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Abstract 

We investigate parton distributions at smaIl 5 using moments of the Gribov- 
Lipatov-Altarelli-Paisi (GLAP) evolution equation with respect to z. In this 
representation the kernel of the GLAP equation contains singularities in the mo- 
ment variable w at w = 0. We show that the importance of these singularities 
at small z depends on the form of the starting distributions. We examine the 
range of I in which the GLAP equation is valid. The restrictions on the range of 
z depend on the form of the starting distributions. We investigate whether the 
GLAP equation can be used to interpolate data in the HERA region. Results are 
given for the structure function Fz at small z. A possible method of determining 
the gluon distribution from Fz is discussed. 
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1 Introduction 

The low z region has received a lot of attention from the theoretical commu- 
nity. In particular, there is an extensive literature(l,2,3] on the prediction of the 
small I behaviour of structure functions using the Balitskii-Fadin-Kuraev-Lipatov 
(BFKL) equation[4]. Qualitatively, the BFKL equation predicts a growth of z 
distributions like 

zf(s) = I-L 0) 

where f is the number density of any species of parton and z is the longitudinal 
momentum fraction of the parton. In the leading approximation the exponent 
w‘ is found to be, 

L&J; = 
4c.4 In 2 

a.(Q:); CA = 3. (‘4 R 
However attempts to get quantitative information(51 on low I behaviour at ac- 
cessible values of Q2 are thwarted by the sensitivity of the BFKL equation to 
momentum scales below Qc. In addition the correct treatment of sub-leading 
terms in the BFKL equation is unknown. We expect these sub-leading terms to 
be particularly important[3,6]. 

The small I region is now of special interest because there are new data(7,8]. 
The advent of the ep machine HERA has opened a new range in Q* and I for the 
study of deep inelastic scattering (DIS). For the purpose of this paper we shall 
consider the boundary of the region in which precision measurements of DIS can 
be performed at HERA to be given by[Q,lO], 

Q2 E < 10’ GeV’, Q2 > 10 GeV2, zn < 0.3 

In this equation Qs is the four-momentum squared of the virtual photon and zn 
is Bjorken’s z variable. 

The present paper has a modest scope. Because of the difficulties of making 
quantitative predictions with the BFKL equation, in this paper we shall abandon 
any attempt to predict the behaviour of the structure function at small I. We shall 
instead try to address a few simple questions about structure functions at small 
z using the Gribov-Lipatov-Altarelli-Parisi (GLAP) evolution equation[ll]. The 
advantage of the GLAP equation is that the effects of energy-momentum conser- 
vation and the running of the coupling constant can be included exactly, at least 
through two loops. In addition, the theoretical framework for going beyond two 
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loops is completely understood. Small t behaviour using the GLAP equation* 
has previously been investigated in refs. [14,15]. It is appropriate to reconsider 
these questions because of the new information[l6] on anomalous dimensions at 
small w. As emphasised in ref. [16], the small w singularities are especially im- 
portant for the evolution of the singlet quark distribution, which is the dominant 
term in Fz measured at HERA. The questions which we pose are the following:- 

1. Is there a range of z in which the evolution of the structure functions is 
dominated by the small z singularities in the anomalous dimensions? In 
the language of the Mellin Transform this corresponds to the consideration 
of only the w = 0 singularities in the anomalous dimensions. 

2. Given the presence of u = 0 singularities in the anomalous dimension and 
the present knowledge of them, at what values of z and Qs does it make 
sense to use the GLAP equation implemented with only the low order per- 
turbative terms in the anomalous dimension series? 

3. Does it make sense to interpolate the data on DIS throughout the HERA 
range using only the GLAP evolution equation? 

We shall answer these questions using a numerical program to invert the moments 
of the distribution functions, supplemented by analytic considerations at small 
w. 

Although we shall abandon the BFKL equation as a source of quantitative 
information we shall use it extensively as a source of inspiration. We will start 
with a general form of the initial parton distributions suggested by the BFKL 
equation. 

zf(z) = z--. (4) 
In addition we shall borrow the concept of a critical anomalous dimension. We 
shall assume that the perturbative anomalous dimension (like the Lipatov anoma- 
lous dimension) has a critical value, which implicitly defines WL at subleading 
level. For w < WL finite order perturbation theory in os cannot be used to calcu- 
late the anomalous dimension. We shall estimate this wr, by taking the critical 
anomalous dimension to be one half 

F(WL) = ;. 

ZFollowiagstandard practice we shall refer ta thii equation as the GLAP equation, although 
in moment space (which we use in this paper) it was also written down by Georgi and Politaer(l2] 
and Gross and Wilczek[lJ]. 
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We shall find that if ws > WL with WL defined as in Eq. (5), the use of the GLAP 
equation is justified. In this region we can use the perturbative expansion of the 
anomalous dimension. On the other hand if the dominant value of w is less than 
WL, the perturbative anomalous dimension with a finite number of terms will be 
inadequate. 

The plan of the paper is as follows. The solution of the GLAP equation in 
moment space is presented in section 2. In addition in section 2 we discuss the 
form of the GLAP kernels at small w. The results of our full numerical solution 
of the GLAP equation in various approximations are presented in section 3. The 
method relies on the numerical evaluation of the inverse Mellin transform in the 
complex w plane. This method was pioneered in ref. 1171. Our numerical program 
is a descendant of the DFLM[lS] program to invert the structure functions. The 
calculation of the evolution using moments of the parton distributions followed 
by numerical inversion is an efficient and accurate method of solving the GLAP 
equation. Section 4 investigates the features of the solution at small I using 
analytic methods. Section 5 presents results on the structure function FQ in the 
HERA region. A possible method to extract the’gluon distribution function from 
data on F2 is discussed in Section 6. Conclusions are presented in Section 7. 

2 The GLAP equation and its solution 

In this section we describe the evolution of the non-singlet and singlet distribu- 
tions predicted by the GLAP equation. In the latter case the formalism will be 
general enough to include three and four loop anomalous dimensions. This is 
necessary because we want to include information on the small w behaviour of 
the anomalous dimensions in three and four loops. It will also be useful if and 
when the complete three and four loop anomalous dimensions are calculated. 
The solution is derived as a perturbation about the lowest order result. To make 
the notation more compact we introduce the following notation for the running 
coupling, 

(6) 

This coupling obeys the renormalization group equation, 

da 
- = -&a’ - b1a3 - ha4 - &a5 + O(a6) dlnQs 



where in the m scheme we have[l9], 

4 = (1+2 

bl = (102 - 3)/4 

4 = ( (8) 

and f is the number of active flavours. Since 4 is unknown we will set it equal 
to zero in our numerical work. 

We will formulate the GLAP equation in the space of moments defined as 
follows. For any function f(r), define the moments f(w) as 

f(w) = /ol dz P’f(z). (9) 

In the following we will use f as a generic notation for any parton distribution, 
e.g. u, d s c b t G. Note that the moment variable w is chosen so that the w = 0 , 3 , 1 , 
moment measures the number of partons, and the w = 1 moment measures their 
momentum. An alternative moment variable N defined such that N = w f 1 is 
often found in the literature. In moment space convolutions become products. 
The GLAP evolution equations for the quark, antiquark and gluon densities are, 

&4w) 
zizp= 
w= 
dlnQ2 [F (pd4d4 + f’wh+7~(~)} + hd4GW] 

d’+) 
zip= [T (kd4q44 + &J4G4} + Pco WGW] 0’4 

The GLAP kernels P are calculable as a perturbation series in a,. The solution 
of these equations is given in the following subsections. 

2.1 Non-singlet equation 

In this subsection we present the solution of the non-singlet equation in two 
loops]lS). The solution in this form is used in our numerical evolution program. 
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The separation of Eq. (10) into singlet and non-singlet parts depends on the prop 
erties of the kernel. Using SfJ(f) fl avour symmetry we may define the following 
combinations of qq and q@ matrix elements. 

pw = a&P; + P,", 
PP& = J&P; + PS 99 

P* = P,‘,*P; (11) 

In addition, because of charge conjugation invariance and SiY(f) flavour symme- 
try we have that, 

pw, = pwj 
PM1 = pqiqj 

PpiG = p&G 5 PqG 

PGqi = PC& = PCp. (12) 

The non-singlet combinations are found to have no w = 0 singularities[l6]. 
This is easy to understand since the w = 0 singularities come from the exchange 
of two gluons in the crossed channel, which cannot occur in non-singlet combina- 
tions. In the absence of any special enhancement in three or four loops, we shall 
perform the evolution of the non-singlet combinations in two loops only. At two 
loop order, there is a non-zero contribution from P,“, and P& but we have the 
additional relation 

P,“, = P$ (13) 
which simplifies the treatment of the non-singlet pieces. 

We now define the sums and differences of the quark and anti-quark distribu- 
tions as follows, 

q: = q; * & (14) 
In terms of q* we can define the following non-singlet combinations 

T3 = u+ -d+ 

Tg = u++d+-2s+ 

Tl5 = u+ $ d+ + s+ - 3c+ 

T24 = u+ + d+ + s+ + c+ - 4b+ 

Tk = u+ -I- d+ + s+ + c+ + b+ - 5t+ (15) 
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where u,d,s,c, b,t are the distributions of the various species of quarks. To 
simplify the solution of the equation we introduce the variable t, 

t= 
483 il* - 

( ) 4Q? 

&s is the starting point of the evolution at which we specify the initial parton 
distributions. We may expand the kernel of Eq. (10) in a series expansion in 
powers of a, 

Pi = aPo + a’P: + O(2). 

Using Eqs. (11,12,13) we find in two loop order, 

(17) 

dV,bt) = 
dt [PO(W) ++-(4 - ~Pdw,]]Ww,t) 

3 PO(W) + aR-(w)]Ki(w,t) (18) 

dTi(w,t) = 
dt 

[s(w) +a[P:(w) - $Pow]]w,t) 

s [p,(W) + aff(w)]T.(wt f, (19) 

The solution to the non-singlet equations in two loops is3, 

V(w, t) = [1 - (a - a0)?] exp (Po(u)t) K(w,O) (20) 

T&d, t) = [1 - (a - a,)?] exp (P0(w)t)Ti(w,O) (21) 

Our treatment of flavour thresholds follows ref. [18]. For example, below the 
threshold for bottom quark production, Q2 = mi, the distribution T24 evolves 
as a singlet distribution. Above the bottom threshold it evolves according to 
Eq. (21). The treatment of singlet evolution is described in the next section. 

JEqs. (20,Zl) correct Eqs. (3.12) and (3.13) of ref.[lS]. 



2.2 The singlet equation 

The singlet Altarelli-Parisi equation is 

iii&( $:$) = ( ;z ;: ) ( (z;;:;;; ) (22) 

where G(w) is the moment of the gluon distribution and C(w) is the singlet quark 
combination, 

C(W, Q’) = C q!‘iw, Q*) 3 C [G(w, &*I + Gi(w, Q’)l (23) 
f I 

The elements of the anomalous dimension matrix are given in terms of the kernels 
defined in Eqs. (11,12) as, 

PFG = 2fP@ 

PGF = PQ. (24) 

To deal with the singlet equation it is convenient to introduce a matrix notation. 
We denote matrices by symbols in boldface. Thus the singlet parton distributions 
may be written as a vector F, 

(25) 

We may expand the matrix kernel in Eq. (22) in powers of a 

P = ape + aZPr + asps + a4Ps (2‘4 

where PO and Pr are known completely[22,23]. A partial result on Ps in the 
small w limit has recently been presented[l6]. Information on Ps near w = 0 can 
be obtained from the kernel of the BFKL equation(241. 

Using Eq. (16) we substitute the variable t into the Eq. (22). In matrix 
notation the singlet equation including terms up to four loop order becomes 

dFp ‘) = [Ro(w) + a&(w) + a*&(w) + a3Rs(w)]F(w, t) (27) 
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where 

Ro = PO 

R1 = P1 - $ 

R2 = Pa- $R1 - 2% 

Rs = P4R2-3+$Ro. (‘W 

We now present the solution to the singlet equation, which is a generaliza- 
tion of the solutions given in refs.[21,18]. The eigenvalues of the lowest order 
anomalous dimension, PO, are 

A* = ; [PO”” +P,GG* (P(y - Ppy + 4P{GPfF] (29) 

To obtain a compakmatrix solution of the singlet equation we define projection 
operators in terms of A*:, 

PO = A+M++X-M- 

M, = x+ ! A- PO - X-1) 

M- = A+ : A- (X+1 - PO) 

where 1 is the unit matrix. The projection operators M+ and M- satisfy the 
relations, 

M+M+ = M+, M-M- = M- 
M+M- = M-M+ = 0, M+ + M- = 1. (31) 

We shall find a solution of the full singlet equation as a perturbation about the 
lowest order solution, 

F(w, t) = U(a)(M+ exp(A+t) + M- exp(Lt))U-‘(ao)F(w,O) (32) 

where ao is the value of the coupling constant at the starting value t = 0. The 
matrix U has the expansion 

U(a) = 1 + aU* + a%2 + a3Us (33) 
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Substituting U = 1 in Eq. (32) we obtain the lowest order solution. Since by 
assumption perturbation theory is valid at the starting point, Qs, the inversion 
of the matrix U may also be performed perturbatively, 

u-‘(ao) = 1 - a&l - agu2 - Ur*) - a;(& - UlUZ - UZUl + U13) (34) 

The explicit forms for the matrices Ul,U2 and Us which satisfy Eq. (27) are 
di = L&3) 

UJ = -jk;M+RjM+ + ,+-~--j~M-RjM+ 

+M-RjM- - .i+-L+jb,“+RjM- (35) 

with R\ = Rl,Ri = R2 + RlUl and Rb = Rs + R2Ul + RI&. 
Dropping terms of higher order in perturbation theory, Eq. (32) may be ex- 

panded to give, 

F(w, t) = 
{ 

c (Mk + au&k - UoMkul 
k=i 

+a*u&fk - aaoulb’&ul -I- afj(Mku~2 - Mku2) 

+a3UsMk - aZa&2MkU1 + aa~(U~MkU1* - UlMkU2) 

+ai(Mku1& + Mk&ul - h&us - Mku13)) exp(&t) 
I 

F(w, 0).(36) 

This equation will be the basis of our numerical solution of the singlet evolution 
equation. 

2.3 Singlet anomalous dimensions at small w. 

Let us consider the defining equation for moments 

f(w) = ~‘dzzwf(z) E L-dyexp(--wy)[zf(r)]; y = In(l/z). (37) 

From Eq. (37) one can see that the variable w is conjugate to In( l/z) so that the 
behaviour at low I is determined by small w. We are therefore led to consider 
the behaviour of the anomalous dimensions at small w. In this limit we need only 
consider the singlet distribution. 
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It is important to establish at the outset the size of w relative to the other 
small parameter of the problem, a.. We shall consider the limit 

a,(Q:) *: 43 5 w < 1. (38) 

Eq. (38) defines a regime in which we can expand perturbatively in both u and 
a,. In this limit we may consistently include higher order terms. Thus if we 
consider u - c and ~2, - tZ we shall retain all terms of order c4 and less. With 
this value of w, we shall take into account the following terms in the anomalous 
dimension series, 

c 2 c3 8 
Q./W, as, a+, ad : PO 

2 4/w, a, : Pr (3% 
oyl.2 : P2 
CQW” : Ps 

In setting up the limit in Eq. (38) we are thinking of a regime where o. NN a 
andw = a. The choice of o, as the important parameter rather than the coupling 
o, (c$ Eq. (6)) is a statement about the size of the numerical coefficients which 
will be justified by the detailed numerical work which follows. Since in this case 
c - i it is clear that the limit in Eq. (38) can only be of marginal validity. 

We shall now discuss the value of P in the small w limit. The matrix elements 
of the complete PO are well known[20]. In our notation they can be written as, 

PFF 0 = c+-$-&2s,cw,) 

PGF 0 = cF(&&+-&) 

P,“” = 2T,4--&-L+-3 
w+2 

PGG = 0 2c,(Z + h - --& + -& - -& - 4(w)) - y (40) 

where 

51(w) = >$ ; z ?qw + 1) - 11(l). (41) 
‘- 

The Cssimir operators of colour SU(3) are defined by, 

CA =3, cF= ;, TR= ;. 
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The expansion of Eq. (40) through to order wz as required by Eq.(39) is easily 
derived. Here we only give the first two terms to show the structure of the matrix 
in the small w limit. 

w-+:( if iA)+:( -&, -Il:::~4T,j)+W (43) 

Note that the quark distribution is fed only by the upper two elements which 
occur at order w” and higher. 

In the next order (in the mscheme), the full result for Pr, defined in Eq. (26) 
is known[22,23]. 

Pi(W) = 
P,FF P,“” 
P,GF P,G” (44) 

In the limit w -+ 0 we have 

PFF + 40&f TR 
1 9w 

40CAf TR 

-I- CF(~F - %)(y - 6C(2) + 4C(3)) - $CF~TR 

PFG + I + fT,@CF - +A + ;<(2)cA) 

PGF + &?A - 4ocF f TR 
1 9w + G(6U2) - 4(‘(3) - 9) 

+CFCA(- “1”: - $(2) - 6C(3)) + cffT& + $(2)) 

PGG t - 
IZCF.~TR -46CafT~ 

9w 

+fr,(-;c, + ~CA) + c:(z - T<(2) -g<(3)). (45) 

Note that all four entries contain a term of order l/w and that the lower compo- 
nents are negative in the small w limit. For four flavours the matrix becomes, 

11.8 26.7 -31.6 -57.7 
-7.85 -27.1 45.2 98.9 + O(w). (46) 

The full expression in moment space which we use in our numerical program 
can be found in ref. [22]. Note the alternating sign in Eq. (46). Comparison 
of the small w expansion with the full expression shows that the former is only 
trustworthy for w 5 0.3. 
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In the next order (in the MS scheme) and in the limit w + 0 we have[l6] 

P&J) * (47) 

where d and n are as yet uncalculated constants. We stress that the magnitude 
of the constants S and n is completely unknown. However for S = 1,~ = 1 
the momentum sum rule is satisfied by the l/w2 term alone. The choice of the 
coefficients of 6 and ~7 in Eq. (47) represents a first guess about their size. Lastly 
we have[24] 

P3(w) -+ =2:(3) 
(if :A) 

(46) 

This completes the information we need to perform our numerical analysis con- 
sistently in the limit Eq. (38) retaining terms of order c4. 

Since in practice we will be interested in w not too close to zero the behaviour 
of the anomalous dimensions at the point w = 1 is also interesting. For the first 
two orders, for which we have complete information, the results are, 

PO(W) + ; ;y 
( F 

-f;; 
R > 

@F(l‘fcF - 47cA + 26fT~) fT,@CF + 35cA) 
-4cF(14cF - 47c,, + 26fTR) -fTR(74cF + 35cA) (56) 

Both matrices have the structure required by momentum conservation. Compar- 
ison of Eq. (49) and Eq. (43) shows that the anomalous dimensions vary rapidly 
betweenw=Oandw=l. 

In practice since PO and Pr are known completely the full expressions will be 
used in place of their expansions in w. Note that the full inclusion of Pa and Pr 
without Pn and Ps is the standard two loop expression as used in most next-to 
leading programs. This is correct to order i. Thus one of the new features of 
this paper is the inclusion of Ps and P3. 

3 Numerical program 

The z space distributions can be reconstructed by considering the inverse Mellin 
transform. 1 . 

Ins, t) = k /, liw s-wf(w, t) 
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The contour of integration C is taken to the right of all singularities. The 
functions f (w, t) are taken to be the solutions to the GLAP equation given in 
Eqs. (20,21,36). 

Our program is available on request4. It is a generalization of the DFLM 
program(l8]. In addition to the inclusion of three and four loop effects, we have 
corrected minor errors in the numerical evaluation of the two loop anomalous 
dimension matrix and implemented a numerical procedure to choose the contour 
of integration. 

We now report on the results for the evolution of the singlet and gluon dis- 
tribution functions in the proton. We first define the starting distributions from 
which we evolve. The valence and sea quark distributions are, 

Vu,,(z) = u(z) - vi(z) + d(z) - (SC,) 

S(z) = 2(7i(z) + d(z) + i(z) + E(l) + . . .). 

The singlet quark distribution is thus given by, 

(52) 

(53) 

C(z) = Vud(Z) + S(z) = T [G(l) + G(z)] 

The initial parton densities are the MRS distributions taken from Martin, Roberts 
and Stirling[28]. We have considered the two distributions 0; and D’_ which have 
differing behaviour at small z. In their notation the two distribution functions 
have the following forms at the starting value Qi, 

zg(z, Q;) = A,&(1 - z)“( 1 + ~~2) (55) 
51/yd(z, 6-j:) = Au&+(1 - S)*(l + Cud&+ -hdZ) (56) 

zS(z,Q;) = A.+(1 - ~)~“(l + c& + 7~s). (57) 

The coefficients at Qz = 4 GeV’ taken from ref. [28] are given in Table 1. 
The results of the evolution are presented in four approximations. The first 

is the leading order evolution(L), the second is the complete next to leading 
order evolution (NL), the third contains the partial results on the next-bnext- 
to leading evolution (NNL) and the last contaids the partial results on four loop 
anomalous dimension (NNNL) derived from the BFKL equation. In the NNL 
approximation we have taken 7 = 1 and 6 = 1 in the three loop anomalous 

4From ellis@fnalv.fnal.gov on the Internet. 
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4.04 3.92 4.03 
2.20 2.59 2.43 
2.98 4.21 2.74 

Table 1: Distribution parameters at the starting value Qs 

dimension, Eq.(47). In all four approximations the value of the strong coupling 
Q, was taken to be 0.2644 at the starting value, Qi = 4 GeV*, leading to the 
following couplings at Mz, 

a,(Mz) = 0.1171 1 loop,L 

a,(Mz) = 0.1123 2 loop,NL 

a.(Mz) = 0.1119 3 loop,NNL and NNNL (58) 

Fig. 1 shows the evolution of the singlet quark 0; distribution in these four 
approximations starting from Qi = 4 GeV*. The heavy line shows the starting 
distribution in the following figures. We have checked that our numerical solution 
of the GLAP equation is close to the parameterization of MRS in the NL case, 
(as it should be!). The correctionsto the singlet distribution C are substantial 
in the HERA region. This is because the NL approximation introduces l/w 
terms, cf Eq. (45) and the NNL approximation introduces l/w* terms. The 
NNL and NNNL curves are so close that they are hard to distinguish especially 
at Q* = 10 GeV’. 
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Fig 2 shows the corresponding curves starting from the steeper D’_ distribu- 
tion. The effect of the higher order terms is less significant because of the presence 
of a pole at w = l/2 in the starting distribution. The effective value of w is not 
very small. Note also that the t-dependence of C at small z is unchanged by 
the evolution. We will give an analytic understanding of these results in the next 
section. In this the NNL and NNNL curves overlap and cannot be distinguished 
on the plot. 

Fig. 3 shows the curve for the gluon distribution starting from Db. The NL 
terms are much less significant and tend to decrease the growth of the gluon 
distribution, cf. Eqs. (43,45). The NNL terms are dependent on our assumption 
about the values of 6 and 7, cf. Eqs. (47). The NNNL terms become important 
at small I because of the l/w4 pole. Fig. 4 shows the corresponding results 
for the steeper D’_ distribution. The influence of the higher order corrections is 
much smaller. The numerical influence of the unknown parameters 6 and 7 can 
be tested by varying them. Fig. 5 shows C calculated in NNL order with two 
different assumptions about the value of 6 and 7. The result for C is relatively 
insensitive to these parameters. Their influence on the gluon distribution can be 
extracted by comparing the NL and NNL curves in Fig. 3. 

We have also investigated how much the restriction to higher QZ will decrease 
the size of the higher order corrections. We have considered a starting value of 
Qi = 10 GeVs. At such a starting value one is well into the deep inelastic region. 
In Figs. 6 and 7 we show evolution starting for Qi = 10 GeVr. The starting 
distributions at Qi = 10 GeV* have been taken as the NL evolved shape of 
the 0; and D’_ distributions at this Q2. The strong coupling, os was taken 
to be 0.2241 at the starting value, Qi = 10 GeV’. The parameterization of 
the shape of these distributions is given in Table 1. The heavy line shows the 
starting distribution. The corrections to the DA distribution at Qs = 100 GeV* 
are still quite large even in the restricted HERA range. Note that in the NL 
approximation the evolution back to Q* = 4 GeV* reproduces the original MRS 
starting distributions. 
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4 Analytic estimates 

4.1 Solution at small w 

In this section we attempt to explain the main features of our numerical results 
using simple analytic estimates. In the small w limit the eigenvalues of PO are 

where 

=A A+ c - + xc, A- ic - 4CFTizf 
w 3c 

A 

(60) 

Note that AC is numerically significant. The accuracy of Eq. (59) in the relevant 
range of w is illustrated in Fig. 8, which shows the exact value of X* from Eq. (29) 
compared with the small w expansion given by Eq. (59). One can see from Fig. 8 
that X+ B X- at small w. 

The projection operator M+, defined in Eq. (30) is given by, 

M+= (& ;)+ws( y -%F)+o(wz) (61) 

where p = w $ $r - G oF andMe=1-M+. 
Since for small w the ergenvalue X+ dominates, we may drop the X- term in 

Eq. (36) and reduce the problem to a single eigenvalue. Hence we can neglect 
the contribution of the M- term in the general solution, Eq. (32). We will use 
this approximation in the following to simplify our analytic work. In lowest order 
this corresponds to writing 

F(w, t) = M+ exp(X+t)F(w, 0) (62) 

As a result of the simplification of retaining only the dominant eigenvalue the 
two singlet GLAP equations are effectively reduced to one. The singlet quark 
distribution is expressible in terms of the gluon distribution. This is a general 
result and the relationship between C and G can be derived in terms of the 
anomalous dimension matrix. 
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If we further specialise to the limit defined by Eq. (38) we may write a simple 
formula for the relationship between C and G. 

C(w,Q*) = ; 1+(-&++(~-;+j!-&")J 
26244 

+1op + e(7r’ - ; + $$) + 54 + 0(&j wG(w, Q*)(63) 

d+, 8’) 
dlnQs 

+1og + c(Z t-r* - ;)+56$ +0(k) 1 G(w,Q*) (64) 

where c is defined in the sense of Eq. (39). Eqs. (63,64) can be derived directly 
from the GLAP evolution equation assuming that G and C are proportional. 

4.2 Analytic results at small 2 

The z behaviour of the distribution functions is obtained by performing the 
inverse Mellin transform. For simple starting distributions this can be evaluated 
analytically at small I. This exercise allows us to find the dominant values of w 
in the integral and hence test the validity of Eq. (38). At small z the integrals 
we have to evaluate involve the starting distribution and simple powers of w and 
are of the form, 

xf(x,t) = -L 2Ri ch x-“exp (x+(wP)f(w,O) / 

(65) 

where y = - lnz and the contour is to the right of all singularities of the starting 
value in the w representation, f(w, 0). 

Eq. (65) allows us to investigate the intluence of the initial condition on the 
behaviour of the structure function. Let us assume a simple starting distribution 
of the form. 

xf(x,O)= AX-~, f(w,O)= A. 
W-Uwg (66) 

We now evaluate the integral Eq. (65) with the starting distribution in Eq. (66) 
in two different situations. 
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4.2.1 ws < ws 

In the first instance let us assume that ws is less than the ws, the value at which 
the integrand has a saddle point. At large y and t the saddle point of the integrand 
in Eq. (65) is determined by the condition, 

-&WY + X+(w)t} = 0 
w=ws 

In the limit w --t 0 the anomalous dimension X+ is given by Eq. (59) so that the 
saddle point value, ws is found to be, 

If w,, < ws we can estimate the integral Eq. (65) using the method of steepest 
descent to give 

In the particular case that the initial distribution has a l/z behaviour, f(w, 0) = 
l/w we can calculate all integrals exactly without recourse to the method of 
steepest descents. The modified Bessel function of the first kind has the integral 
representation[W] 

L&%/G)= ,$-J+(~)“exp(~+ytd) (70) 

This allows us to give an exact analytic evaluation of any integral involving a 
polynomial in w, such as the expressions in Eq. (63,64). Let us define the average 
value of l/w”. 

($)=/,$$exP (~+w)//c$exP(~+w) (71) 

1 ( > - = L WI/G, 

W” 4 1,(2&) 
(72) 
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Eq. (72) holds for both positive and negative R, (I-,(z) E 1,,(z)). Thus 

@) = ws I-1 c2m 

W4G) 

The asymptotic expansion of the modified Bessel functions for large z is[25] 

4n2 - 1 
L(z) = &P - Bz ++I 

so that 

(cd”) = w$[l - g + o(~)l. 

(74) 

Using the asymptotic expansion in Eq. (74) and retaining only the first term, gives 
the saddle point result, Eq. (69) for f, with the position of the saddle point given 
by Eq. (68). Eqs. (74,75) can be used to estimate the corrections to the saddle 

point result. We expect large corrections when n2 N 2&. Fig. 9 indicates 
the value of the saddle point w.s in the HERA region with Qe = 2 GeV and 
A = 230 MeV. The heavy diagonal line shows the upper boundary of the HERA 
kinematic region. The saddle point value ws is only small for small evolutions 
and for small x. 

So with a flat starting distribution we find that ws can be small enough that 
it makes sense only to retain the singular terms in the anomalous dimension. 
Unfortunately this aiso means that Eq. (38) is not satisfied and that we are 
beyond the critical value where finite order perturbation theory makes sense. We 
will discuss this breakdown of perturbation theory later. 

4.2.2 wo > ws 

In this case the singularity in the initial condition becomes the rightmost sin- 
gularity. As an example of this type of distribution, the D!. parametrization of 
MRS[28] has wo = l/2. If ws = l/2 we see from Fig. 9 that the condition ws > ws 
holds in most of the HERA kinematical region for x < 10-s. The singularity of 
the initial distribution at ws and the essential singularity of the kernel at w = 0 do 
not coincide. The singularity in the initial distribution is the rightmost dominat- 
ing singularity. Its contribution can easily be calculated by closing the contour 
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around the pole at wc and using the theorem of residues. Eq. (65) gives 

xf(x,t) = Aexp(U) 
i l did1 exp(z +ywo) f - / 2ni C' W--w0 exe (L +w)] (76) 

The contour C’ is to left of wo. The second integral can be evaluated approxi- 
mately for ws < ws. The result is 

xf(x,t) = Aexp(X,t) exp($ + yws) - $11(2&) + O(s) 
I 

(77) 

By examination of the exponents one sees that pole term always dominates. 
Indeed, the ratio R of the second term to the first is equal to 

R=-ws l 
WQ e 

exp [ - uoy(I - z)‘] 

R is small for w. = 0.5 and x < lo- 2. As a result of the neglect of the second 
term the inverse Mellin transform is dramatically simplified. We only need the 
anomalous dimension at the pole value w = ws fixed by the starting distribution! 
We will exploit this simplification in section 5. Preliminary indications from data 
are that the case wo N i holds experimentally. 

4.3 Validity of our approach 

The following limit on the value of w defines the region of validity of our approach, 

wr.-s(Q;)~~Wcl. (79) 

Only for values of w which satisfy Eq. (79) can we trust our calculation of the 
kernels in the GLAP equation. The purpose of this subsection is to give numerical 
estimates of the values of w and x for which we can apply our method. 

We shall now estimate the value of WL. We shall take as our defining equation 
for WL the condition that the GG component of the anomalous dimension matrix, 
(which we denote by r), equals i. 

-dWL) = hG@L) = ; WY 
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Eq. (80) is an exact result of the BFKL equation, which sums only the leading 
l/w singularities. We propose to use Eq. (80) as a limitation on the anomalous 
dimension in more general circumstances. 

Let us first review the status of Eq. (80) in the BFKL equation. In the 
solution of the BFKL equation the anomalous dimension y is defined implicitly 
by the equation, 

1 = 
&CA 
--X(Y) 

x(-f) = 2;;;) -$(r) - G,(l - 7) 

(81) 

(82) 

where the function $(z) = I”(z)/I’(z). Th e f unction x has a minimum at the 
symmetry point 7 = l/2. Around the symmetry point we have 

This leads to the result 
u; = 

4C,4a. h 2 

r 

(83) 

(84) 

The symmetry which gives the point y = i a special status is the scale invariance 
of the theory. To illustrate this result let us consider the cross section for the 
interaction of two spacelike virtual photons with virtualities Q* and Q& In the 
caSe Q* > Qz the moments of the cross section can be written in the form 

kf(Q*,Q$u) = $-exp(,$Q2) Ins) (85) 

while for Qz >> Q* we have 

WQ*,Qi;w) = &ev(b~~~g) In%). (86) 

The observation of BFKL was the fact that the matching between the two kin+ 
matic regions shown above should occur not only at Qs = Qi but also in the 
whole region Q* - Q& In this region 

as(Qi) iln- Q2 
4QZ) 

-t a(Qi) In - 
QZ (87) 
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So matching the functions in front of In Q’/Qi one obtains the relation, 

1 - -f(w) = -r(w) 638) 

which is equivalent to Eq. (80). The above argument depends only on the scale 
invariance of the theory and does not depend on the accuracy of our calculation 
for the anomalous dimension. To the extent that we can ignore scale breaking 
effects such as the running of the coupling it should be correct in any order of 
perturbative &CD. This is the reason why we want to use Eq.(80) to calculate 
the value of WL for the perturbative anomalous dimension as defined in section 
2.3. 

Fig. 10 shows the GG element of the anomalous dimension in various approx- 
imations. The GG component of the anomalous dimension has a perturbative 
expansion. 

y(w) = .Psc + a2Py + a3Py + a4Py + . . (89) 
The curves shown are the cumulative sum through to the specified order of per- 
turbation theory. The L and NL terms are included exactly. The NNL terms are 
from the GG element of Eq. (47) with r) = 1 and the NNNL term from Eq. (48). 
We have chosen the running coupling us = 0.2241 which is the value appropriate 
for Q’ = 10 GeVs with our choice of A. Also shown in Fig. 10 (marked as BFKL) 
is the value of y obtained from a solution of Eq. (81). 

This BFKL curve does a poor job of approximating the perturbative anoma- 
lous dimension. We have tried to estimate the corrections to this curve by im- 
posing momentum conservation on the kernel of the BFKL equation. We replace 
l/w in Eq. (81) by l/w - 1. This implements momentum conservation in the 
BFKL equation since the kernel of the equation now vanishes for w = 1. We can- 
not prove that is the correct answer but this procedure works quite well for the 
leading order anomalous dimension and we hope that it give a correct estimate of 
the scale of possible next order corrections to the BFKL equation. The result for 
the anomalous dimension after such a substitution is shown in Fig.10 marked as 
BFKL’. The BFKL’ curve matches the perturbative anomalous dimension much 
more closely. The value of wi obtained from this modification of Eq. (81) is 

4 cd;=-. 
1+w; 

In the example shown in Fig. 10 we see that the value of w; is equal to 0.37 which 
is smaller than ~1 x 0.60 that we get from leading order calculations. 
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In summary we conclude from Eq. (79) and Fig. 10 that we can apply our 
approach only for w > WL = 0.35. This means that if w,, is smaller than we = 
0.35 (the case of a flat initial distribution) we can trust our solution only for 
US > 0.35. This corresponds to I > 10m3 as can be seen from Fig. 9. In the case 
wo > WC = 0.35 (the case of a steep initial distribution) we have no restriction on 
the values of I and Q2 for applicability of our approach. 

The reduction of the solution to the GLAP evolution equation to a one di- 
mensional problem taking the pole w = wo in integral Eq. (65) is a separate issue. 
To justify this simplification we need 

uo > ws. (91) 

From Fig. 9 we conclude that such an approach is valid only for I < IO-* in the 
HERA kinematic region if ws = i. 

5 Deep inelastic structure functions at small z 

We shall consider only the deep inelastic structure function Fz which is given in 
terms of parton densities as 

W7Q2) = 21’ ${ (2) [CFF(~,QZ)~(f,QZ) + CFG(~,QZ)G(~,Qz~] 

+ +NS(5 Q’)ANd~, Qz)} (92) 

with 
4fu + fd 

@‘)= gf 1 f=fu+fd, (93) 

where C denotes the coefficient functions, fU and fd denote the number of quarks 
with Q = $ and Q = -i, and the non-singlet parton density A,vs is given in 
terms of the non-singlet combinations defined in Eqs. (14,15). 

‘NS = G + ;(Ts - TIS) + ;(Tm - &) E y $ gi _ ?f $ qii (94 t 1 t L 
For an even number of flavors (e’) = 5/18 and ANS = xi/:(&+; - qii). 

Figs. 11-14 show the predictions for Fz in leading (L), next-to-leading (NL) 
and next-to-next-to leading (NNL) d or er in the HERA range at four different 
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values of Q’ corresponding to the recent Zeus and Hl measurement of F2. The 
lower and upper sets of curves correspond to the MRS 0; and MRS 0: initial 
distributions evolved from Qi = 4 GeV’. Also shown are the recently published 
data of the Hl and Zeus collaborations[7,8] together with the systematic and 
statistical errors. The experimental errors are still large; the data are included 
on the plots to indicate in a concrete way the range that can be covered by 
experiments at HERA. A starting distribution steeper than l/z appears to be 
favoured by the data. 

6 Estimate of the gluon distribution function 
from F2 

6.1 Description of the method 

Using our analytic results we can also estimate the gluon distribution directly 
from the measurement of the Fz(z,Q*) structure function at HERA. In this 
subsection we will describe the method, using the lowest order formula as an 
illustration. The basic idea is that the Q* derivative of F2 is sensitive to the gluon 
distribution function[29]. Let us first defme the quantity E from the experimental 
data for FZ 

E(s, Q’) = “$‘;“. (95) 

Knowledge of E as a function of z and Q* is the input which we obtain from 
experiment. For four active flavours (e’) = 5/18. From Eq. (92) we have to 
lowest order in a, that 

Fz(z, Q’) = z(eZ)C(s,Q2) 

where we have ignored the non-singlet contribution which gives a small contribu- 
tion at small z. Therefore in lowest order and at small z we can identify C and 
E. 

The lowest order GLAP equation for C reads 

dVz,Q') = 2 jld”[P,FF(z)C(~)+P:G(z)G(~)]. 
dlnQ2 2r = z (97) 
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The information about the gluon is difficult to extract from this equation at 
normal z because it involves a weighted integral over the quark and gluon distri- 
bution functions. In moment space this means that we have to know the moments 
of C and dC/dln Q2 at all values of w. Taking moments of Eq. (97) we have that 

- = 2 [P;F(~)C(~) + P;G(~)G(~)]. dlnQ* 

If w were known to be very small we could neglect PzF term in lowest order 
because PtF(0) = 0. However the dominant value of w is unlikely to be that 
small and furthermore this simplification does not occur in higher orders. We 
therefore retain the term proportional to C in Eq. (98). 

Let us assume a simple form for the gluon distribution, 

zG(s) = A,z-, &(I) = AEZ-‘~ (99) 

where we > 0. Taking moments we have 

G(w) = &? WJ) = & 

If in performing the inverse Mellin transform we find that src is to the right of 
the saddle point, US, only a single value of w contributes as discussed in Section 
4. Eq. (98) assumes the simple form, 

d%) - = ~[ptFb’o)%) + P;G(~~)G(~)]. dlnQs 

The value of wo can be determined by the measured slope of Fz. 

(101) 

We therefore find that 

d%, Q’) 
dlnQs = 2 [p:“(~o)@, Q’) + P:G(~o)G(z, Q*)] (103) 

Since the GLAP kernels are known as a function of w, G can be determined. 
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n I ni- 

Table 2: Coefficients required to obtain gluon distribution, 

but 
The extension of the basic result to include higher orders is straightforward 
tedious. The details of the derivation are given in the next subsection. The 

full result is of the form 

dE(l, Q*) 
dlnQr = ‘PFF(~o)E((t, Q’) + PFG(w,,)G(z, Q’) (104) 

with ws given by Eq. (102) and E given by Eq. (95). Eq. (104) is the basis of our 
method for determining G. With our definitions of ‘F’ the measured gluon distri- 
bution G is in the MS scheme. The functions 7J have perturbative expansions. 

PFF(W) = a*p:F + cr:prF + cYfp;F + O(a;) 

PFG(w) = a,p,FG + cz:p;G + a;py + O(a:) 
(105) 

(106) 

We may tabulate contributions to PFF, PFG for plausible values of w and hence 
obtain the result for the gluon distribution. Table 2 gives the coefficients in the 
expansion for various w. 

Thus, for example taking ws = 0.5 and Q, = 0.2241, (the value appropriate 
for Q2 = 10 GeV*) we obtain keeping all terms up to oz. 

G(z, Q’) = 8.45d;;r$z) + O.l94E(z, Q’) (107) 
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The term proportional to r in Eq. (107) is not entirely negligible. This 
means that attempts to get the value of G(z, Q’) dropping this term are some 
what misleading[29]. There are also large changes between different orders in the 
perturbation theory. In fact in leading order the equivalent relation to Eq.(107) 
is 

G&Q*) = '6.0d;&$*) +0.604E(qO*) 

Examination of the different coefficients PFF, PFG given in Table 2 shows that 
the accuracy of the extraction of the value of G(z, Q’) from Eq. (104) cannot be 
very good. In fact for ws = 0.5 we estimate the theoretical error on the gluon 
distribution to be about 20%. The advantage of the method is that it allows us 
to extract the giuon distribution directly from the experimental observables, 

%, Q’), 
dhz(z,Q2) dE(x,QZ) 

dlnz ’ dinQZ 
(109) 

Our achievement is rather modest since we have assumed the I-* behaviour 
of initial structure function and only claim to determine the normalization con- 
stant in front. In addition the method requires knowledge of the strong coupling 
constant, o.. However since it gives a simple way to estimate the gluon distribu- 
tion directly from Fs it may be of interest to the experimental community. 

6.2 Technical details of our method 

The moment of the singlet part of Fs with overall factors removed is defined as 
E(w). In the MS scheme E is given by, 

&)=STC(u)F(u) 

where S is a projection operator onto the quark components 

(110) 

and C is the matrix of coefficient functions. C can be expanded in a power series 
in a 
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Thus for example the first order contribution to C may be written, 

Cl = 
( 

i7f-F cy 
CfF cy ) 

(113) 

The derivative of z with respect to Q2 is given by 

dE -= 
dlnQs 

ST dC dF 
-F + S=C- 
dlnQ2 dln Q2 (114) 

We can use the GLAP equation to eliminate the Q* derivative in the second term 
and use Eq.(llO) to eliminate C in favour of E and G, the gluon distribution in 
the MS bar scheme. The resultant equation is of the form, 

dE(w) 
- = pFf(w,~((w) + PFG(w)G(w) dlnQZ (115) 

where 

PFf = .p,y + a’(P,“” + C,FoP~” - l&y) 

+a3( P,“’ - CfFCfGPs” + C,““P,“’ 

+CrGPyF + ~oC:~C;~ - 2b&fF - b,C,FF) 
PfG = .P,“” + .‘(Pp + cypp - Po”“CfG + C,FOP,GG - C,Fo4) 

+aJ( PFG + cy Pp - PI”“C,Fo + C,“‘Po”” - P6”C,F” + CfGpy 

+cFGP:= - CfGPyC,FG+ 4c~FC;G-24cJG- b,CfG) 2 (116) 

Note that in our approximation, Eq.(38) we get no contribution in order u4. The 
MS coefficient functions are [26,27,30], 

CFF 1 (sl(w)+~+~+~)sI(w)--2(w)- w(gw+17) 2(w + l)(w + 2) 1 
CrG = 2TRf 

2-w w2+3u+4 
(w + 2)(w + 3) - (w + l)(w + 2)(w + 3)sr(w) 1 cFF = TRJCF 344 

2 242 (37 - 32)) + WI 

CFG = 2 TRp (g - Z<(2)) + O(1) (117) 
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where Si and Ss are expressable in terms of the first and second derivatives of 
the logarithm of gamma function(251. 

S,(w) = tii)(w + 1) - 11(l), SZ(Q) = ti’(l) - ?b’(w + 1) (118) 

Since the full CFF and CrG are known[30] it would be interesting to evaluate 
Eq. (116) using the full expression. In our numerical work we have used the form 
given in Eq. (117) and the form for Px given in Eq. (47). 

7 Conclusions. 

We have considered the solution to the GLAP equation in the space of moments. 
We hope that we have convinced the reader that the evolution of parton distri- 
butions using the moment space method is a numerically efficient technique. To 
evaluate a parton distribution at any value of Q2 requires only a single integral 
in the complex w plane. The small price one pays for this efficiency is the need 
to know the value of the starting distributions at all values of z, in order to 
construct the moments. 

An additional benefit is that the moment space technique gives analytic in- 
sight into the structure of the solution. This is most helpful in understanding 
the numerical results and assessing their limitations. We find that the result of 
the evolution to the small z region depends on the relative magnitudes of ws, 
the exponent in the starting distribution and ws the saddle point of the inverse 
Mellin transform. This evolution using perturbative anomalous dimensions will 
be reliable only when the effective value of w is larger than the critical value of 
WL. 

One of the most interesting results revealed by the analytic and numerical 
work is that the growth with I of the parton distributions is determined by 
the starting value ws, if ws > ws. We have exploited this simplification in our 
proposal to estimate the gluon distribution from F2. 

We are now in a position to answer the questions which we asked in the intro- 
duction. We see that the importance of the w = 0 singularities in the perturbative 
anomalous dimensions depends on the form of the initial distribution. If ws > ws 
the w = 0 singularities are never dominant, because w is pinned down at ws. On 
the other hand if uo is small, then we can have 1 >> ws > ws and the anomalous 
dimensions are dominated by the w = 0 singularities. 
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We also have attempted to find out when the anomalous dimension is well 
represented by a finite number of terms of its expansion in powers of o,. We have 
introduced a critical anomalous dimension and a corresponding critical value of 
w which we denote by WL. When the effective value of w is larger than WL the 
anomalous dimension is well represented by its perturbative expansion in a,. We 
have attempted to estimate a more reliable value of wn than is provided by the 
BFKL equation. 

The interpolation of data in the HERA range using the GLAP equation is only 
possible if w > WL. Examination of Fig. 9 shows that the evolution of a flat start- 
ing distribution does not make sense in the HERA range below z = 10T3. Thus 
for example the evolution of O;l distribution is not reliably extrapolated below 
10m3 using the GLAP equation. For a steeper distribution the GLAP equation 
is adequate as long as ws > WL. However if ws = wn the GLAP equation cannot 
be used to interpolate the data at HERA, because the anomalous dimension is 
no longer perturbative. 

We have found that the range of validity of the GLAP equation is severely cur- 
tailed at small z. This underscores the importance of finding a unified treatment 
of both logarithms of z and logarithms of Q*. 
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Figure 1: Evolution of Db quark singlet 

33 



.-__.- .__ NNNL 

--- NNL(d=l,v=l) 

Figure 2: Evolution of D'_ quark singlet 
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Figure 3: Evolution of 0; gluon distribution 
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Figure 4: Evolution of DI_ gluon distribution 
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Figure 5: Evolution of 0; singlet quark distribution with differing S,q 
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Figure 6: Evolution of J2b gluon starting from Cjz = 10 GeV’ 
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Figure 7: Evolution of D’_ gluon starting from 9: = 10 GeV* 
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Figure 8: Exact and approximate values of A+ and X- as a function of w 
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Figure 9: Contour plot showing fixed values of US in Q2, I plane 
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Figure 10: The GG anomalous dimension in various approximations. 
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Figure 11: Fz structure functions at Q* = 15 GeV* 
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Figure 12: FZ structure functions at &* = 30 GeV* 
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Figure 13: Fz structure functions at &* = 60 GeV* 
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Figure 14: FZ structure functions at Qz = 120 GeV* 
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