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Abstract 

The effects of magnetic fields on Big Bang Nucleosynthesis(BBN) have been calculated, 

and the impact on the abundances of the light elements have been investigated numerically. 

An upper limit on the strength of primordial magnetic fields compatible with observations 

of light element abundances has been thus obtained. In the framework of standard BBN 

theory, the maximum strength of the primordial magnetic fields, on scales greater than 

10’cm but smaller than the event horizon at the BBN epoch (- 1 min., - 2 x 1012cm), is 

5 10” Gauss. This limit is shown to allow magnetic fields at the time of recombination 

no stronger than - 0.1 gauss on scsles 2 10”cm. Our results also strongly indicate that, 

at the BBN epoch, and for field strengths B 5 lO”gauss, the effects of magnetic fields on 

the primordial abundances of light elements are dominated by effects from reaction rates 

in the presense of primeval magnetic fields rather than by magnetic density effects on the 

expansion rate. 
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1. Introduction 

It is recognized that primordial nucleosynthesis provides a unique quantitative win- 

dow on the early universe[ i,sl Since the synthesis of the light elements is determined by 

events occurring in the epoch from N Is to - 1000s in the history of the universe, when the 

temperatures varied from - 10°K (2 1MeV) to - 10gK (5 O.lMeV), the observed abun- 

dances constitute a probe of the universe at epochs far earlier than those directly probed 

by the cosmic microwave background radiation (CMBR) (t N 10’yr; T - IO4 K(- 1eV)). 

Thus, through a detailed comparison of the predicted abundances with the observational 

data, proposed cosmological models can be tested and their controlling parameters can 

be constrained. For example, big bang nucleosynthesis (BBN) was found to constrain the 

number of families of light neutrinosls) prior to accurate accelerator measurements. 

In this paper, we reexplore how the strength of certain primordial magnetic fields can 

be constrained by BBN. If magnetic fields of sufficient strength existed in the early universe, 

particularly at or just before the epoch of primordial nucleosynthesis, they could have 

had direct influences on both the expansion rate of the universe and the nuclear reaction 

rates.14,51 These influences could, of course, affect the abundances of the light elements 

produced in this environment. In addition, if the scale of the primeval magnetic field were 

greater than the event horizon, the geometry of the universe would also be affected and an 

anisotropic universe might result. An analysis of nucleosynthesis in anisotropic Euclidean 

Universes, in which the dependence of the primordial abundances of *He, 3He, D on 

the isotropy parameters was specified more precisely, has been presented by Thormel 

and by Hawking and Tay1er.L’) If a significant degree of anisotropy had persisted up to 

times 2 20000 years, the primordial 4He abundance would have been reduced to a few 

per cent. On the contrary, if the anisotropy is important only during the early stages 

of the expansion, the 4He abundance is about 30% while there is no (negligible) D or 

3 He production, and one might hope to eventually reach agreement with the observational 

values by refining this model. This had been done by Juszkiewicz et al, 171 who studied 

the influence of the anisotropic momentum distribution of neutrinos neglected by Thorne. 

The resultant limit on the magnetic field at the BBN time, set by the condition of small 

anisotropy for t > 1s is about B < 4.1 x 10i2Gauss. PI 

On the other hand, if the primeval magnetic field were sufficiently spread over distances 

small compared with the event horizon at that epoch, the geometry of the universe would 

not be affected ~1 and it would still be described by a Robertson-Walker metric. For this 

situation, it has been qualitatively pointed out by a number of authorsig~‘Ol that, in the 

presence of a very intense magnetic field (B 2 10i3G), the neutron would decay more 

rapidly than in the field-free case, this could obviously affect light element synthesis in a 

dramatic way. 
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However, in previous studies, only the effects of a very strong primordial magnetic 

field (B > 10i3G) on abundances 4He, D, and 3He, have been studied, not vice-versa, and 

no critical limit on the primeval magnetic field was explicitly derived. The questions we 

address in this paper are: (1) What is the limit on the primordial magnetic field? (2) How 

does the magnetic field influence the emerging abundances of other light elements(A> 9), 

such as lithium, boron, etc.? We find that there are still constraints to be explored on the 

strength and coherence scale of primordial magnetic fields, using observational abundances 

and BBN. 

2. The Direct Effects of the Primeval Field on BBN 

In the early expansion of the universe, the existence of a large scale primordial mag- 

netic field may have both direct and indirect effects on BBN. In this regard, the two most 

sensitive and competing effects are: (1) the effects on reaction rates and (2) the effects on 

the expansion rate. These two effects will further alter the resulting abundances of the 

elements. 

For simplicity, we assume that our universe is fully filled by randomly oriented and 

distributed thin-wall magnetic domains (or bubbles)ll’l. The size of each domain is large 

enough so that the field inside the domain can be seen as a uniform field, but it is still 

small compared with the event horizon. Thus, the magnetic field will have similar effects 

on the motion of particles in each domain. Here, we will neglect the boundary effects since 

the wall is assumed to be thin. 

As to the effects on reaction rates, we have recently derived the reaction rates as a 

function of a uniform magnetic field 6 in the presence of an arbitrary degeneracy and 

polarization1121. As an application, if we assume that the magnetic field is nearly uniform 

in each domain, we can use our derived results (Ref.[l2j) as a first order approximation 

for our purpose here. However, we would like to point out that, if the magnetic field is 

not uniform through the whole universe but varies with spatial variables, or if the scale 

of the magnetic field (or magnetic bubbles) is much smaller than the horizon scale and 

the magnetic domains are disconnected from each other, the nuclear reaction rates will 

become inhomogeneous; i.e., the reaction rates will differ from region to region even though 

the geometry of the universe is still not affected. This would require that we introduce 

reaction rate fluctuations into the standard big bang code (similar to the introduction 

of the density fluctuations associated with the first order QGD phase transitionl’31), and 

perform multizone calculations. Such exploration is beyond the scope of the present paper 

and will be addressed in future work. 

Now let us explore the effects of the magnetic fields on the expansion rate of the 

universe. According to our assumptions, the globally chaotic(but locally orderly) magnetic 
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fields will have no effect on the geometry of the universe. The geometry of the universe is 

still described by a Robertson-Walker metric. For this metric, the work-energy equations 

can be expressed as 

i(PR3) + $$(R3) = 0, (2.1) 

where R(t) is the distance measure, p is the total mass-energy density, and p is the total 

pressure. 

In general, we consider that the universe consists of three types of matter during 

the epoch of interest. These are: (1) the strongly and electromagnetically interacting 

particles (e.g., nucleons, electrons, photons, etc.), which can be described as a perfect 

fluid; (2) the weakly interacting particles, which nevertheless affect the n-p ratio (e.g, 

electron neutrinos, etc.); and (3) the effectively noninteracting particles (e.g., vP and so 

on) which only contribute to the energy density but do not enter into specific reactions. 

The total mass-energy density p and pressure p can be expressed as 

P = Pr + Pe + Pv + Pb + PB, i’=P,+Pe+p”+Pb+PB, (2.2) 

where 

Pe = Pe- +pe+> Pe =pe- +pe+, 

Pu = Pv,- +pu,+ +Pu,+Pt++PF, +rv,+m, 

Pv = Pu,- + Pv*+ +P”” +P”r +K+Pi7* +Pc,, 

and the subscripts y, e, ve, vPr VT, b, and B stand, respectively, for photons, electrons, 

e-neutrinos, p-neutrinos, r-neutrinos, baryons, and magnetic field. Expressions for these 

thermodynamic quantities are given below, for the case of nondegenerate neutrinos[r4] 

P-, = 8.42 Tg” gm cmm3, P-l = ;prc2, mu = 6pu; = ;p&', 

P" = iPd2. Pe = ;P, (Tg B 61, pe = ;p.c'(K, >> 6), 

Pb = 7 X lde6 T,” gm cmv3, pa = nbkTCYi, Yi = 2, pB = g 
I I 

where z = T/(lO’K), pui (vi = ve, Ti,, v,,, C,,, I+, iir) = &P-,(%)~ is the mass density 

of each type of neutrino and antineutrino, TV is the neutrino temperature, nb is the number 

density of baryons, and Yi, Ai, and Zi designate the mass fraction, mass number and atomic 

number of the ith nucleus. 

From the assumptions of flux conservation and the presence of a conducting medium(as 

appropriate for the universe prior to recombination), we can obtain a simple temperature 

dependence for B: 

BLxR-~KT’. 
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Therefore, the energy density of the magnetic field has the same temperature dependence 

as the energy density of the leptons and that of the radiation field. 

We now define 

P=Pl+Pz, P=Pl+Pz, 

I’1 = P-t + Pe- + PC+ + PB, Pl = P, +Pe- +Pe+ +PB, P2 = Pv + Pb, P2 = Pu +Pbr 

xc PB PB F-- 
P-, + Pe + Pu + Pb PO ’ 

po G p(B = 0). 

(2.4) 
The relation between the magnetic field and radiation is thus 

Substituting these into equations (2.2) and (2.1), noticing the following approximations 

pb << Pw -+ p2 2 pv, Pb <<Pv -$P2 =Pv, (2.6) 

and using the fact that pv K Re4, we obtain 

dR -R -= dpl 
dT 3[~1(T) + 2(T)] z’ 

(2.7) 

By using the expansion rate 

(2.8) 

where G is the gravitational constant, the relation between the photon temperature and 

the time is found to be 

P)“’ [PI(T) + F(T)] &]-‘. (2.9) 

At high temperatures, TV = T rx R-1, and 

P = PO(1-t xl = ;P,(l+ x), (2.10) 

6’1 = +“, + pB = yP,(l + $+) = plO(l + ;), p10 E pl(B = O), (2.11) 

3 =(1+ $)+ + gPlO$$, 

ho 
do N PI-;, p = 9.262 x IO-'. 

(2.12) 

(2.13) 
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Incorporating Eq.(2.5) into Eq.(2.8), we obtain a final expression for the relationship be- 

tween photon temperature and time 

dT 
;=7 

( yPoy(1 + x)“2P10[1 + gx + $ + 31 

(1 + zx) PT,3 + $$PIo$$ 
(2.14) 

Moreover, considering the fact that, B cc T2, pi cx T4, and pa N yp7 DC T4, we can 
introduce a convenient invariant measure of magnetic field strength and assume that the 

ratio of the magnetic energy density (pB) to the total other energy density (~0) is nearly 

a constant during BBN. This gives -$$ = 0. We now consider two cases: 

1. A globalzero magnetic pressure (pB = 0, but B # 0): 

Physically, this corresponds to a situation where there exists a non-zero local uniform 

magnetic field (inside each bubble) but a zero total magnetic pressure(pressure free) due to 

the random distribution of the tangled magnetic bubbles. In this case, Eq.(2.14) becomes 

dT 
x=F 

(--- s;Gp0)1’2(1 +x)“2(1 + %x) TQ 

3(1+ g-x) 

Integrating, we obtain 

Ts = n 
(1 + $$x)1’2 

(1 +x)1/4(1 + gX)1’2 
t-‘/2 

’ 

(2.15) 

(2.16) 

where 
tC= ( 12rGawf 1 --1/4 N 10.4, if N, = 2 and geff = 9; 

2cs 4.7, if NV = 3 and geff = y, 

in c.g.s. units, gef/ is the “effective” number of relativistic degrees of freedom(helicity 

states), and a is the Stefan black-body constant. 

2. A non-zem magnetic pressure (pB = PBC’): 

If the magnetic field inside each bubble and the distribution of the magnetic bubbles 

are not so chaotic, for example, if each magnetic bubble is dipole-like, we will have an 

averaged magnetic pressure PB o( pBc2. In this instance, Eq.(2.14) becomes 

dT 
x=7 

and integration yields 

TQ = K 
(1 + gxy2 

(1 +x)+(1 + Jj.#2 
t-112 

’ 
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Note that in the limit when the magnetic fields are absent or very weak (pi = 0; x = 

0, or x << I), Eqs.(2.16) and (2.18) both reduce to 

T9 N tc t-l”. (2.19) 

This is just the formula used in standard BBN calculations.l’4~151 

If the magnetic field is very strong, x >> 1, then equation (2.16) and equation (2.18) 

become, respectively, 

Tg = 
J 

4 -l/4 Kt-l/2 
zx 

, and Ta= -l/4 nt-l/2 

The dependences of the temperature on the time t and the magnetic parameter x, in the 

presence of a strong magnetic field, are shown in Figures la and lb. These relations clearly 

indicate that the effect of the presence of a strong magnetic field on the expansion rate of 

the universe are indeed significant. 

Now we introduce another magnetic parameter y = B/(2BC), where B, = q = 

4.414 x 10i3gauss is the field strength where quantized cyclotron line effects begin to 

occur; we will refer to this as a quantum critical field valuel’*l (See Appendix). According 

to our definition of the factor x, we have 

B”/8a 
’ = 43p,/8 = 43f;T4 = 0.76 $1 (2.21) 

where a is the Black-Body constant and TX0 = T/(10” I<). If we use the “critical” tem- 

perature T, N 1.28 x lO”K(note: nkT, N Bz/87r, k is Boltsmann constant, n N 20T3 is 

number density of particles.). Eq.(2.21) can be re-expressed as 

x N 0.283 ($)4yz (2.22) 

3. Numerical Results and a Limit on the Field Strength 
and Field Coherence Length 

We will now take into account the two independent effects of magnetic fields on re- 

action rates and on expansion rates calculated in Ref. [12] and Section 2, respectively, 

in a reexamination of big bang nucleosynthesis. We use the new version of the Wagoner 

code developed by Kawano[i61. Specifically, we have replaced the old formulae in the code, 

for both the reaction rates and the expansion rate, with the new derived equations (3.8), 

(3.9) (3.10), (3.11), in Ref.[12], and (2.18) b a eve, and calculated the abundances. These 

are to be compared with observational data, to determine the implied constraints on the 
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strength and coherence scales of a primordial magnetic field. The observed abundances 

used are those summarized by Walker et al 1991[‘1. Th e main technique used is to adjust 

y until the calculated abundances no longer match the observational data. 

In order to obtain a limit on the strength of primordial magnetic fields and to focus 

on the effects on BBN explicitly, we have fixed all model parameters other than +y in our 

calculations: in particular, the neutron lifetime r,, the number of neutrino species Iv,, 

and the baryon to photon ratio n = 2. For our purpose, we adopt the following values 

for these parameters(21: 

in = 889.6 f 2.9.q N, =3, 

2.8 x 10-i’ < 17 5 4.0 x 10-i’. (3.1) 

Moreover, we have assumed non-degenerate neutrinos (de = O,+” = 0) (Thomas, Olive, 

and Schramm[‘71, Steigmsn and Kang[‘sl). For these choices, we then compute the primor- 

dial abundances numerically. Our computational results are displayed in both tables 1-3 

and figures 2-4. Each figure contains seven sub-figures ((a), (b), (c), (d), (e), (f), and (g)), 

which represent the abundances of the elements for different strengths of the primordial 

magnetic fields on a coherence scale of L (< the event horizon at that epoch N 2 x 10”cm). 

As expected, our calculations reveal that the abundances of the light elements can 

be dramatically affected by a strong magnetic field. For instance, if the magnetic fields 

on scales less than the horizon are as strong as B 2 lOi gauss, the abundances of most 

elements (except for protons) increase manifestly. In particular, the concentrations of 2H, 
4He, 6Li, ‘Li, gBe, 14N, all are enhanced. Some elements, for example, 4He, ‘Li, ‘Li, 
“B, ‘*C, r3C, 14C, and”N, showsharpincreases (i.e., *He 2 0.5, ‘Li/H 2 8.43~10~’ N 
lo+‘, *Li/H 1 7.5 x lo-l4 N lo-i3, “B/H N 10-15, etc.), as illustrated in figures Ia-Id 

(1=2,3,4) and tables 1-3. On the contrary, if the magnetic fields are as weak as 10” gauss, 

the emerging abundances of the light elements, according to our calculations, are only 

affected slightly and the variations become negligible. Figures Ie-Ig (1=2,3,4) display these 

outcomes. 

For comparison, we have also computed the effects on the abundances resulting from 

the energy density of the magnetic field only (without any variations on the reaction 

rates). We find that the effects on the abundances of the light elements from reaction 

rates dominate the contributions from the energy density, unless the magnetic field is very 

intense (B > 10 l3 Gauss). These results are shown in Fig.5 and Fig.6, respectively. Also, 

as is true for the standard BBN model, a high ratio nb/nr will globally enhance the high 

A element abundances. 

We note that the observed mass fraction of helium is approximately (Skillman 1993)l’gl 

yobs 
P = 0.235 f 0.01. (3.2) 
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For other elements, the adopted primordial abundances are displayed in Table 4 (Walker 

et al 1991)121. By comparing the predicted abundances in the presence of B-fields with the 

observational determinations, (using particularly the abundance of 4He), we can constrain 

the B-field on scales less than the horizon. Figures I(a,b,c,d,e,f,g) (I = 2,3,4) and tables 

l-3 show the abundances of the elements in the presence of magnetic fields, with field 

strengths ranging from zero to B = 8.8 x 1014 gauss. Through the comparison between 

our numerical calculations and the observational results, we ascertain that to keep the 

abundances of light elements compatible with the observations, the primordial magnetic 

fields at the BBN epoch (- Imin.) must satisfy the requirement 

y 5 0.001, B < lO”G, - (3.3) 

on scales less than the horizon. At this limit, the calculated abundances of light elements 

are shown in Table 5. 

Incorporating our above upper limit into equations (2.21) and (2.5), we can further 

estimate the ratio of the energy density between magnetic fields and cosmic radiations at 

the BBN epoch T’s - 0.1 as 
PB 

P, 
- 4%. (3.4) 

4. Empirical Estimates of the Strength and the Coherence 
Scales of the Primeval Fields 

We now come to the comparison of the diffusion time of magnetic fields with the 

expansion time of the universe. The characteristic diffusion time for magnetic fields on a 

scale I( - L (&)) is [z”l 

4&a 
T-d??-. 

c2 (4.1) 

Here R is the cosmological scale factor, and L and R ,,“= are, respectively, the coherence 

scale of the B-field and the scale factor at the BBN epoch. Since the expansion time rCXP 

of the universe (or Hubble time) goes as 

we also have 

Tci 
4T12U r,,, 

- -Ycy. (4.2) 

where L,, is the time of the BBN epoch, 0 = &s-l is the electrical conductivity of the 

universe, r) 2 4x10’2zlnh 
5’ 

esu describes the Spitzer resistivity (for electron-proton collisions) 

9 



due to electron collisions with neutral hydrogen [zll, T, denotes the electron temperature 

in K, 2 is the mean charge of t.he plasma, and A is a so called Coulomb integral, which 

has a typical value around 15 + 5. 

The ratio of the diffusion time to the Hubble time can thus be estimated as 

Td 
g - 17.5(~)z7,;.~*, (4.3) 

where we have used the approximations: t,,, - 1s and T,,, - 101sK. This ratio corre- 

sponding to a given physical scale is a monotonically decreasing function of time. Therefore 

scales that can not dissipate at recombination (- 10’s - 1013s) could not have dissipated 

earlier. Taking the calculation at recombination, we find that if the coherence scale of the 

magnetic fields at the BBN epoch is larger than lO*cm (- 10-s of the horizon scale) at 

that time, the field will not be dissipated prior to recombination. The dependence of the 

ratio with the expansion time is shown in Figure 8. 

At the BBN epoch, based on our numerical results in Section 3, the primordial mag- 

netic fields (or magnetic bubbles) at the BBN epoch are constrained as B 5 1O”gauss on 

scales of L 2 lO*cm (and L 5 1012cm). To the extent that the universe is a good con- 

ductor, this primeval field will evolve to the recombination era by relation B 0: Rm2 (and 

L 0: R). The implied magnetic field at the time of recombination, prior to the structure 

formation of the universe, would thus be 

B,,, 5 0.1 gauss, (4.4) 

coherent on scales of L,j omain 1 10”‘cm (and 5 lO’*cm). On scales much larger than the 

size of the magnetic domains (or bubbles), the physical mechanisms driving field generation 

are uncorrelated. To put this in current perspective, Hogan12’) has estimated with certain 

assumptions that such a field at recombination would correspond to a intergalactic field 

limit today of 5 7 x 10mgG. 

5. Conclusions and Future Work 

The effects of the magnetic fields on big bang nucleosynthesis and the cosmological 

expansion rate have been investigated generally in this paper for coherent and chaotic fields 

on scales smaller than the event horizon. An upper limit has been provided on the strength 

of the primordial magnetic field on scales smaller than the event horizon. Our results show 

that, in the framework of standard big bang nucleosynthesis, the maximum strength of 

the primordial magnetic field on scales greater than 10’ cm but smaller than the horizon 

at the BBN epoch (- 1012cm), can only be 10” gauss, which implies that the magnetic 
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fields at recombination time would in principle be no stronger than 0.1 gauss. Moreover, 

in our calculations, we find that, of the two major effects of a primordial magnetic field, 

those arising from modification of the reaction rates will dominate those arising from 

modification of the expansion rate (or B-field energy density), unless the magnetic field is 

very intense (B >> 10i3gauss.) 

Finally, we here would like to make two comments: 

a. Rates fluctuations (or Inhomogeneous model). 
If the magnetic field is not uniform or the size of the magnetic bubbles is much 

smaller than the horizon scale and the bubbles are disconnected from each other, the 

nuclear reaction rates will become inhomogeneous; i.e., the reaction rates inside a region 

will differ from those outside the region, even though the geometry of the universe is still 

not affected. This would require that we introduce reaction rate fluctuations into the big 

bang calculation (similar to the introduction of the density fluctuations associated with 

the first order QCD phase transition), and perform multizone calculations. 

b. Anisotropy (or eflects on geometry). 
If the size of the magnetic bubbles were larger than the horizon scale, the effects on 

the geometry of the universe would need to be examined, and the Robertson-Walker metric 

would need to be replaced by other metrics. In addition, an anisotropy of the universe 

would result which might have important galactic consequences. (This has been explored 

by Thorne, 1967, but not with the more extensive network used here.) 

A subsequent paper will examine these coherence scales. 
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APPENDIX 

Quantum Mechanical Considerations 

The applicability of classical electrodynamics to electrons requires that the wave- 

length of the synchrotron line in the presence of the magnetic field be much larger than the 

distances of order of ii/m,c, for which classical electromagnetics will break down because 

of quantum effects1 s31 Let us now derive the limit at which classical electrodynamics leads 

to internal contradictions@]. 

Consider a system in which a charge e, with mass m, moves in a uniform magnetic 

field B. The synchrotron frequency w of motion ( angular frequency ) can then be written 

w=ecB/E, or x-e 
eB ’ (A.11 

where E is the total energy of the charged particle and X is the wavelength of the syn- 

chrotron line. 

If quantum effects become important, we would have 

E =rnc2 =iiw, or X-h 
mc’ (A.21 

The magnetic field will then satisfy 

BNBc2&=~ 
?A? 

eh 
= 4.4 x lO=G 

ec (-4.3) 

which presents a limit where quantum electrodynamics plays a role. Therefore, Eq.(A.3) 

could be considered in some sense as a quantum critical limit for an organized primordial 

magnetic field on large scales. For this critical value, we can estimate the corresponding 

temperature by letting 

Bz/Sr = nkT, , n N 20T3 I<?, (A.41 

thus 

T, =(- 16;fk)1’4 N 1.28 x 10” K. (-4.5) 
Note that T, is comparable to the temperature immediately prior to the BBN epoch. This 

means that, if the primordial magnetic field prior to the BBN epoch were to be as strong 

as B > 10mgauss, then it’s origin would probably be some quantum process in the early 

universe. For such conditions, we would not have a field organized on a large scale as the 

universe expanded out of the quantum domain, because most of the energy released would 

be converted into small-wave-length radiation rather than into an ordered magnetic field. 

It is interesting that our numerical calculations (B < 1O”gauss) in Section 3 appear to 

have ruled this possibility out. Instead, it could be suggested that any primordial magnetic 

field must have been initislly in the classical regime B < 1O’rgauss. 
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Figure Captions 

Fig. la The dependence of Ts with t under strong B-field but Pn = 0. 

Fig. lb The dependence of Ts with t under strong B-field but PB # 0. 

Fig. 2 Abundance of elements (n *Li) in the presence of B-fields but non degenerate 

neutrinos. 

Fig. 3 Abundance of the elements (*B - rzC) in the presence of B-fields but nondegenerate 

neutrinos. 

Fig. 4 Abundance of the elements (lzN - 150) in the presence of B-fields but nondegenerate 

neutrinos. 

Fig. 5 Abundance of the elements affected by energy density of B-field(7 = 10) only. 

Fig. 6 Abundance of the elements affected by energy density of B-field(y = 100) only. 

Fig. 7 The ratio of diffusion time of magnetic fields to Hubble time. 
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Table Captions 

Table 1 Abundance of elements (n - sLi) in the presence of B-fields but non degenerate 

neutrinos. 

Table 2 Abundance of the elements (BB - rzC) in the presence of B-fields but nondegenerate 

neutrinos. 

Table 3 Abundance of the elements (“N - I50 m the presence of B-fields but nondegen- ) 

crate neutrinos. 

Table 4 Observed abundances. 

Table 5 The calculated abundances at limit B < 10”G. 
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Table 4: Observed Abundances, 

Element Where Observed Mass Fraction I 
n presolar 1.8 x 1O-5 5 y2 < 3.3 .- 

presolar 1.3 x 1o-6 < y3 
rr 

-.“,~^- . 

4He 
7Lk ire-Populatio 

H II region IV -ncmI, 

6Li nrf=-P,?~lll.t;,l - -~- -- 
1 5 (1 - 2) x lo-” 
( 5 lo-‘* 

Table 5: The Calculated Abundances at Liiit B<lOl’G. 



Fig. la The dependence of T9 with t under 

strong B-field hut PB = 0 
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Fig. lb The dependence of Ts with t under 

strong B-field but PB # 0 
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Fig. 2 Abundance of elements (n - *Li) in the presence of B-fields 

but non degenerate neutrinos 
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Fig. 3 Abundance of the elements (8B - 12C) in the presence of B-fields 

but nondegenerate neutrinos 
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Fig. 4 Abundance of the elements (12N - 150) in the presence of B-fields 

but nondegenerate neutrinos 
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Fig. 5 Abundance of the elements affected by energy 
density of B-field(r = 10) only 
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Fig. 6 Abundance of the elements affected by energy 
density of B-field(7 = 100) only 
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Fig. 7 The ratio of diffusion time of magnetic 
fields to Hubble time 
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