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Abstract

We investigate parton distributions at small x using moments of the Gribov-
Lipatov-Altarelli-Parisi (GLAP) evolution equation with respect to z. In this
representation the kernel of the GLAP equation contains singularities in the mo-
ment variable w at w = 0. We show that the importance of these singularities
at small ¢ depends on the form of the starting distributions. We examine the
range of z in which the GLAP equation is valid. The restrictions on the range of
z depend on the form of the starting distributions. We investigate whether the
GLAP equation can be used to interpolate data in the HERA region. Results are
given for the structure function F; at small z. A possible method of determining
the gluon distribution from F7; is discussed.
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1 Introduction

The low r region has received a lot of attention from the theoretical commu-
nity. In particular, there is an extensive literature(1,2,3] on the prediction of the
small z behaviour of structure functions using the Balitskii-Fadin-Kuraev-Lipatov
(BFKL) equation[4]. Qualitatively, the BFKL equation predicts a growth of z
distributions like

zf(z) = 2™ (1)

where f is the number density of any species of parton and z is the longitudinal
momentum fraction of the parton. In the leading approximation the exponent
wg, is found to be,

AL (@2 Ca=3. (2)

However attempts to get quantitative information[5} on low = behaviour at ac-
cessible values of Q? are thwarted by the sensitivity of the BFKL equation to
momentum scales below (Jo. In addition the correct treatment of sub-leading
terms in the BFKL equation is unknown. We expect these sub-leading terms to
be particularly important{3,6].

The small z region is now of special interest because there are new data[7,8].
The advent of the ep machine HERA has opened 2 new range in Q? and r for the
study of deep inelastic scattering (DIS). For the purpose of this paper we shall
consider the boundary of the region in which precision measurements of DIS can
be performed at HERA to be given by(9,10],

2
< 10° GeV?, Q% > 10 GeV?, 5 < 0.3 (3)
B

In this equation @? is the four-momentum squared of the virtual photon and zg
is Bjorken's z variable.

The present paper has a modest scope. Because of the difficulties of making
quantitative predictions with the BFKL equation, in this paper we shall abandon
any attempt to predict the behaviour of the structure function at small xz. We shall
instead try to address a few simple questions about structure functions at small
z using the Gribov-Lipatov-Altarelli-Parisi (GLAP) evolution equationf1l]. The
advantage of the GLAP equation is that the effects of energy-momentum conser-
vation and the running of the coupling constant can be included exactly, at least
through two loops. In addition, the theoretical framework for going beyond two
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loops is completely understood. Small = behaviour using the GLAP equation?
has previously been investigated in refs. {14,15]. It is appropriate to reconsider
these questions because of the new information[16] on anomalous dimensions at
small w. As emphasised in ref. [16], the small w singularities are especially im-
portant for the evolution of the singlet quark distribution, which is the dominant
term in F; measured at HERA. The questions which we pose are the following:-

1. Is there a range of z in which the evolution of the structure functions is
dominated by the small = singularities in the anomalous dimensions? In
the language of the Mellin Transform this corresponds to the consideration
of only the w = 0 singularities in the anomalous dimensions.

2. Given the presence of w = 0 singularities in the anomalous dimension and
the present knowledge of them, at what values of z and Q? does it make
sense to use the GLAP equation implemented with only the low order per-
turbative terms in the anomalous dimension series?

3. Does it make sense to interpolate the data on DIS throughout the HERA
range using only the GLAP evolution equation?

We shall answer these questions using a numerical program to invert the moments
of the distribution functions, supplemented by analytic considerations at small
w.

Although we shall abandon the BFKL equation as a source of quantitative
information we shall use it extensively as a source of inspiration. We will start
with a general form of the initial parton distributions suggested by the BFKL
equation.

zf(z) = 2. (4)
In addition we shall borrow the concept of a critical anomalous dimension. We
shall assume that the perturbative anomalous dimension (like the Lipatov anoma-
lous dimension) has a critical value, which implicitly defines w; at subleading
level. For w < wy, finite order perturbation theory in a, cannot be used to caicu-
late the anomalous dimension. We shall estimate this w;, by taking the critical

anomalous dimension to be one half

PSS(uy) = % (5)

?Following standard practice we shall refer to this equation as the GLAP equation, although
in moment space (which we use in this paper) it was also written down by Georgi and Politzer{12)]
and Gross and Wilczek[13].



We shall find that if wy > wr with wy defined as in Eq. (5), the use of the GLAP
equation is justified. In this region we can use the perturbative expansion of the
anomalous dimension. On the other hand if the dominant value of w is less than
wr, the perturbative anomalous dimension with a finite number of terms wiil be
inadequate.

The plan of the paper is as follows. The solution of the GLAP equation in
moment space is presented in section 2. In addition in section 2 we discuss the
form of the GLAP kernels at small w. The results of our full numerical solution
of the GLAP equation in various approximations are presented in section 3. The
method relies on the numerical evaluation of the inverse Mellin transform in the
complex w plane. This method was pioneered in ref. [17]. Our numerical program
is a descendant of the DFLM(18] program to invert the structure functions. The
calculation of the evolution using moments of the parton distributions followed
by numerical inversion is an efficient and accurate method of solving the GLAP
equation. Section 4 investigates the features of the solution at small z using
analytic methods. Section 5 presents results on the structure function F; in the
HERA region. A possible method to extract the gluon distribution function from
data on F3 is discussed in Section 6. Conclusions are presented in Section 7.

2 The GLAP equation and its solution

In this section we describe the evolution of the non-singlet and singlet distribu-
tions predicted by the GLAP equation. In the latter case the formalism will be
general enough to include three and four loop anomalous dimensions. This is
necessary because we want to include information on the small w behaviour of
the anomalous dimensions in three and four loops. It will also be useful if and
when the complete three and four loop anomalous dimensions are calculated.
The solution is derived as a perturbation about the lowest order result. To make
the notation more compact we introduce the following notation for the running
coupling,

Qy
a=z_ (6)
This coupling obeys the renormalization group equation,
g —~boa® — b1a® — baat — ba® + O(a®) (7)
dln Q? !



where in the M5 scheme we have{19],

2
b = (11-3f)/2

38
b = (102- ?f)/tl
2857 5033 325
R A TR
and f is the number of active flavours. Since 43 is unknown we will set it equal
to zero in our numerical work.

We will formulate the GLAP equation in the space of moments defined as
follows. For any function f(z), define the moments f(w) as

)18 (8)

f) = [ do 2 f(a). (9)

In the following we will use f as a generic notation for any parton distribution,
e.g. u,d, s,¢,b,t,G. Note that the moment variable w is chosen so that the w =0
moment measures the number of partons, and the w = 1 moment measures their
momentum. An alternative moment variable N defined such that N =w 4+ 1 is
often found in the literature. In moment space convolutions become products.
The GLAP evolution equations for the quark, antiquark and gluon densities are,

:‘11;(51 = [; {ann(w)Qk(w) + Pa (w)qk(w)} + P .-c(w)G(w)-
:clf;(z)z = [; { P (@)ae(w) + Prg (0)aulw) } + Pra()G(e)
ji(g)z = [; {Pan (W)Qk(w) + PGQ',,(U)@:(LG)} + PGG(w)G(w)‘ (]_0)

The GLAP kernels P are calculable as a perturbation series in a,. The solution
of these equations is given in the following subsections.

2.1 Non-singlet equation

In this subsection we present the solution of the non-singlet equation in two
loops{18]. The solution in this form is used in our numerical evolution program.
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The separation of Eq. (10) into singlet and non-singlet parts depends on the prop-
erties of the kernel. Using SU(f) flavour symmetry we may define the following
combinations of gg and ¢§ matrix elements,

qun = J;kP;; + quq

Pop = 5ikpq‘; + quq

x v 14
Pt = PVt pY (11)

In addition, because of charge conjugation invariance and SU( f) flavour symme-
try we have that,

Pf}i‘}; = P@aij

Prg, = Py

Pac = Ppc=Pg

FPgy = P = Pa,. (12)

The non-singlet combinations are found to have no w = 0 singularities{16).
This is easy to understand since the w = 0 singularities come from the exchange
of two gluons in the crossed channel, which cannot occur in non-singlet combina-
tions. In the absence of any special enhancement in three or four loops, we shall
perform the evolution of the non-singlet combinations in two loops only. At two
loop order, there is a non-zero contribution from P(;i and Pq%, but we have the
additional relation

P, = P (13)
which simplifies the treatment of the non-singiet pieces.

We now define the sums and differences of the quark and anti-quark distribu-
tions as follows,

F=qtd (14)
In terms of g* we can define the following non-singlet combinations
Vi = @
Ty = ut~dt
Te = ut+dt-2st
Tis = ut+d¥+st -3¢

T4 ut +dt + st + ¢t ~ 4t
Tss = ut +d¥ +s7 4t + b -5t (15)
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where u,d,s,c,b,t are the distributions of the various species of quarks. To
simplify the solution of the equation we introduce the variable ¢,

t= éln (%g-‘:’-;) (16)

Qo is the starting point of the evolution at which we specify the initial parton
distributions. We may expand the kernel of Eq. (10) in a series expansion in
powers of a,

P* = aPy 4 &*PE + O(a?). (17)
Using Eqs. (11,12,13) we find in two loop order,
i‘%’;}l = [Po(w) +a[Pr(w) - %Pg(w)]] Vi(w, )
= [Po(w) + aR'(w)]V;(w,t) (18)
dT.-S:,t) = [Po(w) +a[Pf(w) - %;-Po(w)]]ﬂ(w,t)
= [Po(w) + am(u)]:r.-(w, t) (19)
The solution to the non-singlet equations in two loops is®,
Viw,t) = [1 ~ (@ - ag) R-bf)"“’)] exp (Po(w)t) Vi(w, 0) (20)
Ti(w,t) = [l — (a ~ ap) mbiw)] exp (Po(w)t)T.-(w,O) (21)

Our treatment of flavour thresholds follows ref. [18]. For example, below the
threshold for bottom quark production, @* = m}, the distribution T34 evolves
as a singlet distribution. Above the bottom threshold it evolves according to
Eq. (21). The treatment of singlet evolution is described in the next section.

3Eqgs. (20,21) correct Eqs. (3.12) and (3.13) of ref.[18].



2.2 The singlet equation
The singlet Altarelli-Parisi equation is

d Z{w, Qz) - pFF  pFe ) ( 2(“:‘\?2) (22)
dln@Q? \ G(w,Q?*) j ~ \ PeF poc G(w, Q%)

where G(w) is the moment of the gluon distribution and T(w) is the singlet quark
combination,

Bw, Q%) = 3 (@, Q%) = Y [, Q%) + &i(w, Q)] (23)
7

/

The elements of the anomalous dimension matrix are given in terms of the kernels
defined in Eqs. (11,12) as,

PFF = pPY 4 f(P} + P3)
PFC¢ = 2fPg¢
= Fg,. (24)

To deal with the singlet equation it is convenient to introduce a matrix notation.
We denote matrices by symbols in boldface. Thus the singlet parton distributions

may be written as a vector F',
z
F= ( G ) (25)

We may expand the matrix kernel in Eq. (22) in powers of a
P = aPg + ¢*P; + a®P3 + a'P3 (26)

where Pg and P are known completely[22,23]. A partial result on P2 in the
small w limit has recently been presented{16]. Information on P3 near w = 0 can
be obtained from the kernel of the BFKL equation[24].

Using Eq. (16) we substitute the variable ¢ into the Eq. (22). In matrix
notation the singlet equation including terms up to four loop order becomes

dF{w,1) _

o [Ro(w) + aR1(w) + 6’Ra(w) + 6°Ra(w)| F(w, ) (27)



where

Ro = Po b

Ry = Pl—-ziR_o

R: = Pa-Ri- 2

Ry = Pa-%R,—%RI-%Rg. (28)

We now present the solution to the singlet equation, which is a generaliza-
tion of the solutions given in refs.[21,18]. The eigenvalues of the lowest order
anomalous dimension, Pg, are

1
Ae = 3[BT+ PPS £ /(PF - PFOY + 4PFC PET) (29)

To obtain a compact matrix solution of the singlet equation we define projection
operators in terms of A4,

Po = MM, +i_M.
1

M+ = 1\+ - A (Po - )‘-1)
1
M_ = -/\4_—_3:()\# — Po) (30)

where 1 is the unit matrix. The projection operators M., and M_ satisfy the
relations,

M+M+ = M+, M_M_. = M_
M,M_=M_M, =0, My +M_ =1. (31)

We shall find 2 solution of the full singlet equation as a perturbation about the
lowest order solution,

F(w,t) = U(a) (M4 exp(Ast) + M_ exp(A_t)) U~ (ao)F(w,0)  (32)

where ag is the value of the coupling constant at the starting value ¢ = 0. The
matrix U has the expansion

Ula) = 1 + aU; +a®*Uz + a’Us; (33)
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Substituting U = 1 in Eq. (32) we obtain the lowest order solution. Since by
assumption perturbation theory is valid at the starting point, @9, the inversion
of the matrix U may also be performed perturbatively,

U ag) = 1 — agUy — a}(Uz — U;?) = a5(Uz — U1 Uz — U3 Uy + Uy (34)

The explicit forms for the matrices U, Uz and Uy which satisfy Eq. (27) are
(G=123)

Uj= -+M,RjM, + e M-R{M.
-}%;M_Rgm_ - M. RjM. (35)

1
Ap=A_4lbo

with R] = R4, '2 =Rz2+ R1U; and R; =R3 +R2U; + R Uz,
Dropping terms of higher order in perturbation theory, Eq. (32) may be ex-
panded to give,

Flw,t) = { Y (Mk + aUiMy - acM U
k=4

+a*UsMy — aaoU M U; + (IS(I\/I;;Ul2 - M Uz)
+63U3Mk — azaoUszU], + aag(U1MkU12 - UM Uy)

+a3(M U Uz + MUz Uy — M Us — MkUls)) EXP(Akf)}F(w» 0}.(36)

This equation will be the basis of our numerical solution of the singlet evolution
equation,

2.3 Singlet anomalous dimensions at small w.

Let us consider the defining equation for moments

f@) = [ dezfiz) = [ dyexp(-on)laf @i v =In(i/z).  @37)

From Eq. (37) one can see that the variable w is conjugate to In(1/z) so that the
behaviour at low z is determined by small w. We are therefore led to consider
the behaviour of the anomalous dimensions at small w. In this limit we need only
consider the singlet distribution.



It is important to establish at the outset the size of w relative to the other
small parameter of the problem, «,. We shall consider the limit

a,(QF) € Voo (@) Sw < 1. (38)

Eq. (38) defines a regime in which we can expand perturbatively in both w and
a,. In this limit we may consistently include higher order terms. Thus if we
consider w ~ € and a, ~ ¢ we shall retain all terms of order ¢* and less. With
this value of w, we shall take into account the following terms in the anomalous

dimension series,
2 3 4

€ € € €
agfw, a,, ow, aw® Py
adfw, o Py (39)
alfw? Py
al/wt :P3

In setting up the limit in Eq. (38) we are thinking of a regime where a, ~ }

and w = 7. The choice of a, as the important parameter rather than the coupling
a, (¢f. Eq. (6)) is a statement about the size of the numerical coefficients which
will be justified by the detailed numerical work which follows. Since in this case
€ ~ 1 it is clear that the limit in Eq. (38) can only be of marginal validity.

We shall now discuss the value of P in the small w limit. The matrix elements
of the complete Pg are well known[20]. In our notation they can be written as,

3 1 1
BT o= CF(:?-—w-!-l T w42 —ZSl(w))
2 2 1
GF  __ s
F™ = CF(w w+1+w+2)
2 2 1
FG __ _
R~ = 2TRf(w+3 w+2 +w+1)
11 1 2 1 1 2Trf
GG __ a1 _ _ _
F§S = 2Ca(5+ 3 SOt oE oo Si(w)) )
where v 1
Siw) =30 5 = plw+1) - p(D) (41)
=1
The Casimir operators of colour SU(3) are defined by,
4 1
Ca=3, Cr= 3 Ta= 7 (42)
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The expansion of Eq. (40) through to order w? as required by Eq.(39) is easily
derived. Here we only give the first two terms to show the structure of the matrix
in the small w limit.

2 0 0 1 0 8Tnf
Po(w) — :’-( Cr C. ) +§( —9Ck —llCAi4TRf ) + O(w) (43)

Note that the quark distribution is fed only by the upper two elements which
occur at order « and higher.

In the next order (in the M5 scheme), the full result for P, defined in Eq. (26)
is known[22,23].

PFF PFG'
PI(‘-"’) = ( P;GF PiG'G ) (44)
In the limit w — 0 we have
40Ck T, Caq. . 13 317
BT TR e - S — a2 + ) - S Cr/Tr
40C, [T,
PFé -9-%-‘3 + fTr(2CF - 1:;—40A + gC(Q)CA)
poF — CECAZHMONTR | cage0(a) - 4¢(3) - 9)
3637 31 8
+CF'CA('E'6'8_ - ‘5'{(2) —6¢(3)) + CrfTr(1 + §C(2))
! Qw
61 . 172 . 1643 22
+fTa(- 5 Cr+ > Ca)+ CA('E -3 (2) - 8¢(3)). (45)

Note that all four entries contain a term of order 1 /w and that the lower compo-
nents are negative in the small w limit. For four flavours the matrix becomes,

1/ 118 267 ~316 —57.7
Pilw) = J( ~7.85 —27.1 ) + ( 452 98.9 ) +Ow). (46)

The full expression in moment space which we use in our numerical program
can be found in ref. [22]. Note the alternating sign in Eq. (46). Comparison
of the small w expansion with the full expression shows that the former is only
trustworthy for w < 0.3.
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In the next order (in the M5 scheme)} and in the limit w — 0 we have[16]
224C 4 Trf Cr Ca
27w? —Cré —Can

where § and 1 are as yet uncalculated constants. We stress that the magnitude
of the constants ¢ and 1 is completely unknown. However for § = 1,5 = 1
the momentum sum rule is satisfied by the 1/w? term alone. The choice of the
coefficients of 6 and 5 in Eq. (47) represents a first guess about their size. Lastly

we have[24]
Patw) - 2O (0 0 ) (48)

Pa(w) — (47)

wt Cr Cau

This compietes the information we need to perform our numerical analysis con-
sistently in the limit Eq. (38) retaining terms of order €.

Since in practice we will be interested in w not too close to zero the behaviour
of the anomalous dimensions at the point w = 1 is also interesting. For the first
two orders, for which we have compiete information, the results are,

2( =2Cr fTn

Po(w) — 3 ( 2Cr —fTr ) (49)

Py(w) — _1_ 4Cp(14Cp ~47C, + 26fTr)  fTR(7T4CFr + 35C4) (50)
1 54 \ —4Cp(14Cr — 47Cy + 26fTr) —fTr(74Cp + 35C,)

Both matrices have the structure required by momentum conservation. Compar-
ison of Eq. (49) and Eq. (43) shows that the anomalous dimensions vary rapidly
between w = 0 and w = 1.

In practice since Py and P; are known completely the full expressions will be
used in place of their expansions in w. Note that the full inclusion of Py and P,
without P3 and Pj3 is the standard two loop expression as used in most next-to-
leading programs. This is correct to order 2. Thus one of the new features of
this paper is the inclusion of P2 and Pj;.

3 Numerical program

The z space distributions can be reconstructed by considering the inverse Mellin
transform.

2(z,8) = 5= [ do 2™ f(w,2) (51)
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The contour of integration C is taken to the right of all singularities. The
functions f(w,t) are taken to be the solutions to the GLAP equation given in
Eqgs. (20,21,36).

Our program is available on request!. It is a generalization of the DFLM
program{18]. In addition to the inclusion of three and four loop effects, we have
corrected minor errors in the numerical evaluation of the two loop anomalous
dimension matrix and implemented a numerical procedure to choose the contour
of integration.

We now report on the results for the evolution of the singlet and gluon dis-
tribution functions in the proton. We first define the starting distributions from
which we evolve. The valence and sea quark distributions are,

Va(z) = ulz) - afz) +d(z) ~ d(z) (52)
S(z) = 2@(z)+d(z)+3(z)+e(z)+...). (53)

The singlet quark distribution is thus given by,

Z(z) = Vig(z) + S(z) = ; lai(z) + &(2))] (54)

The initial parton densities are the MRS distributions taken from Martin, Roberts
and Stirling[28]. We have considered the two distributions Df and D’ which have
differing behaviour at small z. In their notation the two distribution functions
have the following forms at the starting value QZ,

29(z,Q5) = Agz/\’(l —z)"(1 + v,T) (53)
zVya(z, Qg) = Auwz"(1—-2)?(l + Cud\/; + YudT) (56)
25(z,Q5) = A2™(1 —2)"(1 +esVE + 752). (57)

The coefficients at Q% =4 GeV? taken from ref. [28] are given in Table 1.

The results of the evolution are presented in four approximations. The first
is the leading order evolution(L), the second is the complete next to leading
order evolution (NL}, the third contains the partial results on the next-to-next-
to leading evolution (NNL) and the last contaids the partial results on four loop
anomalous dimension (NNNL) derived from the BFKL equation. In the NNL
approximation we have taken n = 1 and § = 1 in the three loop anomalous

“From ellis@fnalv.fnal.gov on the Internet.
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Dy ] D, [ D | D

2 GeV] D 4 10 4 10
X 0.0 | -0.146 | 0.5 | -0.489
% 0.0 | -0.146 | 10.6 | 5.74
Ay 2.78 2.04 }0.338 | 0.466
7% 5.3 | 543 | 53 | 556
N 0.42 | 0.421 | 0.42 | 0.422
2 3.92 | 404 | 392 | 4.03
€ud 2.31 2.20 2.59 | 2.43

Yud 4.43 2.98 421 | 2.74
Aud 1.456 [ 1.61 |[1.422 ] 1.58

— 100 | 1012 | 7.4 | 7.65
As 2.03 | 1.75 |0.083 | 0.133
s 847 | 828 | 158 | 102
es 298 | -2.76 | 8.57 | 4.88

Ag 0.0 |-0.0711 | -0.5 |-0.489

Table 1: Distribution parameters at the starting value Qq

dimension, Eq.(47). In all four approximations the value of the strong coupling
a, was taken to be 0.2644 at the starting value, Q2 = 4 GeV?, leading to the
following couplings at Mz,

as,(Mz) =0.1171 1 loop,L
a,(Mz} =0.1123 2 loop,NL
a,(Mz) =0.1119 3 loop, NNL and NNNL (58)

Fig. 1 shows the evolution of the singlet quark D} distribution in these four
approximations starting from Q3 = 4 GeV?. The heavy line shows the starting
distribution in the following figures. We have checked that our numerical solution
of the GLAP equation is close to the parameterization of MRS in the NL case,
(as it should be!). The corrections to the singlet distribution T are substantial
in the HERA region. This is because the NL approximation introduces 1/w
terms, cf. Eq. (45) and the NNL approximation introduces 1/w? terms. The
NNL and NNNL curves are so close that they are hard to distinguish especially
at Q2 = 10 GeV>.
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Fig 2 shows the corresponding curves starting from the steeper D' distribu-
tion. The effect of the higher order terms is less significant because of the presence
of a pole at w = 1/2 in the starting distribution. The effective value of w is not -
very small. Note also that the z-dependence of £ at small z is unchanged by
the evolution. We will give an analytic understanding of these results in the next
section. In this the NNL and NNNL curves overlap and cannot be distinguished
on the plot.

Fig. 3 shows the curve for the gluon distribution starting from Dj. The NL
terms are much less significant and tend to decrease the growth of the gluon
distribution, cf. Eqs. (43,45). The NNL terms are dependent on our assumption
about the values of § and 7, ¢f. Eqs. (47). The NNNL terms become important
at small z because of the 1/w* pole. Fig. 4 shows the corresponding results
for the steeper D’ distribution. The influence of the higher order corrections is
much smaller. The numerical influence of the unknown parameters 4 and 5 can
be tested by varying them. Fig. 5 shows ¥ calculated in NNL order with two
different assumptions about the value of § and 5. The result for ¥ is relatively
insensitive to these parameters. Their influence on the gluon distribution can be
extracted by comparing the NL and NNL curves in Fig. 3.

We have also investigated how much the restriction to higher Q2 will decrease
the size of the higher order corrections. We have considered a starting value of
Q3% = 10 GeV?. At such a starting value one is well into the deep inelastic region.
In Figs. 6 and 7 we show evolution starting for Q% = 10 GeV®. The starting
distributions at @3 = 10 GeV? have been taken as the NL evolved shape of
the D} and D’ distributions at this Q% The strong coupling, a, was taken
to be 0.2241 at the starting value, Q3 = 10 GeV?. The parameterization of
the shape of these distributions is given in Table 1. The heavy line shows the
starting distribution. The corrections to the D} distribution at Q% = 100 GeV?
are still quite large even in the restricted HERA range. Note that in the NL
approximation the evolution back to Q? = 4 GeV? reproduces the original MRS
starting distributions.
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4 Analytic estimates

4.1 Solution at small w

In this section we attempt to explain the main features of our numerical results
using simple analytic estimates. In the small w limit the eigenvalues of Py are

ZCA 4CF' TRf

A+z—:—+,\c, Ao = -~ 30, (59)
where 11Cs  2Taf (2C
A R F

A= -2+ (C,; 1) (60)

Note that ). is numerically significant. The accuracy of Eq. {59) in the relevant
range of w is illustrated in Fig. 8, which shows the exact value of A from Eq. (29)
compared with the small w expansion given by Eq. (59). One can see from Fig. §
that AL > A_ at small w.

The projection operator M, defined in Eq. (30) is given by,

{0 0 2TRf { Cr Ca 2
M+—(gf 1) o ( p _CF)+O(w) (61)

where p = $202 + G2 — ZE and M. =1 - M,.

Since for small w the eigenvalue A, dominates, we may drop the A_ term in
Eq. (36) and reduce the problem to a single eigenvalue. Hence we can neglect
the contribution of the M. term in the general solution, Eq. (32). We will use
this approximation in the following to simplify our analytic work. In lowest order

this corresponds to writing
F(w,t) = M, exp(At)F(w,0) (62)

As a result of the simplification of retaining only the dominant eigenvalue the
two singlet GLAP equations are effectively reduced to one. The singlet quark
distribution is expressible in terms of the gluon distribution. This is a general
result and the relationship between ¥ and G can be derived in terms of the
anomalous dimension matrix.
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If we further specialise to the limit defined by Eq. (38) we may write a simple
formula for the relationship between ¥ and G.

9 = gl - D (-1 ok o)

+10£ + a( 2 _ 76—9 + %) + 565 + 0(53)]wG(w, Q%)(63)
mea) el s, oy,

+102 4 a(“:lf 4t 923) + 56—- + 0(63)J Glw, Q) (64)

where ¢ is defined in the sense of Eq. (39). Eqgs. (63,64) can be derived directly
from the GLAP evolution equation assuming that G and I are proportional.

4.2 Analytic results at small z

The z behaviour of the distribution functions is obtained by performing the
inverse Mellin transform. For simple starting distributions this can be evaluated
analytically at small z. This exercise allows us to find the dominant values of w
in the integral and hence test the validity of Eq. (38). At small z the integrals
we have to evaluate involve the starting distribution and simple powers of w and
are of the form,

zf(z,t) = = / dw z™ exp (Ar(w)t) f(w,0)

= / dw exp (A+( )t + wy)f(w,O) (65)

2w

where y = —Inz and the contour is to the right of all singularities of the starting
value in the w representation, f(w,0).

Eq. (65) allows us to investigate the influence of the initial condition on the
behaviour of the structure function. Let us assume a simple starting distribution
_of the form.

A

w—wo'

zf(z,0) = Az™, f(w,0) =

We now evaluate the integral Eq. (65) with the starting distribution in Eq. (66)
in two different situations.

(66)
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4.2.1 wy < wsg

In the first instance let us assume that wq is less than the wg, the value at which
the integrand has a saddle point. At large y and ¢ the saddle point of the integrand
in Eq. (65) is determined by the condition,

%{wy +Ap(wit} =0 (67)

w=we

In the limit w — 0 the anomalous dimension A4 is given by Eq. (59) so that the
saddle point value, ws is found to be,

f -
ws =115 F= 204t (68)

If wo < ws we can estimate the integral Eq. (65) using the method of steepest

descent to give
of(a) = |z exp (21/4F) f(ws,0). (69)
wst

In the particular case that the initial distribution has a 1/z behaviour, f(w,0) =
1/w we can calculate all integrals exactly without recourse to the method of
steepest descents. The modified Bessel function of the first kind has the integral
representation[25] '

I(2y/fy) = 511;; [ E(”—E) exp (5 + yw). (70)

w W

This allows us to give an exact analytic evaluation of any integral involving a
polynomial in w, such as the expressions in Eq. (63,64). Let us define the average
value of 1/w".

1 dw 1 t dw t
()= [ Sz (;”“’)/fc:exp (;”‘*’) (1)

()~ Sl

wrl W Io(2y/ay)
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Eq. (72) holds for both positive and negative n, ({..(z) = I,(z)). Thus

La(2yh) -
10(2\/_

The asymptotic expansion of the modified Bessel functions for large z is[25]

,—--\
-..._,-

2 __
I(z) = ﬁgu - o) (74)
so that
ﬂ2
@) = wBll- = +0()l (75)

Using the asymptotic expansion in Eg. (74) and retaining only the first term, gives
the saddle point result, Eq. (69) for f, with the position of the saddle point given
by Eq. (68). Egs. (74,75) can be used to estimate the corrections to the saddle

point result. We expect large corrections when n? ~ 2\/;-;. Fig. 9 indicates
the value of the saddle point wg in the HERA region with Qo = 2 GeV and
A = 230 MeV. The heavy diagonal line shows the upper boundary of the HERA
kinematic region. The saddle point value wg is only small for small evolutions
and for small z.

So with a flat starting distribution we find that wg can be small enough that
it makes sense only to retain the singular terms in the anomalous dimension.
Unfortunately this also means that Eq. (38) is not satisfied and that we are
beyond the critical value where finite order perturbation theory makes sense. We
will discuss this breakdown of perturbation theory later.

4.2.2 wo> ws

In this case the singularity in the initial condition becomes the rightmost sin-
gularity. As an example of this type of distribution, the D’ parametrization of
MRS(28] has wp = 1/2. If wg = 1/2 we see from Fig. 9 that the condition wo > ws
holds in most of the HERA kinematical region for < 1072, The singularity of
the initial distribution at wg and the essential singularity of the kernel at w = 0 do
not coincide. The singularity in the initial distribution is the rightmost dominat-
ing singularity. Its contribution can easily be calculated by closing the contour
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around the pole at wy and using the theorem of residues. Eq. (65) gives

i 1
zf(z,t) = Aexp(A.t) [exp(-w; + ywo) + %’[' dw

exp (-E:- -+ wy)] (76)

W — o

The contour C' is to left of wp. The second integral can be evaluated approxi-
mately for ws < wg. The result is

24(s,8) = Aexp () exp( 4 ) - Z2yB) + 0S| 1

By examination of the exponents one sees that pole term always dominates.
Indeed, the ratio R of the second term to the first is equal to

R = —E—j-—-—\/i—;__ﬁ—s_g exp [ - woy(l - %3)2] (78)

R is small for wp = 0.5 and z < 10~%. As a result of the neglect of the second
term the inverse Mellin transform is dramatically simplified. We only need the
anomalous dimension at the pole value w = wy fixed by the starting distribution!
We will exploit this simplification in section 5. Preliminary indications from data
are that the case wo ~ 3 holds experimentally.

4.3 Validity of our approach

The following limit on the value of w defines the region of validity of our approach,

wr ~ a,(Q?,) < VO,(Q%) fwkl. (79)

Only for values of w which satisfy Eq. (79) can we trust our calculation of the
kerneis in the GLAP equation. The purpose of this subsection is to give numerical
estimates of the values of w and z for which we can apply cur method.

We shall now estimate the value of wy. We shall take as our defining equation
for wy, the condition that the GG component of the anomalous dimension matrix,
(which we denote by 7), equals 1.

Y(wr) = Peglwe) = (80)

[N ]
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Eq. (80) is an exact result of the BFKL equation, which sums only the leading
1/w singularities. We propose to use Eq. (80) as a limitation on the anomalous
dimension in more general circumstances.

Let us first review the status of Eq. (80} in the BFKL equation. In the
solution of the BFKL equation the anomalous dimension -y is defined implicitly
by the equation,

1 = a’CA —=x(7) (81)

x(7) 21/)(1) —¢(r) - (1l —7) (82)

where the function ¢¥(z) = [Y(z)/[(z). The function x has a minimum at the
symmetry point v = 1/2. Around the symmetry point we have

1
x(7) = 41n2 + 14¢(3) (v - §)2 + ... (83)
This leads to the result ACrc. In?
W = __A_c:_n_ (84)

The symmetry which gives the point v = % a special status is the scale invariance
of the theory. To illustrate this result let us consider the cross section for the
interaction of two spacelike virtual photons with virtualities Q? and QZ. In the
case Q? > Q2 the moments of the cross section can be written in the form

2

M@ Q) = grems (i 0 S (89
while for Q2 > Q? we have

Q" Q) = g e (0 30 ) o9

The observation of BFKL was the fact that the matching between the two kine-
matic regions shown above should occur not only at Q% = @2 but also in the
whole region Q? ~ Q2. In this region

“1 “’Eg‘;; a(Q)anz (87)
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So matching the functions in front of ln Q%/@Q? ore obtains the relation,

1 = y(w) = v(w) (88)

which is equivalent to Eq. (80). The above argument depends only on the scale
invariance of the theory and does not depend on the accuracy of our calculation
for the anomalous dimension. To the extent that we can ignore scale breaking
effects such as the running of the coupling it should be correct in any order of
perturbative QCD. This is the reason why we want to use Eq.(80) to calculate
the value of wy for the perturbative anomalous dimension as defined in section
2.3. _

Fig. 10 shows the GG element of the anomalous dimension in various approx-
imations. The GG component of the anomalous dimension has a perturbative
expansion.

7((4))=aPOGG-I-QZPFG-}-aaPzGG+G4P;?G+... (89)

The curves shown are the cumulative sum through to the specified order of per-
turbation theory. The L and NL terms are included exactly. The NNL terms are
from the GG element of Eq. (47) with = 1 and the NNNL term from Eq. (48).
We have chosen the running coupling o, = 0.2241 which is the value appropriate
for Q* = 10 GeV? with our choice of A. Also shown in Fig. 10 (marked as BFKL)
is the value of v obtained from a solution of Eq. (81).

This BFKL curve does a poor job of approximating the perturbative anoma-
lous dimension. We have tried to estimate the corrections to this curve by im-
posing momentum conservation on the kernel of the BFKL equation. We replace
1/w in Eq. (81} by 1/w — 1. This implements momentum conservation in the
BFKL equation since the kernel of the equation now vanishes for w = 1. We can-
not prove that is the correct answer but this procedure works quite well for the
leading order anomalous dimension and we hope that it give a correct estimate of
the scale of possible next order corrections to the BFKL equation. The result for
the anomalous dimension after such a substitution is shown in Fig.10 marked as
BFKL'. The BFKL’ curve matches the perturbative anomalous dimension much
more closely. The value of w} obtained from this modification of Eq. (81) is

. _ W
wL= 0"
1+‘-IJL

(90)

In the example shown in Fig. 10 we see that the value of w} is equal to 0.37 which
is smaller than w) = 0.60 that we get from leading order calculations.
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In summary we conclude from Eq. (79) and Fig. 10 that we can apply our
approach only for w > wy = 0.35. This means that if wp is smaller than wy =
0.35 (the case of a flat initial distribution) we can trust our solution only for
ws > 0.35. This corresponds to £ > 10~3 as can be seen from Fig. 9. In the case
wo > wr = 0.35 (the case of a steep initial distribution) we have no restriction on
the values of 2 and Q? for applicability of our approach.

The reduction of the solution to the GLAP evolution equation to a one di-
mensional problem taking the pole w = wy in integral Eq. (65) is a separate issue.
To justify this simplification we need

wo > Ws. (91)
From Fig. 9 we conclude that such an approach is valid only for z < 102 in the
HERA kinematic region if wy = 1.
5 Deep inelastic structure functions at small z

We shall consider only the deep inelastic structure function F, which is given in
terms of parton densities as

' ldz T z
F#QY) = z [ Z{{(e) [67= @)=, Q) + ¢z, 006(Z, @)
1
+ 50V @)Ans(Z,QN) (92)
with st f
2\ u d _
<e>——9f-'—, f=fut fa, (93)
where C' denotes the coefficient functions, f, and f; denote the number of quarks
with @ = % and Q = 1, and the non-singlet parton density Ayg is given in

terms of the non-singlet cornbmatlons defined in Eqs. (14,15).

1 2fa & 2fu '
ANS = T3 + §(Tg T15) + (T24 - T35) ;d + - f Z d ) (94)
i=1 =1

For an even number of flavors (e?) = 5/18 and Ans = {_/f(qu,- - qf).
Figs. 11-14 show the predictions for F; in leading (L), next—to—leadlng (NL)

and next-to-next-to leading (NNL) order in the HERA range at four different
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values of Q? corresponding to the recent Zeus and H1 measurement of F,. The
lower and upper sets of curves correspond to the MRS D) and MRS D’ initial
distributions evolved from Q2 = 4 GeV?. Also shown are the recently published
data of the H1 and Zeus collaborations{7,8] together with the systematic and
statistical errors. The experimental errors are still large; the data are included
on the plots to indicate in a concrete way the range that can be covered by
experiments at HERA. A starting distribution steeper than 1/x appears to be
favoured by the data.

6 Estimate of the gluon distribution function
from Fj

6.1 Description of the method

Using our analytic results we can also estimate the gluon distribution directly
from the measurement of the Fy(z,@?) structure function at HERA. In this
subsection we will describe the method, using the lowest order formula as an
illustration. The basic idea is that the Q? derivative of F; is sensitive to the gluon
distribution function[29]. Let us first define the quantity & from the experimental

data for £

F?(I, QL‘)
z{e*)
Knowledge of T as a function of z and @? is the input which we obtain from

experiment. For four active flavours (e?} = 5/18. From Eq. (92) we have to
lowest order in o, that

f(.t, Qz) = (95)

Fi(z,Q%) = z(¢*) £(z,Q%) (96)

where we have ignored the non-singlet contribution which gives a small contribu-
tion at small . Therefore in lowest order and at small z we can identify ¥ and
T '

The lowest order GLAP equation for ¥ reads

2 a, f!dz T
s =2 [ ZIFr@EE) + A e, (57)
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The information about the gluon is difficult to extract from this equation at
normal r because it involves a weighted integral over the quark and gluon distri-
bution functions. In moment space this means that we have to know the moments
of ¥ and dZ/dIn Q? at all values of w. Taking moments of Eq. (97) we have that

dB(w a,
T = 2[R (IS() + BFO()G)] (98)
If w were known to be very small we could neglect PFF term in lowest order
because Py F(0) = 0. However the dominant value of w is unlikely to be that
small and furthermore this simplification does not occur in higher orders. We
therefore retain the term proportional to T in Eq. (98).

Let us assume a simple form for the gluon distribution,

zG(z) = Ajz™*, zX(z) = Agz™ (99)
where wq > 0. Taking moments we have

AQ‘ ; E(W) - AE

w — Wy & = g

Gw) = (100)
If in performing the inverse Mellin transform we find that wp is to the right of
the saddle point, ws, only a single value of w contributes as discussed in Section
4. Eq. (98) assumes the simple form,

dS(w) _ a

Ting7 = 52 | (o) Z() + PYO(w0)Glw)]. (101)

The value of wy can be determined by the measured slope of F.

dinE
“o = dl(1/z) (102)
We therefore find that
d3(z,Q? , _
‘_d(ngz = e (BEF () D@, Q%) + PEO(wn)Gla @) (109)

Since the GLAP kernels are known as a function of w, G can be determined.
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po. | piT [ Pt [ ®C | piC [ pE°
~0.04079 | 2.812 | 36.81 | .3832 | 6.521 | 8L.23 |
-0.07729 | 9977 | 8.622 | .3497 | 2.512 | 18.70
-1104 | 4453 | 3.586 [ .3220 | 1.345 | 7.652
-.1406 | .1909 | 1.877 | .2987 | .8471 | 3.944
-.1685 | 0.04707 | 1.109 | .2789 | .5976 | 2.298
-.1944 | -0.04609 | .7023 | .2619 | .4610 | 1.441
-2186 | -.1120 | .4631 | .2470 | .3824 | .9458
-2413 | -.1647 | .3114 | .2340 | .3360 | .6390
-.2627 | -.2075 | .2095 | .2225 | .3086 | .4385
-2829 | -.2444 |.1381 | .2122 | .2929 | .3010

ol o] o] en| ] s bl ]| €

Table 2: Coefficients required to obtain gluon distribution.

The extension of the basic result to include higher orders is straightforward
but tedious. The details of the derivation are given in the next subsection. The
full result is of the form

dZ(z, Q%)

dlnQ? P (w0)E(z, Q%) + PFC(wo)G(z, Q%) (104)

with wo given by Eq. (102) and T given by Eq. (95). Eq. (104) is the basis of our
method for determining G. With our definitions of P the measured gluon distri-
bution G is in the M'S scheme. The functions P have perturbative expansions.

PFPw) = apff +a2pfF + o2pfF + 0(a?) (105)
PFOw) = aupE® + afpfC + a2pfC + O(at) (106)

We may tabulate contributions to PFF PFE for plausible values of w and hence
obtain the result for the gluon distribution. Table 2 gives the coefficients in the
expansion for various w.

Thus, for example taking wy = 0.5 and a, = 0.2241, (the value appropriate
for Q% = 10 GeV?) we obtain keeping all terms up to o2,

d¥(z, Q%

G(z, Q%) = 8.45 10 Q2

+0.194%(z, Q%) (107)
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The term proportional to ¥ in Eq. (107) is not entirely negligible. This
means that attempts to get the value of G{(z,Q?) dropping this term are some-
what misleading({29]. There are also large changes between different orders in the
perturbation theory. In fact in leading order the equivalent relation to Eq.(107)
is

2 dZ(z, Q%) = 2
G(z,Q°) = 16.0—m2— + 0.604XZ(z, @) (108)
Examination of the different coefficients PFF, PFG given in Table 2 shows that
the accuracy of the extraction of the value of G(z,Q?) from Eq. (104) cannot be
very good. In fact for wy = 0.5 we estimate the theoretical error on the gluon
distribution to be about 20%. The advantage of the method is that it allows us
to extract the gluon distribution directly from the experimental observables,

- din¥(z, Q%) d¥(z, Q?
2z Q%, dl(::z )’ dEan)

(109)

Qur achievement is rather modest since we have assumed the = behaviour
of initial structure function and only claim to determine the normalization con-
stant in front. In addition the method requires knowledge of the strong coupling
constant, «,. However since it gives a simple way to estimate the gluon distribu-
tion directly from F; it may be of interest to the experimental community.

6.2 Technical details of our method

The moment of the singlet part of F; with overall factors removed is defined as
Y(w). In the MS scheme X is given by,

T(w) = STC(w)F(w) (110)

where S is a projection operator onto the quark components

5=(;) (111)

and C is the matrix of coefficient functions. C can be expanded in a power series
ina

C=1+aC; +a*Ca2 +a°C3z +... (112)
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Thus for example the first order contribution to C may be written,
CF‘F CFG
Ci = ( : p 113
CIGF CIG'G' ( )
The derivative of ¥ with respect to Q2 is given by

dx dC dF
=87 T
dng =" dnor TS Cing

(114)

We can use the GLAP equation to eliminate the @Q? derivative in the second term
and use Eq.(110) to eliminate ¥ in favour of ¥ and G, the gluon distribution in
the M3 bar scheme. The resultant equation is of the form,

dZ{w) _ = :
im0 = PFFw)Z(w) + PFC(w)G(w) (115)

where

-pFF = aPOFF + QZ(PIFF + CiF'GPOGF - bOCIFF)

+a*(PfF - CfFCIePEF + CfOPST

+CIOPEF + boCfFCIF ~ 20CfF — 6:CTF)

aP§C +aX(Pf® + OITRY® — BT O + CFORFS - CF%%)
+a*(Pf¢ + CfFPfC - PFFCf® + cfF Pf¢ ~ PEFCfY + CcfopFe
+CFOPFC — CFEPFFCC + bCFFCFC — 200CF° — 5,C7C)  (126)

Note that in our approximation, Eq.(38) we get no contribution in order a*. The
MS coefficient functions are [26,27,30],

3 1 7
o = CF[(Sl(w) 2t a -11- Tt o)) = S~ 2(5(4!-)‘?)4(:*-)2)]
FG _ o 2-w _ w? + 3w + 4 w
G . 2TRf[(w +2)(w+3) (wHDw+2(w+ 3)51( )J
cfr = TBERR _Zew) +ow)
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where S| and S; are expressable in terms of the first and second derivatives of
the logarithm of gamma function{25].

Si(w) = Y(w+ 1) = (1), Sz(w) = ¥'(1) — ¢'{w + 1) (118)

Since the full Cf¥ and Cf% are known(30] it would be interesting to evaluate
Eq. (116) using the full expression. In our numerical work we have used the form
given in Eq. (117) and the form for P2 given in Eq. (47).

7 Conclusions.

We have considered the solution to the GLAP equation in the space of moments.
We hope that we have convinced the reader that the evolution of parton distri-
butions using the moment space method is a numerically efficient technique. To
evaluate a parton distribution at any value of Q? requires only a single integral
in the complex w plane. The small price one pays for this efficiency is the need
to know the value of the starting distributions at all values of z, in order to
construct the moments.

An additional benefit is that the moment space technique gives analytic in-
sight into the structure of the solution. This is most helpful in understanding
the numerical resuits and assessing their limitations. We find that the result of
the evolution to the small z region depends on the relative magnitudes of wy,
the exponent in the starting distribution and ws the saddle point of the inverse
Mellin transform. This evolution using perturbative anomalous dimensions will
be reliable only when the effective value of w is larger than the critical value of
wr,.

One of the most interesting results revealed by the analytic and numerical
work is that the growth with z of the parton distributions is determined by
the starting value wo, if wp > ws. We have exploited this simplification in our
proposal to estimate the gluon distribution from F,.

We are now in a position to answer the questions which we asked in the intro-
duction. We see that the importance of the w = 0 singularities in the perturbative
anomalous dimensions depends on the form of the initial distribution. If wo > wg
the w = 0 singularities are never dominant, because w is pinned down at wy. On
the other hand if wy is small, then we can have 1 > wg > wp and the anomalous
dimensions are dominated by the w = 0 singularities.
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We also have attempted to find out when the anomalous dimension is well
represented by a finite number of terms of its expansion in powers of o,. We have
introduced a critical anomalous dimension and a corresponding critical value of
w which we denote by w;. When the effective value of w is larger than wy the
anomalous dimension is well represented by its perturbative expansion in o,. We
have attempted to estimate a more reliable value of wy, than is provided by the
BFKL equation.

The interpolation of data in the HERA range using the GLAP equation is only
possible if w > wyp. Examination of Fig. 9 shows that the evolution of a flat start-
ing distribution does not make sense in the HERA range below z = 1073, Thus
for example the evolution of Dj distribution is not reliably extrapolated below
10~3 using the GLAP equation. For a steeper distribution the GLAP equation
is adequate as long as wq > wy,. However if wg = wy, the GLAP equation cannot
be used to interpolate the data at HERA, because the anomalous dimension is
no longer perturbative.

We have found that the range of validity of the GLAP equation is severely cur-
tailed at small z. This underscores the importance of finding a unified treatment
of both logarithms of z and logarithms of Q2.
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Figure 1: Evolution of Dy quark singlet
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