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Abstract 

In this paper, we have derived the effects of strong magnetic fields 2 on nucleon and 
particle reaction rates of astrophysical significance. We have explored the sensitivity to the 
presence of artbitrary degeneracy and polarization. The possible astrophysical applications 
of our results are discussed. 
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1. Introduction 

The effects of intense magnetic fields on various phenomena, in both laboratory and 

astrophysical dynamical systems, have been investigated by numerous authors llJ1, Spe- 

cially, a number of the principal features of high-energy, high-field electromagnetic con- 

version processes have been well studied, such as magnetic bremsstrahlung (synchrotron 

radiation), magnetic pair production, direct and indirect trident cascades, photon split- 

ting, and magnetic Cerenkov radiation. However, the effects of an intense magnetic field 

in astrophysical investigations have often been ignored. In particular, the effects on the 

the rates of processes which are fundamental to studies of many astrophysical objects 

(e.g., neutron stars, supernova, and etc.), and even Big Bang Nucleosynthesis, are usually 

neglected. For example, in neutron stars, where the magnetic field may be as large as 

10’2 - 101* gauss[3~41, the effects on reaction rates which are relevant to the cooling rates 

of neutron star can be substantial. A joint work of Ruderman, Cannuto, Lodenquai, and 

Tsuruta on the general effects of strong magnetic fields and superfluidity on neutron star 

cooling, has been presented in Ref.[5,6], where they have specially studied the effects of 

magnetic fields on photon opacities. They found that the major effect of strong magnetic 

fields is to drastically reduce photon opacities in certain spatial conditions and greatly 

accelerate the cooling rates. However, the influences on the cooling rates directly from the 

altered URCA rates by strong magnetic fields still remain. Moreover, in the early universe, 

the effects on the weak-interaction rates which determine the rate of production of helium 

and other light elements can also be significant, depending on the possible existence of 

magnetic fields at that time. In this paper, we examine the effects of a magnetic field on 

reaction rates (including both weak and strong interactions) in the presence of variable 

degrees of degeneracy. Some potential astrophysical implications of our results will also be 

discussed. 

2. Relativistic Motion of a Charged 
Particle in a Magnetic Field 

The Dirac equation for the motion of a charged particle in an arbitrary magnetic field 

is, in conventional notation, 

$f = PG. (cf; + e;i) + y‘& + eticy,G. I$), (2.1) 

where li, is the wave function of the charged particle, e and m are the electric charge and 

mass, 2 is the electromagnetic vector potential, 6 is the strength of the magnetic fields, 

h denotes the Planck constant, and c represents the speed of light. The Dirac operators 6 
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and 74 are chosen to be of the following forms 

s= (; ;>, v(,’ ;), I=(; y), 
where $ = (a,, fly, uz) is the usual Pauli spin matrix, with components 

%=(y A>; %=(y oi>, u*=(; T1) 

(2.2) 

(2.3) 

For a constant magnetic field oriented al&g the z axis (A = 0, fi = B, = B = const.), 

the energy eigenvalues E for the charged particle are given by 

E2 = c2p2 + m2c4 + eiicB (2nf s + l), (2.4) 

where n = 0, 1, 2, . t . is the principal quantum number, s (= fl refers to spin up and 

spin down) is the spin variable, and p is the momentum of the particle. The third term 

in the expression reflects the contribution to the energy of the particle resulting from the 

interaction of the particle’s magnetic moment with the magnetic field. This expression is 

very useful in determining the influence of the magnetic field on the interaction rates of 

many processes. 

3. Interaction Rates in the Presence of Magnetic 

Fields and Arbitrary Degeneracy 

3.1 Weak reaction rates: 

We here consider three fundamental weak interactions which act to determine the 

critical n/p ratio (see Schramm and Wagoner 1977)frlin many astrophysical processes, 

including e.g., big bang nucleosynthesis and neutron star cooling: 

n + e+ =p+F, (a) 

n+v*p+e-, (b) 

nGp+e-fi7. (cl 

The cross-sections for these reactions can be computed using standard charged current /3 

- decay theory, with the well-known V-A interaction Hamiltonian [sl 

H = s bwP(l - ws)u,] [C&(1 - y&v] + h. c., (3.1) 
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where gV = 1.4146 x 10-4gerg cm3, and u = E N -1.262.L91 Here i&, u,, Cc, and ZI, 

stand for the proton, neutron, electron, and neutrino opemtors, with $ = tit,,. 

For the case of a constant B-field[‘“l, we use the exact relativistic wave function in 

a constant uniform magnetic field for an electron and a free-particle relativistic spinor 

wave function for an antineutrino. As to the neutron and proton, since the effects of a 

magnetic field on them are small compared with their rest mass energy difference, they 

can be treated nonrelativistically. To a good approximation, we can therefore use the 

free-particle nonrelativistic spinor wave functions for them. 

The energy eigenvalues for an electron ze obtained from Eq.(2.4) 

EZ =c2p2 +m$? +eficB(2n+s+l), (3.2) 

where m, is the rest mass of electron. In the nonrelativistic limit, this becomes 

E2 = ha f &” + 2&&n. (3.3) 

If the electron spin is not measured, the matrix element for each of the reactions ((u) + (c)) 

will be the same, i.e., 

1 Hfi(P,p,Tl) I’= “:;yy7 (1+3~a){l-~~~,0(1-?)+Pn[~+~b,,,(l-1)]}, (3.4) 

where 

A s 2cy(l - ol)/(1+ 3CY2) N -0.99, (3.5) 

and the subscripts f and i denote, respectively, the final and initial states. P is the 

polarization of the neutron source( P = 0: unpolarized; P = 1: completely polarized; 

0 < P < 1: partially polarized). B, = q = 4.4 x 10’3gauss is the field strength at 

which magnetic quantum levels, “cyclotron lines,” begin to occur[“l. 

The reaction rate is obtained from Fermi’s golden rule (cf 12) 

Xi-f = $cniJ,dEf$$ 6(Ef - Ei) I Hfi(f’,p,n) I’, 
I 

where ni is the distribution of initial states and -$$ is the density of final states. 

For convenience, we introduce the following parameters: 

E 
ES- qs m,-mp 

m,c2 ’ me 
, z.,g, 

e 

(3.6) 

(3.7) 



where m s and mP are the rest masses of the neutron and proton, respectively, T,.,. 

represents the temperature of the electron or neutrino, lieor y is the chemical potential of 

the electron or neutrino, and 4<(; = e, U) is the degeneracy parameter. 

Thus, the rate for reaction n + e+ -t p + F~,, is given by 

x, =9X1 + 3a2)mZc47 O3 
2T3fi7 

p - bLU\~ 1‘1,; ;, 

1 

x (1+ 

(c + q)2e(‘+P)’ 
ecZ,+&) (1 + e(L+q)Z”+i”) 

.,I - DAnI I --_ 

““LA+ t2 - (1 + 47n) 

Z”+O. (3.3) 

Similarly, for reaction (b), n + v + p + e-, the rate is 

xb =9?41+ W4c47 O” 
2.rr3h7 21” - 6nou - pA)1 /& J/E2 - ;1”+ 4-p) 

2&L+“. 
x (1+ ,b+q (:e;eLz”-4.) 

- .gG(l +2f;;!m:C47 z12 - 6no(l - PAI1 /-- JE* -;F+ 4yn) 
(3.9) 

1 e e 
x (1+ ,cz.+a) (:yj!‘:;:“::“,. 

where nmaX is the largest integer in (q’ - 1)/47 and p = 2.53. Finally, for reaction (c), 

n-+p+e-+i~,wehave 

x 
c 

&(1+ 3a2)??+47 “max 

2X3h7 ~[2-6no(i-pA)1~~~e’-~~+47n) (3,10) 

x (1+ .fz.+q 

(q - ,)z,rz.+~.,(‘l-L)Z”+m” 

(1 + ,(F)z”+&) 

From these expressions, we can clearly see that, if 7 2 (q2 - 1)/4 N 1.35, (or, equivalently, 

B > lO”gauss), then nmax = [$$I = 0, and the rate of ,&decay would behave linearly 

with B. In addition, the rate A, (Eq(3.10)) 1s exactly cancelled by the second term of xb 

(Eq.(3.9)) if 4” is negligible. 

Finally, we are interested in the total reaction rates for converting neutrons into 

protons (and vice-versa), which can be obtained by summing the above three rates 

x - kz + Ab + A, “-p - 

= g&(1 + 3c?)mfc*y Oi) 

2n3 6’ EL” -Ml - PA)1 

02 

x 
/ %mGi 

&[2 - (1 + 47n)]-f [(’ + qye(~+q)z~++” + (E - I#&++< 
(1 + etZ*++e) 1+ ,(P+dz.+d” 1 + e(-l)Z”-+” 1, 
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For illustrative purpose, we will briefly examine several limiting cases. 

I. No magneticflelds: 

In the absence of a magnetic field, B = 0, which means y = 0 and P = 0. Thus, the 

summation over the principal quantum number n needs to be replaced by an integration. 

We define a variable 

Bz1+4yn, (3.12) 

such that 

(3.13) 

Substituting Eq.(3.13) into Eqs.(3.8), (3.9), (3.10), and (3.11), and integrating over the 

variable 8, we finally obtain 

X,(B=O)= 1 
J 

= &m (E + q)2e(~+P)Zv++v 

7 1 (1 +erzc++=) (1 +e(P+~)Zv+Qu) ’ (3.14) 

1 m &(B = 0) = edem (e - q)2e”Z=++. 
7 J 1 (1+ ecG++.) (1+ e(w%-4”) 

1 q 

-- J 

edem (E - q)2eLZe++c 
7 1 (l+ srZ*++=) (l+ e(‘-q)Zw-4.)’ 

(3.15) 

X,(B = 0) = 1. J B &m (q _ ,)2,fz.+~.,(q-f)z.+~. 
7 l (1 +&=+rn.) (1 + &-rw”+TL) ’ (3.16) 

and 

(3.17) 

where 1 ~ 9:(1+3P’)“.:C’ 
r 2+h’ N 6.515 x 10-4sec-‘. We express our results relative to the 

measured life-time r, of the neutron (rn N 889.6+2.9sec., 7l,2 - 10.277~tO.O46min.)l’~l, 

T = IT”, 

where I is the value of the integral. 

These formulae are merely the generalized form of the rates derived by Peebles and 

Wagoner et all91 and used in standard Big Bang Nucleosynthesis (BBN) calculations.lgl 

Thus our formalism reduces to the correct limit as B -+ 0. 

2. Weak magneticfields (B < B,, that is y < 1) : 
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In this case, we can approximate 

(2 - 1 - 4ynp 2 (2 - 1)-l’* + Zyn(2 - 1p* + O(y2). (3.18) 

Incorporating this, together with equation (3.13), into equations (3.8), (3.9), (3.10), and 

(3.11), and replacing the summation over n by an integral, we obtain the result 

Xi(B < Bc) N Xi(B = 0) [l + O(y’)]. (3.19) 

where i = a, b, c, of n + p. Thus, it can be seen that a weak magnetic field (B < B,) 

will have a negligible effect on the rates of the weak reactions. 

3. Strong magneticfields (B > B,, y >> 1) : 

If the magnetic field is strong, y >> 1, then nmax -+ 0, which implies that there is only 

one term (n = 0) left in the summation over n. In order to see the effect of the magnetic 

field, we rewrite the first function in the integrals as 

(e* - 1 _ +)-‘I* 1~ “I;_“:“. 

Since E goes from 1 to co, in a mathematical sense, it is always true that 

I a2 do (2 - l)‘/* 

1 
c2 _ 1 9(~)(Bf0 5 +‘(C2 - 1)1%4=o. (3.21) 

where g(e) (2 0, for any e) is an arbitrary positive exponential decay function. Thus, by 

comparing with the rates for zero magnetic field, we have 

Xi(B > B,) 5 2yXi(B = 0) (> Xi(B = 0)). (3.22) 

The dependence of the ratio of the total neutron-depletion rate to the free-field rate on 

the magnetic field parameter and the temperature, in the case of nondegeneracy and 

nonpolarization, is plotted in Figure 1. From this, we see that the effects of a strong 

magnetic field are negligible-until the temperature drops to the point at which neutron 

p-decay begins to dominate and large deviations can occur. We therefore conclude that 

a strong magnetic field can, in some domains, have a significant effect on the rates of the 

weak reactions. 

Here, it is worthwhile to point out that, if the magnetic field is not uniform, but rather 

is characterized by a distribution function with regions(or magnetic bubbles) (i # 0 in 

Eq.(2.1)), the nuclear reaction rates will become inhomogeneous; i.e., the field will vary 

with spatial variables, and the reaction rates will be different, region by region. Thus a 
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fluctuation in the reaction rate would occur (similar to the introduction of the density 

fluctuations associated with a first order QCD phase transitionl’41). 

3.2 Strong reaction rates 

Let us now discuss the effects of magnetic fields on strong interactions. In this sit- 

uation, the nucleons(p and n) and pions(x+,s’, r-) will interact both with themselves, 

and with the magnetic fields, through their charges and magnetic moments. Among these 

interactions, the relative interaction strength between themselves (LY, N 1) is about two or- 

ders of magnitude larger than that of the electromagnetic interaction ((Y, - lo-*) and five 

orders of magnitudes larger than that of the weak interaction(o, - 10e5). The entirety 

of the phenomena caused by the strong interaction, for example, the processes below 

n+p-+D+y, (3.236) 

n + 7r+ -+ p, (3.23~) 

n+p+D+r”, (3.23d) 

3cr -+ ‘*c, (3.23e) 

is described by the quantum chromodynamic(QCD) gauge theory. For these systems in 

the presence of a magnetic field, the Hamiltonian of the particles is composed of two parts: 

H = Ho + HI 

where 

Ho = cp+mc* (3.24) 

and 

HI -.$.P+!+fi, (3.25) 

respectively, represent the energy of the particle in the field-free case and the coupling 

energy of the field to the magnetic moment ,? of the particle. If the magnetic field is 

uniform, A = 0, the interaction Hamiltonian will become 

HI N $i;.g. (3.26) 

Since all baryons and pions involving the strong interactions have mass m > lOm, and 

magnetic moment ( g 151 i;, I- & 1 ,G;, 1, where 1 ,Z,, 1 and 1 .ii, 1 stand for the magnetic 
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moment of proton and electron respectively, the interaction energy between the magnetic 

field and the magnetic moment of the baryons and pions will be 

HI I ,ti, ti N 10-3,Gi,. fi N ~o-6+npcz, 
c 

(3.27) 

where, again B, = 4.4 x 10’“gauss. It is apparent that this interaction energy is much much 

smaller than the rest mass energy difference of the associated reactions, if the magnetic 

field is weaker than 10’s gauss. 

We thus conclude that, for all magnetic fields of interest (B 5 10” gauss), the contri- 

bution of the interaction energy between nucleons and magnetic fields to the total energy 

of the system is too small to be significant, and therefore that the effects of magnetic fields 

(B 5 10’sG) on the strong interaction rates are negligible. 

3.3 URCA and modified URCA rates 

At very high temperatures (T 2 10gK), e.g., in the core of some massive stars, the 

so-called URCA ratesl’sl 

n -+ p + e- + Fe, (3.28~) 

e- + p --t n + v,, (3.286) 

and modified URCA ratesli31 

n+n-+n+p+e-+i7,, (3.29a) 

n+p+e- -+ n + n + v,, (3.29b) 

12 + ?r- + n + e- + Fee, (3.29c) 

n+n+n+p+p-+F)&, (3.29d) 

n++p+p- -+ n + n + y/L, (3.29e) 

(as well as the inverse processes) provide a dominant mode of energy loss via neutrino 

emission. A typical example of this will be the essential cooling processes involved in the 

interiors of neutron stars. 

Ruderman et allsV61 have explored the effects of the strong magnetic field on the photon 

opacities, and in turn, on the cooling rates. Using our calculations in Section 3.1 of the 

weak interaction rates in the presence of the magnetic field, we are now in a position to 

examine the rate of the URCA reactions and the modified URCA reactions in the presence 

of a intense magnetic field. This should lead to important consequences to the cooling of 
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neutron stars since it has been inferred that a strong magnetic field (2 10i3gauss) may 

exist in the interior of the neutron stars. A detailed calculation will be presented in a 

coming paper. 

4. Astrophysical Applications 

In section 3, we have derived the interaction rates as a function of magnetic field B 

in the presence of variable degrees of degeneracy and polarization. Our calculations have 

shown that the effects of the magnetic fields on weak reaction rates are significant, if the 

strength of the magnetic field is comparable with the critical B field B, = 4.4 x 1013gauss 

where quantized cyclotron states begin to exist. These results can lead to important 

astrophysical applications. 

(a) Big Bang Nucleosynrhesis 

If an intense primordial magnetic field existed in the early universe, particularly at 

or just before the epoch of primordial nucleosynthesis(- lmin.), then the direct influence 

on the nuclear reaction rates can be consequential and, in turn, the abundances of light 

elements produced in BBN can be significantly affected. This phenomenon will enable us 

to constrain the strength of the primordial magnetic field more accurately by using big 

bang nucleosynthesis. Detailed discussion and numerical calculations relevant to this issue 

will be presented in a separate paperl’61. 

(b) Physics of astrophysical compact objects 

If compact objects (e.g., neutron stars, pulsars, and white dwarfs) indeed have intense 

magnetic fields, as has been implied by a number of authors and observed for a number 

of objects, then the effects of the fields on the fundamental physical processes involved 

in these objects, which have often been neglected in earlier studies (e.g., of the (URCA) 

cooling processes of the neutron stars), should be fully taken into account. The results 

presented in this paper reveal that, if the magnetic fields in neutron stars are strong enough 

(a.5 large as 1012 - 10r4gauss), the effects of the fields on.URCA rates may be substantial 

and must surely be considered in calculations of the cooling problem of neutron stars. A 

more detailed examination of this question will appear as a subsequent paper. 
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Figure Captions 

Fig. 1 The ratio of the neutron depletion rate with B # 0 to B = 0. 



p&.1 The ratio of the neutron depletion rate with B#O to B=O. 
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