
Fermi National Accelerator Laboratory

FElXMILAB-Conf-9

The Distributed Development Environment
for SDSS Software

E. Berman, V. Gurbani, B. Mackinnon, H. Newberg, T. Nicinski, D. Petravick, R. Pordes,
G. Sergey and C. Stoughton

Fermi National Accelerator Laboratory
P.O. Box 500, Batavia, Illinois 60510

R. Lupton
Department of Astrophysical Sciences, Princeton University

Princeton. New Jerse.v

April 1994

Presented at the Conference on Computing in High Energy Physics 94,
San Francisco, California, April 21-27, 1994

3 Operated by Universilies Research Association Inc. under Contract No. DE-AC02-76CH03000 with the United States Department of Energy

Disclaimer

This report was prepared as an account of work spousored by an agency of the United States
Government. Neither the United States Government uor any agency thereof, nor any of
their employees, makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, conlpleteness, or usefulness of any information,
apparatus, product, or process disclosed, or represents that its use would not infringe
privately owned rights. Reference hereill to any specific commercial product, process, or
service by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, reconlnlerldation, or favoring by the United States
Government or any agency thereof: The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States Goverrnnent or any agency
thereof.

The Distributed Development Environment for SDSS Software *

Eileen Berman, Vijay Gurbani, Bryan Mackinnon, Heidi Newberg, Tom Nicinski
Don Petravick, Ruth Pordes, Gary Sergey, and Chris Stoughton

Computing Division
Fermi National Accelerator Laboratory

Batavia IL, 60510

Robert Lupton
Department of Astrophysical Sciences

Princeton University
Princeton, NJ

Abstract

We present an integrated science software development environment,
code maintenance and support system for the Sloan Digital Sky Sur-
vey (SDSS) now being actively used throughout the collaboration,

INTRODUCTION

The SDSS is a collaborative effort be-
tween Fermi National Accelerator Lab-
oratory (Fermilab), the U. of Chicago,
Princeton University, the Institute for
Advanced Study (at Princeton), The
John Hopkins University, U. of Washing-
ton, the U.S. Naval Observatory and the
Japan Promotion Group. Its main re-
sults will be an imaging survey of 10*deg2
and a red shift spectroscopic survey of
lo6 galaxies and lo5 quasars producing
approximately 1.2 x lOi bytes of data
over the 5 year running period (1995 -
2000). This will produce a three dimen-
sional map of the Universe.

Software Development Environment

The Fermilab Computing Division
supports a set of standard tools and soft-
ware for development of the SDSS data

*Sponsored by DOE Contract number DE-
AC02-76CH03000 and the Alfred P. Sloan
Foundation.

processing and analysis code. Survey
standards are documented for : portable
software environments, ANSI C, C++,
FORTRAN, writing scripts, accessing

survey databases, make methodologies,
product structure and source code use.
These standards were created to aid in
the development and maintenance of a
unified software system written by many
people at different institutions. The goal
of the standards is to meet the require-
ments of the survey and collaboration,
be sufficiently benign as to be universally
adopted and followed, be maintained,
supported and extended with the avail-

able resources, and be expected to allow
the needed evolution as the survey pro-
gresses.

In order to help accomplish the above
goals, the following set of standard devel-
opment tools were chosen.

RCVS

Remote extension of Concurrent Ver-
sion System (RCVS) was written by Terry

Hung at SLAC[3] and is built on top
of CVS (written by Per Cederqvist[4]).

It provides for source code management
across a wide-area network.

In general RCVS has supplied ade-
quate functionality to support concurrent
software development by multiple collab-
orators at physically distinct sites. We
use RCVS for maintenance of all software
used by SDSS (which includes approxi-
mately 1 million lines of code). Through
RCVS any collaborator may obtain a
copy of any SDSS software product. Ac-
cess restrictions limit those who may in-
clude their changes back into the soft-
ware. All modifications made to the soft-
ware are logged within RCVS. RCVS sup-

ports a complete revision control system
with script invocation on most of the
RCVS commands, tags and branches.

Most of our users operate effectively
using only a few commands, and consult
with an expert when necessary. RCVS
is a complex system and as such has a
fairly steep learning curve when trying to
understand it at a deeper level (i.e. tags).

Some of RCVS’s drawbacks include
possible use of much disk space since mul-
tiple copies of a product may exist simul-
taneously, network speed limitations, and
dependencies on specific versions of other
layered products (gnu diff, rcs). We have
always maintained a good working rela-
tionship with the RCVS maintainer and
any bugs we have encountered have been
readily fixed.

UPS

Unix Product Support[5] (UPS) was
written at Fermilab. It is a configura-
tion management tool providing support

for creating and maintaining multiple ver-
sions of software products on different
Unix platforms.

UPS provides good support for han-
dling the various products that are part
of SDSS software. All software written
for the survey is packaged in Fermi prod-
uct form and is accessed via UPS. UPS
includes a mechanism for registering ‘de-
pendent’ products along with the main
product so that specific versions of the de-
pendencies are linked with a specific ver-

sion of the main product. UPS is easily
expandable and several suggestions made
by SDSS developers have already been
implemented.

UPS shell commands are not intuitive.
UPS also depends on Fermi utilities (fu-
name and dropit) that are not part of the
UPS product.

UPR

Unix Product Retrieval[G] (UPR) was
written at Fermilab. It provides a soft-
ware distribution environment allowing
remote users to copy versions of software
to their nodes and performing installation
of the software in UPS. If a product has
dependent products, those versions are
copied too.

UPR has been used successfully by
remote collaborators to obtain copies of
SDSS software. It is menu driven and re-
quires no detailed knowledge to use. UPR
insulates the remote user from having to
know the details of UPS.

UPR is not proactive: the remote user
must check for new versions of products.
It does not inform the user how much
space will be needed on the remote disk
or check to see if the appropriate amount
of space is available.

GCC

GCC is the Gnu C compiler written
by Richard Stallman for the Free Software
Foundation[7].

GCC has proved to be a useful tool
for detecting software bugs. The compiler

will give warnings on suspect C lines ig-
nored by C compilers. Examination of
these warnings has solved many bugs be-
fore the code was included in a software
release.

In order to make GCC completely

ANSI compliant, we have created com-
panion software that is used when build-
ing with GCC. The product GCCFIX
contains all ANSI supported functions
and header files used by the survey soft-
ware that are missing from the dis-
tributed GCC environment.

www
World Wide Web (WWW) is a wide-

area hypermedia information retrieval
system using a hypertext markup lan-
guage (HTML) d eveloped at Cern[2].

WWW has proved to be an invaluable
tool for exchanging information between
members of the collaboration. All of the
SDSS software documentation is available
via WWW. In addition we have made
available software development help, user
feedback (in the form of bug reports and

user wish lists), and software version in-
formation. Using WWW, the entire col-
laboration has access to the most up-
to-date documentation concerning SDSS
software development.

There are many features of WWW
(and HTML) that have aided in the es-

tablishment of this documentation envi-
ronment. The small command set of
HTML makes it easy to learn especially

by example. The ability to immediately
display the HTML files aids in quick de-
bugging.

Writing documentation for display
through WWW raises different issues and
problems than when writing flat docu-
mentation. Since HTML documentation

is not meant to be read cover to cover,
each ‘piece’ needs to be written as a co-
herent whole that includes links to other
documentation. We had to take care not
to make our documentation too circular

or the user would get lost on the web.
The small number of HTML commands
restricts how documents can be displayed,
so one should learn HTML’s restrictions
before picturing what a document should
look like.

TCL and TK

Tool Command Language (Tel) is
an extensible interpretive command lan-
guage developed at the University of Cal-

ifornia, Berkeley by John Ousterhaut et.
al. [8]. In addition we have integrated in
Neosoft’s Extended Tel package[9].

In general we have had very good ex-
perience with building our software envi-
ronment around Tel. Using Tel as the
standard for our data processing soft-
ware provides modularity and easy inte-

gration of separately written modules into
a whole. The data analysis system con-
sists of several hundred SDSS Tel exten-
sions written by many different people.
This set of primitives provides a flexible
framework on which the user can build

specific analysis software, rapidly proto-
type, or work interactively.

The command interpreter is easy to
learn and use. Procedures can be built
up that are complex yet readable. It is
good for making quick tests as there is

no compilation step. Many of the SDSS
collaborators develop using the Tel exten-
sions and then rewrite in C functions that
run too slowly in Tel.

The main problem we have had is that
Tel does not provide good support for
mathematical operations. It does not do
floating point arithmetic with complete
accuracy. Therefore most mathematical
computations we use need a Tel exten-
sion linked to a C routine.

Tk (ToolKit) is an X Windows inter-
face package integrated with Tel and de-
veloped at Berkeley. Tk gives any user
with Tel competence the capability to
build their own GUI.

Tk was used to help create the GUI
for displaying system status information

for the SDSS prototype, the Drift Scan
Camera[lO]. It is easier to use and learn
than Motif. At the time, there was no
interactive interface builder and precise
layout was difficult.

Conclusion

We have had positive experiences with
all of the tools described. Each is in
daily use by many of the collaborators.
The whole environment enables the scien-
tists to integrate their code directly into
the system. The standards enable testing
scripts to be run on code without ‘per-
sonal review’. Having the concept of a
well defined and maintained environment
early on has helped the software develop-
ment process. We estimate that a total
of approximately 1 year FTE (full time
equivalent) was spent integrating all of
the tools into a single environment and
developing standards while the cost of de-
veloping a similar set of tools would take
approximately 15 years FTE.

REFERENCES

1. ‘(A Digital Sky Survey of the North-
ern Galactic Cap,” Proposal, Decem-

ber 20, 1990.

2. T. J. Berners-Lee, R Cailliau, J.
Groff, and B. Pollermann, “World-
Wide Web: The Information Uni-
verse,” Electronic Networking: Re-
search, Applications and Policy, Vol.
2 No. 1, pp. 52-58 Spring 1992, Meck-
ler Publishing, Westport, CT, USA.

3. Terry Hung, “RCVS: Remote exten-
sion of concurrent Versions System,”
unpublished document, Stanford Lin-

ear Accelerator Center

4. Per Cederqvist, ‘Version Manage-
ment with CVS,” unpublished man-

ual, Signum Support AB, March
1993.

5. Fermilab Computing Division, “UPS
User’s Guide,” unpublished manual,
PN-426, Fermilab, March 1993.

6. V. Gurbani, “Product Distribution
Via UPR,” unpublished manual, Fer-
milab, December 1993.

7. R. Stallman, “Using and Porting
GNU CC,” unpublished manual, Free
Software Foundation, May 1993.

8. J. Ousterhaut, et. al., “Tel: an Em-
beddable Command Language,” Pro-
ceedings of the Winter 1990 USENIX
Conference.

9. K. Lehenbauer and M. Diekhans,

“Extended Tel Command Set,” un-
published manual page, Neosoft, Inc.,
January 1992.

10. B. Mackinnon et. al., “Data Acqui-
sition Systems for the Sloan Digital
Sky Survey,” IEEE Transactions on
Nuclear Science, Vol. 41, No. 1, pp.
105-110, Feb. 1994.

