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Abstract 

We use the solutions to the recursion relations for double-off-shell fermion 

currents to compute h&city amplitudes for n-photon scattering and electron- 

positron annihilation to photons in the massless limit of QED. The form of 

these solutions is simple enough to allow all of the integrations to be performed 

explicitly. For n-photon scattering, we find that unless n = 4, the amplitudes 

for the h&city configurations (+++. . +) and (-++ . . +) vanish to one- 

loop order. 
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I. INTRODUCTION 

Much progress has been made during the last decade or so in the evaluation of tree-level 

processes containing multiple gauge bosom!, both in QCD and the high energy limit of the 

Weinberg-Salam-Glaehow model. Three major techniques have aided this progress. First, 

the multispinor representation of a gauge field [l-6] allows us to treat the gauge bosons 

in a theory on equal footing with the fermions by replacing the single Lorentz index on 

the polarization vectors with a pair of spinor indices. With the proper choice of basis, the 

gauge boson polarizations factorize on these indices, allowing long strings of Dirac matrices 

to be written as several short ones. Second, the color factorization of QCD amplitudes [7] 

helps to organize the many terms in a calculation into gauge-invariant sub-groups, each 

proportional to a different color structure. A final ingredient is the introduction of currents 

and the recursion relations that they satisfy [S-11]. The currents are defined to be the sum 

of all tree graphs containing exactly n gauge bosons (and possibly a single scalar or spinor 

line) with one off-shell particle. These currents satisfy relatively simple recursion relations, 

allowing expressions involving many gauge bosons to be built from those involving fewer. 

Tree-level amplitudes may be obtained from the currents either by putting the off-shell 

particle on shell, or by combining two or more currents using the vertices of the theory in 

question. Of note is the existence of explicit closed-form solutions for these currents for 

certain special helicity configurations. 

Recently, recursion relations for currents with two off-shell particles have been obtained 

[10,12,13]. With the presence of a second off-shell particle, the possibility of forming a one- 

loop amplitude from tree-level currents exists. The purpose of this paper is to pursue that 

idea in the case of massless QED. Application of this method to QCD will be discussed 

elsewhere [14]. 

The processes we will consider are 

Y/‘YY...Y (1) 

and 
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e+e- +yf...y. (2) 

The Feynman diagrams describing both (1) and (2) may be built from a double-off-shell 

fermion current: that is, a fermion line which radiates R photons all possible ways and has 

both ends off shell. We have been able to solve the recursion relation for this current in the 

case of like-helicity photons. As a result, we can compute the one-loop amplitudes for (1) 

involving the helicity configurations (+ + + ‘. . + +) and (- + YI-. . + +). For (2) we are 

able to obtain amplitudes for either helicity of the fermion line, with n like-helicity photons. 

The processes listed above are especially well-suited to be starting points in an investiga- 

tion of how to extend the use of recursive calculations from tree level to one-loop processes. 

In the indicated helicity configurations, both processes vanish at tree level. As a consequence, 

both processes must be ultraviolet and infrared finite at the one-loop level. Furthermore, 

it follows from the vanishing of (2) at tree level for like-helicity photons, plus the Cutkosky 

rules, that these particular one-loop diagrams do not possess any cuts. Thus, the results 

for these diagrams should be relatively simple. One might hope that the steps required to 

reach this simple endpoint could be made similarly simple, in contrast to the intermediate 

steps involved in a conventional calculation which contain logarithmic terms that ultimately 

cancel. Indeed, we shall see that this is the case. 

Our discussion is organized as follows. In Sec. II, we review the double-off-shell fermion 

currents of Ref. [12]. These currents form the basis of the loop amplitudes presented in this 

paper. Of special note is the solution for the current containing n like-helicity photons. We 

examine the one-loop n-photon scattering amplitude in Sec. III. Because of the favorable 

form of the double-off-shell fermion current appearing in this amplitude, we are able to 

evaluate the integrals exactly for arbitrary n. We find the surprising result that all of the 

photon-photon scattering amplitudes vanish for n >_ 5 in the two helicity configurations we 

are able to evaluate. The one-loop contribution to (2) is the topic of Sec. IV. Once again, 

we find that the relatively simple form of the double-off-shell fermion current allows us to 

perform all of the integrations exactly, producing a fairly compact result for arbitrary n. We 
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conclude with a few closing remarks in Sec. V. 

II. THE DOUBLE-OFF-SHELL FERMION CURRENTS 

In this section we will review the recursion relations and solutions for the double-off-shell 

fermion currents presented in Ref. [12]. A summary of our conventions and notation for the 

Weyl-van der Waerden spinors used in this discussion may be found in Ref. Ill]. 

We define the n-particle double off-shell fermion current to consist of the sum of all tree 

graphs containing exactly n photons attached to a single fermion line all possible ways. Both 

ends of the fermion line are off shell. All momenta are directed inward. We will denote the 

momenta of the photons by kr, ka, . , k,. The off-shell positron has momentum P, while 

the momentum of the off-shell electron is Q. Momentum conservation relates the momenta 

via 

P+kl + kz+...+k,+ QzP+n(l,n) + Q= 0 (3) 

Since the helicity of the fermion is conserved in the massless limit, we have two different 

(but related) double off-shell fermion currents. Let us denote the left-handed current by 

@,,k(P; 1,. . , n; Q) and the right-handed current by \zl’“(?J; 1,. . . , n; Q). Because of (3), 

the argument lists are overspecified. When convenient, we will suppress either ‘P or Q. 

Because of the way we have defined these currents, the order of the photon arguments is 

irrelevant. 

In Ref. [12] we find that the left-handed double-off-shell fermion current satisfies the 

following recursion relation: 

Q&P; 1,. . . , n) =-eJZ C ~Q(P; 1,. . , n-1)&r) P+4, n)lp4 

P(l...n) (n-l)! [P+K(l, n)]z (4) 

The notation P(l . n) indicates a sum over all permutations of the n photons. The zero- 

photon current is just a propagator for the fermion: 

iQ6 ‘P.&P; Q) = + = &2 
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(This is one expression in which it is important to include both P and Q in the argument 

list to avoid ambiguity.) 

The right-handed current satisfies the recursion relation 

W(P;l,...,n) =-e&i C LW(P; 1,). . ,n-l)‘&l) [p+Z(l,n)] 
Bo 

P(l...n) (n-l)! [P+K(l,n)]* . 6) 

It is closely related to the left-handed current via the crossing relation 

d+( P; 1 , . . . ,n; Q) = (-l)“+‘&“$(Q; 1,. , n; P). (7) 

In Ref. [12], we were able to obtain a solution for the left-handed current in the case 

where all of the photons have the same helicity. In this situation, the photon polarizations 

may be written as [8] 

e,b(j+) = ua(g)Q(kj) 
(k d 

for the jth photon. In Eq. (8) g is an arbitrary null momentum, partially reflecting the 

gauge freedom associated with QED. The choice of g does not affect any physics result. In 

general, a different value of g may be chosen for each photon; however, the choice of Eq. (8) 

leads to the useful property 

Pee,, = 0 (9) 

for any pair of positive helicity polarization spinors. 

The solution to the recursion relation given in Eq. (4) using the gauge choice (8) was 

found in Ref. [12] to be 

u”(g)@,&P; 1+, . , n+) = 

-i(-edi)” C ~“(d[P + 4n)los n 
p(Ln) (911?~ 7 49) pww~ 13. ” >~h(d, (10) 

where 

kjpB[?j + it&j-l)]‘+’ 
=@-r(p,l,...*j) = [P+rc(l,j-1)]2[p+n(l,j)]2' 
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Note that the zero-photon current (5) does not fit into the form (10). Also, although the 

combination u”(g)eab takes a convenient form, we have not been able to find a similarly 

compact expression for qk,k itself. Usually, this is not a serious problem. 

From the left-handed current givenin (10) and the crossing relation (7), it is not hard 

to see that 

P”(P; 1+ , . . I nfMs) = 

-i(-eJz)n C paaua(g) &qg)n,yP, 1,. ,j)u,(,), 
p(l...n) (gll* ’ ’ 9 nlg) j=l 02) 

III. PHOTON-PHOTON SCATTERING 

We begin the application of the double-off-shell current to loop processes with a discus- 

sion of photon-photon scattering. Photon-photon interactions have long been of theoretical 

interest, the first complete. computation for four photons being performed by Karplus and 

Neuman [15]. Helicity-projected amplitudes, including finite mass effects for the electron, 

were first obtained by Costantini, De Tollis, and Pistoni [16]. Gastmans and Wu [4] use this 

process to illustrate the use of spinor helicity methods at loop level, presenting the limit 

where the electron mass may be ignored. In this section, we will not only reproduce the 

massless limit results, but we will present amplitudes involving more than four photons, 

albeit for a restricted set of helicity configurations. 

A. Preliminaries 

Figure 1 illustrates how to utilize the double-off-shell fermion current in the amplitude 

for the self-interaction of n photons. If we sum over all permutations of the n photons, we 

overcount by a factor of n (the n cyclic permutations of the photons do not produce distinct 

Feynman diagrams, as may be seen by shifting’the loop momentum). For our purposes, it 

is convenient circumvent this problem by excluding the nth photon from the permutation 
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sum, rather than including it and dividing by n. Applying the QED Feynman rules to Fig. 1 

we obtain 

d(l....,n,=-j$$, A(1,. . ,n) (13) 

A(1,. . , n) = -ie Tr [ /(+?(P; 1,. . . , n-l)]. (14) 

In order to write (14) in spinor form, we break the trace into left- and right-handed contri- 

butions by inserting 1 = $(l + ^fs) + $,(I - 7s). Thus, we obtain 

A(l,...,n) = -aehp(n)~,a(P; 1,. ,n-1) + E,&t)PQ(P; 1,. . , n-l)]. (15) 

Equation (15) is valid for any combination of photon helicities. We need only know the 

expressions for the currents appearing on the right hand side. We now focus on the two 

amplitudes that our knowledge of Q(P; l+, . , a+) allows us to obtain. Our first option is 

to use Eq. (8) for all of the photons and so compute d(l+, , n+). Note that this gauge 

choice leaves 9 as an arbitrary parameter which must cancel in the final result. Our other 

option is to write 

for the nth photon, and set 9 = k. in the other polarizations [S]. This gives us access to 

d(l+, . , (n-l)+, n-). The indicated gauge choice has the virtue of satisfying not only (9), 

but also 

eyj+)&a(n-) = 0. (17) 

The arbitrary null vector h should not appear in the final result. We will concentrate 

our discussion on d(l+ , . . , n+). The computation of d(l+, . . , (n-l)+, n-) proceeds in 

essentially the same manner. 



B. The momentum integral 

It would seem that all we have to do at this stage is to insert the expressions for the 

polarizations and the currents and perform the momentum integration. However, this is not 

quite correct. A aaYve application of the solutions to the recursion relations to (15) yields 

“-l uP(g)kjp~[~+R(1,j)]‘h7(g) 

(18) 

the factor of 2 resulting from equal contributions by the left- and right-handed fermion 

lines. If this expression were inserted into (13), power counting would indicate a superficial 

quadratic divergence. Actually, the divergence is only logarithmic, as the coefficient of the 

highest power of P is proportional to (g g), which vanishes. Since it is well-known that 

the amplitude for light-by-light scattering is finite, any divergences apparently present were 

introduced in the intermediate steps. In order to cancel these divergences and obtain the 

correct finite result,, we must first examine their origin. The process of reducing the double- 

off-shell current into the form given in (10) involves repeated use of identities such as 

kj = [P + ~(lqj)] - [P + ~(l,j-l)] (19) 

to convert the expression inside the permutation sum from one with a single term and n 

propagators into one with n terms and two propagators. The two terms on the right hand 

side of (19) each contain one more power of P than the one on the right hand side. If 

the integral corresponding to the left hand side of (19) is finite, then the combination of 

the two integrals on the right is also finite. However, it is possible that both terms on 

the right diverge when considered separately, a finite quantity being obtained only from 

their combination. In that case, to obtain the correct result from the right hand side, we 

must treat the two pieces in an identical manner. In particular, shifts of the integration 

momentum in one term relative to the other term are forbidden. Because of the way the 

“fragments” from (19) recombine to form the final result (10) [see the discussion following 

8 



Eq. (29)], a straightforward integration of (18) involves such forbidden shifts. Thus, simply 

regulating the integral obtained from (18) does not give the correct result. 

Instead, we must turn to the recursion relation to let us “back-up” one stage in the 

reduction. That is, we use (4) and (6) to write the integrand (15) in terms of the (n-2)- 

photon current instead of the (a-1)-photon current. The result of this procedure is 

A(l+, . . ,n+) = (-eJZ)” 
iib(kpl)[?j + ~(1, n-l)]%~(g) 

(n-1 g)[P+n(l,n-1)]2 

(20) 

Power counting of Eq. (20) implies a possible linear divergence; however, the coefficients 

of both the linearly and logarithmically divergent pieces are proportional to (g g) and thus 

vanish. The expression is actually convergent. 

Since (20) converges, we may impose a regulator on it, and then carry out the reduction 

to two denominators on the regulated expression. We should like to employ dimensional 

regularization, and so must consider how to continue (20) to d dimensions. Fortunately, 

it is sufficient to extend only the internal momentum P, leaving the external momenta 

and polarization vectors in 4 dimensions [17]. It his not possible to translate an object like 

Pha into d dimensions, as it corresponds to i(l+y~)~i(l-7s). However, note that every 

occurrence of PAa m (20) may be rewritten as a Lorentz dot product with a polarization, 

forming P . e(e+) with various values of f. We may extend this form to d dimensions. 

To facilitate a quick return to multispinor notation, we decompose the n-dimensional 

vector P into a 4-dimensional piece P and a (a-4)dimensional piece m (181, 

P=P+m. (21) 

Only the usual 4 space-time components of P are non-zero, while only the “extra” com- 

ponents of m are non-zero. Hence, m dotted into any 4 dimensional vector vanishes. VVe 

set m* = -p*, and adopt p as the radial integration variable in the (n-$)-dimensional 

subspace. The integration measure appearing in (13) is replaced by 
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J y$ _ J”’ --E(47+ /=JdpZ (pc’)-‘-‘~ 
(2n)4 l-(1 - 6) 0 (2‘4 

Since every occurrence of ‘P in the numerator of (20) is as P. c(F), the continuation to 

d dimensions simply implies 

P . t(e+) -+ P. @+). (23) 

Furthermore, the denominators simply pick up an extra term, -$. Thus, we obtain 

fq+,. , n+) = (-ev/z,” c 2ii&,)Pu,(g) ii&,-l)[F + E(1, “-l)]“%s(g) 

‘P(l,..“-l) ML. ‘. 1~-2l!A(~ 9) (n-1 gw + 42 “-1)1*-P*) 
n-2 up(g)kjpB[P+~:(l,j)l~7i7,1(g) 

’ jg {[P+K(l,j-1)]2-~2}{[P+lE(1, j)12-p2}’ (24) 

We now attempt to reduce (24) to a form containing just two propagators, like (18). 

We begin by multiplying by (n-2 n-l)/(n-2 n-1) and writing 

+2 +-l)lg j) = (n-2 g)(n-1 j) - (n-1 db-2 j) (25) 

(the Schouten identity) to obtain 

h(l+, . (n+) = 

2(-eF2)” c 
ii&p%,(g) 

p(l,..,-l) WY.. .7 n-lld(n 9) 

-2(-&q” c 
a,(k,)P”u,(g) Qk,-l)[P + R(l,n-l)]~%g(g) 

ql...“-,) (911~~ *. 9-‘&e 9) IIP + 4L “-112-P21 
n-3 (n-2 j) ~~("j)[~+~(l,j)lB7u7(g) 

’ ,s (n-2 n-1) {[P+n(l, j-1)]2-p2}{[P+t+1, j)]2-p2}’ (26) 

We now focus on the following portion of the first term: 

(27) 

By clever application of identities similar to (19), we may rewrite No as 
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J.4 = [P + f~(l,n-l)]~ u6(g)kja# + E(1, j)]“u,(g) 

- [P+ fc(1, j)]‘d(g)[P + ~(lrn--1)]6~(F + E(1, j-1)]“7u,(g) 

+ [P+ n(l, j-1)12u6(g)[P + n(l,n-1)]6i[P + E(l,j)]“pup(g) 

- d(g)[P + fc(l, n-l)]6$P(j+l, n-2)kjpb[P + R(1, j)]87u7(g). (28) 

If the regulator were not present, the quadratic factors appearing in the first three terms 

of (28) would each produce terms containing only two propagators. Since this is precisely 

what we want to occur, we add and subtract the appropriate terms. Thus, when we com- 

bine (28) with (26) we obtain 

A(lf, . . , n+) = 

2(-eti)” C 
G&(k”)Pqg) 

P(l...n-1) (!74L. ” tn-wn 9) 
n-2 u6(g)Icj6B[p+ii:(l,j)]B7u7(g) 

{[P + n(1, n-l)]+*} 

j=l (n-2 n-1) {[P+~(l,j-1)]2-~2}{[P+fc(l,j)]2-~2} 

-2,u2(-e&Q” C 
lq(k,)P%,(g) 1 

P(l...n-1) (gll ,...,n-Ilg)(n g){[P+n(l,n-1)]2-p2} 
n-2 U6(g)~j6~~~y(j+1,~-l)~,(g) 

’ ,g {[P+~(l,j-1)]2-p2}{[P+~(l, j)12-p2}’ (29) 

The sum on j appearing in the second term of (29) may be performed trivially, with only 

the endpoint terms surviving. One of the resultant terms vanishes when the permutation 
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sum is performed; the other term may be used to extend the sum appearing in the first term 

to include j = n-l. This converts the first term into precisely the result that we would 

have obtained by regulating (18) directly. The third and fourth terms of (29) may be shown 

to cancel by writing out the implicit sum K(j+l, n-2) = kj+r + . . + kn-s and using the 

permutation sum to relabel the successive terms thus generated [ll]. The fifth term does 

not combine with anything else: it represents the effect of imposing the regulator prior to 

reducing the integrand. 

Thus, the integrals we must consider are 

dr m -2(-efi)” c n2 / $$ ,g,:~,(“!n~$,,~ 9) 
P(l...n-1) j=l 

U6(g)lcjsa[tS+ic:(l,j)18’.7(9) 
’ {[P+n(l, j-1)]2-~2}{[P+n(l,j)]2-~2)’ 

generated from the first two terms of (29), and 

AZ s 2(-eJ”‘“,,,~~,;~~~/ $$ (gl:“,‘k’)P”auu’g) P2 
I . . 9 n-l]g)(n 9) {[P + n(L n-1)]%‘] 

U6(g)~jjs4~:47(j+l,~--1)117(g) 
’ {[P+K(l, j-l)]2-~2}{[P++, j)]*-$}’ 

from the last term of (29). 

(30) 

(31) 

We will begin with Ar since it is the simplest. A single Feynman parameter is sufficient 

to combine the denominators, producing 

Al = (1 - x){[P+ K(1, j-l)]’ - p2} + x{[P + rc(1, j)]’ -F*}. (32) 

Expanding and rearranging this expression, we find that 

Ar = [P + tc(1, j-l) + rkj]’ - ~1~. (33) 

We now apply the momentum shift implied by (33) to the numerator of (30). Since the 

combination 

u6(9)kj6ii[B+~.(1,j)]‘7u7(g) --f (1 -JJ)‘J6(.9)~j6j$~~(g) 

= (1 - I) Icjz (g g) = 0, (34) 
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appears, we conclude that the first integral vanishes. 

We now turn to the second integral, which contains the entire result. Introducing three 

Feynman parameters produces the denominator 

A2 = z{[P+k(l, j-1)12-p2} + y{[P+n(l, j)12-p2} f z{[P+rc(l, n-l)]*-@*}, (35) 

which may be rewritten as 

As = [P + (I-r)n(l, j-l) + ykj - rk,]* + K* - p2 

where 

K* E ~(1 - z)[n(l, j-l) + k,]’ + 2YZkj. [K(l, j-1) + k,] 

(36) 

(37) 

Shifting the momentum in the manner implied by (36) and doing the integral over the four 

space-time dimensions yields 

d(l+, . , nf) = 

dr 6(1-r-y-z) &(k,)[(l--z)k(l, j-l) + ykj]‘“u,(g) 

E(4ir)C xr(l-e) 0 J - dp2 b2)-’ 
K2--2’ (38) 

Because an explicit factor of e appears in the numerator of (38), any pieces of the integral 

over p2 which are finite as e --t 0 are irrelevant. Thus, we write 

J - 2 (P*)-’ 0 dp K2-p* 
= -f + O(1). (3% 

Inserting (39) into (38) and performing the now trivial Feynman parameter integrals yields 

A( l+, . , n+) 
“-* 216(g)kj64~~47(j+1,.-1)21,(g) 

=&(-eJz)” ’ c (g]l,...,n-l]g)(ng) P(l...n-l) j=l 

x ii;l(kn)[it(j+ll n-l) - il(l,j-l)]%,(g). (40) 

All that remains at this stage is to eliminate the occurrences of the gauge momentum g. 
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C. Gauge invariance of the result 

We begin by multiplying the expression in (40) by (n-l l)/(n-1 1) and applying the 

Schouten identity to obtain 

d(l+, . , n+) = 
’ 

P(l...n-I) j=l 

x &(k,)[i2(j+l, n-l) - R(1, j-l)]‘OLup(g) 

+ &(-em c c n-2 d(g~$+(j+i, n-l)u,(kl) 

P(l...n-1) j=l 9.. . > n-lll)(n 9) 

x &(lc,)[it(j+l, n-l) - E(1, j-l)]““n=(g) (41) 

We take advantage of the permutation sum to cyclicly relabel the momenta in the second 

term as follows: 

l-+n--l+n-2-+...+2+1 (42) 

This converts the second term into 

d2= &(-4’ C 
V6(g)(k,-1)64it47(1,n-2)21,(k”-l) _ 

P(l,,,n-l) (g]n-1, 1,2,. . . , n-2]n-l)(n 9) U’(kn)i2ao(1* n-2)va(g) 

“-’ u6(!?)(kj-1)6+i14y(j, n-2)u,(k,-1) 
P(l...n-1) j&Z W-l3 If&. ,7G+z-l)(n 9) 
X fi&,)[E(j,n-2) -En-~ - E(1, j-2)]“%,(g). (43) 

A little bit of algebra allows us to rewrite this as 

’ P(l...n-I) j=l 

X Eh(IC,)[R(j+l,n-1) - Z-(1, j-l)]““na(g) 

+ &C-d? C C “-3 u6(g)~ja@(j+l, n-2)u,(k+,) _ 

P(l...n-l) j=l (n-111,. . ,n-lls)(n 9) 4k&b]‘%(g) 

- &(-dV C 2k,-1 . kn(g n-l)(n-l n)’ 

p(l ,..“- l) (+ll1,2,. . , n-2ln-l)(n 9)’ (44) 

The first term of (44) precisely cancels dr [i.e. the first term of (41)). We apply the useful 

identity [19] 
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(P q)“-’ 

P(L) (Pll,. .: 1 mlq) = $plilq) 
(45) 

to see that the last term vanishes for n > 3. (We already know that the amplitude vanishes 

for n 5 3, and so lose no information by assuming that n > 3.) Consequently, the entire 

amplitude may be written aa 

d(l+,...,n+) = -&(-eJi’” TX-3 u6(!?)kj6+E.47(j+1, ?l-2)(k”-l),~?ii?(k,) C c 
(ll%.. .,n-lll)(n g) 

(46) 
P(l...n-l) j=l 

for n 2 4. 

In order to eliminate the last occurrence of the gauge momentum g, it is necessary to 

re-order the terms a bit. To this end, we introduce the identity 

n-2 

E47(j+ltfZ-2)U~(kn-l) = (=~+,~‘Rt7(j+l,e)u,(kj)~ n-1) (gjilil,. (47) 

Eq. (47) is most easily proven by performing the sum on e appearing on the right hand side, 

noting that 

(1 2) (2 3) 0 3) 
w12) + (21p13) = (w13)’ 

(48) 

a result that follows from the Schouten identity. Application of (47) to (46) produces 

d(l+,...,n+) = 

n-3 “-’ u6(g)kjaqi24’(j+1,e)U,(kj)UP(kj)(rcn-i)p~~iiB(k,) 

(112,. .eIj)(jle+l,. *. ,n-lll)(n g) (49) 
P(l...n-1) j=l t=j+l 

Let us examine the denominator of (49), which may be written 

A=(jle+l,e+:! ,..., n-1,1,2 ,..., e\j)(ng). (50) 

Since j < e, we may express (50) in the form 

A = (jlf!+l,P+2,. . . , n-l, 1,2,. . ,j-llj)(jlj+l,. , elj)(n g). (51) 

Because the numerator of (49) is symmetric under permutations of {j+l, . , P}, we may 

use (45) to deduce that the permutation sum causes every term in the sum over e to vanish 

except for e = j+l. Thus, 
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d(l+,...,n+) = 
U6(g)kj6+i~~~z1y(kj) iij(kn)$f!~Up(kj) 

, n-1,1,2,. .j-llj)(jlj+llj)(n 9) 

m-3 U6(g)kjjs4~~~lU7(kj+2) G~(k”)E~!,U@(kj) =-&‘-A)” c c 
(3 3+2)(112,3,...,n-iil)(n 9) 3 (52) 

P(l...n-1) j=l 

where we have done some minor rearranging to obtain the last line. 

The denominator appearing in (52) is very nearly symmetric under cyclic permutations of 

IL%..., n-l}. Let us take advantage of this near-cyclic symmetry to relabel the successive 

terms appearing in the sum over j so that kj always becomes kl, kj+, becomes kz, and kj+2 

becomes k3. The only portion of (52) which has a form which varies after such relabeling is 

k{!,. In the j = 1 term, k!!!, remains unchanged. For j = 2, x:8_, becomes kt!,, and so on 

through j = n - 3, in which kt!, becomes I$. Hence, we see that (52) is equivalent to 

d(I+, . , n+) = -&(-eJzY C 
ud(g)k&$u7(k3) ~rj(k,)iZB0(3,n-1)~p(kl) 

(1 3)(G’,3,. . , n-lll)(n g) 
(53) 

P(l...n-1) 

Momentum conservation for the scattering amplitude implies that 

K(3,rP-l) = -kl - k2 -k,. 

Utilizing this relation plus a little more spinor algebra yields 

A(lf,...,nf) =&+@ c (9 w l)‘(n 2)’ 

p(*...“-1) (113,. ” I n-1lW 9)’ 
(55) 

Because the numerator of (55) is symmetric under permutations of {3,. , n-l}, we may 

conclude from (45) that the permutation sum will cause the amplitude to vanish unless 

n = 4: 

d(l+, ..,nf) =o, n 1 5. (W 

Thus, we obtain the extraordinary result that the only non-vanishing n-photon amplitude 

in the case of like helicities is the set of n = 4 box diagrams. We will comment further on 

this result in section III D. 
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Although we have finished the derivation for n > 4, we still have not proven that the 

amplitude is independent of g when n = 4. We shall now do so. For n = 4, Eq. (55) reads 

&+,2+,3+,4+) = j$ C (9 I)<2 ‘)‘14 2)’ 

P(123) (1 3H3 I)(4 9) 
(57) 

Since the denominator is symmetric under the interchange 1 et 3, we may easily reduce the 

sum over all permutations of {1,2,3} to a sum over only cyclic permutations of {1,2,3} : 

d(1+,2+,3+,4+) = ie4 C (4 2)’ 
67r2 C(123) i1 3)t3 1)(4 d 

[(g I)(2 I)‘+ (9 3)(2 3)*1. (58) 

Momentum conservation and the Weyl equation allows us to rewrite the combination in the 

square brackets as 

~“(d(h + kda&(k2) = -u=(g)kqodt+(kz) 

= (4 g)(2 4)‘. 

Inserting (59) into (58) produces the g-independent expression 

d(l+,2+,3+,4+) = j$ c t4 2)‘(2 4)’ 
C(123) 0 3)(3 1) 

(59) 

Further judicious use of momentum conservation and the Weyl equation reveals that the 

three terms of (60) are actually equal to each other. Thus, with a bit more algebra, we may 

write 

ie4 (1 2)‘(3 4)’ 
All+, 2+,3+,4+) = 2*2 l1 2j13 4j ,, 

In this form it is clear that the square of the amplitude is constant (up to an unobservable 

phase), and agrees with the result for a massless fermion loop given by G&mans and Wu 

141. 

A similar calculation for d(l+, . . , (n - l)+, n-1 yields 

d(l+ 2+ 3+ 4-J = $tl 2)‘(2 3)‘(3 I) * 3 , 
2x2 (1 2)(2 3)(3 1)’ ’ (624 

d(l+ , . . ) (n-l)+,n-) = 0, ?I> 5. (62b) 
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D. Discussion 

We now turn to a brief discussion of the surprising results in Eqs. (56) and (62b). Our 

first observation is that we do not expect all of the photon-photon helicity amplitudes to 

vanish for n 1 5, unless n is odd (Furry’s theorem). When there are two or more negative 

helicity photons present in the diagram, it is possible to cut the diagram in such a way so as 

to make the factors corresponding to each piece non-zero. Then, the Cutkosky rules imply 

the existence of a non-vanishing imaginary part, unless some special symmetry intervenes. 

For example, in the case of the photon-photon amplitudes for odd n, charge conjugation 

symmetry forces such a cancellation. For even n, no such symmetry is obvious. 

Our second observation is that this result is confined to the one-loop order of perturbation 

theory. Indeed, it is easy to see that the two-loop correction to d(l+, . , S+) does not vanish. 

The two types of diagrams contributing to this amplitude are illustrated in Fig. 2. Of the 

possible diagrams containing two fermion loops, only those which contain three photons on 

each loop survive (Fig. 2a). Furry’s theorem causes any diagram with an odd number of 

photons attached to a loop to vanish. Hence, either the photons are divided equally, as in 

Fig. 2a, or there is only one external photon on one of the loops and five on the other. But 

this latter arrangement consists of the massless vacuum polarization renormalization factor 

multiplied by the one-loop six-photon result: this, of course, vanishes. The diagrams like 

Fig. 2a may be viewed as a pair of n = 4 photon-photon scattering diagrams with one off-shell 

photon. These diagrams do not vanish when all of the photons are on shell; taking one of 

the photons off shell cannot change this situation. Thus, this contribution to the amplitude 

is non-zero. Furthermore, it should have a pole in the limit where the photon connecting 

the two loops becomes soft. The only other available diagrams are variants of Fig. 2b. It is 

apparent, that these diagrams do not have the same pole structure. Consequently, they caa 

not cancel the contribution from Fig. 2a. Hence, we expect a non-vanishing result for the 

two-loop six-photon amplitude with like helicity photons. 
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IV. ONE-LOOP CORRECTIONS TO e+e- --t -yy . . ‘7 

We now turn to electron-positron annihilation into photons. The one loop corrections 

to e+e- --f 77 have been known for some time [20], and helicity amplitudes for the related 

process of Comptoa scattering are present in the literature (21) for full QED including finite 

mass effects. Helicity amplitudes for the massless limit, however, seem to be absent. We 

will present results for an arbitrary number of like-helicity photons in this limit. 

A. Preliminaries 

There are two basic types of diagrams contributing to the one loop corrections to electroa- 

positron annihilation to n photons, as illustrated in Figs. 3 and 4. We will refer to Fig. 3 

ss the light-by-light contribution, since it contains the light-by-light scattering process as 

a sub-diagram, with one of the photons off shell. We will refer to Fig. 4 as the “jellyfish” 

contribution since the off-shell photon in Fig. 4 spans varying numbers of on-shell photons. 

The evaluation of these two diagrams is relatively easy. 

B. The light-by-light contribution 

Figure 3 illustrates the basic structure of those Feynman diagrams which contain the 

light-by-light scattering process as a sub-diagram. The expressions relevant to this contri- 

bution may be generated from (14) by making the replacement 

c,(n) --f +e$(p; 1,. ,i)?;$(i+l,. ,j; q) (‘33) 

and introducing the appropriate sums to include all possible divisions of the n photons into 

three groups as well as all possible permutations of the n photons. That is, equation (14) 

becomes 
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A(p;l,...,n;q) = 

-e”C 22. .I 
F(~,,,R) j=Q i=CJ z!b-z)l(n-.i)l 

4(p; 1,. ,i)y&(i+l, . ,j;q)Tr (yW(P;j+l, 1.. ,a)]. 

(64) 

In equation (64), 4 and Q stand for fermion currents with only one end of the fermion line off 

shell. Solutions for these objects are discussed in Refs. [8] and [Ill. The incoming positron 

has momentum p, while the incoming electron has momentum q. The incoming photons 

have momenta kr, . . , k, as usual. This expression is valid for all combinations of photon 

and fermion helicity. 

Since the known double-off-shell fermion current contains only like helicity photons, there 

are two helicity amplitudes for this process which are readily accessible, corresponding to the 

two possible helicities of the fermion line. For concreteness, we will discuss the amplitude 

containing a left-handed positron. The computation of the other amplitude follows the same 

pattern. Alternatively, one may apply charge-conjugation symmetry to obtain the result. 

Specializing then, to the left-handed positron case, and converting (64) to spinor form 

produces 

A(p-;l,...,n;q+) = 

-(-ev5)2 c 22. .l pP(l,,,n) jdJi=O a1(3-z)!(n--j)! 
Il”(p-; 1,. ,i)(u,),&!J”(i+l, . ,j; q+) 

xTr[(a”)p@‘.ilp(P;j+l,. . ,n) + ($‘)h’pp(P;j+l,. . , n)]. (65) 

Recall that the solutions for \k and G presented in Eqs. (10) and (12) require that a factor 

of the gauge spinor be contracted into the undotted index. The sum on v appearing in (65) 

will cause the current 4 to appear in this position. From Refs. [8] and [ll] we know that 

?jyp-; 1+, . . . , i+) = (-et& c u”(p)(p 9) 
p(,,.,i) (Ph. . ? We 

036) 

Thus, the natural choice for the gauge momentum is g = p. The expression in (66) vanishes 

for i # 0 when g = p, and reads 

@(P-J = @(P) 
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for i = 0. 

The remaining steps in evaluating the contribution from (65) involve straightforward 

spinor algebra and an integration like that described in Sec. III. Therefore, we will immedi- 

ately present the result: 

dl(p-;l+,...,n+;q+) = &(-,fi)“+2 c 
u”(p)kld~il-~plc,,RLi~(1,3)u,(p) 

pyl...“) w,w (PI%. .a 4q) fw, 3) . (68) 

The structure of Eq. (68) reflects the fact that the results obtained for photon-photon scat- 

tering [in particular, Eq. (56)) continue to hold even when one of the photons has a non-zero 

mass-squared [Note that the structure on the right-hand side of (63) is transverse in the 

gauge utilized in this calculation]. Thus, the only diagrams which actually contribute to dr 

have exactly three external photons attached to the fermion loop. For e+e- annihilation to 

two photons, A1 s 0. 

The corresponding amplitude with a right-handed positron is given by 

Ah+; 1+ ,...,n+;q-) 1 &-ed$n+2 c 
ua(q)kl,d~~P~~~8RB.,(1, 3)21,(q) 

p(l,,,n)(112r3)1)(p14,...,nlq)n2(1,3)’ (“) 

Ah-; 1,. . . , n; q+) = 

ie2C 22. ,l 
p(l,,,n) idJ j=i 2!b-z)!(n-j)! 

&Pi l,...,i)%(l -y5)7” 

x*(P;i+l,.. .,j)? &l+r5)1/l(j+l,...,n;q)& (70) 

where we have inserted the appropriate projection operator to describe a left-handed 

positron. The spanning photon in Fig. 4 has momentum EC. The momentum of the off- 

shell positron in Q is given by 

C. The “jellyflsh” contribution 

Figure 4 illustrates the basic structure of this group of Feynman diagrams. The direct 

application of ordinary QED Feynman rules to produces 

pmK+p+n(l,i). 
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We again choose CJ = p to ensure the desired contraction of the gauge spinor into the undotted 

index of q or $. This also reduces the three currents appearing in (70) to two. Making this 

gauge selection, translating to spinor notation, and performing the sum on v yields 

d2(p-; I+, . . , n+; q+) = 

-2ie2 C 2 ’ 
P(l,,,“) j=. j!(n-j)!~~((j+l)+*~. .) n+; qf)P+Q(P; 1+, ,j’,UJP)&. (72) 

The j = 0 term in Eq. (72) is special: it contains the fermion self-energy as a subgraph. 

The contribution from this term is proportional to the tree-level result. Since the tree-level 

diagram vanishes for this helicity combination, we may drop j = 0 from the sum in (72). 

We now insert the expressions for the currents in the remaining terms of (72) to obtain 

ds(p-;l+,...,n+;q+) = 

d4K d(p)[~(j+l, n)+q]~a’?+,(p) 
(24” (pll,...,jlp)(plj+l,...,nlq) 

While it is possible to do the integral at this stage, it is advantageous to simplify the 

integrand as much as possible first. To this end, we perform the sum on j, producing 

dz(p-;l+,...,n+;q+) = 

( -e&i)“+2 &EC ~=(p)xc,i,~+~(l,P-1)]“~kc~~[~‘+~+it(l, e)]%Jp) 
(2794 (Pll,. . I n]q)Ke[K+p+K(l, e-l)]2[K+p+K(l, e)]s (74) 

Next. we would like to write 

p+n(l,f) =[K+p+K(l,e)]-K (75) 

in order to begin the process of canceling some of the denominators. However, this would 

break up a convergent integral into divergent bits. We must regulate this expression first, as 

discussed in the Sec. III B. As was true in that case, every occurrence of the loop momentum 

may be written as a Lorentz dot product with one of the polarization vectors. Thus, Eq. (74) 

may be continued to d dimensions without difficulty. The subsequent algebra to actually 
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cancel the denominators is very similar to that performed in Eqs. (27)-(31). Hence, we shall 

immediately quote the result: 

dz(p-; I+, ..,n+;q+) = 

-(-efi)n+zp(gn) “g (pll l. 3.. ,n Iq) 

11”(P)k~oir[~+~~~T:(l,e)l”7u,(P) 

- cr2} 

P2 u”(P)ki~+~(l, 41+217(P) 
x {(K+p+K(l,P-I)]2 - $}{[K+P+n(l,e)12 - $1 (76) 

where k,+l z q. The first integral appearing in (76) contains the same denominator structure 

as the integral in (30). Since the numerator of this term contains the same factor that 

caused (30) to vanish [see Eq. (34)], th IS integral vanishes as well. The second integral may 

be evaluated with little difficulty, yielding 

A&-; I+ ,...,n+;q+)= 

A similar calculation utilizing a right-handed positron produces 

A&+; I+, . . , n+; q-) = &(-efi)“+’ C C ” U”(nPtmi~ + qLe)]‘+‘qq), (78) 

P(l...lL) t=1 (PlL~~ ,444 

The total one-loop amplitudes are, of course, given by the sums of (68) and (77) or (69) 

and (78) depending upon the helicity of the fermion line. 

V. CONCLUSIONS 

In this paper we have seen a simple way to compute the one-loop corrections to QED 

helicity amplitudes that vanish at tree level. We know from analyticity considerations that 

the expressions should be relatively simple: in particular, there should be no cuts. By 

using the solutions to the recursion relations for currents that contain two off shell particles, 

it is possible to evaluate these amplitudes easily, without the production of extraneous 
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logarithmiccontributions which cancel in the end. The amount of labor involved is essentially 

independent of the number of photons. 

We have obtained helicity amplitudes for n-photon scattering as well as electron-positron 

annihilation to n photons for the case of like helicity photons. We have also obtained n- 

photon scattering amplitudes for the csse where one of the photon helicities is the opposite 

of the rest. We find that the only non-vanishing n-photon scattering amplitudes for these 

helicity combinations are for n = 4. This is a new and surprising result. 

In principle, the extension of these methods to more complicated helicity combinations is 

straightforward, although somewhat more computational labor is required. It is likely that 

the quest for closed-form expressions for arbitrary n will have to end, however. Instead, one 

should focus on using the recursion relations as a powerful guide in simplifying the integrand 

as much ss possible before attacking the actual integration. Indeed, the reductions illustrated 

here suggest that except for the most complicated helicity configuration (i.e. equal numbers 

of positive and negative h&city photons), there is much to be learned from this point of 

view. 
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FIGURES 

FIG. 1. The basic diagram for n-photon scattering. The blob represents the sum of all possible 

tree graphs with n - 1 photons attached to a fermion line. 

FIG. 2. Two of the two-loop diagrams for 77 + q~~yy. 

FIG. 3. The light-by-light diagram for the process e+e- + 77. .q~. 

FIG. 4. The “jelly&h” diagram for the process e+e- + ~7.. .7. 
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