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Abstract 

We study the two-jet inclusive cross section via the triply differential distribution 
d3u/dETdqldr)2 to next-to-leading order in QCD. The predicted distributions can be 
compared directly with forthcoming data from the DO and CDF experiments at Fer- 
milab. We discuss differences with the leading-orher predictions, and examine uncer- 
tainties due to the choice of scale and parton density. 
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In hadronic collisions, the most basic form of the strong interaction at short distances is 
the scattering of a colored parton off another colored parton. Experimentally, such scatter- 
ing can be observed via its production of two jets or sprays of hadrons with large transverse 
energy. We therefore expect the study of two-jet events of thii type to reveal the properties 
of the short-distance hard scattering. One method is the examination of the angular dis- 
tribution of the two jets in their center of mass frame [l, 2) which provides information on 
the spin of the partons. Alternatively, we can probe the parton distributions by studying 
the rapidities of the two jets in the laboratory frame. In particular, by Sxing the rapidity 
and transverse energy of one of the jets and varying the other jet rapidity, we can probe 
the whole range of parton momentum fractions, and possibly constrain the large-x parton 
distributions. 

In this Letter, we report on a calculation of the two-jet inclusive cross section d%/d&dqd% 
to next-teleading order in the strong coupling constant, that is to O(az). Compared to that 
in a leading-order [O(az)] calculation, the theoretical uncertainty is reduced in the following 
ways: 

l Greater sensitivity to the jet algorithm; 

l Reduced dependence on the renormalization and factorization scales; 

l Removal of kinematic constraints. 

The first improvement is a consequence of admitting configurations with three partons in 
the final state - a jet may now be formed by the merging of two partons. This is the first 
step towards the recreation of an all-orders partonic jet and introduces a dependence on the 
size of the cone used to define the jet. The second improvement reflects’ the fact that these 
unphysical scales affect predictions of physical cross sections only because of the truncation 
of the perturbation series, and the next-to-leading order term pushes the truncation, and 
hence the unphysical sensitivity, to yet higher order: there is a partial cancellation of the scale 
dependence between the O(ai) and O(af) contributions to the cross section. This, too, is a 
first step towards a scale-independent all-orders result. Thirdly, by admitting radiation into 
the final state, artificial kinematic constraints due to the 2 + 2 nature of the leading-order 
prediction are relaxed. 

The results presented here represent the first application of a very general O(a~) Monte 
Carlo program for one, two and three jet production based on the one-loop 2 --* 2 and 
the tree level 2 -+ 3 parton scattering amplitudes (3, 41. In order to cancel the infrared 
singularities, the divergent regions where two partons are collinear or a gluon is soft are 
removed analytically from the 2 + 3 parton cross section using the techniques described in 
refs. [5, 61. (F or other techniques see ref. [7].) Th ese divergences are precisely matched by 
singularities in the one-loop 2 + 2 matrix elements, and may be cancelled algebraically. The 
resulting finite 2 + 2 and 2 -+ 3 parton processes are then evaluated numerically and passed 
through a jet algorithm to determine the one and two jet cross sections according to the 
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experimental cuts. Different cuts and/or jet algorithms can easily be applied to the parton . 
four-momenta and to any infrared-safe distribution computed at O(a3). Furthermore, a 
detector response function can be applied to the raw jet momenta to obtain the observed jet 
momenta 

Previous calculations have focussed on the next-to-leading order corrections to the single 
jet inclusive transveme energy distribution [8,9] and to the two-jet inclusive invariant mass 
distribution [l]. We have checked that our program reproduces the O(g) one-jet inclusive 
cross section of ref. [8, lo], which agrees well with the data from CDF [ll]. We have also 
checked that our results are independent of the unphysical parameter used to isolate the 
divergences [5, 61. 

We wish to consider the process, 

p13 + jet1 + jet2 + X, (1) 

which can be described by the triply differential distribution &a/dETdq1dm where ET is 
the transverse energy of the leading jet, while Q and rh are the pseudo-rapidities of the jets 
in the laboratory frame. From these, we can determine the pseudo-rapidity of the two-jet 
system in the lab, 

‘h + m), %cmot=2 (2) 

and the pseudo-rapidities of the jets in the jet-jet center-of-mass frame, 
. 

v* = 2 hl - 7h). 
At lowest order, this determines the momentum fractions of the colliding partons, 

2& 
31,2 = 7 cosh(q*) exp(ftit). 

(3) 

(4 

If we now require that the leading ‘trigger’ jet lies in the central region ~1 N 0, then the 
rapidity of the second ‘probe’ jet essentially fixes the momentum fraction. In particular, 
when ]qJ is large, the momentum fraction may be close to unity. For example, for hadronic 
collisions at fi = 1800 GeV, when I& = 100 GeV and qr = 0, x = 1 for Q = 1.42. 

A slight subtlety arises since at leading order the transverse energy of the two jets are 
equal. In the three parton events present at next-to-leading order, the jets no longer balance 
exactly. This equality is approached in events containing two hard partons while the third 
parton is soft. The assignment of which jet is hardest is thus dependent on the soft particles 
in the event and is not infrared safe. However, by interchanging the roles of the trigger and 
probe jets so that each event is effectively counted twice, this problem can be overcome. 
There is still a slight ambiguity in three jet events where the relative ordering of the second 
and third hardest jets with transverse momenta Em and Ers determines which pseudo- 
rapidity slice (q~ or Q) is chosen. However, this is a higher-order effect and should be 
small. 
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To make the connection with experimental data, we consider the cross section, 

(&) = &/d%&/d*d&;dr$ (5) 

where the trigger jet is fixed to lie in the central region, typically 11111 < 1, while the probe 
jet may lie in different slices of ]Q]. Both the CDF (121 and DO collaboration at Fermilab 
are investigating this distribution. The CDF collaboration requires the trigger jet to have 
a transverse energy of at least 45 GeV and to lie in the rapidity interval 0.1 < ]qr] < 0.7, 
where the hadronic calorimeter is well calibrated and which excludes the crack in the central 
region. The probe jet can be studied out to a much larger rapidity, ]a] < 3.0. The DO 
collaboration also requires a trigger jet with t ransvem energy of at least 45 GeV, however 
the central trigger jet must lie in the rapidity interval ]qr] < 1.0, while the probe jet may 
have a rapidity up to I%] = 4.0. The results for the CDF measurement together with the 
preliminary data reported in ref. [12] are shown in fig. 1 while fig. 2 gives the predictions 
for the DO experiment. We have used the standard cone algorithm [13] with a cone size of 
0.7 to define the jet. For the parton distributions, we have chosen the improved MRSD- 
set of ref. [14] which approximately reproduces the low-z behaviour of Gp as measured 
at HERA. We used the running one-loop strong coupling constant a, in calculating the 
leading-order predictions, and the two-loop running cou ling constant for the next-to-leading 
order predictions. P In both cases, we have taken AgoD = 230 MeV as specified by the 
structure function parametrization, so that aLl)(hfz) = 0.131 and ai*) = 0.111. Both 
the renormalization and factorization scales have been chosen to be the average &, (I&), 
of jets passing the trigger jet requirements. 

From figs. 1 and 2 we see that for central production of the probe jet (I%] < 1.5) the 
corrections to the leading order predictions are small for this scale choice over the whole 
transverse energy range of the trigger jet l. For larger rapidities we observe large corrections 
even for moderate transverse energies. If these corrections were due solely to the presence 
of higher-order terms in the QCD perturbative expansion this would signal a breakdown of 
perturbation theory at large rapidities. We will argue that this is not the case, and that this 
enhancement is due to a kinematic restriction imposed by the lowest order 2 --) 2 parton 
scattering. Using eq. 4 we can calculate the maximum transverse energy obtainable in the 
leading-order cross section. The results for both the CDF and DO cuts are listed in Table 1. 
At next-to-leading order, additional radiation can alter the twojet configuration significantly 
by reducing the boost and thereby evading the lowest-order kinematic constraint. Never- 
theless, even in three parton final states there remains a kinematic limit on the maximum 
transverse energy of the trigger jet which is also listed in table 1. Configurations dlose to 
this limit correspond to events where Em - E&J - iEtLo mu and r)3 N -m and where it 
should be possible to identify three distinct jets. This limit can be seen in figs. 1 and 2: once 
the transverse energy reaches approximately half ET Lo max the next-to-leading order cross 
section starts to deviate from the leading-order cross section. Close to the kinematic limit 

‘The Monte Carlo integration over phase space of course yields results with statistical errors. The curves 
in all the figures were obtained by fitting a smooth function through the obtained results. 
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Table 1: The maximum allowable transverse energy, e”, of the trigger jet given the probe 
jet at leading (LO) and next-to-leading order (NLO) in a given rapidity bin. 

the deviations become very large since the leading-order cross section is forced (artificially) 
to zero. It is therefore clear that the large corrections do not signal a problem within the 
perturbative expansion but are purely due to phase-space effects: two-parton final states 
are too restricted to describe results at large rapidities. (Large infrared logarithms would 
emerge from a kinematic constraint on the three parton configurations rather than on the 
two parton configurations.) In these regions it is necessary to include the next order in 

. theoretical calculations. Provided we stay well below the three-parton kinematic boundary 
the predictions should be reliable and should agree with the data For large rapidity dif- 
ferences, at the upper end of those considered here or beyond, ‘it is probably necessary to 
resum logarithms in the virtual corrections [15]. 

For comparison the CDF preliminary data [12] was added to fig. 1. The data were 
corrected for detector effects and cv therefore be compared directly to the theoretical pre- 
dictions. Note that the systematic error is not included. As the figure shows, the inclusion of 
next-to-leading order corrections, lifting the kinematic constraint on the transverse energy 
of the trigger jet, is needed to describe the data. 

To study the theoretical uncertainties, we varied the renormalization (and equal factor- 
ization) scale by a factor of two around the central value of (&). The integrated cross 
section for these scale choices are shown in table 2. The inclusion of higher-order corrections 
reduces the uncertainty substantially over a large region of phase space. However, as soon as 
the next-to-leading order distribution approaches the leading-order kinematic limit as given 
in table 1 the cross section is dominated by the three-parton contribution and is basically 
a leading-order prediction. In these regi0ns.a strong sensitivity to the scale reappears, and 
a yet-higher order calculation would be required to reduce this sensitivity. Apart from this 
effect we see that changing scales in the range indicated varies the leading order result by 
f30% (with some effects on the shape of distributions as well), whereas at next-to-leading 
order a 10% variation results with essentially no effect on the shape of the distribution. 

The theoretical predictions also have a non-trivial dependence on the parton distributions. 
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hi! oLo (nb) uNLo (nb) 
0.1-0.7 (CDF) 105.5[:& 99.7~7’;s.s 
0.7-1.2 (CDF) 99.2’2:, 91.: 214.4 

1.2-1.6 (CDF) 84.8 t z.e 
1.6-2.0 (CDF) 63.7,2:, t 

2.0-3.0 (CDF) 60.91::, 77.6lsK 2.9’ 23.1 5 
O.O-l.d(DOj 23.7]%: 1 102.9[z., l-3.2 1 

96.3p, c 3.8 1.0-2.0 (DO) 1 75.9;?;.s 1 69.: 
2.0-3.0 (DO) 1’ 
3.0-4.0 (DO) ] 0.431 
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Table 2: The estimated uncertainty in the overall normalization of the leading order and 
next-to-leading order cross section J d & (&) for ET > 45 GeV due to the choice of the 
renormalization/factorization scale. The up arrow corresponds to a scale choice of PF = 
PR = (E=)/2, while the down arrow corresponds to PF = C(R = 2(h). The statistical error 
is approximately 1%. 

However, unlike the case of the scale dependence, we do not expect the inclusion of the 
next-to-leading order QCD corrections to reduce this uncertainty significantly. To indicate 
the dependence on the parton densities we also performed the calculation replacing the 
favored parametrization MRSD- by MRSDO which has a smaller gluon contribution at small 
momentum fractions [14]. The difference at both leading order and next-to-leading order 
between MRSD- and MRSDO depends on the rapidity slice that the probe jet occupies. 
At large transverse energies the differences are very small. This is as expected, since the 
choice of factorization scale is close or equal to the transverse energy of the trigger jet. The 
choice of a large scale samples the parton densities after perturbative evolution over a large 
range of energy scales, an evolution which essentially ersses all differences between the low- 
energy input parametrizations of the parton densities. Furthermore, the parton momentum 
fractions are large at high transverse momentum, and thus the different par-ton distribution 
sets yield nearly identical predictions. This is no longer true at smaller transverse energies, 
and the MISDO parametrization gives a significantly higher cross section - by as much as 
20% in the central region for Er N 50 CeV. At both leading order and next-to-leading order 
the observed differences remain basically the same within statistical error. 

The scale uncertainty can also be reduced by considering the cross section relative to 
that in the central region. In other words, consider the ratio (for CDF) 

R = (3 / wo.l<,*,<o.7 * (6) 

(For DO, take 1~1 < 1 in the denominator.) The scale uncertainty is essentially independent 
of rh and is therefore reduced significantly in the ratio. Indeed, the residual variation in 
the cross section for the scale variation considered earlier is less than 13% at lowest order, 
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while at next-to-leading order it is less than 5%. The results are shown in figs. 3 and 4, 
where for comparison, we have added the preliminary CDF data to fig. 3. As expected, the 
next-to-leading order prediction agrees better with the data at large ET and large Q. On 
the other hand, we note that the structure function dependence at small ET is not reduced 
significantly. 

In this letter we showed that for study of two-jet cross sections where one of the jets 
has a large rapidity the use of next-t+lesding order cross sections is essential. Thii indis- 
pensability arises from the artificial kinematic limitations imposed by the two-parton 6na.l 
state (and hence by a leading-order calculation). We have also shown that the sensitivity 
to the renormalization (and factorization) scale at next-to-leading order is reduced sign& 
cantly, and only reemerges ss we approach (or once we exceed) the two-parton kinematic 
lit. Below this limit the scale ambiguity suggests roughly a 10% overall normalization 
uncertainty. 

Use of the ratio of cross sections in various rapidity bins to that in the central region 
further reduces this uncertainty. The dependence on the par-ton density function requires a 
more detailed study. The distribution presented in this letter may well not be the best way 
to study it and several relevant experimental results have already been presented by both 
Fermilab collaborations (see for instance ref. [16]). A next-to-leading order study of these 
distributions is now in order. 
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Figure 1: The leading (LO) and next-to-leading order (NLO) predictions for (&) as defined 
in eq. 5 for 0.1 < lq11 < 0.7. The data is taken from ref. (121. 
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Figure 2: The leading (LO) and next-to-leading order (NLO) predictions for (&) as defined 
in eq. 5 for 1q11 C 1. 

8 



. CoFom 
----.LO 
-NO I 

Figure 3: The leading (LO) and next-to-leading order (NLO) predictions for the ratio R of 
the cross section for large w compared to that in the central region, 0.1 < 1-l < 0.7, as 
defined by eq. 6 for 0.1 < ]%] < 0.7. The data is taken from ref. [12]. . 
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Figure 4: The leading (LO) and next-to-leading order (NLO) predictions for the ratio R of 
the cross section for large ti compared to that in the central region, 1~1 < 1, as defined by 
eq. 6 for ]qr] < 1. 
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