CF T + O(OZS) . (A27)

Throughout this paper, we will adopt the choice M = M, for the heavy quark mass in
the coefficient f,, /M ~* of a 4-fermion operator with naive scaling dimension d,,.

We can obtain the imaginary part of the coefficient f(3S;) through next-to-leading order
in g from a calculation by MacKenzie and Lepage of the annihilation decay rate of the J/1)
or T [[]. Their published result is given explicitly only for N. = 3, but one can insert the

appropriate color factors in the various classes of diagrams and obtain the result

Imfl(ssl)
_ (7r2—9)5(i\]75—4)0Fa§(M) [1 + (=9.46(2)Cr + 4.13(17)Ca — 1-161(2)”f)%
T 7Q? (Z Q?) o? [1 - ?OFQ?] o
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where @ is the electric charge of the heavy quark (@) = +2/3 for the charmed quark and
Q) = —1/3 for the bottom quark) and the @);, i = 1,...,ny, are the electric charges of the
light quarks. The perturbative correction in the first term on the right side of (A2§) was
calculated by Mackenzie and Lepage [ff]. The term proportional to a? is due to annihilation
of the QQ pair into a virtual photon, which then decays into light hadrons. The order-a
correction can be calculated as the sum of two terms: —4Cpa,/m, which is the order-ay
correction to the rate for v — eTe™, and 3Cpas/(4m), which is the order-a; correction to
the rate for v* — ¢g. For completeness, we also give the coefficient analogous to ([A2§) for

the decay of the ¢ into a photon plus light hadrons:

Im fﬁfl (351)
o 2(7T2 - 9)0}:@204
B 3N,

Q2(M)|1 + (—9.46(2)C + 2.75(11)Cs — 0.774(1)ny) 0‘7 . (A29)

Calculations of the annihilation rates of P-wave states were carried out through order a?
by Barbieri and collaborators [[JBBI]. They calculated only the coefficients of | R7|? in ([E7).
These coefficients contain logarithmic infrared divergences that should be factored into the
color-octet matrix elements, along with associated constants that can be determined from
calculations in NRQCD. In Ref. [[], the logarithmic infrared divergences in Im f;(*Fp) and
Im f;(3P,) were cut off by taking the heavy quark and antiquark off their mass-shells and
below threshold, in which case the infrared divergence manifests itself as a logarithm of the
binding energy. In order to extract NRQCD coefficients, it might be necessary to repeat
the next-to-leading order calculations in Ref. [ using on-shell scattering amplitudes and

dimensional regularization of the infrared divergences in order to maintain gauge invariance.

4. Coefficients of Electromagnetic Operators

The calculation in Section [AJ can be easily modified to give the imaginary parts of the
coefficients of the electromagnetic 4-fermion operators at order a? and at leading order in

as. The Feynman diagrams in Figs. fJ(a) and J(b) yield imaginary parts that correspond
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to annihilation into two photons. These imaginary parts can be obtained from (AY) by
replacing the color matrices 7% by the unit color matrix and by substituting o, — Q%a,
where @) is the electric charge of the heavy quark: @ = +2/3 for the charmed quark, and

@ = —1/3 for the bottom quark. The sum of the 2 diagrams yields

Q% 4 2 . .
Im (Mg(a) + Mg(b)) = 5\2/[2 (1®1) [ (1 — §v2> 1®1 + =V viec'®ao'
2 11, N
+ (gvlv” + EU/ W) o' ® a’]. (A30)

Comparing to the NRQCD scattering amplitudes analogous to (&7), we find that the only

nonzero coefficient for the dimension-6 operators is
I £, (1) = 7Qle?. (A31)

Comparing to the NRQCD scattering amplitudes analogous to (A7), we can read off the

nonzero coefficients of the dimension-8 operators:

Im f.,,(*Py) = 37Q*a?, (A32a)
4 4 2
I, (*P) = T (A32b)
ArQa?
I g (1) = — T2 (A320)

The diagram in Fig. f(c) yields an imaginary part that corresponds to the annihilation
into lepton pairs. The imaginary part can be obtained from ([AT3)) by replacing T'* by the
unit color matrix, and by substituting (ny/2)a, — —Qa. The resulting matrix element is

TQ%?

Im Mg(c) = W

1®1) |(1-v*)'®c" — 5(21@21’ + 0"t ® 0’| . (A33)

Comparing to the NRQCD scattering amplitudes analogous to (AT), we find that the only

nonzero coefficient of the dimension-6 operators is

I fu('51) = T2 (A34)

Comparing to the NRQCD scattering amplitudes analogous to (A7), we can read off the

nonzero coefficients of the dimension-8 operators:
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4 Q%

Im geo(®S1) = — 9 , (A35a)
2.2
Im gee(3S1,3Dy) = — ”Qg “. (A35b)

Several of the electromagnetic coefficients can be determined through next-to-leading
order in a, from calculations that are available in the literature. The annihilation rates for
Nes X0, and X2 into two photons have been calculated through next-to-leading order in «;

by Barbieri et al. [f[]. The corresponding coeflicients are

Im £, (*Sp) = 7Q*a” ll - (%2 — 5) Opoﬂ : (A36a)
Im f,,(*PRy) = 37Q"'a” ll - (%2 — g) Opoﬂ : (A36b)
Im £, (*Py) = 47TC§4O‘2 [1 - 4Cp%] . (A36c)

The rate for ¢y — ete™ is known through next-to-leading order in «; [B1:

Im £ (*S)) = ”Q;O‘Q ll _ 4Cp%] . (A37)

Finally, Mackenzie and Lepage [[i] have calculated the rate for 1» — 477y to next-to-leading

order in as. The corresponding coefficient is

Im fy,(3S)) = A(r” —99)6260‘3 ll _ 9.46(2)01:%] . (A38)
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APPENDIX B: EVOLUTION OF 4-FERMION OPERATORS

As we mentioned in Section [ITH, loop corrections to the 4-fermion operators in the
NRQCD lagrangian are, in general, ultraviolet divergent, and, therefore, must be regularized.
One can remove power divergences, either by employing a mass-independent regularization
scheme, such as dimensional regularization, or by making explicit subtractions. Once this
has been done, the 4-fermion operators satisfy simple evolution equations of the form (-22).
The evolution equation for an operator O, with naive scaling dimension d,, involves only
operators O, with dimensions dy > d,. The coefficients v, in the evolution equation can
be computed as power series in «yg. For dp = d,,, the coefficients =, are at most of order
a?, because the logarithmic ultraviolet divergences at order a;; come only from corrections
of relative order v?, which correspond to operators Oy, of dimension d,, + 2 or larger. In this
Appendix, we compute at order «y the coefficients of the dimension-8 operators that appear

in the evolution of the dimension-6 4-fermion operators.

1. Heavy Quark Self-energy

In order to illustrate the methods that are used to calculate the coefficients in the evo-
lution equations, we first calculate the self-energy of the heavy quark in NRQCD through
order a,. From this calculation, we determine the relation between the perturbative pole
mass Mpole and the mass parameter M in the NRQCD lagrangian, and we extract the residue

Z(p) of the pole in the heavy-quark propagator through order a,v?. The residue is given by

0%
Z(p)_l =1 - a—E(E:p2/2Mpoloap)7 (Bl)

where Y(E, p) is the self-energy correction. To determine Z(p) to order a, and to order v?
we must calculate the self-energy correction Y that arises from the one-loop diagrams in
Fig. [[0. We calculate these diagrams in Coulomb gauge, because it facilitates the extraction
of the dependence on v. The seagull diagram in Fig. [[((b) gives only power ultraviolet

divergences, which are subtracted as part of the regularization scheme. Interactions from
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Liitinear also need not be included, because the terms of order o v? that they produce are all
proportional to power ultraviolet divergences.
The contribution to the self-energy from the diagram in Fig. [(j(a) is
d'q 1 (i P’ —(p-a)’ )
2m)* E—qo— (p—a)?/2M +ie\q*>  M?*(¢f — q* +ic) )
(B2)

S(E,p) = idnCras /

The integral of the term containing 1/q?%, which comes from Coulomb exchange, gives rise
to an ill-defined power divergence, which can be dropped. After using contour integration

to integrate over the energy qo of the gluon, we find that the contribution reduces to

Y(E,p) =

2 s 3 1 2 . &)2
7Cra /(d q p’—(p-q) (B3)

M? 213 ¢ E—q— (p— q)?/2M + ie
In order to identify the power divergences in (BJ), we expand the denominator in a Taylor

series in 1/M:

Z(E,p) = =

2rCra, / dq p*—(p-q)? 1+E—192/21\4+(2p-<1—612)/21\4Jr
= o . p ).
(B4)

Setting £ = p*/2M, we find that every remaining term in the integrand in (B4) yields
a power divergence, which is subtracted in our regularization scheme. Thus, after regu-
larization, the self-energy vanishes on the energy shell, and there is no correction to the

energy-momentum relation £ = p?/2M. In full QCD, the energy-momentum relation de-

fined by the pole in the perturbative heavy-quark propagator is £? = p* + M2 ;.. Matching
the coefficients of p? in these energy-momentum relations, we obtain
M = Mo (1 + O(a2)). (B5)

Thus, through order «;, the mass parameter M in the lagrangian for NRQCD can be
identified with the perturbative pole mass.
We proceed to compute the residue of the pole in the heavy-quark propagator, which is

given by (BI)). After we subtract the power divergences, the only term remaining in (B4)
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that contributes at order a,v? is the term proportional to E — p?/2M. Consequently, the

expression for the residue is

Zp) = 1 — Cras /(d3q r—(p-a° (B6)

M2 27)3 7
Imposing a momentum cutoff |q| < A on the magnitude of the gluon momentum and keeping
only the logarithmic ultraviolet divergence at order ay, we find that the residue Z(p) is

2Craglog sz

A ~ 1 —
() . ,

(B7)

where v? = p? /M?.

2. One-loop Ultraviolet Divergences

The coefficients in the evolution equation for the operator Og(1Sy) = T4\ xT%) can
be determined at order o, by computing one-loop corrections to scattering amplitudes in
NRQCD that involve this operator. We consider the amplitude for the scattering of a QQ
pair with momenta p and —p into a QQ pair with momenta p’ and —p’. We use the
compact notation with suppressed Pauli spinors that was introduced in Eq. ([A4). The

matrix element corresponding to the leading-order diagram in Fig. f(a) is then written
M= (T"@T (1®1), (B8)

where the first factor gives the color structure and the second factor gives the spin structure.
The one-loop correction to the matrix element is given by the sum of the contributions of the
10 diagrams in Figs. [[1|(a)-[[T(j). We wish to calculate the terms in these contributions that
are proportional to log A, where A is an ultraviolet cutoff. For higher-order calculations, it
might be wise to impose the cutoff by using dimensional regularization, in order to maintain
gauge invariance, but for our purposes it is sufficient to impose a cutoff on the magnitude
of the gluon 3-momentum: |q| > A.

The 4 diagrams in Fig. [[1)(a)-[1(d) are self-energy corrections to the external quark

lines. Each diagram contributes v/Z —1 times the leading order amplitude in (BY). Using the
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expression (B7) for the renormalization constant Z, we find that the sum of the contributions

of the 4 diagrams is

_4Cpas log A

Mll(a—d) ~ 3

v (T*®@T") (1®1). (B9)

The diagram in Fig. [[T](e) represents the exchange of a transverse gluon between the incoming
quark and antiquark. (The exchange of a Coulomb gluon does not lead to an ultraviolet

divergence.) This diagram yields the contribution

drex dq p*—(p-q)?
o= is (e g phpaTh) (1 1 /
M) =i M2 ( ® ) (1el) (2m)* q3 — q% + ic
1 1
E+q— (p+9q)?%/2M +ie E—qo— (p +q)2/2M + ie

: (B10)

where E = p?/2M. We integrate over the energy qo of the exchanged gluon and identify
the power divergences by expanding the denominators in a Taylor series in 1/M. Keeping
only the term that gives a logarithmic ultraviolet divergence, we find that the contribution

reduces to

2TQs (10 o pbrarh d*q p*—(p-4)°
M = 55 ("0 T'T°T") (181) /(%)3 s (B11)

The integral is the same as in (Bf)). The diagram in Fig. [T|(f) gives an identical contribution:

2a, log A " "
Mt ~ Mg ~ _Tg v (T°@T'T*T") (191) . (B12)

The diagrams in Figs. [1(g){L1(j) involve the exchange of a transverse gluon between
initial and final quark or antiquark lines. (The exchange of a Coulomb gluon leads to a
vanishing contribution.) These diagrams are evaluated in the same way as those in Fig. [1|(e).

The results are

20 log A

Mg = Mum = CY?Tg v-v' (T“Tb@)TaTb) (1®1), (B13a)
2a5log A

Mg = Mug = %v-v’ (T*T* @ T'T") (1@1). (B13b)

107



The color factors in (BI3) can be simplified by using the identities in (AI(0). Adding up the
results for the diagrams in (BY) and (BI23)-(BI3), we find that the sum of the logarithmically

divergent terms of order o v? is

Mi(1So) ~ 2():‘;70]\]“ <QCF v-v (1®1)
+ [(Nf —4)v-v — (N?—-2) v2] (T°® T“)) 1®1). (B14)

The logarithmically divergent part of the diagrams for scattering through the color-singlet
operator O;(1Sp) = ¥Txx") can be obtained from the expressions (B9) and (BI2)—(BI3H
simply by replacing the color matrix 7'* by the unit matrix 1. Adding up these contributions,
we obtain

8ag log A

MI(ISO) ~ 3T

(v-v(1T"oT) - Cn®(101)) 1a1). (B15)

The ultraviolet divergent parts of the matrix elements Mg (3S1) and M;(3S;), which corre-
spond to scattering through the spin-triplet operators Og(3S1) and O;(3S)), can be obtained

by replacing the spin factor 1 ® 1 by ' ® ¢* in (BI4) and (BIJ), respectively.

3. Evolution Equations

The logarithmically divergent contributions to the scattering amplitudes in Section BJ
can be expressed to leading order in v as the matrix elements of dimension-8 operators.
Differentiating the operator equation corresponding to (BIJ) with respect to A, we obtain
the evolution equation for the operator Oy (*Sp):

d
Ad_AOI(ISO) -

80}:045
3w M2

8avg

g O M) =

P1(1Sp). (B16)

By differentiating the operator equation corresponding to (BI4]) with respect to A, we obtain
the evolution equation for the operator Og(*Sp):

d
Ad_AOE;(lSO) -

4CFOés

2(NZ —4)
31 N M?

g
37N M?2 Os('P1) —

2(N? — 2)a,
2(Ne = 2)as Py(1S,) -

O\('P) + 37N M2

(B17)
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The evolution equations for the corresponding spin-triplet operators can be obtained from
(BT7) and (BIf) simply by inserting of between 9T and x and also between x' and . It
is convenient to express the resulting operators in terms of the combinations that appear in

(B-IT) by using the identity
o o 1 1 ; ; o o
Do’ @D'g) = -D o @D-o + (Dxo) @ (Dxa) + Do) @Dio? . (BIS)

The resulting evolution equations are

d S8ar, 8Cras
ALOI(S) = 55 (0sCR) + OsCP) + Os(CR)) — oy S, (B19w)
d 4CFOés
Ad—A08(3S1) = W (01(3P0) + Ol(gpl) + Ol(gpg))
2(N? — 4)a, 2(N? — 2)

Y p35)).  (B19b)

((98(3p0) + Os(°P) + O8(3P2)) 37 N.M2

3 N .M?

The evolution equations for electromagnetic operators can be calculated in the same way,
except that there are no contributions from diagrams such as those in Figs. [1|(g)-[I(j), which
involve exchange of gluons between initial and final quark lines. The evolution equations
for the dimension-6 electromagnetic operators can be obtained from (BIf) and (BI9a) by

dropping the color-octet terms on the right sides and inserting vacuum projections:

d 4Cra, .
A (W00l e) = = S [UIxI0) (01 (-4D)%w + hie ] (B20a)
d 4Cra, o
Az [Wlox(0) - (Oxlov) = = 20 [vlox|0) - (Ox'o(—4D)* +he] . (B20b)
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FIGURES

FIG. 1. Example of a diagram that contributes to the quarkonium annihilation rate at order

a3. The three cuts of the diagram participate in a KLN cancellation.

FIG. 2. Schematic representation of the topological factorization of the rate for quarkonium
annihilation. The short distance part is represented by the circle labelled H. The quarkonium
wavefunctions are represented by the shaded ovals. The wavefunctions can be connected by light
partons, such as the two gluons that are shown explicitly. Soft gluon interactions between the light

partons are represented by the circle labelled S.

FIG. 3. Example of a Feynman diagram for quarkonium annihilation at order a?. The shaded

ovals represent the quarkonium wavefunctions.

FIG. 4. Examples of real-gluon emission in quarkonium decay at order a?. The shaded ovals

represent the quarkonium wavefunctions.

FIG. 5. Examples of virtual-gluon emission in quarkonium decay at order o3. The shaded ovals

represent the quarkonium wavefunctions.

FIG. 6. Feynman diagrams for QQ scattering at leading order in .

FIG. 7. Feynman diagrams that contribute to the imaginary part of the amplitude for QQ

2

scattering at order as.

FIG. 8. Feynman diagrams in NRQCD for the scattering of a Q@ pair in a color-singlet 1.5,

state through the operator Ty .

FIG. 9. Feynman diagrams that contribute to the imaginary part of the amplitude for electro-

magnetic QQ scattering at order o?.

FIG. 10. Feynman diagrams in NRQCD for the self-energy of a heavy quark at order .
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FIG. 11. Feynman diagrams in NRQCD that contribute to the evolution of an S-wave 4-fermion

operator, such as ¢TT“XXTT“¢ or ¢TXXT¢-
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TABLES

Operator Estimate Description

Qg v effective quark-gluon coupling constant
(0 (Mw)3/? heavy-quark (annihilation) field

X (Muv)3/? heavy-antiquark (creation) field

D, (acting on 1 or ) Muv? gauge-covariant time derivative

D (acting on 1) or ) Mv gauge-covariant spatial derivative

gE M?y3 chromoelectric field

gB M2t chromomagnetic field

g¢ (in Coulomb gauge) Mwv? scalar potential

gA (in Coulomb gauge) Muv3 vector potential

TABLE I. Estimates of the magnitudes of NRQCD operators for matrix elements between
heavy-quarkonium states in terms of the heavy-quark mass M and the typical heavy-quark velocity
v. The estimates shown apply to matrix elements in a quarkonium state |H) whose position is
localized to a region of size 1/Mwv or less. If the states are normalized to (H|H) = 1, then the
product of the magnitudes of the operators gives the magnitude of the matrix element. (In order
to obtain estimates for matrix elements between momentum eigenstates that are normalized to
(H|H) =V, where V is the volume of space, one should multiply the estimates for localized states

of unit norm by (Mv)=3.)
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and Production of Heavy Quarkonium
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[lhep-ph/9407339]

Geoffrey T. Bodwin, Eric Braaten, and G. Peter Lepage

In this erratum, we clarify the velocity-scaling rules for those NRQCD matrix elements
whose leading contributions come from |QQg) Fock states that can be reached through a
spin-flip transition from the dominant Fock state. A correct accounting of these spin-flip Fock
states leads to revisions of the error estimates in several equations in the paper. In addition,
we emphasize that the velocity-scaling rules should be used to estimate the probabilities of

higher Fock states, rather than their amplitudes. We also correct some typographical errors.

e Throughout the paper, phrases of the type “amplitude of order v™” should be replaced
with “probability of order v"”. The reason is that the probability of a |[QQg) Fock
state is the square of the amplitude integrated over the phase space of the particles.
Some of the dependence on v arises from the integration over the phase space of the

gluon.

e Throughout the paper, one should keep in mind that the velocity expansion may

contain odd, as well as even, powers of v. Thus, for example, v? should be replaced

with v in phrases such as “expansion in powers of v2”.

e The following paragraph should be inserted after the paragraph that includes Eq. (2.6):

“The above estimates for the probabilities of |QQg) Fock states apply if the spin

state of the QQ pair is the same as in the dominant |QQ) Fock state. If the spin state is

1
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different, we must replace gA-V in (2.6) with ¢B-o to obtain a nonzero matrix element.
Using the velocity-scaling rules of Table I, we again obtain an estimate AE ~ Muv* for
the energy shift, implying that the probability for a |QQg) state containing a gluon
with momentum on the order of Muv is Pog, ~ v3. However, in the derivation of the
velocity-scaling rules in Ref. [14], it was assumed that dynamical gluons have momenta
of order Mv. If the gluon has a much smaller momentum %, then the estimate M2v?
for the operator ¢gB in Table I should be replaced with k?v?. Using this to estimate
the energy shift from a |QQg) Fock state containing a gluon with momentum of order
Mv?, we obtain AE ~ Mv® and Pyg, ~ v*. Thus, gluons with very low momenta
exhibit the suppression that is characteristic of the multipole expansion. We conclude
that a |QQg) Fock state that can be reached from the dominant |QQ) Fock state by a
spin-flip transition is dominated by dynamical gluons with momenta of order Mv and

that the probability of such a Fock state is Py, ~ v3.”

The following paragraph should be added at the end of Sec. IID:

“The above discussion applies to Fock states [QQg) in which the QQ pair has the
same total spin quantum number S as in the dominant |QQ) state. The probabilities
for Fock states |QQg) that can be reached from the dominant Fock state by a spin-flip
transition also scale in a definite way with v. The probability for such a Fock state to
contain a dynamical gluon with momentum of order Mv is of order v3, just as in the
case of a non-spin-flip transition. However, in the case of a spin-flip transition, this
momentum region dominates because, as we have seen, gluons with softer momenta,
on the order of Mv?2, are suppressed by the multipole expansion. Thus, if the QQ pair
in the dominant Fock state has angular-momentum quantum numbers 25t L, then
the Fock state |QQg), with the QQ pair in a color-octet state with the same value of L
but different total spin quantum number, has a probability of order v3. For example,
if the dominant Fock state consists of a QQ pair in a 3S; state, then the Fock state

|QQg) with the QQ pair in a color-octet 1Sy state has a probability of order v3. If the



dominant Fock state consists of a QQ pair in a ' P state, then the Fock state |QQg)

with the QQ pair in a color-octet 3 P; state has probability of order v3.”

In the first paragraph of Sec. IITA, the following two sentences should be inserted just

before the last sentence of the paragraph:

“The matrix element is suppressed by v relative to the velocity-scaling rules in Table I
if O,, annihilates and creates QQ pairs in the same color-spin-orbital state as appears
in one of the Fock states |QQg) that can be obtained from the dominant Fock state
by a spin-flip transition. In such a Fock state, the Q@ pair must be in a color-octet
state with the same orbital-angular-momentum quantum number L as in the dominant

|QQ) state, but with different total spin quantum number.”

After the first paragraph of Sec. IITA, the following new paragraph should be inserted:

“If perturbation theory remained accurate down to the scale Mw, then the spin-
flip matrix elements would be suppressed by an additional power of v. The reason for
this is that the contribution to a spin-flip matrix element that is suppressed by only
v3 relative to the velocity-scaling rules is power ultraviolet divergent. Therefore, one
could carry out a renormalization of the matrix element in which this contribution
is subtracted. The corresponding contribution to the decay rate would then reside
in the short-distance coefficient of the matrix element that is associated with the
dominant Fock state. (Such a subtraction is carried out automatically if dimensional
regularization is used to cut off the ultraviolet divergences in the matrix element.)
Once the subtraction has been made, the leading contribution to the spin-flip matrix
element comes from the scale Mv?. It is subject to the usual multipole suppression
and scales as v? relative to the velocity-scaling rules. In practice, one usually makes
such subtractions perturbatively. It is not clear, in the charmonium and bottomonium
systems, that perturbation theory is sufficiently accurate at the scale Mv to remove

the v contribution completely. Therefore, we assume in the error estimates below



that the spin-flip matrix elements scale as v® relative to the velocity-scaling rules.”

In the second paragraph of Sec. IITA, v* should be replaced with v® in the phrase
“suppressed by v* or more”. In Eq. (3.1), the error estimate O(vI") should be replaced
with O(v3T). In the third paragraph of Sec. IITA, v should be replaced with v in the

phrase “are of order v*I" or higher”.

In Egs. (4.1a), (4.1b), (4.3a), and (4.3b), the error estimates should be O(v®T). At

Y

the end of the paragraph containing Eq. (4.2), “relative order v*” should be replaced

with “relative order v®”.
In Egs. (6.8a), (6.8b), (6.9a), and (6.9b), the error estimates should be O(v3c).

There is a typesetting error in Eqs. (3.19a) and (3.19b). The first factor on the
right side should be /3N./27, just as in Eqgs. (3.19¢) and (3.19d). In the subsequent

sentence, “order v?” should be replaced with “relative order v?”.

In Eq. (5.4), the last color matrix should be Tj;,. In Eq. (5.5), the coefficient of the
second term on the right-hand side should be 4/(N? — 1), rather than 2/(N? — 1).

In Egs. (A16) and (A25), the running coupling constant should be a(2M) rather than
as(M).



