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INTRODUCTION 

Inflation involves a period of rapid growth of the Universe. This is most easily 
illustrated by considering a homogeneous, isotropic Universe with a flat Friedmann- 
Robertson-Walker (FRW) metric described by a scale factor a(t). Here, “rapid growth” 
means a positive value of i;/u = -(47rG~/3)(p+3&) w rere 1 p is the energy density and p 
the pressure. It is useful to identify the energy density driving inflation with some sort 
of scalar “potential” energy density 17 > 0 that is positive, and results in an effective 
equation of state p z -p z V, which satisfies ii > 0. If one identifies the potential 
energy as arising from the potential of some scalar field 4, then 4 is known as the 
infiaton field. 

The prime observational consequences of inflation derive from the stochastic spec- 
tra of density (scalar) perturbations and gravitational wave (tensor) modes generated 
during inflation. Each stretches from scales of order centimeters to scales well in excess 
of the size of the presently observable Universe. Once within the Hubble radius, gravi- 
tational waves redshift away and so their main influence is on the large-scale microwave 
background anisotropies, such as those probed by COBE [l]. Advanced gravitational 
wave detectors such as the proposed beam-in-space experiments may be able to de- 
tect the gravitational waves on a much shorter (about 10’4cm) wavelength range. The 
density perturbations are thought to lead to structure formation in the Universe. They 
produce microwave background anisotropies across a much wider range of angular scales 
than do the tensor modes, and constra.ints on the scalar spectrum are also available from 
the clustering of galaxies and galaxy clusters, peculiar velocity flows and a host of other 
measurable quantities [2]. 

Broadly speaking, inflation predicts a very nearly Gaussian spectrum of density 
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perturbations that is scale del~e71~le7& i.e.. the amplitude of the perturbation depends 
upon the length scale. Such a dependence typically arises because the Hubble expansion 
rate during the inflationary epoch changes, albeit slowly, as the field driving the expan- 
sion rolls towards the minimum of the scalar potential. This implies that the amplitude 
of the fluctuations as they cross the Hubble radius will be weakly time-dependent. 

Within the context of slow-roll inflation, any scale dependence for density perturba- 
tions is possible if one considers an arbitrary functional form for the inflaton potential, 
V(4). In this sense, inflation makes no unique prediction concerning the form of the 
density perturbation spectrum and one is left with two options. Either one can aim to 
find a deeper physical principle that uniquely determines the potential, or observations 
that depend on V(4) can be employed to limit the number of possibilities. One such 
observation is the amplitude of the tensor perturbations produced by inflation. 

Recently, we provided a formalism which allows one to reconstruct the inflaton 
potential V(4) d irectly from a knowledge of these spectra [3]. This developed an original 
but incomplete analysis by Hodges and Blument.hal[3]. A n important result that follows 
from our formalism is that knowledge of the scalar spectrum alone is insufficient for a 
unique reconstruction. Reconstruction from only the scalar spectrum leaves an arbitrary 
integration constant, and since the reconstruction is nonlinear, different choices of this 
constant lead to different functional forms for the potential. A minimal knowledge of 
the tensor spectrum, say its amplitude at a single wavelength, is sufficient to lift this 
degeneracy. 

The most ambitious aim of reconstruction is to employ observational data to de- 
duce the inflaton potentia.1 over the range corresponding to microwave fluctuations and 
large-scale structure, although at present the observational situation is some way from 
providing the quality of data that this would require [3]. 

In this talk I will discuss the promise of potential reconstruction assuming one 
knows 1) the amplitude of the tensor spectrum at one point from microwave background 
fluctuations, presumably on quadrupole scales corresponding to 3000h-1 Mpc, and 2) the 
scalar spectrum from microwave background fluctuations and the large-scale structure 
investigations from quadrupole s&es down to scales of several Mpc. 

PERTURBATIONS FROM SLOW-ROLL INFLATION 

We are interested in the perturbations resulting from inflation. The “density” 
perturbations are usually described in terms of fluctuations in the local value of the 
mass density. In a Universe with density field p(x) and mean mass density pa, the 
density contrast is defined as 

6(x) = 6po = P(X) - PO 
PO PO . 

It is convenient to express this contrast in terms of a Fourier expansion: 

(1) 

6(x) = A/h k exp( -ik + X)&/C, 

where A is an overall normalization constant, interesting only for those who enjoy 
keeping track of factors of 2a. What is usually meant by the density perturbation on a 
scale A, VP/P) A, is related to the square of the Fourier coefficients 6k: 

( ) 
6P *= A, k31&12 
p A - 279 ( Ad- 

(3) 



where again we have included an overall normalization constant -4’. The perturbations 
are normally takeu to be (statistically) isotropic, in the sense that the expectation of 
]&,I2 averaged over a large nunrbcr of independent regions can depend only on k = (k]. 
The dependence of 6p/p as a function of X is the spectrum of the density perturbations. 

In a spatially flat isotropic Universe the Hubble expansion rate is H(t) = a/a, and 
its inverse H-‘(t) (the Huhble radius) is the scale beyond which causal processes no 
longer operate. Of crucial importance is the relative size of a scale X to the Hubble 
radius. The phl~sicul length between two points of coordinate separat.ion d is X(t) = 
u(t)d, so that a length scale comoving wit.11 the espausion will grow in proportion to 
e(t). The condition for inflation to occur is precisely the condition for physical scales 
to grow more rapidly than the Huhble length; that is, for the comoving Hubble radius 
H-‘/a to shrink. Thus, a given scale can start sub-Hubble radius, X < XH, pass 
outside the Hubble radius during inflation, and finally re-enter the Hubble radius long 
after inflation. Thus, perturbations can be imparted on a given length scale in the 
inflationary era as that scale leaves the Hubble radius, and will be present as that 
scale re-enters the Hubble radius after inflation in the radiation-dominated or matter- 
dominated era. 

Microphysics cannot affect the perturbation while it is outside the Hubble radius, 
and the evolution of its amplitude is &nemnticnZ, unaffected by dissipation, the equation 
of state, instabilities, and the like. However, for super-Hubble-radius sized perturba- 
tions one must take into account the freedom in the choice of the background reference 
space-time, i.e., the gauge ambiguities. As usual when confronted with such a problem, 
it is convenient to calculate a gage-invuriant quantity. For inflation it is convenient to 
study the Bardeen potential C [5]. In the uniform Hubble constant gauge C is partic- 
ularly simple. It is related to the background energy density and pressure, po and po, 
and the perturbed energy density pi by C E a~/(~0 + po), where bp = pi - p. is the 
density perturbation. 

In the standard matter-dominated (MD) or radiation-dominated (RD) phase, c 
at Hubble radius crossing is equal (up to a factor of order unity) to lip/p. Thus, the 

amplitude of a density perturbation when it crosses back inside the Hubble radius after 
inflation, (hp/p)l~~~,~ is given by C at the time the fluctuation crossed outside the 
Hubble radius during inflation. 

As inferred from the adoption of C, the convenient specification of the amplitude 
of density perturbations on a particular scale is when that particular scale just enters 
the Hubble radius, denoted as (bp/p)kro~. Specifying the amplitude of the perturbation 
at Hubble radius crossing evades the subtleties associated with the gauge freedom, 
and has the simple Newtonian interpretation as the amplitude of the perturbation in 
the gravitational potential. Of course, when one specifies the fluctuation spectrum at 
Hubble radius crossing, the amplitudes for different lengths are specified at different 
times. 

Now let us turn to the scalar field dynamics during inflation. Consider a minimally 
coupled, spatially homogeneous scalar field 4, with Lagrangian density 

.c = P44/$/2 - V(c#l) = $72 - V(4). 

\Vith the assumption that 4 is spatially homogeneous, the stress-energy tensor takes 
the form of a perfect fluid, with energy density and pressure given by p+ = d2/2 + V(d) 
and pd = d22/2 - V(4). The classical equation of motion for 4 is 

4 + 3Hd + V’(q) = 0, 

‘The notation “HOR” follo~vs hccause often in the literature the HubMe radius is referred to 
(incorrectly) as the horizon. 

3 



and the expansion rate in a flat FR\1- spacetime is given by (K’ = 87rG.v) 

. 
Here dot and prime denote differentiation with respect to cosmic time and 4 respectively. 
We assume that inflation has already provided us with a flat universe by the time the 
largest observable scales cross the Hubble radius. 

By differentiating Eq. (6) with respect t.o t and substituting in Eq. (5), we arrive 
at the “momentum” equation 

2fi = -&?, (7) 

All minimal slow-roll models are examples of sub-inflationary behavior, which is defined 
by the condition fi < 0. Super-inflation, where fi > 0, cannot occur here, though it 
is possible in more complex scenarios [G, 71. We may divide both sides of this equation 
by 4 if this quantity does not pass through zero. This allows us to eliminate the time- 
dependence in the Friedmann equation [Eq. (G)] and d erive the first-order, non-linear 
(Hamilton-Jacobi) differential equations 

(8) 
We now consider the production of density perturbations that arise as the result 

of quantum-mechanical fluctuations of fields in de Sitter space. First, let’s consider 
scalar density fluctuations produced if we assume that the inflaton field 4 is a massless, 
minimally coupled field. (Later we will include the corrections due to the fact that the 
inflaton field has a potential.) 

Just as fluctuations in the density field may be expanded in a Fourier series as in 
Eq. (l), the fluctuations in the inflaton field may be expanded in terms of its Fourier co- 
efficients &Jk: 2$(x) CC s bQk exp(-ik. x)~‘/c. During inflation there is an event horizon 
as in de Sitter space, and quantum-mechanical fluctuations in the Fourier components 
of the inflaton field are given by [8] . 

k3 16&12 /27r2 = ( H/~R)~, (9) 

where H/27r plays a role similar to the Hawking temperature of black holes. Thus, 
when a given mode of the inflaton field leaves the Hubble radius during inflation, it 
has impressed upon it quantum mechanical fluctuations. In analogy to Eq. (3), what is 
called the fluctuation in the inflaton field on scale I; is proportional to k3”]6&], which 
by Eq. (9) is proportional to H/27r. Fluctuations in C$ lead to perturbations in the 
energy density: 

bp4 = 6c#w/dd). (10) 

Now considering the fluctuations as a particular mode leaves the Hubble radius during 
inflation, we may construct the gauge invariant quantity C using the fact that during 
inflation po + po = ci2: 

c=&f) ‘/T J- 
( i at$ 42’ 

(11) 

Now using Eqs. (8), the amplitude of the density perturbation when it crosses the 
Hubble radius after inflation is 

= %4&) 
nx2 H’(4) V3’2( 4) 

-a = G IH’(@)I cx m&V’@)’ (12) 
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Fig. 1: The basic idea of inflation is that as the field evolves in the potential, quantum fluctua- 
taons in the inflaton field produce scalar density perturbations As, while fluctuations in the transverse, 

traceless metric components produce tensor gravitational wave perturbations, &. For reconstruction 

the two main steps involve converting the observations (lower half of figure) into the primordial scalar 

(-4s) and tensor (-4~) ftuctuation spectra and then working in reverse to reconstruct the potentral 

l’(4). The main observational information from the cosmic microwave background arises through the 
Cosmic Background Explorer (COBE) satellite [9], and the Tenerife (TEN) [lo] and South Pole (SP) 

(111 collaborations. Caky surveys (APM [12], CfA 1131, IRAS /li,lS]) may provide useful infona- 

lion up to lOOh-’ Mpc, while the Sloan Digital Shy Survey (SDSS) /16/ should extend to the lowest 

scales measured by COBE. Peculiar velocity measurements using the POTENT (P) /17] methods are 
important on intermediate scales. The angle f3 measures angular scales on the CMBR in degrees, and 
length scales X are in units of I~-’ Mpc. dtt refers to the horizon size today and at recombination 
and dNL z ah-’ Mpc is the scale of non-linearity. Perfect observations will only reconstruct a small 
portion of the injlaton potential correspon.ding to between 53 5 AN 5 GO e-foldings before the end of- 

anflation. 
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,* Llt-Le 11 ~VJ ~IIU n (~3) arc t.o be evaluated when the scale X crossed the Huhble radius 
during inflation. The constant 171 equals 2/5 or 4 if the perturbation re-enters during 
the matter or radiation dominated erazs respectively.2 Now we wish to know the X- 
dependence of (C;p/p)~, while the right-hand side of the equation is a function of C,Z~ 
when A crossed the Hubble radius during inflation. \Ve may find the value of the scalar 
field when the scale X goes outside the Hubble radius in terms of the number of e- 
foldings of growth in the scale factor between Hubble radius crossing and the end of 
inflation. 

It is quite a simple matter to calculate the number of e-foldings of growth in the 
scale factor that occur as the scalar field rolls from a particular C$ to the end of inflation 
A?: 

ri* +c H(g) 
N(4) z 1; H(t’)dt’ = -2 /, mddf. (13) 

The total amount, of inflation is given by -YTOT z S(&), where @i is the initial value 
of Q at the start. of inflation (when ii. first becomes positive). In general, the number of 
e-folds between when a length scale X crossed the Hubble radius during inflation and 
the end of inflation is given by [18] 

N(X) = 45 + ln(X/Mpc) + i ln(M/10’4 GeV) + 5 ln(Cf~~~/lO’” GeV), (14) 

where M is the mass scale associated with the potential and TRH is the “re-heat” 
temperature. Relating N(X) and N(4) from Eq. (13) results in an expression between 
4 and A. 

In addition to the scalar density pert,urbations caused by de Sitter fluctuations in 
the inflaton field, there are gravitational mode perturbations, gpv ---) 9::‘” + h,,“, caused 
by de Sitter fluctuations in the metric tensor [19,20]. Here, gL>w is the Friedmann- 
Robertson-Walker met,ric and h,, are the metric perturbations. That de Sitter space 
fluctuations should lead to fluctuations in the metric tensor is not surprising, since af- 
ter all, gravitons are the propagating modes associated with transverse, traceless metric 
perturbations, and they too behave as minimally coupled scalar fields. The dimension- 
less tensor metric perturbations can be expressed in terms of two graviton modes we will 
denote as h. Performing a Fourier decomposition of h, h(S) cc J 6lzk exp( -6 - jz)d%, 
we can use the formalism for scalar field perturbations simply by the identification 
&$k + hk/tcfi, with resulting quantum fluctuations [cf. Eq. (9)] 

k3]h$/2r2 = 24 H/24*. (15) 

While outside the Hubble radius, the amplitude of a given mode remains constant, 
so the amplitude of the dimensionless strain on scale X when it crosses the Hubble 
radius after inflation is given by 

Ik3/2hkJ:OR s A&) = &H(4) - ";l;? (16) 

where once again H(Q) is to be evaluated when the scale X crossed the Hubble radius 
during inflation. 

2The 4 for radiation is appropriate to the uniform Hubhle constaut gauge. One occasionally sees 
a value 4/9 instead which is appropriate to the synchronous gauge. The matter domination factor is 
the same in either case. Note also that it is exact for matter domination, but for radiation domination- 
it is only strictly true for modes much iarger than the Huhble radius, and there will be corrections in 
the extrapolation down to the size of the Huhble radius. 
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RECONSTRUCTION EQUATIONS TO SECOND ORDER 

To some extent all inflationary calculations rely on the use of the slow-roll ap- 
proximation. In the form we present here, the slow-roll approximation is an expansion 
in terms of quantities defined from derivatives of the Hubble parameter H. In general 
there are an infinite hierarchy of these which can in principle all enter at the same order 
in an expansion. 

The slow-roll approximat.ion arises in two separate places. The first is in simplifying 
the classical inflationary dynamics of espansion, with the lowest-order approximation 
ignoring the contribution of the inflaton’s kinetic energy to the espansion rate. The 
second is in the calculation of the perturbation spectra; the standard expressions are 
true only to lowest-order in slow-roll. In the expressions in the previous section, we 
utilized the Hamilton-Jacobi approach (211 to treat the dynamical evolution exactly. 

A very elegant calculation of the perturbation spectra to next order in slow-roll 
has now been provided by Stewart and Lyth [‘22]. Tl ie slow-roll approximation can 
be specified by parameters defined from derivatives of H(4). There are in general an 
infinite number of these as each derivative is independent, but usually only the first 
few enter into any expressions. 1Ve shall require the first two, which are all of the same 
order when defined by 

2 H’(d) * c(4) = - A * 1 1 d H(c5) ’ ?I(($) = 2 H”(@ tc* H(O) * (17) 

The slow-roll approsimation applies when these slow-roll parameters are small in com- 
parison to unity. The condition for inflation, 6 > 0, is precisely equivalent to E < 1. 

The lowest-order expressions for the scalar (As) and tensor (AG) amplitudes as- 
sume {E, 7) are negligible compared to unity. Improved expressions for the scalar and 
tensor amplitudes for finite but small (6, 11) were found by Stewart and Lyth [22]: 

,4 _ &hi* H* 
s - -- - [l - (2C + l)E + Cq] &$I’ H’ 

& ?! &HP-(C+Wl. 
where C= -2+ln2+y 2 -0.73 is a numerical constant, y z 0.577 being the Euler 
constant. The right hand sides of these expressions are evaluated when the scale in 
question crosses the Hubble radius during inflation, 27r/X = uH. The spectra can 
equally well be considered to be functions of wavelength or of the scalar field value. 

The standard results to lowest-order are given by setting the square brackets to 
unity. Historically it has been common even for this result to be written as only an 
approximate equality (the ambiguity arising primarily because of a vagueness in defining 
the precise meaning of the density perturbation), though the precise normalization to 
lowest-order was established some time ago by Lyth [23] ( see also the discussion in 121). 

The improved expressions for the spectra in Eqs. (18) are accurate in so far as E 
and 71 are sufficiently slowly varying functions that they can be treated adiabatically 
as constant,s while a given scale crosses outside the Hubble radius. Corrections to this 
would enter at next order. This differs from the usual situation in which H is treated 
adiabatically. For the standard calculation to be strictly valid H must be constant, 
but provided it varies sufficiently slowly (characterized by small c and /~11), it can be 
evaluated separately a.t each epoch. This injects a scale dependence into the spectra. 
There is a special case corresponding to power-law inflation for which c and 77 are 
precisely constant and equal to each other. In this case there are exact expressions for 
the perturbation [‘22.2-l]. Furthermore, the corrections to each spectrum are the same 
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and they cancel when the ratio is t’aken. In the general case E and q may be treated as 
different constants if it is assumed that the timescale for their evolution is much longer 
than the timescale for perturbations to be imprinted on a given scale. This assumption 
worsens as 77 is removed from E, which would be characterized by the next order terms 
becoming large. 

It is useful to define the dimensionless quantities 4 and V, and a dimensionless 
derivative denoted by a dot: 

“‘z K 4; v(J) s 
d,Y 

,i- f 1 . 
dd 

In addition, we can use the identity 11 = c + i/2& and adopt as the expansion variables 
c,=o f +cdnc/ddn. In terms of these variables, the expressions for As(X), AG(X), u, 
and the o-X relation become 

.-lG = f&H (1 - (C + l,~] 

As = 

dd 
fi (1 + c). 

dX= x WV 

In the third expression, v depends upon AG(X) and E. Since we anticipate that we 
will only have information about AG(X) at the largest scales, we have to use the “con- 
sistency” equation (also called the evolution equation) to relate AG(X) to the more ex- 
perimentally accessible As(X) at the espense of introducing the additional i/fi term.3 
This was done through the identity 

!!Lc l-Ci 
A2, 1 1 J;’ (21) 

which follows from the expressions for As and AG in Eq. (20). Now we develop the 
evolution equation by taking the derivative of As(@): 

2 = ~(~-1~)+~[fE~-~~+l,i~-f(~)*] 

i 

ci 
x l+(C+l)E--- . 

24 1 (22) 

Now in addition to the expansion in 6 and its derivatives, a truncation is necessary. 
The truncation here is to assume Z/C < Z/&. With this truncation, to second order 

As 1 -=- 
As g* (23) 

Xow we can express .&/As in terms of the spectral index 1 - n z dlnA:/dln X, 
and the evolution equation becomes 

5 = 2E- (1 -n) 

dc 
dX 

= ;(l+E)(2c-(1 -413 (24) - 

30f course if the consistency equation is only used to evolve e, it can not be used as a check of 

inflation as discussed in (31. 
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where for the second equality we have used the dq/dX expression. This evolution 
equation serves two purposes. It removes </fi from the equation for ZJ, and it is a 
differential equation that can lx evolved to give E as a function of X. To solve the 
equation it is necessary to know the spectral index as a function of X, along with the 
initial condition E(&) as a function of 1 - 710, -4G(&) and As( X6). 

So the system to be solved can be expressed as 

&(A)] = A;(X)E(X) { 1 + :6(X) + c [l - n(h)iJ 

6 
dX= 

F [l + E(X)] 

de 
dx 

= ;(l+E)[2~-(1-n)]. 

In the nest section we discuss the simplification of the above espressions obtained 
by dropping the second-order terms and working to first order. In the section after that 
we solve an example first-order problem. 

FIRST-ORDER APPROXIMATION TO RECONSTRUCTION 

To first order in the slow-roll expansion variables the expressions simplify consid- 
erably. For example, to first order, c = A&/AZ, v = Ai, and Xd$/dX = AC/AS. The 
evolution-consistency equation is also quite simple. It can be written as 

Ji d&(A) = 434 
AG(A) dX Am * 

(26) 

Again, the procedure will be the same as in the second-order case. The potential 
depends upon At(X), about which we will have information only on the largest scales 
(possibly only on one scale), so we specify the initial value of At(X), and use the 
consistency-evolution equation to evolve &(A) in terms of As(X). we can thus express 
the system to be solved in terms of two equations and a single first-order differential 
equation which can easily be solved in terms of the initial value AG(&), yielding: 

X dX’ 1 -I 
~[k4] = A;*(&) - 2 J -- A0 A’ .4&l’) I 

*J = J x dX’ &*[&( X’)] 
~0 x’ As(X) (27) 

A WORKED EXAMPLE 

Let’s assume a simple power-law potential of the form V(0) = X+C$~ with X6 = 
4 x 10-14. This generates perturbation spectra of the form (evaluated at horizon crossing 
after inflation) 

AsO> = 4 x 10-s [50 + ln(X/Xe)13’* 

AGO) = 4 x lo-” [50 + 111(x/x0)] . CW 

On any scale, the number of statisbically independent sample measurements of the 
spectra that can be made is finite. Given that the underlying inflationary fluctuations 
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Fig. 2: An illustration of an anticipated data set limited by cosmic variance. The data was 

generated with a X&’ potential with &, = 4 x 10-l’. The upper points are As(X), while the single 
lower point is AC(X). The solid line is the mean As(A), while the mean AG(&) is 2 x loss. 

are stochastic, one obtains only a limited set of realizations from the complete prob- 
ability distribution function. Such a subset may insufficiently specify the underlying 
distribution, which is the quantity predicted by an inflationary model. The cosmic vari- 
ance is an important matter of principle, being a source of uncertainty which remains 
even if perfectly accurate experiments could be carried out. At any stage in the history 
of the Universe, it is impossible to specify accurately the properties (most significantly 
the variance, which is what the spectrum specifies assuming gaussian statistics) of the 
probability distribution function pertaining to perturbations on scales close to that of 
the observable Universe. 

Even assuming “perfect” observations, cosmic variance sets a lower limit on the 
uncertainty at any one scale. -Assuming that the only errors come from cosmic variance, 
the determination of the spectra might look like in Fig. 2. In the realization generated 
by the random number generator, the value of .4&X0) is 1.87 x 10e6, slightly below the 
ensemble mean of 2 x 10V6. 

As a first exercise, we simply perform a first-order reconstruction by doing a simple 
trapezoidal integration, and making the nai’ve assumption that the errors are uncorre- 
lated. If we do that we obtain the reconstructed potential shown in Fig. 3. Also shown 
in Fig. 3 by the solid curve is the actual potential used to generate the synthetic data 
from which the potential was reconstructed. 

There are several things we can notice in Fig. 3. First of all, reconstruction works: 
the true potential is within the error bars. The second obvious feature is that the slope 
of the reconstructed data is better than one might expect given the errors. 

This feature can be explored by taking another approach to the uncertainty intro- 
duced in Ac(X,) by cosmic variance. Let’s ignore that error, and pick three realizations 
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of A&*), one at tl1e “llleasurcd” value, one la above the measured value, and one la 
below the measured value. (Here “a” is the value determined by cosmic variance.) If 
we do that, we generate the t,hree curves shown in Fig. 4. Although we can’t tell which 
of the curves is the true potential, we know that the true potential is one of a family of 
curves bounded by the two estremes in the figure. 

We can understand why this occurs, because if we look at the slope of v-l, the 
initial value of As(X) drops out, and the contribution comes from adding together a 
large number of different =Is( X). S ince we are combining a large number of data points, 
the central limit theorem tells us that the errors in the reconstructed potential will 
become small. 

CONCLUSIONS 

The quantum-mechanical fluctuations impressed upon the metric during inflation 
depend upon the inflaton potential. During inflation the Hubble expansion takes mi- 
croscopic fluctuations of wavelength of order lo-*scm and stretches them to super- 
Hubble-radius size where they are frozen. Today they appear on scales as large as the 
observable Universe, 10 +**cm. It is possible to read the fossil record of the fluctuations 
by observing cosmic microwave background fluctuations and the power spectrum of 
large-scale structure. 

If the tensor perturbations are large enough to be identified, and if the scalar power 
spectrum is determined, the inflaton potential may be reconstructed. 

Hence cosmology and astrophysics may provide the first concrete piece of the po- 
tential of energy scales of 1016GeV or so. 
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