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Abstract 

Abstract: It is argued that the main quantity of interest in chaotic inflation is the 
cosmological expansion rate H expressed BS a function of the inflaton field I$. We derive 
a general prescription for realiiing successful inflation in terms of a set of constraints on 
this function. The formalism is valid for all chaotic inRationary models based on a single 
scalar field which is minimally coupled to general relativity, so no restrictions on the 
dynamics of the field are necessary. This technique is used to investigate the possibility 
that primordial black holes (PEEIs) may arise due to adiabatic quantum tluctuations in 
the inflaton. PBH formation can only be interesting if the amplitude of the fluctuations 
decreases with increasing mas.vscale and thii is only possible if the field is accelerating 
or deceleratiog sufsciently fast. In this case, limits on the number of PBHs place very 
interestingcaastmintn on the form of H(S) since, together with the COBEmezaurement, 
they restrict the spectrum of Buctuations over 45 decades of mass. This correspouds to 
35 e-folding of inllationary expansion. If the amplitude of the Euctuations decreases 
BS a power of mass, which is the most interesting situation, then H(4) must have a 
trigonometric form and this allows the constraints to be expressed very simply. 
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1 Introduction 

The inflationary scenario overcomes the problems of the standard hot big bang model for 
the early universe by violating the strong energy condition of general relativity at early 
times [l]. This causes the scale factor of the universe to accelerate and generates reheating 
when the false vacuum thermal&es, thereby violating the adiabatic assumption which leads 
to the Batneas and horizon problems in the standard model. Inflation is an attractive idea 
because it suggests that the present state of the observable universe may not depend too 
strongly on any initial conditions. In the majority of intlationary models, it is assumed 
that the source of Einstein’s field equations is dominated by the potential energy, V(b), of 
a minimally coupled, self-interacting quantum scalar field, 4. This field is often referred to 
as the ‘inBaton’ due to the current lack of a definite particle physics model and the study of 
the dynamics of this field is crucial for understanding the physics of the early universe. In 
the chaotic scenario, which is the subject of the present paper, the field is initially displaced 
from the global minimum of the potential and proceeds to ‘slowly roll’ towards it [2]. There 
are a number of observational constraints that any succemful scenario must satisfy and 
these have been summarized aa limits on the potential in ref. [3]. 

The purpose of the present investigation is to study Borne of the consequences of dropping 
the slow-roll approximation. Exact cosmological solutiona are few in number and difhcult 
to find when the assumption of slow-roll is relaxed, although Borne examples include the 
power law [4] and intermediate inflationary classes [5]. Consequently, if the paradigm ia 
to be extended within the context of a minimally coupled scalar field, a new prescription 
must be developed which ensures that the general inflationary scenario satisfies the existing 
constraints. One of the points of this paper is to emphasize that this is best achieved by 
expressing the expansion rate H during inflation as a function of the scalar field 4. This 
involves using the inflaton as an effective time coordinate and allows the full dynamical 
behaviour of the field to be investigated in terms of the function H(d) without needing to 
assume that friction terms in the field equations dominate or that the field’s kinetic energy 
is negligible. 

In sect. 2 the familiar constraints that any infIationary scenario must satisfy are ex- 
pressed as restrictiona on the function H(4). In particular, we derive the condition that there 
be sufficient inflation and sufficient reheating without exceeding the observed quadrupole 
anisotropy of the cosmic microwave background radiation (CMBR) [S]. The analysis is valid 
for an arbitrary H(b) (and hence V(4)) and applies to a gcnemlchaotic inflationary scenario 
driven by a minimally coupled scalar field. One is justified in keeping the form of H(4) 
unspecified at thin stage in the development of the inflationary scenario because there exist 
many different particle physica models and the favoured candidate for the unilled field theory 
changes regularly (e.g. supersymmetry, supergravity, superstrings, supermembranes). 

In sect. 3 we focus on hvo more constraints which are aarociated with the form of the 
spectrum of perturbations resulting from quantum scalar fluctuations. Firstly, we sum- 
marize the constraints on the spectrum imposed by recent anisotmpy measurements of the 
COEEsatellite [6]. It is important to note that all observations of larg+acale galactic struc- 
ture correspond to mana scales in the range 10r2Ma to 10nMa and COB& in particular, 
only probes scales above 101gMe. These observations only restrict the form of the spectrum, 
and hence the form of the in&ton potential, over 10 decades of mass. This is equivalent 



to only hl(10’0/3) z 8 of the total number of expansion e-folds during the inflationary 
epoch. Secondly, we focus on the constraints associated with the possible overproduction 
of primordial black holes (PBHs). h general, PBH production is important if the spectrum 
of density perturbations decreases with scale. The most important PBB constraints occur 
at 10” g and 10’s g and are due to the photodissociation of deuterium by PBH photon8 
emitted after the nucleosynthesis era and measurements of the -y-ray background respec- 
tively. The PBH and COBE constraints together restrict the form of the spectrum over 45 
decades of rns.88 (viz. 1O’O g to 10nMo). They are therefore usefully incorporated into the 
prescription of sect. 2. 

In sect. 4 we discuss the condition8 under which the PBH constraints apply if such 
objects are produced by adiabatic density perturbation8 arising from quantum fluctuation8 
in the inflaton. The alternative possibility of PBH formation via bubble collisions during 
extended in&ion is not considered [44]. W e will argue that PBHs may only form if the 
relative acceleration or deceleration of the field is large compared to its kinetic energy. 
When roll-over is not slow, this may only apply when the assumption of friction-dominated 
dynamics is relaxed. In sect. 5 we focus on models in which the amplitude of the fluctuations 
varies a8 a power of the rns88. We show that this is only possible if If(#) has a hyperbolic, 
trigonometric or exponential form, corresponding to fluctuation8 which respectively inffesse 
or decrease with m-8. We examine the latter case in 8ome detail, since it is the one relevant 
to PBH formation. 

There are a number of drawback8 with this approach and the8e are discussed in sect. 
6. Firstly, the inflaton is treated entirely classically and we discuss the stochastic method 
in which the field is split into a long-wavelength (classical) part and a short-wavelength 
(quantum) part. Secondly, our treatment is not suitable for discussing the reheating phase 
or the process whereby inflation ends. 

2 Recipe for Successful Generalized Inflation 

The three main quantities of interest in the in&kionary scenario are the evolution of the 
scale factor, a(t), with respect to the cosmic time, t, the physics of the model determined 
by the scalar potential, V(+), and the dependence of the primordial fluctuation spectrum 
on comoving wavenumber, k. For a flat D-dimensional Priedmann universe with a topology 
R’ @ SD-’ and a stress tensor dominated by a single, spatially homogeneous scalar field 
self-interacting through V(b), the energy, momentum and scalar field equations are 

2 
(D-2)H2= (;l,, 

(D - 2)i = -,&j2 P-2) 

where H c o/a, K’ E 8rn1-~ p 1 mP z 10” GeV is the Planck mass, a dot denote8 dif- 
ferentiation with respect to cosmic time, units are chosen such that h = c = 1 and we 
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sssume D 2 3. When D = 4 the primordial density spectrum arising from scalar quant- 
fluctuations is given by 

bH2 
- As(k) = 4r3,2,d, > (2.4) 

where the quantities on the right-hand-side are evaluated when the fluctuation first gOe8 
outside the horizon and As(k) is the amplitude when it re-enters the horizon at tic during 
the post inflationary Friedmann phase [4,7]. The term ‘horizon’ here just means the inverse 
Hubble distance, so the scale at horizon cro88ing is determined by the equation k(t) = 
a(t)H(t). The factor b reflects the evolution of the tluctuations when they are larger than 
the horizon. b = 4 for tic < t, and b = 2/5 for tHc > t,, where 1, is the time the matter 
and radiation densities are equal. This correspond8 to an horizon ma98 of Meq = 1015MQ 

131. 
The validity of eq. (2.4) requires discussion. It8 derivation assumes that d can be 

neglected and that the scale factor grows quasi-exponentially. In this paper, we will assume 
that a similar expression holds for the full scalar field dynamics and a general inflationary 
solution. The application of this problem to power law inliation, a o[ t” with n > 1, wa8 
investigated in ref. [4] and it was shown that eq. (2.4) is al80 correct for this solution. Since 
any analytical solution can always be expanded ss a power series over the narrow range 
of e-folds relevant for large-scale structure, this suggests that our assumption is valid 88 a 
fist approximation. 

The standard approach in inflation is to specify the physics by choosing an appropriate 
form for V(4) and assuming the friction-dominated and slow-roll conditions, ]J] a: If]d] 
and G2 < V(4), respectively. Eqs. (2.1)-(2.3) are then solved to determine {4(t),a(t)} 
and it is found that As(k) is scale-invariant up to s. logarithmic term in k for the simplest 
model8 111. However, it has recently been shown how one may start with any desired form 
of a(t) or As(k) and work backwards to derive the form of the potential [8,9]. In such an 
analysis, the aim is to determine the potential that gives the theoretical model most closely 
related to observation8 rather than identify V(b) with a known field theory. However, one 
should obviously give some physical justification for the form of the potential derived. 

Further insight is gained by noting eqs. (2.1)-(2.3) may be combined into a set of 
first-order equations [lO,ll] 

($)?- (j&J n2H2W = -(;f2),v(9) (2.50) 

The scalar field in then used as an effective time coordinate and this implies that function8 
such as a(t) and As(k) may be expressed as functions of 4. From eqs. (2.4) and (2.5b) we 

(2.70) 
bic2 HZ(#) -- 

As(‘) = f&-$/2 ]H’(#)] 
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44) = 4#)H(4) (2.76) 

where a prime denotes differentiation with respect to d and eq. (2.6) follows from eq. (2.5b) 
and the definition of H(t). The solution (2.6) for D = 4 was first derived in ref. [ll]. 

It is apparent from eqs. (2.5)-(2.7) that the quantities {V(b),a(t),As(k)] may be 
determined directly once the form of H(d) is known. For this reason, it has been suggested 
that it is more efficient to begin by specifying the form of H(d), rather than V(4), o(t) 
or As(k) [12]. Though one might prefer to treat L’(4) as the fundamental quantity, this 
method has a number of advantages over existing approaches for generating solutions, since 
the potential and the dynamics of the scalar field are incorporated into the form of H(d) via 
eqs. (2.5a) and (2.5b). Indeed, the scalar field equation (2.3) is recovered by differentiating 
eq. (2.5a) with respect to 4 and substituting in eq. (2.5b). The tirst advantage is that 
only two integrations (eqs. (2.6) and (2.8)) are required to 6nd a(t) as opposed to three in 
existing methods. The second is that the over-damping assumption ]$] a H]d] need not be 
made, thereby allowing more general results to be found. Indeed this method has already 
been used to investigate whether inflationary universes with Co % 0.2 are possible [12,13]. 
The connection between V(4), a(t) and As(k) is summarized in Fig. (l), which shows that 
these quantities are linked by H(4). 

Figure 1 

We now show that it is possible to express all the observational constraints on inflation 
in terms of limits on II(&) by using eqs. (2.5)-(2.7). C onsequently, a recipe can be presented 
for obtaining successful inflation from the form of H(d) alone. A similar prescription in 
terms of V(b) was given by Steinhardt & ‘lkrner [3] for the case of new inflation but was 
restricted to the slow-roll regime of the scalar dynamics. The procedure presented here 
holds for any intlationary scenario driven by a single, minimally coupled scalar field. 

a) H’(b) is monotonic: From eq. (2.5b) the use of 4 as an effective time coordinate is 
only valid if 4 does not pass through zero. This is because the transformation that leads to 
equation (2.5b) is invalid when 4 changes sign. Therefore this formalism is not suitable for 
discussing the physics of reheating during the final stages of the inflationary epoch because 
the field will be o&hating about some global minimum in the potential. Consequently, one 
must 6rst ensure that the sign of H’ remains fixed for consistency. 

b) Viohlioa ot the strong energy condition A necessary and sufficient condition for 
in&ion is that the strong energy condition be violated. This condition may be rewritten 
as 

ii>0 - yyy)l < (D T22)L,Y 

Eq. (2.9) can be used to specify the values of d at the start of infhttion (&) or at the end 
($f) depending on the form of II(+). We note that intlation becomes more difficult BS the 
dimensionality of the space-time increases, in the sense that the range of parameter space 
leading to a violation of the strong energy condition decreases for a given functional form 
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for If(+). A similar observation was made in ref. [14] for the specific example of in6ation 
in a higher dimensional space-time driven by an exponential potential. In this case, it was 
shown that inaation will not occur.if D > 6. 

c) Suficient infiotion: Eq. (2.6) implies that the number of expansion +folds since the 
field had a value d to the end of inflation is 

(2.10) 

Scales corresponding to the present observable universe will 6rst leave the ‘horizon’ (i.e. 
the scale II-‘) when the field has some value 4~ and then enter it again after inflation 
has ended. The total number of expansion e-folds between our observable universe leaving 
the horizon and the end of inflation is therefore N(&~,df) and the flatness, horizon and 
smoothness problems are solved if this is 60, although the exact figure depends on the reheat 
temperature [3]. Smaller scales leave the horizon later and m-enter it earlier. 

d) Quodrupoh onisotropy of the cosmic microwave background: Observations of the 
quadrupole anisotropy of the CMBR place constraints on the amplitude of scalar per- 
turbations (As) and tensor perturbations (AT) on the current horiaon scale [6,15]. The 
observed temperature quadrupole is (AT/T)5 = (0.48 f 0.15)2 x lo-lo and assuming such 
an anisotropy is due to the Sachs-Wolfe effect [IS] implies 

As(lO=M,) = 
62 II2 

-- z 5 x lo-efs 
20~313 laq (2.11) 

A=(lO=Jrf,) = &II z 5 x lo-s(1 - fs). (2.12) 

The function fs, satisfying 0 5 fs 5 1, determines the relative contribution of the scalar 
and tensor modes to the anisotropy. Calculation of this quantity is complicated and requires 
a detailed knowledge of the form of As and AT. In general, however, 

As b.-zH fs 
z=ziFj=iq 

and the ratio ]H’]/H allows a rough estimate of js to be made in many examples. When 
M < Mq we must take b = 4 in eq. (2.13). This implies As > AT if lH’l/Zl < 24 and since 
eq. (2.9) implies ]H’]/H < IC/&, this condition is always satisfied. However, b = 2/5 on 
the quadrupole scale, so As > AT only if ]JY’]/H < r(/5 in this case. It is well known that 
As > AT in the limit of slow-roll [4], but the El(b) method places an exact upper limit on 
the ratio of the kinetic and potential energies of the field for this condition to be satisfied. 
Eq. (2.13) implies that fs < l/2 for KC/~ < ]H’]/H < k/d and this is likely to apply for 
any model in which there is~significant deviation from the slow-roll approximation. In this 
csse the tensor modes dominate the quadrupole measurement and the possible consequences 
of this for the cold dark matter model of galaxy formation have recently been discussed in 
a series of papers [17]. It is interesting to note that the scalar and tensor modes only have 
the same scale dependence when the functional form of H(4) is exponential and this is the 
case which leads to power law inflation. 

e) Reheating and boryogenesia. At the end of inflation the energy of the scalar field is 
converted into radiation. Chaotic inflation is not specific enough for a detailed discussion 
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of the reheating process to be given. However, by relating the energy density of the scalar 
field, pe = (D - 2)(D - l)H3/(2~*), to the energy density of the radiation field, prd = 
r2d(D)g(T)p(D-‘)/3/30, an uppeg limit on the reheating temperature is obtained. Here 
d(D) is a weak function of D such that d(4) = 1, g(T) represents the number of relativistic 
degrees of freedom and g(Z’Rx) = O(100) in the standard model. The efficiency of the 
reheating process can be parametrized by the ratio e 3 p&p+. Baryogenesis can proceed 
via the decay of supermassive Higgs bosons if the reheat temperature 

TRH = 15(D - 1W - 2)e 
Sragd(D) 

3”4(D-1)’ (~,,,~)3,[2(D-,), 
(2.14) 

exceeds 10’ GeV [18]. This constraint is derived by assuming that the lifetime of the Higgs 
boson created when 4 decays is longer than H-‘. We note that the maximum reheat 
temperature becomes lower as D increases. When D = 4, TRH z 0.2(Hp~ap)‘/~ and the 
constraint (2.12) arising from the gravitational wave spectrum can be used to provide an 
upper limit on the reheat temperature. Since eq. (2.2) implies ii < 0, we necessarily 
have II < El(do), and so eq. (2.12) may be substituted into eq. (2.14) to yield 
TRH 5 1.4 x 10’6e1/4 GeV. Thus TM must be in the range log - 1Om GeV. 

f) Quantum gravity efiects: A semi-classical description of the universe is only possible 
if V(&) 2 77Z’p and 4; 5 m’p [19]. Equality corresponds to the Planck epoch which is the 
earliest time when one can discuss classical fields on a classical space-time. In terms of 
H(4) these constraints become 

(2.15) 

(4(>-2, 

112 

mpg (2.16) 

where eqs. (2.5a) and (2.5b) have been used and equality applies in both equations together. 
As D increases, these conditions become more stringent. 

By following the above prescription it is possible to demonstrate that a period of suc- 
cessful intlation occurs without assuming slow-roll and without the need to solve the field 
equations explicitly. Indeed, this code provides a new way of obtaining successful inflation 
in models where an analytical expression for a(t) cannot be found, i.e. when eq. (2.6) 
is not invertible. Note that the conditions for quasi-de Sitter expansion (slow-roll) and 
friction-dominated scalar dynamics may be rewritten as 

I .I $<l - 
I I 
G <:n 

Ik I (D - WIldI 

(2.17) 

(2.18) 

respectively. It should be emphasised that, for some forms of R(d), it is possible to have 

W4)l z s2iY(#) when III’(b)] < nZf(d), so one may have a quasi-de Sitter solution 
without neglecting the 4 term. In other words, friction-dominated dynamics is not identical 
to the slow-roll approximation. 
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With the exception of the density perturbation constraints, we have derived the condi- 
tions for successful intlation for arbitrary space-time dimension. We have kept the analysis 
ss general ss possible in the hope that some special features will arise in some theories 
when D = 4. In particular, if a given theory only violates the strong energy condition 
when D = 4, this would provide a possible solution to the uniqueness problem of particle 
physics. It would appear that successful inflation becomes more difficult to achieve as the 
dimensionality is increased which suggests that lower values of D are favoured. 

3 Constraints from PBHs and the CMBR 

An important feature of all inflationary scenarios is that they predict the existence of adia- 
batic density fluctuations, 88 indicated by eq. (2.4). We have already seen how observations 
of the quadrupole anisotropy of the microwave background constrain the inflationary model 
(viz. eqs. (2.11) to (2.13)). However, there are also constraints on the amplitude of the 
fluctuations on much smaller scales than the current horizon and, depending on the form 
predicted for As(M), these may place more or less interesting restrictions on the scenario. 
In this section, we discuss the various limits on As(M). The most important upper limits 
on As(M) are associated with the CMBR anisotropies on large scales and primordial black 
hole (PBH) formation on small scales. There are also limits associated with the absence of 
spectral distortions in the CMBR at intermediate scales. The wide range of.scales encom- 
pased by these limits provides very stringent constraints on inaationary models in which 
the amplitude of fluctuations decreases significantly with scale or exhibits peaks over a wide 
range of scales. The constraints are summarized in Fig. (2) and we now justify them. 

Figure 2 

Various upper limits can be placed on the CMBR anisotropies, AT/T, on angular scales 
above an arcminute. AU of them are in the range 2 - 5 x 10e5. These constraints came 
from satellite and balloons above a few degrees and ground-based radio telescopes on 
smaller scales. Recently, CO&?? has claimed a positive detection for scales between KY’ 
and 900 and, in principle, this gives direct information on the spectrum of density fluc- 
tuations at decoupling. However, since the mass associated with an angular scale 6 is 
Mz 1017(6/degrees)3A40, COBE only probes the long wavelength part of the spectrum 
and not the part associated with galaxies and clusters themselves. Previous analyses of the 
COB.?? data have assumed that a direct extrapolation to smaller scales can be made unam- 
biguously, but it k plausible that strong features in As(M) occur below 100. The precise 
connection between As(M) and AT/T(B) depends on the nature of the fluctuations (adia- 
batic, isothermal or isocurvature) and the nature of the dark matter (hot, cold or baryonic). 
Only observations above 10“ are unambiguous since reionisation could modify anisotropies 
below 100. The COBE measurements would seem to be consistent with the unbiased cold 
dark matter scenario, in which the horizon-scale fluctuations As(M) are scale invariant 
[6,20]. However, the large-scale structure data (in particular, evidence from the APM and 
QDOT surveys and streaming motions) would seem to require some modification 1211. Spa- 
tially flat CDM models with fl < 1 and a cosmological constant may also be consistent 

7 



with all the data [22]. In view of these uncertainties, the only secure, model-independent 
constraint is associated with the COBE quadrupole anisotropy as shown in Fig. (3). 

The CMBR spectral distortion oonstraints are associated with the fact that the damping 
of adiabatic density fluctuations at high redshifts (z > 105) wiU inject energy into the 
primordial plasma, thereby inducing a Bose-Einstein spectrum with chemical potential p. 
Since COBE observations require p < 0.01, this places the constraints on As(M) indicated 
in Fig. (2). The curves are taken from ref. 1231 and correspond roughly to As(M) < J7;; the 
relevant mass range corresponding to the fluctuations which enter the horizon at z > 105. 
Daly has also examined this constraint 1241. 

We now examine the constraint on As associated with PBHs. The first one derives 
from the fact that any PBHs which survive today must certainly have less than the critical 
density. In the standard radiation-dominated model for the early universe, this implies that 
the fraction of the universe going into PBHs at time t must be less than 10-5(t/a)‘/2. Since 
PBHs must have of order the horizon mass, Mx = 105(t/s)&, at their formation epoch 
[25, 401, this implies that the fraction of the regions of mass M collapsing at the horizon 
epoch must satisfy 

P(M) < 1o-8 -& 
( .> 

112 
a 10-l’ & 1’2, 

( > 

where 1015g is the mass above which the PBH density wiU have been una!Iected by evape 
rations [26]. This constraint would be weakened by a factor of 10’ if the early universe were 
‘cold’ with the microwave background being generated at some late epoch, since the radia- 
tion equation of state would then only pertain before lo-‘s. However, this possibility now 
seems unlikely in view of the success of the standard cosmological nucleosynthesis scenario 

[271. 
In order to interpret condition (3.1) as a constraint on As(M), we wiU assume that 

the primordial fluctuations on a scale M have a Gaussian distribution with rms amplitude 
6,,,(M). If the fluctuations are spherically symmetric and the background equation of state 
is p = yp (0 < 7 < l), one then expects 1251 

Eq. (3.1) thus places an upper limit on 6,,. as a function of M. For 7 = l/3 (as expected 
in a radiation-dominated early universe), it is given implicitly by 

a,,.(M)<o.l5[17-~log(~)+*og6,,.(M)]-1’2~0.2[31-log(~)]-1’2, 

(3.3) 
where in the second expression we have anticipated that the log 6,,. term is about -1.5. 
At 10i5g, this gives 6,,, < 0.04. The Ructuations cau be larger at higher messes but only 
by a logarithmic factor. For example, 6,,. < 0.06 at l& and 6,ms < 0.08 at lOBA&. 

In fact, the constraints are somewhat stronger just below 1015g on account of quantum 
emission [28]. In particular, the 100 MeV gamma-ray background measurements imply 
that 1015g PBHs could have at most lo-* times the critical density [29]. The factor 17 in 

8 



eq. (3.3) then becomes 25, so the upper limit on 6 o,,n at 1015 g drops to 0.03. For PBHs 
which have evaporated completely, there are also limits on o(M) associated with entropy 
production [30] . 

-1 
, M < lO”g, (3.4) 

and distortion of the microwave background 1311 

B(M) < 10-18 M ( > 
-1 

1O”g 1 
1o”g < M < 10’3g, (3.5) 

and cosmologicai nucleosynthesis constraints 

lo-l5 (#J1 7 109g < M < 10’3g 

13(M) < lo-*l (&) “*, M > lOlog (3.6) 

1o-‘Q$J-1’2, 10gg < M < lOlog. 

The last three limits are associated with the increase of the background photon-to-baryon 
ratio by PBH photons emitted after nucleosynthesis [32], photodissociation of deuterium 
by such photons [33], and modification of the neutron-twproton ratio by PBH nucleons 
emitted before nucleosynthesis [34]. The 6rst limit in Eq. (3.6) is weaker than limit (3.5). 
The other limits on P(M) are summarized in Fig. (2), which is adapted from ref. (471 and 
the associated constraints on As(M) m 6,,.(M), derived from eq. (3.2), are shown in Fig. 
(3). Note that the deuterium constraint on As(M) at 1O’O g is about 0.03, comparable to 
the r-ray constraint at lO”g. It is interesting that the constraints in Figs. (2) and (3) 
would be modified if the equation of state in the early Universe wss ever soft 1481, because 7 
would be very smali in Eq. (3.2). In particular, this might occur for a while when the scalar 
field is oscillating in the minimum of the potential at the end of inflation [49]. However, we 
neglect this complication here. 

Figure 3 

When taken together, these constraints are very powerful because they restrict the 
spectrum over 45 decades of mass. However, it is clear that the PBH constraints are only 
interesting if the spectrum decreases with scale by a sufficient factor. If the fluctuations 
can be described by a single power law, As 0: M-“, then the combination of the COBE 
quadrupole rest& (As E; 5 x IO-’ at lpg) and the PBH deuterium constraint (As < 
3 x lo-* at l@*g) means that the factor must be 6C00 over 45 decades of mass. This 
requires a > 0.08, as indicated hy the dashed line in Fig. (3). This is marginaily consistent 
with the COBE results since these require Q to be in the range 0.1 > (2 > -0.07 at the 
l-sigma level. The PBH deuterium constraint is therefore slightly stronger than the one 
derived from the COB,?? detection alone. 

However, in the standard cold dark matter model, Liddle et al. have argued that 
cz = -0.08 provides the best fit to the APM data and this may well exclude any PBH 
formation [35]. LiddIe and Lyth [7] h ave also derived a stronger constraint on a by combining 
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results from the IRAS/QDOT galaxy survey [45], the POTENT peculiar velocity maps (461 
and the COBE DMR experiment. They conclude (I must be in the range 0.05 > Q > -0.05 
at the 2Ggma level. This limit is shown as a dot-dash line in Fig. (3). In these ca4es, one 
would require the index Q to vary with scale for PBIIs to be interesting, becoming positive 
in at least some msss range above 1O’O g. It is important to note, however, that these limits 
on the spectral index are derived from the assumption that the spectrum is a featureless 
power law and are not strictly valid in more general examples. Indeed, for more general 
spectra any limits obtained from galaxy surveys and the CMBR only strictly apply above 
1O45 g. We next consider the circumstances under which more complicated spectra may 
arise. 

4 Conditions for the PBH Constraint to Apply 

It is usually assumed that the spectrum of density perturbations in the inflationary scenario 
is nearly scale-invariant. This is a direct consequence of the invariance of de Sitter space 
under a time-translation. Since the physical size of 8 fluctuation which crosses the horizon 
(- H-i) and the expansion rate of the universe are constant, each scale has a perturbation 
of the same amplitude. In prsctice, the assumption of slow-roll leads to 8 small deviation 
from de Sitter space and a logarithmic dependence of As(k) on k for power law potentials. 
This can be seen quantitatively by taking the logarithm of eq. (2.7b), diflerentiating with 
respect to d and then using eq. (2.6) to obtain 

(Ink)’ = $ - ;$. (4.1) 

For 8 quasi-de Sitter space (i.e. for ]H’]/kf < k from eq. (2.17)), the lirst term on the 
right-hand-side is negligible, so eq. (2.10) implies N(4) 0: Ink(b) and eq. (2.78) gives 
As(k) m HdN/d$. For example, in the power law model If ix +““, we get N o( I$ and this 
implies As o( (In k)(“+‘)/* which is nearly, though not exactly, scale-invariant. 

In fact, the definition of inflation given by (2.9) implies that the second term of the 
right-hand-side of eq. (4.1) dW8yS dominates over the first. This suggests that 8 strong 
scale-dependence is difficult to achieve for 8 quasi-exponential expansion since dN/db is 
nearly constant 8s a function of k and there is no feature in the functional form of N(4) 
[ 1 I]. However, scales of cosmological interest correspond to only 8 narrow range of N (4) and 
deviations from 8 logarithmic dependence may be possible if a feature occurs in the potential 
(or equivalently in N(4)) [9, 361. Moreover the COBE and PBH constraints together span 
ln(10’5) rz 35 *dings of inflationary expansion. If it is plausible for a feature to occur 
over cosmologica’sc&s, it is certainly reasonable to suppose that a deviation from scale 
invariance in podble over this significantly wider range. 

We now establish whether the spectrum increases or decreases with scale in order to 
determine when the PBA constraints are important. In the following discussion, we will 
assume for simplicity that the spectrum does not exhibit any features. If the amplitude 
increases with scale (dAs/dM > 0), the COBE constraint is the most interesting, whereas 
the PBH constraint may be the most interesting if the amplitude decreases with scale 
(dAs/dM < 0). The sign of dAs/dM is easily determined from the functional form of H(d) 
and its first derivative. The form of As(+) follows from eq. (2.7a) and H’(d) determines 
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the sign of d(t) via eq. (2.5b). This allows us to determine whether d(t), and hence As(t), 
increases or decreases with time during the first horizon crossing. If dAs/dt > 0, then 
dAs/dM < 0 and vice-versa. This simple qualitative test should always be applied when 
investigating constraints on in&ion. 

The afgument can be made more quantitative in the following way. Since eq. (2.2) 
requires H(t) < 0, the scalar perturbation spectrum will only decrease with increasing 
mass-scale if IH’I also decreases as the inflaton evolves. Since 

dH’/dt = $?I” = -2H’H”/s* (4.2) 

from eq. (2.5b), this implies that a necessary, but not sufficient, condition for the PBH 
constraint to apply is that the curvature of H(b) be positive definite, i.e. H” > 0. This in 
turn implies that the potential must be convex. One can conclude, therefore, that PBHs 
are not interesting if the field lies within the vicinity of a local maximum of H(4), and 
therefore V(b), during the relevant horizon crossing. Note that, depending on the sign of 
H’, 4 may be increasing or decreasing with time. The second time derivative of the field is 
related to H” by the expression K;“$ = 4H’H”. Thus, if H’ > 0 (H’ < 0), the field must be 
accelerating (decelerating) for the spectrum to decrease with scale. 

In general, it follows by writing dAs/dM = (dAs/db)/(db/dM) and differentiating eq. 
(2.78) that a necessary and sufficient condition for dAs/dM < 0 is 

Since condition (2.9) for the violation of the strong energy condition must also hold, we 
also infer that a suSicient, but not necessary, condition for a spectrum which decreases with 
scale is 

H” 
a > 2. (4.4) 

Prom eq. (2.18) this necessarily entails violating the friction-dominated assumption. Since 
the ratio of 141 to 3Hl~$l is specified by lH”l/H, one must therefore consider the full dy- 
namics of the theory by including the contribution from 4 in the scalar field equation if the 
amplitude of perturbations is to decrease with scale. However, for slow-roll, lH’j/H < 6 
and the friction-dominated assumption need not necessarily be violated in all cases. It is 
important to note, though, that eq. (4.3) necessarily requires some contribution from 141. 

This analysis suggests that PBB formation will be dilikult to achieve in many scenarios 
for which the in&&on is minimally coupled to gravity, because the form of the potential 
must be restriet+dt Consequently, an observation coniirming the existence of PBHs would 
significantly dtar our understanding of the inflationary scenario if one assumes that PBHs 
arise due to the power spectrum of quantum fluctuations in the in&on. Indeed, eq. (4.3) 
suggests that it is generally rather d&At to obtain any spectrum which decreases with 
mass-scale. In contrast, spectra from cosmic strings necessarily contain extra power on 
smaller scales [37] and this suggests that a determination of the sign of dAs/dM over 
cosmological scales may provide strong support for one of these two competing scenarios. 

In conclusion, the extension of the prescription dismissed in sect. 2 is contained within 
eqs. (4.2)-(4.4), which indicate when the PBH constraint may be important. Most chaotic 
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models in the flat Priedmann metric lead to a perturbation amplitude that increases with 
scale and the anisotropy of the CMBR, together with high redshift galaxy surveys, provides 
the strongest constraint. In the next section we investigate which potentials lead to a power 
law spectrum which decreases with mass. 

5 Constraints on Potentials leading to Power law Fluctua- 
tions 

The aim of this section is to consider a toy model for which the recipe of sect. 2 and 
the PBH constraint can be employed to place limits on the parameters of the theory for 
successful inflation. We adopt a phenomenological approach and begin by deriving the form 
of H(4) which leads to the power law spectrum 

As o( M-” u kp, p = 3a. (5.1) 

This is an interesting case because the COBE result is consistent with a power law spectrum, 
but at present does not determine the sign of p [20]. A second-order differential equation 
in 61 can be derived by equating eq. (2.7a) with eq. (5.1), differentiating with respect to 4 
and substituting in eq. (4.1) to eliminate (Ink)‘. This gives 

(2 - p)$ - HN = -,,H, 

where Jo m ,~3n*/2. This simplibes with the use of the identity 2H” E dH’*/dH to a iirst- 
order equation in H’: 

dHR 
- - 2(2 - B)$ 
dH 

= 2pH. (5.3) 

This equation has the exact integral 

H’* = H* + CH*@-0), (P # 11, (5.4) 

where C is an integration constant. For 1 > B > 0 and C > 0, eq. (5.4) can be integrated 
exactly to yield the trigonometric solution 

H(4) = X=“(@h (5.5) 

where 
1 PK2 [ 1 

w4(1-P)I 

-l_P, A= 2(l-p)C ’ 

For /3 < 0 or p > 1, one gets the hyperbolic solution 

H(#) = J-W4, 

if C < 0, where 

nz &, Ar [2(B~~),cl]1”2(1-s)‘, 

(5.6) 

(5.7) 

w ~ (5.8) 
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In either case, H(6) contains two free parameters C and p. Two other solutions of eq. (5.4) 
are obtained when C = 0 or p = 0. These correspond to 

. 
H=~xP(~&), Cd = (P < 01, (5.9) 

(5.10) 

respectively. The former solution is known to give power law infiation, but corresponds to 
fluctuations which increase with mass-scale. The latter is the only form of H(b) which gives 
ezactly scale-invariant fluctuations. (The special case of fl= 1 has recently been studied in 
ref. [SO].) 

The H(4) method therefore leads to the important conclusion that only a hyperbolic, 
trigonometric or exponential form for H(4) can lead to a power law spectrum for the density 
fluctuations. Here we focus on the trigonometric case because this is the only one which 
could give rise to PBH formation since the fluctuations decrease with mass. The potential 
is found from eq. (2.58) to be 

V(4) = ; [ (3 + 2n272) sec*“w~ - 2n*+?c*“+*w~] ( 

where 7 m W/I( = l/a if w = nap’. Thus l/w represents the width of the potential 
and X corresponds to the height. This is a generalization of a previous result found in 
ref. [9], which was valid only in the slow-roll regime. Such an approximation holds when 
(n - 1) < 0, i.e. ID] < 1. Note that ny is determined by the exponent in the fluctuation 
spectrum since eq. (5.6) implies 

(5.12) 

As far es we are aware, there is no particle physics model that predicts a potential exactly 
of this form, but (5.5) leads to andytical results and may be viewed as an approximation 
to a more complete theory, at least over some range of qk 

Due to the periodic nature of the function (5.5), we may assume WI$ E [0, r/2] without 
any loss of generality. The PBH constraints of sect. (3) imply that fl (not to be confused 
with the function P(M)) be less than 0.3. Prom (5.12), this requires ny < 0.5, and eq. (5.8) 
implies that 7 > 0.3 and n < 1.4. Hence H(d) has a minimum at # = 0 and tends to +oo 
at WC$ = r/2. B potential does not vanish at C$ = 0 and one ends up with a non-zero 
cosmological co&ant. (This could be remedied by adding a constant in eq. (5.12) but 
then As(M) ad If(&) would not have the simple forms indicated by eqs. (5.1) and (5.5)). 
We can now use the analysis of sect. (2) to determine when inflation starts and ends. The 
strong energy condition is violated when 

1 1-P tr&hp<--- 
2n*7* - p 

(5.13) 

and this implies that inSation may occur for all values of fl for which the trigonometric 
potential pertains (1 > fl > 0). At the Planck time the value of w& is specified by eq. (2.16) 
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to be ficos”w+p % X/mp, so the universe will not be inflating initially if 

(5.14) 

This condition is satisfied for the typical values X/nap m O(10e4), w sz O(m;‘) and n zz 1. 
Thus the field proceeds to roll down the potential but inflation does not start until 4 reaches 
the value & given by 

Sin*ld+j = 
1 

-1-p. 
1+ 2799 - 

(5.15) 

For small p, w4i must be close to n/2, SO idation starts near the Planck time. 
It is now straightforward to deduce from eq. (2.10) that the horizon problem is solved 

providing 

lnsinwbf I -iln(l+ 2n27*) - 120n*y*, (5.16) 

where the factor 120 corresponds to 60 inflation e-folds for our universe. Thus w+, < 1 
and H(4f) rz A, so eq. (2.14) implies that the reheat temperature is given in terms of A by 

x 10-37 TR” * -f2$- 
mP a* GeV ( > 

Note that the factor of 120 in eq. (5.16) itself depends on TRn but this only gives a small 
correction. This expression can be used, along with constraint (2.12) arising from the 
contribution of gravitational waves to the CMBR quadrupole anisotropy, to place an upper 
limit 

X/mp 2 2 X lo-‘. (5.18) 

It is interesting that this result is independent of the efficiency of the reheating process and 
therefore the direct couplings of the inflaton to the supermassive Eggs bosons responsible 
for the baryogenesis. 

In conclusion we have shown that a potential containing two arbitrary parameters will 
lead to a scalar perturbation spectrum that exhibits a simple power law. Upper limits on 
the parameters were obtained directly from the PBH and COBE constraints. The ‘height’ 
of the potential, as determined by A, is constrained by the effect of primordial tensor modes 
on the CMBR. In contrast, the ‘width’ of the potential depends only on w and uniquely 
specifies the spectral index of the acolor perturbation spectrum. We are therefore able to 
constrain the form of the potential (5.11) over approximately 35 e-foldings. 

6 Conclusions and Discussion 

The main idea behind this work h&r been to treat the function H(4) as the fundamental 
quantity when studying the evolution of self-interacting scalar fields in the early universe. 
This aRows the full dynamical behaviour of the field to be investigated and a recipe was 
presented in sect. 2 based on a number of constraints on H(b) that any inflationary model 
must satisfy. This analysis suggests that successful inflation becomes more likely when the 
dimensionality of the space-time is lower. 
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It WBS shown in sect. 3 that additional constraints arising from the formation of PBHs 
may become important when the assumption of friction-dominated dynamics is relaxed. 
In general, PBHa may be interesting if the amplitude of density perturbations arising from 
quantum scalar fluctuations is decreasing with mass-scale. It was argued that the relative 
acceleration or deceleration of the field must be large compared to the kinetic energy for 
this to occur. These constraints have not been di scussed in the literature because it 7~~s 
thought that the assumption of slow-roll would lead to a spectrum that increased with 
scale or was very nearly scale-invariant. These additional constraints are incorporated into 
the recipe of sect. 2 and a specific functional form for H(4) was investigated in sect. 5 to 
illustrate these ideas. 

However, there are a number of drawbacks with this approach. It is necessary to wsume 
that the scalar field is a monotonically varying function of t. Consequently, this approach 
is not suitable for discussing the physics of the reheating phase. Secondly, the inEaton has 
been treated as a classical quantity. An alterpative derivation of eq. (2.5a) is found by 
multiplying the scalar field equation (2.3) by 4 and substituting for the energy density of 
the field p E 4*/Z + V(4) to obtain 

@+3a$2= 0. (W 

Hence p’ = -311~$ and this reduces to eq. (2.5a) when 3H2(+) = I?P [13]. However, in 
the stochastic treatment of inflation, the full quantum field G is split into long- and short- 
wavelength components, as defined by the inverse Hubble scale, by writing Cp = 4 + Q [39]. 
The field equation for @ reduces to an effective field equation for the coarse-grained field 
given by 

4+384+y=4) =;,.,,,. (6.2) 

where the quantity j(x, t) represents the continuous inflow of short-wavelength modes onto 
4. In practise, 4 is treated as a classical object that evolves randomly in the presence of 
the quantum term j. Clearly, the existence of j implies that eq. (6.1) and hence eq. (2.5a) 
are not valid. 

Finally, the exact process whereby inflation ends in the example of sect. (5) has not 
been discussed in detail. One must argue that the complete potential only approximates to 
the form necessary for a suEkient period of inflation. After this is achieved the field evolves 
to a different part of the potential where there may be a stable minimum and reheating can 
proceed. 

Amplitudes which decrease with scale are also possible in super-inflationary scenarios 
(ri > 0), whid+rise in some higher-order gravity theories with Lagrangian j(R) [4,41]. It 
is well known t&at. these theor+ can be expressed 88 general relativity plus a scalar field 
by means of a:‘&itable conformal transformation Q,,,, = G*g,,, (421. The potential of the 
field, and hence H(O), are uniquely specified by j(R). Furthermore, it is easy to express the 
observational constraints in the gru frame in terms of quantities deEned in the conformal 
picture &,” (431. Hence the constraints on H(4) p resented here can be used in principle to 
constrain these higher-order theories. 
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Figure Captions 

Figure 1: A triangle of approadea illustrating how the three main quantities of interest 
in inflation, {a(t),As(M), V(4)}, are related and can be obtained from each other once the 
functional form of one of them has been specified. They are all linked by the functional 
form of a(4). Hence it is natural to view the functional form of H(4) as the fundamental 
quantity in the analysis. 

Figure 2: Showing the constraints on o(M), the fraction of the universe going into PBHs 
of mass M, which can be inferred from measurements of the total density parameter (G), 
the gamma-ray background (r), the primordial helium (He) and deuterium (D) abundances 
and the photon-to-baryou ratio (S). fl must be tiny over most mass ranges. 

Figure 9: Showing the constraints on As(M) s 6~(bf) which can be inferred from the 
constraints on P(M) shown in Fig. (Z), limits on the spectral distortion in the microwave 
background and COBE measurements of the microwave background anisotropies. If the 
fluctuations have a power law form, then COBE allows the spectrum to lie anywhere in the 
region bounded by the solid lines, which represent errors at the l-eigma level. This just 
includes the dashed line, which corresponda to the maximum slope compatible with the 
PBA constraints. The dot-dashed line represents the 2-sigma upper limit on the spectral 
index derived by combining the IRAS/QDOT and POTENT galaxy surveys with COBE 
(see Liddle and Lyth in ref. [I). The allowed region lies below this line and the possibility 
of significant PBH production is clearly ruled out if the spectral index is independent of 
mm-scale. 
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