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Abstract 
A version of the Rub&w-Shaposlmiiov high dimensi&l model is im- 

plemented. Particles are assumed to be confined to a four-dimensional sub 
manifold of a high dimensional space via a potential barrier based on the 
four-dimensional gravitational field strength. The Scbwarzschild black-hole 
has a window into the higher dimensional space, located outside event. 
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1 Introduction 

An interesting high dimensional model was introduced a few years ago by Rubakov 

and Shaposhnikov (RS for short) [I]. Contrarily to the usual assumption in Kaluza- 

Klein theory, the extra dimensional subspace is not necessarily compact. Particles 

are trapped in a four dimensional subspace by the action of a potential V. Still, it is 

admitted that by a high energy process, such as a particle collision, some particles 

may escape the space-time domain, much like the classic escape velocity problem in 

mechanics, except by the fact that now the particles would escape the space-time 

itself. Dimensional reduction results from the breaking of the translational symmetry 

along the extra dimensions. If the particles acquire sufficiently high energy to break 

that potential barrier, then the extra dimensions would become visible so to speak, 

through a &surface or “window” in space-time. 

As we see, the RS model brings some new ideas into high dimensional theories, 

but it also opens a number of new problems. To start with, its geometrical setup 

is unclear and the nature of the potential V should be better understood. In order 

to make sense, the conservation laws need to be adapted to the proposed high 

dimensional physics. Finally, there are some topological implications. Would the 

escaping particles belong to another four dimensionalspace, connected to the original 

space-time, or would this process lead to a change in topology? 

Several different configurations and applications of the RS model have been 

proposed[2, 3, 41. The so called sp$ce-time membrane models[5, 61 have some geo- 

metrical similarities with the RS model, but their principles are different. 

In this note we implement the geometry of the RS model, in terms of the geome- 

try of submanifolds and study the model near a Schwarzschild black hole. We assume 

that in this situation the dominant contribution to the potential V has gravitational 

nature, so that it may be described by the gravitational field strength. Using a 



geometric model for V, we obtain a generalization of the De Broglie energy relation. 

Particles in the vicinity of a black hole may gain sufficient gravitational energy to 

overcome that potential barrier, thus escaping from the space time bounds. This 

process takes place at a spherical 3-surface, located before the horizon, opening a 

“window” to the extra dimensions[7, 81. Finally, the region of the high dimensional 

space, occupied by the escaping particles is described as an extension of the original 

space-time metric, resembling what would be a cls&ical 4-dimensional wormhole. 

Next section gives the conditions for the particles to escape a potential V. Section 

3 describes a particular expression of V in terms of the gravitational field strength. In 

section 4 we examine the situation near a Schwarzschild black hole and describe the 

geometry of resulting the space-time extension, generated by the escaping particles. 

2 Particle Dynamics in Higher Dime&ions 

From its description, it follows that the natural geometrical setup for the FLS model 

is that of submanifolds of a high dimensional flat space. Therefore, it has a relation 

with some Kaluza-Klein like models, where the extra dimensions are not necessarily 

compact.[9, 10, 111. 

Consider a 4-dimensional-space-time 57, with metric ~ij, as a locally embedded 

submanifold of a D-dimensional flat space’ MD, D > 4. For a particle tfavelling 

in MD with momentum P“, its mass is given by the second order Casimir operator 

of the Poincare group of that space: p* = +PJ‘P”, where n,,” denotes the metric 

of Mo in Cartesian coordinates. Since P“ has components which are tangent and 

normal-to the space-time Sd, p2 may be decomposed as: 

LUnless stated on the contrary, &all case Latin indices run from 0 to 3 and capital Latin indices 
run from 4 to D. All Greek indices run from 0 to D. 
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where we have denoted by m2 the operator composed exclusively by the components 

of PJ’ that are tangent to S’d and Pi contains all remaining terms. 

A four-dimensional Riemannian observer can see only the part of (1) restricted 

-to space-time. Denoting PiJs, = pz n , $Js, = fi2, for this observer, equation (1) 

looks like 
p; = p* - a*. (2) 

where fi denotes the mass of the particle as measured by that observer. Using the 

space-time signature (+, -, -, -), the mass of a particle in curved space-time is [I21 

fi = &jP’P = boom - 2,3-,,,P~ - oabppb, 
a, b = 1..3 (3) 

If E denotes the total energy of the particle trapped in the space-time by the po- 

tential V, then the energy momentum relation for that particle is 

E-V=p’. 

Therefore the total non negative energy of a particle initially trapped in space-time 

is given by 

E=V+- 
&ii\’ 

tit2 -I- 2&P”P0 -I- &,bPaPb, a, b = 1..3. (4) 

;As stated before, the permanence of the particles in space-time is note necessarily 

stable, because they may get sufficient energy to escape to the extra dimensions. 

The threshold condition for this to happen is E = 0. 

3 Gravitational field strength 

In thissection we look for an example of the potential V which depends only on 

the-strength of the gravitational field. This quantity may be described as a scalar 

function of the observable curvature of the space-time, as for example 

l/infl&ju] (5) 
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where Rijki is evaluated in a tetrad basis (see e.g. [13]). Another possible description 

of the strength of the gravitational field is given by the square root of the above ex- 

pression, which, as we will see may be associated to a length in the high dimensional 

space. 

Let X’ denote the Cartesian coordinates of a space-time point in MD. The 

equations defining the isometric embedding of .S, in Mo are: 

x$xyl& = .&j, N$Xz~pu = 0, N~N~Q~ = SAB, (6) 

where N,.t denote D-4 independent vector fields orthogonal to 5’4; q,,” are the Carte- 

sian metric components in Mn and gAB = eA6An,eA = fl. 

The integrability conditions for (6) are the well know Gauss, Coda@ Ricci 

equations of differential geometry, relating the metric to the second fundamental 

form and the “twisting” .vector of S,, respectively given by: 

For our present purposes, it is sufficient to write Gauss’ equations 

(7) 

The cotangent vector 6%’ to a principal line of curvature of the space-time S,, cor- 

responding to a normal NA, satisfies the equation (141 

(aij - IAbijA)6Xi = 0 no sum on A. (8) 

Therefore zA must be a solution of 

det(@ij - TAbijA) = 0,I no sum on A. (9) 

For each fixed value of A, there are at most four solutions denoted by zA = ~9, 

corresponding to (at most) four independent principal directions 6s. With these 



directions we may define a principal tetrad basis (clearly, when the principal direc- 

tions are not independent, the basis must be complemented [14]). 

Consider two principal directions 15x” and 6s’. Writing Gauss’ equations, in the 

basis containing these principal directions, it follows that: 

RijkI 6~” A 6~’ = 2gABbijkAbl]je 6~” A 6~‘. 

Using the definition (8) and gAB = l/gas = fl, we obtain 

Rijk, 6~” A 62’ = C Oijy B ~6xk A 6x’, 
k,, gABPI, PI 

where we have denoted Gijk[ = 2gi[kgllj. Therefore, it follows that for each pair of 

principal directions the scalar 

corresponds to a measure of the gravitational field strength, namely the square root 

of (5) expressed as a length in the high dimensional space. If gravitation is weak, 

then p is large. Strong gravitational fields are associated with small values of p. 

The FtS model does not explain the nature of V. Obviously, gravitation alone 

cannot explain why particles are confined to four dimensional space-time. If this 

was the case, then in a weak gravitational field the particles would be free to move 

around the extra dimensions, rendering these dimensions observable at low energies. 

Therefore the full expression of the potential V is possibly very complex. 

Nonetheless, in the case of a strong gravitational field one may perhaps plausibly 

assume, that the potential V becomes completely dominated by that field as the 

predominant interaction (likely to occur at the quantum level). In this case, V may 

be represented in terms of a scalar function of the gravitational field strength (11). 

Using an analogy with the Newtonian potential [15] V(p) may be taken to be 

proportional to l/p. This is of course a purely intuitive assumption, based on 
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earlier conjectures on the escape problem in a Schwarzschild space-time[l6]. The 

proportionality constant a may be adjusted so that Planck’s constant is evidenced: 

V(p) = -ti; 02) 

4 The Window Near a Black Hole 

At the quantum level, we replace the term &bppb in (4) by the corresponding 

expression (h/X)2. Therefore, for a spherically symmetric strong gravitational field, 

the expression corresponding to 4, using (12) is 

EC-~!+ p &/qF 

which suggests a generalization of DeBroglie’s energy relation for a particle in a 

spherically symmetric strong gravitational field. In the case of a massless particle 

we obtain a correction to Planck’s energy relation 

h 
E=-a;+-. 

vl%G 
(13) 

If p >> Q X6, the first term in (13) becomes negligible and we recover the usual 

energy relation (with a classical red shift correction to X). 

On the other hand, when p is of the order of a&/&, then the first term in (13) 

cannot be neglected. This suggests that at this scale the quantum behavior of grav- 

itation becomes significant, modifying Planck’s relation. At this stage, gravitation 

contributes positively to the total energy E, producing the necessary energy for the 

particle to escape to the extra dimensions. 

In the case of a Schwarzschild black hole, we have [16]: &= 0, & = Jq 

and p = &$, so that (13) becomes 

(14) 
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The threshold condition for a particle to escape the black hole with the potential 

(12) is then 

f(r) = r4 - Kr + 2MK = 0, K = 2MX2a2, (15) 

whose real solutions define two spherical surfaces, the “windows”, through which 

the extra dimensions would become visible. The condition for (15) to admit at least 

two real roots, is that there is a value rs, such that gJrCFO = 0 and f(rc) 5 0. This 

gives a lower bound for the constant o: 

where the equal sign corresponds to the bottom of the potential well rs 

Equation (15) may be written as 

r-2M= 
r4 

2Mxw’ 

showing that the real roots of (15) are located outside the horizon r = 2M. 

We may also write (15) as 

(17) 

r 
M*(r) = $I* 

4~* 
1 - X2a2 -1 

Since M is real and positive, it follows that the roots belong to a finiteinterval, with 

an upper bound value given by CA/~. 

The smaller root rr of (15) represents the threshold point for a-high energy 

particle to escape the space-time bound. On the other hand, since we have also 

E > 0 for r > rz, the particles passing through rz toward the singularity actually lose 

energy, until reaching the bottom of the well rs, where gravitation starts contributing 

to the escape at rr. Therefore, only the 3-surface r = t-1 in fact corresponds to a 

window. 
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Finally, replacing (16) with the equal sign in (17), it follows that the bottom 

of the potential barrier is located at the point where the gravitational field starts 

contributing to the energy of the particle? 

r. = ;2M = 2.66 M. 

As an example, consider Cygnus X-l as a Schwarzschild black hole with msss 

2M z 5.02 105cm [lS]. The center of the potential barrier is located at re = 

6.69 10’. For a particle with typical Compton wavelength X Y IO-r3cm and for 

h = 2.612 10-6s~m2, we obtain from (16) that a > 3.108 10”. Taking the smallest 

value of (2, we obtain the equation 

r4 - 4.849 10t8r + 2.434 10z4 = 0, 

with two real roots: rr = 5.167 lo5 and rz = 14.731 105. 

The relative positioning of the roots depend strongly on the values of (1. For 

example, if we chose a large value such as o = lo*‘, then we obtain K = 0.502 10zo 

and equation (15) becomes 

r4 - 0.502 10% + 0,252 10z6 = 0, 

whose real roots are now much wider apart: rr = 5.033 105, rz = 35.036 lo5 (fig. 

1 shows the relative positions of the roots for the two values of CI considered. For 

clarity the y scales have been slightly adjusted). 

Trend, we make a brief discussion on the classical geometry of the region of 

the high dimensional space occupied by the escaping particles, under the hypothesis 

of the potential (12) near a Schwarzschild black hole. 

*this value differs slightly from an estimate using Casimir effect considerations [17] 
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Fig.1: Potential barriers near Cygnus X-L 

Since that window is located outside the event horizon, that is, within the an- 

alytic region of space-time, the flow of particles escaping to the extra dimensions 

through this surface, produce an analytic extension of the space-time into the high 

dimensional space. In this space the points of the classical trajectories may be 

described by [14]: 
.~- Z’(z’,zA) = X”(2) + zAN’A($), (18) 

where X’(2) are now the coordinates of the window r = rr and where zA the D i-4 

extra coordinates measured along the normal vectors NA.. Expression (18) describes 

a family of four-dimensional analytic extensions of the -space-time in MD, where 

each member is defined by a set of values zA = constant, contacting the original 

space-time at r = q, zA = 0. 

The geometry of these extensions can be easily calculated from the isometric 
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embedding condition. Using (18): 

gij = Z~iZ>Yjpu = gmn(&m - XAbimA)(Jjn - xflbjns) + X X g .. A ’ MNAiMAAjNB. (19) 

The possibility that the submanifold generated by the escaping particles becomes 

disconnected from the original space-time appears to be classically forbidden [19,20]. 

In this respect, it is interesting to notice that the extension metric (19) may-be- 

come singular at a particular region of the high dimensional space where det&, - 

xAbi,a) = 0 and when Aija is subjected to the condition xAxBgMNAiMaAjNB r+ 0. 

This could in principle induce a topological change in the sense of loss of connect- 

edness. 
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