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1 Introduction 

Quantum chromodynamics (QCD) is the only serious candidate for the theory 
of strong interactions. It is supported by overwhelming qualitative evidence 
and a growing body of quantitative evidence. Lattice gauge theory is the only 
fundamental formulation of QCD allowing the calculation of all its consequences 
in both the high and low energy regimes. 

Low energy QCD is worth studying not only for its own sake, but also for 
its role in understanding what lies beyond the standard model. At present, the 
only experimental clues for this puzzle are the fundamental parameters of the 
standard model. Of these, the values of the strong coupling constant, all of the 
quark mssses except the top quark mass, and most of the CabibboKobaysshi- 
Maskawa (CKM) matrix elements either are now or soon will be dominated by 
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theoretical uncertainties that can be attacked with lattice QCD. Table 1 con- 
tains a list of the most fundamental quantities in the standard model. Where 
appropriate it also indicates how iattice QCD will play an important role, and 
the section(s) of this article containing relevant material. The central theme of 
this review is standard model phenomenology, with emphasis on lattice calcu- 
lations needed to determine the parameters and to understand the reliability of 
the determinations. 

When lattice gauge theory wss first introduced by Wilson in 1974 [2], several 
calculational approaches were suggested, including strong coupling expansions 
and various renormalization group methods. Monte Carlo methods were first 
applied to pure gauge theory in 1979 [3, 41. Methods for treating quarks in 
Monte Carlo calculations were introduced in 1981 [5]. Although these initial 
calculations of the hadron spectrum had approximately the reliability of the 
nonrelativistic quark model, it was clear, at least in principle, how to develop 
them into genuine first principles QCD calculations. They initiated the wave 
of effort leading to the calculations described in this article. 

A very brief overview of lattice methods is given in Section 2. That sec- 
tion also details the sources of error and uncertainty which must be understood 
and eliminated as lattice methods evolve into true first principles calculations. 
Most of the calculations we discuss employ an approximation introduced in 
References [S], called the “quenched” or “valence” approximation. The former 
name is more common in the literature, but the latter one is, perhaps, more 
descriptive: the quenched approximation treats valence quarks exactly and ig- 
nores the effects of sea quarks. 

In Section 3.1 we discuss lattice calculations of the the rJ and ‘If systems. 
Solid error analysis is easiest to produce in these simple systems because of the 
possibility of using nonrelativistic methods. The lP-1s splitting, Amtp-rs, in 
these systems is insensitive to the most serious sources of error in lattice calcula- 
tions. This makes it the ideal quantity for setting the scale, i.e. converting from 
lattice to physical units. The calculation of the light hadron spectrum is one of 
the original goals of lattice gauge theory, and a completely reliable calculation 
is still a major piece of unfinished business. For many years the progress was 
incremental. As discussed in Section 3.2, however, recent developments may 
represent a new standard in the thoroughness in the treatment of errors. 

Section 4 discusses applications of the spectrum calculations towards de- 
termining the fundamental parameters of &CD, the quark masses and strong 
coupling constant. The lattice determination of the latter from the yl and 
T spectra is already competitive with perturbative determinations from high- 
energy scattering experiments. As with the “traditional” results for OS, there 
is still a phenomenological component in the lattice determinations. The ma- 
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jor uncertainty in the lattice QCD results come from modeling the effects of 
sea quarks. However, in lattice &CD the path is ciear towards eliminating the 
modeling completely. Hence, in the long run, the most precise determination 
of (YS will likely come from lattice QCD. 

Although the spectrum calculations are indisputably essential to the veri- 
fication of QCD, many lattice calculations in weak-interaction phenomenology 
are of even greater importance to the standard model. This is the subject of 
Section 5. The CKM matrix is responsible for (at least) four parameters, and 
one would like to overdetermine it to test whether there are further generations 
(with massive neutrinos). The good news is that some of the sssociated hadronic 
physics, such as the kaon “E” parameter, can be calculated with comparable 
or greater reliability than the light ha&on spectrum. 

Since au excellent introduction appeared in this series eight years ago [6], 
this article does not review the foundations of lattice field theory. Another 
pedagogical introduction is in Reference [7]. For an encyclopedic overview of 
the activity in lattice field theory, the reader can consult any recent proceedings 
of the annual international symposium on lattice field theory [8]-[13]. 

This review also omits several important applications of lattice field theory. 
The study of the deconfinement temperature in SU(3) gauge theory without 
quarks was influential. It was the first careful application of large scale Monte 
Carlo methods to a quantity whose value was not well known in advance [14,15]. 
More recent work with three light quarks suggests that the structure of the 
phase transition in &CD may depend sensitively on the msss of the strange 
quark (161. For a review of these and other topics in QCD thermodynamics, see 
Reference [17]. Analytical and numerical methods of lattice field theory have 
been used to obtain upper bounds on the mssses of the Higgs boson and of 
heavy quarks in the standard model [18]. Most proposals for strongly coupled 
models of electroweak symmetry breaking require a lattice regularization for 
chiral fermions. This problem is still unsolved; the status of of current ideas for 
solutions is reviewed in Reference [lQ]. 

With one exception, all of the QCD entries in Table 1 are based on meson 
properties. The bound on the strong CP-violating parameter BQCO, however, 
comes from the neutron electric dipole moment [20, 211. Lattice QCD calcu- 
lations of such baryon properties are more difficult than comparable ones for 
mesons, so there has been less systematic work. Another QCD topic of vital 
interest is the study of glueballs and other bound states that would not ap 
pear in the quark model. Despite the algorithmic improvements of recent years 
[22,23], glueball mass calculations still suffer from a small signal-to-noise ratio. 
Therefore, it seems appropriate to postpone a review of baryon and gluebail 
phenomenology. 
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Table 1: Parameters of the standard model and lattice calculations which will 
help determine them. Ranges for CKM matrix elements assume unitarity but 
not three generations. Numerical values taken from Reference [l], except sin 6 
and BQCD. 

parameter value or range related lattice calculations section(s) 

%n l/137.036 
10WF 1.166 GeVe2 

q&b) 0.110-0.118 Amlp-1s; scaling 3.1; 4.1 
mz 91.17 GeV 

mH > 48 GeV 

me 0.51100 MeV 

m, 105.66 MeV 
m, 1.78 GeV 

mu 2-8 MeV m2,, m’K 3.2, 4.2 
md 5-15 MeV 6% 4 3.2, 4.2 
m, 100-300 MeV mZK 3.2, 4.2 
me 1.3-1.7 GeV %I* 3.1, 4.2 
mb 4.7-5.3 GeV m-r 3.1, 4.2 

> 91 GeV 

,Flil 0.974 

Iv,*1 0.220 

lI/ubl 0.002-0.007 B -t plv 5.2 

IKdl 0.179-0.228 D + rrlv 5.2 

IKSI 0.864-0.975 D -+ Klv 5.2 
i&b1 0.032-0.054 B + Dlv 5.2 
ivtdl 0.0-0.14 fB, &I; Bh. 5.1, 5.3 
Iv,sl 0.0-0.45 fB8.7 BE, 5.1, 5.3 
ivtbl 0.0-0.9995 
sin 6 #O BK, BB, BE, 5.3 
OQCD < 10-g 4, 



2 Lattice Methodology 

Because of our emphasis on standard-model phenomenology, we omit discussion 
of most technical details. For a more thorough introduction, see References [6, 
71. We provide here only a schematic overview of lattice methods, plus a brief 
discussion for nonexperts of the most important sources of uncertainty in lattice 
calculations. 

2.1 Methods 

The path integral formulation of quantum field theory is used to define lattice 
QCD: 

Z = J VU Voll, Vf+? eesGssQ. (1) 
The integration is over each (i variable (SU(3) matrices representing the gluon 
fields. defined on each link of the lattice) and each li, and 4 field (anticommuting 
variables representing quark fields, defined on each site of the lattice). The 
standard action used in almost ail lattice calculations is 

SC = ; c PP”(Z) 
=*bw 

for the gluons. The “plaquette” P’“(z) is the trace of the product of the Li 
matrices around the elementary square at z in the p-v plane. There are two 
commonly used formulations of lattice fermions. Except for quark mssses and 
BK, the calculations we discuss use the Wilson formulation 

SQ = --)( c &[(I - r&d~z.&c+a + (1 +rc)cr’-~.,~z-~l (3) 
=,!J 

+ ~4&. 
I 

Wilson fermions allow the proper number of flavors at the expense of a dif- 
ficult handling of chiral symmetry. When chiral symmetry is crucial another 
formulation is available, “staggered fermions,” which maintain an exact chiral 
symmetry, but then the number of flavors is a multiple of four. 

The parameters in the lattice action are 4 and the “hopping parameter” 
K. The bare lattice coupling constant is given by p = 6/g:. The bare quark 
mass is related to K by K = l/(8 + Zmna). Using these identifications it is easy 
to show that in the zero lattice spacing limit, this action reduces to the usual 
QCD action, SQ = /d4z 4(2)(8,-y, + mo)$(z), and SC = (l/49,$ Id4z(F$)*, 
plus errors which vanish with the lattice spacing. The lattice spacing a is made 
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to vanish by taking 3 + co, keeping physicai quantities fixed. Note, however, 
that much of the literature uses “lattice units,” where a = 1. 

The path integral formaiism shows how the correlation functions of hadron 
operators @r(U, $, 4) (at time t) behave: 

(a@$ = (4) 

4 

The hsdronic correlation functions decay as sums of exponentials if the theory 
is formulated in Euclidean space. The rates of decay 170 of these exponentials 
are the energies of the states 0. The coefficients of the exponentials are related 
to hadronic matrix elements. The Euclidean-space formulation has many nu- 
merical advantages. For example, for t large enough, it is possible to isolate 
the state with the lowest energy. However, the contributions to the correlation 
function of all the states ,d, other than the lowest state, produce errors which 
must estimated and eliminated. 

In integrals such as Equation 4 the integration over the Fermi fields can 
performed explicitly, leaving a gauge-field integral. This step expresses the cor- 
relation function in terms of quark propagators in a barkground gauge field. The 
integration over the gauge fields is evaluated by Monte Carlo with importance 
sampling, yielding ensembles of lattice gauge fields. The gauge-field integral is 
approximated as a finite sum, introducing a statistical error. New gauge field 
configurations are generated from previous ones and are correlated with them. 
This effect must be carefully accounted for in the statistical analysis. 

Quark propagators are solutions of the discrete Dirac equation, which is 
a sparse matrix equation. Sparse matrix methods are used to produce the 
propagators for each lattice. These algorithms must be employed much more 
often in full QCD than in the quenched approximation, to account for the 
back-reaction of the sea quarks on the gluons. 

2.2 Error Analysis 

These sources of uncertainty in this section must be individually understood 
if numerical lattice QCD is to become a widely accepted calculational tool. A 
first pass at a thorough enumeration has been attempted for only a few of the 
simplest quantities, but there is a good hope that full error analysis (in the 
quenched approximation) will be extended to many more quantities over the 
next two or three years. including some extremely interesting ones. Therefore. 
we shall now discuss how the various sources of error can be reduced: 
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Statistical errors, Any Monte Carlo procedure has statistical uncertainties. 
In lattice QCD these may be the errors which are currently under best control. 
A subtlety is to cope with the correlations among subsequent configurations. 
These correlations can extend over stretches in the Monte Carlo chain, especially 
for the algorithms used in full &CD. Another subtlety is that the statistical 
uncertainty of quantities calculated within a single ensemble of gauge fields are 
correlated. Hence, ratios of similar quantities usually have smaller statistical 
errors than the quantities themselves. 

Finite lattice apacing errors. If the lattice action in is expanded in powers 
of the lattice spacing, one obtains the standard continuum action of QCD, 
plus an infinite series of unwanted, higher dimension operators whose effects 
on nmsses (or other quantities derived from the spectrum) vanish as powers of 
the lattice spacing. Their effects can be systematically eliminated by adding 
higher dimension correction operators to the lattice action [24]. An order of 
magnitude estimate of their effects is IXAQCD to the appropriate power. For 
p = 6.0, a-’ GZ 2 GeV, this is around lo-15% for the simple O(a) correction for 
Wilson fermions, and l-2% for the more complicated O(a*) errors of the quark 
and gluon actions. 

The most serious of these errors, the O(a) error for Wilson fermions, can be 
corrected by the addition of a single term to the fermion action [25] 

6s~ = i!7$ c &~uyF,,yti~)I( 
=.!w 

where o,,” = i[y,,, yy], the r,, are Euclidean gamma matrices, and Fpy reduces 
to the QCD field strength tensor as a --t 0. Direct calculational evidence of 
the importance of this correction has been given in Reference [26] and in the 
charmonium calculations described in Section 3.1. A more careful examination 
reveals that the coefficient c depends on the bare coupling. In perturbation 
theory c = 1 + c,g,j + . . The systematic program of adding corrections like 
ASQ and calculating their coefficients is called “improvement” [24]. 

Finite volume errors. Numerical calculations of lattice QCD are done in 
a finite volume, because then there is a finite number of degrees of freedom, 
which can be stored in the finite memory of a computer. Finite volume errors 
are nonperturbative properties of &CD, and thus more complicated to analyze. 
However, for periodic boundary conditions, they are expected to fall exponen- 
tially with lattice size. It is therefore a reasonable goal to increase the lattice 
until they are really negligible. The asymptotic errors are known for the proton 
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msss [27], and quite small for lattices of reasonable size. The functional form 
in the intermediate region is unknown and must be carefully determined by 
numerical calculation. For an exceilent technicai review of the state of the art 
on this and many other issues in hadron spectroscopy, see [28]. 

The effects of higher mass states. In extracting the properties of the 
ground state from correlation functions such as Equation 5, the contamination 
from more massive states with the same quantum numbers must be estimated 
and reduced. This is most often done by separating the creation and destruction 
operators far enough that only a single exponential of the sum in Equation 5 
is visible within the statistical errors. This approach has the drawbacks that 
it is limited by increasing statistical errors ss the operators are separated, and 
that systematic uncertainty estimates are difficult. Another approach is to vary 
the operator or matrix of operators Cp to maximize the overlap with the desired 
state and minimize the overlap with the rest. 

The extrapolation to physical quark mass. Current lattice algorithms for 
sparse matrix inversion (and thus for the inclusion of the effects of sea quarks) 
become much more computationaily demanding, and sometimes fail entirely, as 
the quark mass is reduced toward its physical value. Current calculations rarely 
go beiow m,/m, N 0.4, compared to the physical value of 0.18. Leading-order 
chiral behavior is usually assumed in extrapolating to the physical quark msss 
(mz and the masses of the other hadrons proportional to mp). The size of 
deviations from linearity for mesons of nearly the mass of the kaon are contro- 
versial among workers in chiral perturbation theory. In lattice QCD they must 
be determined by numerical calculations. 

2.3 The quenched approximation 

While gradual and systematic programs exist for the elimination of the above 
sources of error, no better way is known to improve on the quenched approxi- 
mation than to include all effects of sea quarks at once. Formulas for the effects 
of small numbers of internal quark loops may be derived in terms of correla- 
tions of hadronic operators with the fermionic effective action, but they appear 
to be even harder to handle than the exact formula. Algorithms for inclusion 
of quark loops are much more computationally demanding than those which 
omit them, so the analysis of the other sources of uncertainty is much cruder 
for calculations which include them. This review will therefore concentrate on 
calculations which omit them. In a few cases, but not in general, it is possible 
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to make phenomenological estimates of the accurzy of the quenched approx- 
imation. We wiil return in Section 6 to the general case of the effects of sea 
quarks. 

3 Establishing and Testing Lattice Methods 

3.1 The Cc, and T Systems 

The discovery of charmonium, the bound states of c and Z quarks, with their 
clear positronium-like spectra, provided an important psychological boost to 
the belief in the reality of quarks. The success nonrelativistic potential mod- 
els [29] in accounting for these spectra provided a boost to the acceptance of 
QCD ss the theory of strong interactions, since the models became equivalent 
to leading order QCD in a well defined limit: the large quark msss limit. The $ 
and Y systems are proving crucial in establishing the accuracy of lattice calcu- 
lations because nonrelativistic reasoning opens ways of checking and rechecking 
methods of error anaiysis that are unavailable for the lighter hadrons. 

As Lepage [30], has emphasized, now that lattice methods are coming into 
fruition, it is these simple systems which will provide the best early tests of 
lattice methods. There are some technical ressons for this. Since the quarks 
are heavy, the extrapolation to the physical light quark msss required in light 
hadron calculations is unnecessary. The propagators of heavy quarks are much 
quicker to calculate on the lattice than those of light quarks. Further, since the 
heavy mesons are smaller than the light hadrons, smaller physical volumes suf- 
fice. However, the most important fact making the properties of these mesons 
the easiest to calculate on the lattice is the one that made possible the good 
phenomenological treatment of them twenty years ago: they are nonrelativis- 
tic systems. This means means that potential models and the nonrelativistic 
arguments justifying them can be used both to guide the physics expectations 
of the lattice calculations, and to supplement the analysis of corrections and 
uncertainties in the lattice calculations. 

Potential models play an important role in defining physics expectations 
for lattice charmonium calculations. For example, the part of the hyperfine 
interaction which is due to perturbative gluon exchange is 

HHF = 

Evaluating this term perturbatively with nonrelativistic wave functions gives 
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for the splitting between the 11, and the nc. The spin-spin interaction in Equa- 
tion 7 arises from the exchange of transverse gluons between the heavy quarks. 
For massive quarks, the dominant effect of the O(a) correction for Wilson 
fermions, Equation 6, is just such a gluon-spin interaction, so the hype&e 
splitting will be sensitive to this correction. According to Equation 8, AMHF 
is also sensitive to the value of the quark mass, which is not determined on the 
lattice to perfect accuracy. We can therefore expect the hyperfine splitting to 
be a sensitive test of lattice methods. 

On the other hand, the spin averaged splitting between the lowest angular 
momentum (I = 0 and 1 = 1) levels of the ri, and T systems is a crucial one 
for lattice QCD because nonrelativistic arguments tell us to expect it to be 
insensitive to these important sources of error. Since it is a spin averaged 
quantity, it should be insensitive to uncertainties in the coefficient of the O(a) 
correction term. Since it is virtually the same for the 11, and the T, it should 
be insensitive to any imperfections in our knowledge of the quark mass. It is 
therefore a good quantity to use to extract information about QCD from lattice 
methods. It may be the most accurate determination of the lattice spacing 
in physical units (a key component of the extraction of the strong coupling 
constant using lattice methods). 

Because the systems are nonrelativistic, their Coulomb-gauge wave func- 
tions calculated on the lattice will give a good picture of the properties of the 
states. Figure 1 shows the wave function of the J/$J meson calculated on a 244 
lattice at 0 = 6.1 1311. It has approximately the exponential shape of acoulomb 
wave function, but at large distances it falls off faster due to confinement, and 
at short distances it rises more slowly due to asymptotic freedom. Halfway 
across the lattice, at r/a = i2, the effects of periodic boundary conditions are 
clearly seen. Such wave functions have practical roles to play in Lattice calcu- 
lations. They can be used to estimate finite lattice spacing and finite volume 
errors perturbatively. They can be used to make improved operators to create 
and destroy the meson states. One of their most important roles, however. 
is the clear and simple demonstration that the lattice calculations are indeed 
producing charmonium states. 

To the extent that the ?i, and Y’ systems are nonrelativistic, one can use 
potential model arguments to estimate and correct for the effects of sea quarks. 
These effects are expected to be rather small, since, for example, the widths of 
excited li, and T states into D or B mesons, 50-100 MeV, are only IO-20% of 
typical energy splittings between states. 

If middle distance physics like the lP-IS splitting is used to tune the bare 
parameters of the theory, the effective action at those distances will be about 
right. In a theory with too much asymptotic freedom, the effective coupling 

11 



IO-5 
0 5 10 15 20 

r/a 

Figure 1: The wave function of the J/11, meson calculated on the lattice [31]. 

at short distances will be a bit too small. Likewise, short distance quantities 
which depend on it, like the wave function at the origin, will be too small. 

These effects may be estimated using the Richardson potential [32], which 
incorporates the effects of asymptotic freedom at short distances. Figure 2 
shows two potentials resulting from fits to the charmonium spectrum: the lower 
potential having the correct one loop /3 function bu = 11 - 2nf/3 with n, = 3, 
and the upper one with the stronger /3 function for n, = 0 of quenched QCD. 
As expected, the two potentials agree almost perfectly in the middle distance 
region, but the n, = II potential is too soft at short distances. 

The spin-averaged lP-1s splitting has been calculated by several groups 
[31, 33, 341. The lattice spacing in physical units is obtained by the lattice 
result obtained in lattice units with the physical answer. In the rj system, for 
example, Amtp-rs = mh, - (371a~,~ + m,,)/4 = 458.6f 0.4 MeV. In the T 
system, since the ‘Pr is undiscovered, the splitting between the spin-averaged 
~b states and the spin-averaged 1S states may be used, Amtp-ts = 452 MeV. 
The values of the lattice spacing obtained from this splitting are shown in 
Table 2. They will be crucial components in the determination of the strong 
coupling constant in Section 4.1. They do not differ dramatically from those 
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Figure 2: Results from fits to the charmonium spectrum with asymptotically 
free phenomenological potentials having the correct @ function (bottom) and 
the 0 function of quenched QCD (top). 

obtained from other quantities, such as the p maas [35] or the string tension 
[36]. It is the possibility of making better uncertainty estimates that makes this 
an important way of determining the lattice spacing. 

In Reference [31], finite lattice spacing errors were treated by the explicit 
inclusion of the term in Equation 6, in the numerical calculations. In Refer- 
ence [33], corrections operators were evaluated perturbativeiy using the Rich- 
ardson potential model wave functions, as the hyperfine splitting was evaluated 
in Equation 8. The lattice action of nonrelativistic QCD (NRQCD) [30] was 
used in this work, so O(G) correction were also included. These estimates could 
also be made without recourse to potential models, but still using using non- 
relativistic reasoning, by using wave functions calculated directly with lattice 
methods (see Figure 1). 

Both groups checked these corrections by verifying that the same answer 
was obtained for several different lattice spacings. It would be desirable to have 
a calculation in which both methods were used in the same analysis in order to 
test carefully the method of directly including the correction operators in the 
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Table 2: Inverse lattice spacings obtained from the lP-1s splitting in the li, 
and T systems. 

0 a-’ (GeV) System Ref. 
5.7 1.15f81 11, 1311 
5.9 1.78(9j [311 
6.1 2.43(15) 
5.7 1.14(4) * [ii 
5.7 1.26(14) r [331 

6.0 2.11(7) r 1331 

simulation, since that is the only avenue for evaluating them available for the 
light hadrons. 

Likewise, for the light hadrons the functional form of the finite volume errors 
in the crucial intermediate distance region is not known, and must be calculated 
numerically. Such a calculation in a nonrelativistic system supplemented by a 
nonrelativistic wave function calculation of the finite volume errors would be 
useful in illuminating the methods of error analysis for the light hadrons. 

The nonrelativistic picture tells us that the hyperfine splitting and ieptonic 
decay amplitude are short distance quantities, proportional to the square of the 
wave function at the origin. The hyperfine splitting is also proportional to the 
short distance coupling constant, and thus additionally suppressed. The size of 
these suppressions for the hyperfine splitting has been estimated as -30-40s 
using the Richardson potential [37]. 

The hyperfine splitting can be used to check the effects of the O(a) correction 
term for Wilson fermions, Equation 6, which yields dominantly a spin-spin 
coupling for quarkonia. Compared with its physical value of 117 MeV and 
the estimate of the quenched corrected value of 70 MeV, unimproved Wilson 
fermions (c = 0 in Equation 6) produce splittings of as little as lo-20 MeV, 
depending on the lattice spacing. Calculations with the tree level coefficient 
c = 1.0 yield around 50 MeV [38], and with a perturbatively corrected coefficient 
c = 1.4 yield around 90 MeV [37]. The precision is insufficient to allow a 
phenomenological determination of the coefficient to supplant the perturbative 
one, but does show clearly that the improved action yields reasonable results 
while the unimproved action does not. 

A topic related to quarkonium is the lattice QCD calculation of the static 
potential. In Figure 3 we show results in the quenched approximation from a 
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0.6 

0.5 

0.4 

0.3 

Figure 3: The heavy-quark potential (in lattice units) calculated in the 
quenched approximation [36, 391. 

32’ lattice at /3 = 6.4 [36, 39). It is ht very well by a Coulomb-plus-linear form. 
At short distances it agrees well with the predictions of lattice perturbation 
theory [40]. The potential at large distances is well fit by a straight line. The 
string tension obtained obeys asymptoticscaling to about 20% if a renormaiized 

coupling constant is used. That is, the ratio ./?/AK varies by less than 20% 
when 4 > 5.i (a < 0.2 fm). Earlier apparent evidence that scaling vioiations 
as large as a factor of two and that much smaller lattice spacings were required 
has been understood as an artifact of the use of the bare lattice coupling con- 
stant for the perturbative analysis [41]. This introduced poor behavior into the 
perturbation theory somewhat analogous to that resulting from attempting to 
do perturbative QCD phenomenology with the MS coupling constant oMs(Q) 
rather than the m coupling constant am(q). The remaining small scaling vi- 
olations arise from both logarithmic (in a) perturbative corrections and power 
law finite a effects. so uncertainties associated with them cannot be removed 
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Figure 4: The spectrum of the light hadrons. Error bars are from lattice calcu- 
lations in the quenched approximation [35], and + denotes experiment. 

cleanly by extrapolation. A summary of various recent analyses [28] contains 
results all falling in the range 

fi/A”) = 1.85 f 10%. m (9) 

3.2 The Light Hadron Spectrum 

This year Weingarten and collaborators took an important step forward in 
the calculation of the light hadron spectrum in the quenched approximation 
[35]. This work, in a single, systematic calculation, attempted to analyze and 
extrapolate away the three major source of systematic error in the quenched 
approximation: extrapolation to zero lattice spacing, to infinite volume, and to 
physical quark mass. 

The results are shown in Figure 4. The lattice spacing has been eliminated 
using mP, and the bare quark masses using n?, and m$. The errors shown 
are statistical. The authors argue that the uncertainties involved in the ex- 
trapolations to infinite volume and physical quark mass are smaller than the 
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statistical errors. They have not attempted to estimate the uncertainty in the 
extrapolation to zero lattice spacing. 

The extrapolation of rnz and the masses of the other hsdrons to physical 
quark msss was made Linearly in m, in accordance with theoretical prejudice. 
The expected functional forms were seen in the data. A version of the Gell- 
Mann-Okubo formula wss used to argue that the error arising from this ex- 
trapolation was around 1%. This estimate could be supplemented by direct 
numerical investigation of the functional form. 

The extrapolation to infinite volume was made by performing the calcula- 
tions on the coarsest lattice at several volumes, and using the results to extrag 
elate the calculations on the finer lattices to infinite volume. The extrapolation 
used only two points. Much work is now by several groups [28] to determine the 
functional form of the volume dependence which should make the extrapolation 
reasonably solid. 

The results were extrapolated linearly in a to zero lattice spacing in accor- 
dance with theoretical prejudice, but the data were not precise enough to test 
the accuracy of that prejudice. This extrapolation can be improved by adding 
the single additional term to the quark action which suffices to remove the O(a) 
error from Wilson fermions (25) and checking that the observed dependence of 
the results on the lattice spacing disappears. 

Possible problems with contamination from higher msas states in each had- 
ronic channel showing up in the work of other groups have been emphasized 
by Ukawa [28]. An important contribution toward reducing these problems 
was made by the APE collaboration in 1988 [42] who pointed out that quarks 
spread out over roughly the size of a light hadron have a much larger overlap 
with the light hadrons and a much smaller overlap with excited states than do 
the local quark operators which had been in use up to that time. Much more 
sophisticated work along these lines is possible following the lead of gluebail 
calculations whose worse signal to noise problems have forced a more serious 
examination of this problem [43]. 

The analysis of the uncertainties in a light hadron calculation is more de- 
manding than in a charmonium calculation, since nonrelativistic arguments 
do not help. Nevertheless, there are further technical tools available, such as 
Equation 6, than have been applied so far in this calculation, which should make 
possible the confirmation or improvement of these uncertainty estimates for the 
quenched light hadron spectrum with the present generation of computers. 
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4 QCD Phenomenology 

QCD is supposed todescribe high-energy perturbative phenomena, such as deep 
inelastic scattering, as well as low-energy nonperturbative phenomena, such as 
hadron masses. In QCD with n, quark flavors, there are n, + 1 parameters, 
the quark masses and the strong coupling constant. The latter is equivalent 
to a standard msss to set the scale in MeV. Using the nonperturbative lattice 
formulation of QCD it is possible to compute them using nf+l hadron masses as 
the physics input. If these mssses are chosen unwisely, a cumbersome juggling 
act must be performed, adjusting the bare parameters, computing the hadron 
masses and working back to the renormalized parameters. As explained in 
Section 3.1 the IP-1S splitting of quarkonium is insensitive to light and heavy 
quark masses. Consequently, it is ideal for converting from lattice units to MeV. 
Once this has been done, it is relatively straightforward to use meson masses 
to determine quark masses. 

Given as one can then test whether the same QCD describes the strong in- 
teractions at all energies. One simply inserts the nonperturbatively computed 
coupling into the perturbative series for high-energy scattering and compares 
with data. A favorable outcome will increase our quantitative confidence in 
QCD enormously. At present lattice QCD can offer OS with systematic uncer- 
tainties comparable to deep inelastic scattering, although the analysis is less 
mature. These results, and the theoretical ideas needed to reduce the uncer- 
tainties to a negligible level, are in Section 4.1. 

Because of confinement, quark mssses cannot be measured directly. How- 
ever, every serious theoretical construct that goes beyond the standard model 
provides m quark masses as an output. Hence, good estimates of quark masses 
from lattice QCD should prove useful to builders of new physics models. 

4.1 The Coupling Constant 

The numerical value of the strong coupling depends on the “scheme” chosen 
to define it. A scheme can be defined by a renormaiization convention, such 
as the m scheme in dimensional regularization or the bare scheme in lattice 
perturbation theory. More generally, it can be defined by any physical quantity 
that is equal to the bare coupling at the leading order of perturbation theory. 

For example, in QED the low-energy limit of Thomson scattering is used to 
define the electromagnetic coupling. 

For QCD Liischer, et al., have delineated four criteria for a practical scheme 
[44]. The physical quantity should have a rigorous nonperturbative definition; 
otherwise it cannot be calculated nonperturbatively. In Monte Carlo simu- 
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lations it ought to have a good signal-to-noise ratio, so that small statistical 
uncertainties can be achieved in a reasonable amount of computer time. Fur- 
thermore, uncertainties arising from extrapolations in lattice spacing and quark 
mass should accumulate slowly. Finally, a perturbative calculation of the phys- 
ical quantity must be tractable, so that the nonperturbative coupling can be 
used in perturbative &CD. 

Once one has chosen a scheme s, one must relate the dimensionless cou- 
pling to the standard mass. This is done using the renormalization group. It 
is important to realize that renormalization-group calculations can be carried 
out nonperturbatively. Because of asymptotic freedom, the nonperturbative 
and perturbative Q dependence must agree for large enough 4. The region of 
agreement provides a numerical value for g:(g) that can be used in perturba- 
tive series for high-energy scattering. The standard mass is needed to convert 
q from lattice units of the nonperturbative calculations to physical units. For 
examole. 

g (MeV) = ,A~~p-,s458.6 (MeV); 

the numerator and denominator of the fraction come from the lattice calcula- 
tion, and Arnt~-~s = 458.6 MeV from experiment. 

In Reference [31], a perturbative relation (improved by mean field theory) 
was used to estimate the continuum coupling constant in terms of the bare 
lattice coupling constant. In Reference (411 it was found that perturbative 
calculations of short distance physical quantities in terms of a coupling constant 
estimated in this way were systematically lower than Monte Carlo calculations 
by a few per cent. This suggests that a slightly improved determination would 
be given by extracting the coupling directly from Monte Carlo calculations. 
It remains to be checked that there are no substantial deviations between the 
couplings determined in this way, From physics on scales from one to half a 
dozen lattice spacings, and true continuum couplings [44]. 

The work of Reference [31] gave 

og(5 GeV) = 0.140 zb 0.004, (11) 

where the superscript emphasizes the number of active quark flavors. This 
error bar comes from the statistical uncertainty in the lP-1s splitting used to 
determine a, augmented somewhat by lattice-spacing effects. Complementary 
analyses based on the short-distance static potential [36, 451 yield values of 

og(5 GeV) consistent with these. 
The n, = 0 result can be converted to n, = 4 by appealing to the potential 

models that describe quarkoniaso well. Choosing the lP-1S splitting to set the 
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scale is equivalent to adjusting the coupling of the quenched theory to repro- 
duce physics at intermediate energies. Since the coupling runs faster for fewer 
quarks, this adjustment makes the coupling at 5 GeV too small. Correcting the 
quenched result for this effect yields [31] 

a$&(5 GeV) = 0.174 +I 0.012. (12) 

For comparison with the compilation in Reference [I] 

&Mz) = 0.105 32 0 004 MS . . (13) 

The error bar in Equation 12 is three times larger than in Equation 11, because 
the matching energy is not known exactly, and because for charmonium it is 
rather low. The bulk of the correction is due to the effects of light quarks on 
the potential at short distances, which can be calculated in perturbation theory. 
However, a part of the correction arises from the effects of light quarks on the 
potential at middle distances, which must be estimated phenomenologically. 

It is therefore significant that a similar analysis has also been carried out 
using NRQCD in both the 11, and T systems [33]. Typical energy scales in the 
T are about twice those in the +. (For example, typical gluon momenta are 
400 MeV and 800 MeV in the J/$ and T states, respectively.) The effects of 
light quarks in the murky intermediate distance region may be expected to be 
quite different at the T than at the $. Although some details of the systematic 
error analysis is different, the *-system calculation agrees with Equations 11 
and 12. There are subtle differences in the determination of “MS from the T 
system, which arise because the typical energy scales are higher. As shown in 
Table 2 the lattice spacing determined by the T IP-1S splitting is about 10% 

smaller. Propagating this change implies that Q g(5 GeV) is somewhat larger. 
However, the correction for the quenched approximation is smaller, because the 
matching is done at somewhat higher energies. If the argument used tocompute 

the correction is valid, the two effects should cancel in cr&& Reference [33] finds 

cy’4’(5 GeV) = 0.170 * 0.010 MS (14) 

from the T system, which agrees remarkably well with the results from the $ 
system. 

The only way to eliminate the error from the quenched approximation in 
Equation 12 is to perform calculations in full &CD. The second-most important 
uncertainty comes from the dependence on the lattice spacing. Because the scale 
q is tied to the cutoff in these calculations, it is impossible toseparate thescaling 
dependence from any other a dependence. In other words, the criterion that 
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uncertainties do not accumulate during extrapolation is not strictly respected. 
To clear things up, one must associate Q with a physical scale. An elegant way 
to do so is to take e = l/L [46], where L is the linear size of the finite volume. 
References [44, 461 also suggest a class of schemes for which the extrapolation 
to the continuum limit is controlled. So far these ideas have been applied to the 
pure SU(2) gauge theory [44,46]. For the coupling chosen, the scaling behavior 
matches two-loop perturbation theory at surprisingly low energies, perhaps even 
as low as q = 1 GeV. 

In several years full QCD calculations with the scaling analysis of Refer- 
ences [44, 46) will have computed the strong coupling constant with a precision 
of a few per cent. The uncertainty will be due to finite statistics, compounded 
somewhat by extrapolations to zero lattice spacing and physical quark masses. 
There will be no uncertainty from truncating perturbation theory and no un- 
certainty from nonperturbative effects. The specific value for as(q) will be com- 
plemented by an energy scale q, above which perturbative evolution is valid. 
Purely perturbative calculations can then be used to relate the nonperturba- 
tive scheme s to the m scheme. Rather than use this relation to determine 
us, one ought to eliminate it from high-energy perturbative series in favor of 
o,. This is analogous to the strategy used in perturbative QED, where the m 
coupling is used only as an intermediate step. 

4.2 Quark Masses 

The masses of the charm and bottom quarks are currently estimated from 
potential model calculations. Lattice calculations should eventually be able to 
pin these down to a precision of perhaps 5%, limited by perturbation theory. 
The existing numerical data on the masses of the J/$ and the I” is already 
quite adequate for this purpose. The remaining work required is short-distance 
lattice perturbation theory with massive quarks, which is rather complicated. 

The top quark is expected to decay weakly before it can form a QCD bound 
state. Lattice calculations are unlikely to be useful in determining its mass after 
it is found. 

For the light quarks it is convenient to discuss the combinations ti = +(md+ 
m,), Am:, = rni - mz, and m,. Ratios of the light-quark masses are currently 
best estimated using chiral perturbation theory, a systematic description of 
the low energy, small quark mass limit of QCD [47]. To set the overall scale 
requires a dynamical calculation. In lattice &CD. rh and m3 can be extracted 
from the variation in the square of the pseudoscalar mass between m?, and m&. 
The most difficuit quark-mass combination is Am&, which causes the isospin- 
violating part of the splittings in hadron multipiets. Since chiral perturbation 
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Figure 5: Pseudoscalar meson mass squared as a function of the quark mass, 
calculated in the quenched approximation [48]. The line is a linear fit to the 
data. 

theory provides a formula for An&/m: with only second-order corrections, it 
is likely that the best determination of Am;, will come from combining the 
formula with a lattice QCD result for m,. 

Uncertainties in the chiral estimates of these ratios arise from varying treat- 
ments of higher-order terms. Existing lattice calculations either use very ma.+ 
sive sea quarks or ignore sea quarks entirely, so they also treat higher-order 
hadronic effects somewhat incorrectly. We probably must wait for better caicu- 
lations including sea quarks correctly before lattice calculations can contribute 
to the determination of the ratios. As illustrated in Figure 5, present calcu- 
lations show a linear relation between the quark msss and the square of the 
meson mass, as expected from lowest order chirai perturbation theory alone, 
up to surprisingly large values of the quark mass. 

The overall mass scale of the light quarks is currently determined by less 
reliable phenomenological assumptions. A full error analysis of lattice determi- 
nations of this quantity has not been completed, but it is poorly enough known 
from conventional phenomenology that it is worth discussing the state of the 
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lattice results. Because staggered fermions have an exact chiral symmetry, they 
are likely to be superior for these calculations. As summarized by Ukawa (281, 
quenched resuits for rirm(l GeV) are in the range 2.4-3.0 MeV. This is outside 
the range of 3.5-11.5 MeV indicated in Table 1. There is no evidence in the 
data for large finite volume, finite lattice spacing, or statistical errors. When 
relatively heavy sea quarks are added to the calculation no qualitative change is 
observed: these results cluster around 2 MeV. These results should not be taken 
too seriously until a more complete error analysis exists, but the possibility that 
the conventional estimates are too high is intriguing. 

5 Weak-Interaction Phenomenology 

We now turn to the role lattice QCD can play in determining the Cabibbo 
Kobaysshi-Maskawa (CKM) matrix. In the standard model the CKM matrix 
accounts for four of the 19 parameters. Furthermore, to test the standard model 
one would like to extract all elements of the CKM matrix and verify that it is 
unitary. Because the observable consequences of the CKM matrix involve weak 
transitions of hadrons. nonperturbative QCD enters immediately. We shall fo- 
cus on processes that are especially amenable to lattice technology that also play 
a crucial role in determining the CKM matrix. For a review of weak-interaction 
phenomenology with emphasis on the CKM matrix see Reference (491; for more 
technical reviews of the lattice technology see References [SO, 511. This sec- 
tion discusses leptonic decays in subsection 5.1, semi-leptonic decays in subsec- 
tion 5.2, and neutral meson mixing in subsection 5.3. A brief explanation of 
the difficulties with non-leptonic decays is in subsection 5.4. 

A lattice large enough to encompass the scales AQCO and mw (or mt) would 
have severai thousand sites on each side. That is obviously not feasible. For- 
tunately, it is also not necessary. Leptonic and semi-leptonic decay amplitudes 
factor into a product of leptonic and hadronic matrix elements of electroweak 
currents. Lattice QCD is needed to calculate the hadronic factors (OIJ,jh) 
for leptonic decays and (h’]J,]h) for semi-leptonic decays. For neutral meson 
mixing and non-leptonic decays, the standard theoretical apparatus uses the 
operator product expansion to disentangle contributions above and below a 
scale @ < mw (and ml). This analysis leads to the effective weak Hamiltonian, 
which can be written schematically as 

f&l = c CdP)O(“) (PI I (15) 
" 

where, to leading order in m$, the O(“) are four-quark operators. Lattice QCD 
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is needed to calculate hadronic matrix elements (h’]O(“)]h)(jr), where h and h’ 
are various hadronic states. 

Several conditions must be met before hadronic matrix eiements of the four- 
quark operators can be applied to phenomenology. The n dependence of the 
coefficient functions and the four-quark operators must cancel. Since the coef- 
ficient functions are determined perturbatively, the lattice calculations must be 
performed with lattice spacings for which perturbation theory is applicable. In 

this way the lattice regulated matrix element (h’]O/a;‘]h)(rr/a) can be related 

to the renormalised matrix element (h’]O~l]h)(~) in the scheme R and at the 
scale p for which the coefficient functions are available. Similar, but simpler, re- 
l&ions apply to currents J,, as well, see below. With cmr present understanding 
of lattice perturbation theory [41], this conversion should not introduce large 
uncertainties. 

Independent of such scheme and scale dependence, the four-quark operators 
must be defined nonperturbatively. Interactions cause mixing with operators 
with the same (lattice) quantum numbers. When these other operators have 
the same or higher dimension, it is presumably adequate to use the definitions 
of perturbation theory. It is at least consistent, because a similar clnssifica- 
tion already arises in the operator product expansion, Equation 15 which is 
established perturbativeiy. A more pernicious problem is mixing with lower 
dimension operators. Since the coefficients of these operators contain inverse 
powers of a there is no reliable method to remove them perturbatively. The 
only feasible way to remove them nonperturbatively is to insist on the correct 
scaling behavior and the restoration of continuum-limit symmetries. 

5.1 Decay Constants 

Lattice calculations of the decay constants are necessary both ss tests and as 
predictions of lattice QCD. We shall follow the normalization convention that 
for pseudoscalar mesons 

and for vector mesons 

(‘Wr,w+-) = G+Jr (16) 

(OlEy,dlp-; A) = ie~lm,~,,. (17) 

From leptonic decays one finds f* = 131 MeV, 1~ = 160 MeV, and fP = 
216 MeV. On the other hand, the decay constants of heavy-light mesons (D 
and B) are not known experimentally, and the measurements would be dif- 
ficult. Hence, even semi-quantitative lattice calculations of 1~ and fn are 
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interesting, and, when the uncertainties are fully understood, quantitative iat- 
tice calculations will play an essential role in understanding D- and B-meson 
phenomenoiogy [52]. 

Section 2 pointed out that the lattice artifacts of mssses approach the contin- 
uum limit as a power of a. Hadronic matrix elements, such as decay constants, 
typicaily approach the continuum limit more slowly. The lattice operator and 
the continuum operator are related it5 follows 

~y,,w4,at = ~rlr-ts4,0,,t + c’afiD,rsd + . . . , (18) 

where a is the lattice spacing. In oneloop perturbation theory one easily sees 
that D, in the second term can absorb a gluon with momentum N l/a. This 
contribution, together with analogous ones from the unwritten terms, yield 
cgfa(l/a)/(l6nr). Generalizing to all orders 

Wu-edl,,~ = ~-t~-dl~,,~~ [l+~+$)v] +o(fJL (19) 

where equality holds for matrix elements of low-momentum states, and O(a) 
denotes terms that vanish as a power. For small II, go2 cz (logs)-‘. Hence 
riy,ysd)t,, approaches tiy,,ysdlcont rather slowly. Although we have used the 
axial current as an example, composite operators generally obey an equation 
analogous to Equation 19. 

There are several strategies for handling the lattice-spacing errors indicated 
in Equation 19. One can ignore the perturbative bracket and hope that the 
O(a) terms are the largest lattice artifact at accessible values of a. This would 
only be sensible if the coefficients ct were small, but explicit calculations in 
several papers [53, 54, 55) show that they are not. One could acquire numer- 
ical data over a wide range of gi to perform a correct extrapolation, but that 
is impractical. Fortunately, it is possible to improve the situation. First, if 
one recasts perturbative series such as the one in Equation 19 in terms of a 
renormalized coupling constant, one expects the higher-order corrections to be 
small [41]. Second, most of cr comes from a certain class of diagrams (Feynman 
gauge tadpole diagrams) [56]. These contributions can be isolated and treated 
nonperturbatively (411. Third. systematic improvement to the action [25] and 
the operators [57] can reduce the O(o) terms. With these three improvements 
it should be possible to reduce lattice-spacing errors so that they are smaller 
than the statistical uncertainties. 

The most systematic investigation of light-meson decay constants [58] uses 
the same gauge configurations and quark propagators used to compute light- 
hadron masses in Reference (351. The extrapolation in quark mass and the 
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Table 3: Summary of resuits for decay constants. The error bars for light 
mesons (581 do not include errors estimates for the quenched approximation 
and plausibly small residual latticespacing errors. The error bars for heavy- 
light mesons [61] do not include, quenched, finitevolume, or non-zero lattice 
spacing errors. See the text for a discussion of these errors. 

frl% fKl% /PI% /D/f- fBlfr 
expt. 0.171 0.209 0.281 
IQCD 0 ’ 129+;::: 0.164+;:% 

F&f. [58] 

0.245+;$$ 1.58 f 0.15 1.43 f 0.15 

[581 [5’31 [‘311 b311 

finitevolume corrections were handled in the same manner as for the hadron 
masses (cf. Section 3.2). In this case the finite-volume corrections increase 
the error bars. The lattice-spacing extrapolation was done as follows. The 
logarithmic II dependence and some of the O(a) dependence was accounted for 
as specified in References [41, 59, 601, and the remaining a dependence was 
assumed to be linear in a. The results of this analysis are tabulated in Table 3. 

One of the most eagerly pursued topics in lattice QCD is the calculation 
of heavy-light meson properties. When one of the quarks in the meson be- 
comes heavy, the dynamics simplifies considerably [62, 631. In particular, for 
m, > AQCD the typical momentum in a heavy-light meson remains small, 
p c* AQCD. The energy scale mp decouples from the heavy quark dynamics, 
making it possible to derive effective theories [64]-(701. For infinite mass there 
are new symmetries among different spins and flavors of heavy quarks. These 
symmetries have many interesting implications. For example, mp = mv and 
fp = fv, where “P”and "V" denote generic pseudoscaiar and vector heavy-light 
mesons, and the various form factors discussed in Section 5.2 can be expressed 
in terms of one universal function [66]. 

For this section the most important result of heavy-quark symmetry is a 
scaling law for the pseudoscalar decay constant fp 0: AJp 

symmetry-breaking effect is at order M;‘, i.e. 
-"' [71]. The leading 

ap = fp&= a, - @&MFl* (20) 

Because of the theoretical utility of heavy-quark symmetry, lattice QCD results 
for @, and a’, are interesting, as well as the physical results fD and fs. 

The large mass is also an important technical issue for lattice QCD calcu- 
lations of heavy-light meson properties. At currently accessible values of the 
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lattice spacing, charm and bottom lie in region m,a z 1, and for the infinite 
mass limit one must reconcile m, + co and (1 -t 0 in a compatible way. This is 
done by formulating a lattice action of the effective theories, either static [52] or 
nonrelativistic [67, 701. In analogy with eqs. (18) and (19), the currents of the 
effective lattice theory must be matched to the relativistic continuum theory 
(72, 73, 74, 751. Another approach is to use Wilson fermions and extrapolate 
towards infinite mass. At first sight this seems risky. However, it is possible 
to show how the energy scale nap decouples in the lattice theory [76]. Such an 
analysis shows how to interpret the Wilson theory aa an effective theory, and 
how it shares many features with the static and nonrelativistic theories [59, 601. 

Now let us discuss results from lattice QCD for Cp,, @&, fD, and fB. Most 
of the work has focussed on one of two lines of attack. One is a systematic 
analysis of the infinite-mass (or static) limit (77, 78, 79, 801, concentrating on 
a The important technical issues are optimizing the signal-to-noise ratio, 
anmd’ studying the lattice-spacing and finite-volume dependence of am. The 
other line of attack is to concentrate on the mass dependence. Until now this 
has meant combining numerical data from quark masses near the charm mass 
with the static-limit results, and interpolating [61, 82, 83, 84, 851. 

Results for fD and fs from Reference [61] are in Table 3. (We cite Ref- 
erence [61] because it comes close to incorporating the mass effects derived 
in References [59, 761.) Heavy-strange meson decay constants are fD/fD, = 
fB/fa, = 0.90 f 0.05. Taking meson masses and fn from experiment, the scal- 
ing combinations are 9~ = 0.28 & 0.03 GeV3/* and @B = 0.43 & 0.04 GeV3/*, 
which can be compared with the static limit Cp, = 0.53 f 0.10 GeVs/’ [Sl]. 
(This value is consistent with References (78, 851 and with Reference [77] when 
scale-setting ambiguities are resolved.) The systematic studies of the static 
limit [78] suggest that the extrapolation to infinite volume will change these 
results negligibly, and that the extrapolation to n = 0 may reduce the results 
by 10%. A more serious source of uncertainty comes from setting the scale. 
The results presented here use fr to set the scale. This may not be the best 
choice as a rule, but one might argue that the quenched approximation’s errors 
cancel to some extent in fp/f*. For example, the ratio /h-/f= in Table 3 [58] 
agrees much better with experiment than the decay constants themselves. 

Although the numerical results may not yet be definitive, there are two 
important conclusions todraw from these lattice results: First, Gm, fD, and fB 
are larger than many model calculations had suggested [86]. By combining the 
first column of Table 3 with the heavy-light results, one sees that discrepancy 
is even more dramatic using m,, as the standard of mass. Second, the l/Mp 
corrections are large and phenomenoiogically important. This is not really 
unexpected from the heavy-quark symmetry arguments, since the correction is 
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Figure 6: Spectator diagram for meson semi-leptonic decays. For the weak 
interactions, the diagram may be interpreted as a Feynman diagram. However 
the strong interactions binding quarks into mesons must be treated nonpertur- 
batively, as indicated by the grey shading. 

first order, and it need not be indicative of the size of second-order corrections. 

5.2 Semi-Leptonic Decays 

A generic semi-leptonic decay can be denoted A --t Xlu, where A is a flavored 
hadron. We shall focus on mesons, because they are easier than baryons to 
study, both experimentally and theoretically. The process’ is depicted in Fig- 
ure 6. The flavored quark (strange, charm, or bottom) undergoes a weak decay 
by emitting a virtual W boson that subsequently turns into the lepton pair. 
The other quark (qS in Figure 6) does not take part in the weak decay, so it 
is called the spectator. However, the QCD interaction between the spectator 
quark and the decaying quark (s,c,b + qd in Figure 6) is the most difficult 
feature of the decay to calculate. It is the part that requires lattice &CD. 

The amplitude for A -t Xlu is proportional to the hadronic matrix element 
(X(J,jA), where Jp is the V - A charged current. If the quark of flavor a turns 

‘When the final state meson X is an isoscalar and A is charged. there is mother diagram 
in which A annihilates into W and X emerges out of the glue. For simplicity we shall ignore 
these decays. 
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into flavor z 
Jp = 5y,(l- y+. iv 

It is convenient to express the amplitude in terms of form factors. When X is 
a pseudoscalar meson one writes 

(V,IA) = f+(qZ)(p+p’).+f-~qZ)(p-~‘)w (22) 

where p (p’) is the initial (final) state meson’s momentum and q = p-p’ = pi+ 
p,. Similarly, when X is a vector meson there are four independent form factors. 
Decays correspond to the kinematic region rnf < q2 5 qk.. = (m - m’)*; in 
the rest frame of the initial meson, the neutrino is soft at q* = mf, whereas the 
final state meSon is at rest at the “endpoint” q* = q&. 

The interplay between experiment, lattice QCD, and the CKM matrix be 
corn- clear upon examining the differential decay rate. For example, when X 
is a pseudoscalar meson 

dl? 
s= (23) 

where If,, is the element of the CKM matrix associated with the quark-W 
vertex in Figure 6, and X = (m: - m$ - q2)* - 4miq’. The contribution of 
/- to the rate is proportional to the lepton mass, so in most cases it can be 
neglected. The exceptions are I<- -+ n/w and r lepton final states. When X is 
a vector meson, the decay rate obeys a similar formula, with the contribution 
of one of the four form factors suppressed by one power of the lepton mass. 
Everything in Equation 23 is well-known or measurable except V., and f+, so 
a measurement of dr/dq2 constitutes a messurement of IV.,j+(q2)(. Specific 
decays and their CKM matrix elements are shown in Table 4. 

The form factor is calculable. The theoretical tools available are lattice QCD 
and symmetry arguments. For example, chirai symmetry requires f?+‘(O) = I, 
with second-order corrections estimated to be & 1%. A combination of exper- 
imental measurements of the q2 dependence with this normalization condition 
gives the best determination of VU, [87]. It is not likely that lattice QCD will 
compete with this approach in the foreseeable future, especially since the small 
quark mssses in I( -+ A pose additional technical difficulties for the lattice 
calculations. Nevertheless, a comparison of the q* dependence of lattice and 
experimental form factors, such ss in Reference [88], could be used to get a 
feel for the reliability of the quenched approximation. Similarly, heavy-quark 
symmetry [66] requires /+ B+D(q&,) = 1, again with second-order corrections 
[89]. Especially for the D-meson, the applicability of heavy-quark symmetry is 
not guaranteed. but lattice QCD can be used to test it. 
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Table 4: Semi-leptonic decays and the CKM matrix elements they determine. 
For brevity only pseudoscalar final states are listed; vector final states are p, 
K’ and D’, as appropriate. 

A+X V,, COMMENT 

K-k lr V”, calibrate quenched approximation 
D-b R I/& 
D + K 

uncertainty dominated first by BR(D + rev), then by f+ 
V,, uncertainty dominated by f+ 

B -+ D Kb teat corrections to heavv auark limit ~ . 
B-tk VU6 vector final states useful: cf. text 

Lattice calculations of semi-leptonic form factors, essentially using the strat- 
egy of Reference [go], have been carried out for D + TT, I< [88, 90, 91, 92, 931 
and D + p, I<’ [94,95,96]. Two groups are involved, which we shall abbreviate 
BKS [88, 90, 94, 961 and ELC [91, 92, 93, 951. Both groups report statistical 
errors of roughly 15%. BKS also estimate systematic errors, which introduce 
an additional 30-40% uncertainty; presumably the systematic uncertainties of 
the ELC calculations are similarly large. Except for the quenched approxima- 
tion, however, the systematic uncertainties would be smaller if the statistical 
errors were smaller. For example, the largest contributor to the systematic un- 
certainty is the lattice-spacing dependence of the form factors [88, 941. With 
better statistics over a wider range of lattice spacing, this component can be 
reduced by extrapolating. 

Table 5 summarizes lattice results for several form factors in semi-leptonic 
decays of the D. Lattice results are most reliable at and near q* ie when 
the spatial momentum of the hadrons is small. However, especii;’ bi’giving 
the initial-state meson non-zero momentum [91], it is possible to reach even 
$ < 0. Experiments customarily quote results for the form factor at q2 = 0, so 
BKS and ELC do so too. The extrapolation to q* = 0 is done by fitting to the 
pole-dominance form 

f+(cr? = 1 r+,ly& (24) 

where m is a suitable resonance maw. Both BKS and ELC find that their 
numerical calculations agree qualitatively with this form. However, verification 
of pole dominance is not essential to lattice QCD or to experiments. BKS stress 
the utility of a direct comparison for vector-meson final states near the endpoint 
[96]. Lattice calculations are most straightforward at qka., but then vector 



Table 5: Some results for form factors f+(q*) in D + I( semi-leptonic decays 
and A,($) and A*(q*) in D + I<’ semi-leptonic decays. Experimental results 
are from E691 and E653; their statistical and systematic errors have been added 
in quadrature. For BKS and ELC systematic errors are not listed. Based on 
the estimates of BKS, it is reasonable to assign 30-40% systematic errors to 
form factors themselves and 20-30% to the ratio. 

f+(O) Ii (Q&X) Al (0) AZ(O) AZ/AI(O) At(&,,) 
expt 0.69(04) - 0.46(07) - 0.82(25) 0.54(08) 
BKS 0.90(08) 1.64(36) 0.83(14) 0.59(14) 0.70(16) 1.23(16) 

: 0.63(08) - 0.53(03) 0.19(21) - - EL( 
- 

modes are preferable experimentally, because the phas+space suppression of 
the dominant form factor in the differential decay rate at the endpoint is only 
A’/1 = 2m,@x. 

Although the uncertainty estimates on the results presented in Table 5 are 
still at a qualitative stage, it is important to realize that semi-ieptonic decays 
are not much more dificult to compute than the hadron masses and decay 
constants. Since References [35, 581 have demonstrated the feasibility of a 
systematic, rather than incremental, approach, one can hope for a comparable 
analysis of semi-leptonic decays in the near future. 

6.3 Neutral Meson Mixing 

Some of the operators on the right-hand side of Equation 15 induce neutral 
meson mixing, e.g. Ii” t) I?‘. For the kaon the four-quark operator is 

(34.~3 = %,y,,( 1 - Ts)d&yJ 1 - ?‘s)db, (25) 

where a and b denote color indices. The mixing amplitude is proportional to 
the matrix element (f?‘((7~~=~(Z?‘). Similarly, the hB = 2 operator obtained 
by the substitution s ++ h induces Be-i?’ mixing. On the other hand, Do-Do 
mixing is expected to be too small to be interesting. 

Let us focus on the kaon. Phenomenologists use the wcalled “vacuum sat- 
uration approximation” as a standard of comparison for (I(“~U~~=~/I~o). This 
approximation treats the four-quark operator a product of two-quark operators, 
inserts a complete set of states, and then keeps only the vacuum contribution 
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[97]. The result is 

(P10~s=21K”)(“SA = $& (26) 

The factor 8/3 arises because there are two Fierz arrangements and because 
both S operators can act on the initial state. It is customary to define the 
“kaon B Darametei’ 

BK = (~‘IOAS=zII~‘) 

$tl$f:, 
(27) 

In numerical lattice QCD the ratio BK is a convenient quantity, because the 
statistical and systematic uncertainties of the ratio are under better control 
than those of numerator or denominator separately. 

A typical result using BK is the one for the parameter t, which appears in 
the analysis of CP violation in the K”-I?’ system. Combining the measurement 
of 1~1 with other experimentally known numbers, the standard model predicts 
(cf. Reference [49] and references therein) 

5.6 x lo-’ = 

-bK Ihi Im &d [hh(Yt) - 71) Yciv,dl + rhYth(Yr)iV,bI Re &d] , 
(28) 

where yp = m~/m~, V is the CKM matrix, the fi are kinematic functions, 

the r)i are perturbative QCD corrections, and fin is a renormalization group 
invariant quantity related to BK. Taking the one-loop anomalous dimension of 
O&s=2 into account 

AK = (~s(co)-2’9 BK(P). (29) 

The combination of CKM matrix elements in Equation 28 depends on the CP- 
violating phase and (using unitarity constraints) on IvUb/Vcbl. 

As mentioned above, although there is no physical reason to prefer BK to the 
matrix element (II’“~O~~,~~l~O), it makes better sense to quote BK from lattice 
&CD. Because of correlations in the Monte Carlo, the statistical fluctuations of 
the numerator and denominator cancel to a large extent. Moreover, an analysis 
based on chiral perturbation theory suggests that some effects of the quenched 
approximation also cancel in the ratio [98]. Finally, L?K should be finite in the 
chiral limit (ma + 0), providing a consistency check on the numerical results. 

The most important reason why the lattice calculations of (kO1O~s=~lW’) 
are feasible is that there can be no mixing with lower dimension operators, be 
cause 0~s~~ is the lowest dimension operator with AS = 2. Consequently, the 
numerical calculations presented below are much more reliable than calcula- 
tions of analogous matrix elements of penguins and other denizens in the zoo of 
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four-quark operators. Despite these advantages, there are still some difficulties. 
For Wilson fermions there are problems with chiral symmetry, making neceg 
sary a subtraction [99, BIO] that ultimately decreases the signal-tonoise ratio. 
For staggered fermions chiral symmetry makes this subtraction unnecessary, 
but one must treat the extra flavors with care [loll. 

The numerical results with the smallest uncertainties have been done with 
staggered fermions [98]. At present the largest uncertainty comes from extrap- 
olating in a; it is uncertain whether the extrapolation should be taken in a or 
a*. The most recent quenched results [102] are &K = 0.66 zh 0.06 after a Linear 
extrapolation and fi,,’ = 0.79 f 0.03 after a quadratic extrapolation. By com- 
parison, Wilson quarks yield 0.88 f 0.13 [99, 103). A calculation in full QCD is 
compatible with the results from the quenched approximation, supporting the 
arguments that effects of the quenched approximation cancel in BK [104]. 

These results for BK might foster the impression that the vacuum saturation 
approximation gives a fair description. but that is misleading. Separating the 
four-quark operator into VV and AA terms, it turns out that the two have large 
contributions that cancel in quenched lattice QCD. Conversely, the vacuum 
saturation approximation would assert that the AA term contributes everything 
and the VV term nothing. 

Mixing is also of great interest in the neutral B-mason system, because, like 
L in the neutral kaon system, it gives insight into the third row of the CKM 
matrix. In the standard model 

zd = (known factors) IVt~&(‘f~Bs, (36) 

where 2d = AMgo/Pno = 0.66 i 0.11 is a messure of the mixing. A similar 
formula applies to the B, meson. In addition to the decay constant, discussed 
above, the E-meson B parameter is needed. Pilot lattice studies [84] yield 
values of BB and Bn, close to the vacuum saturation value of unity. The level 
of technical detail in these calculations is not yet high enough to understand all 
uncertainties, but a better understanding will certainly emerge in the coming 
Yi3MS. 

5.4 Non-Leptonic Decays 

Non-leptonic decays, such as K + rrrr processes, are also mediated by four- 
quark operators from Equation 15. Many of the interesting operators suffer 
from the problem of mixing with lower dimension operators, which did not 
afflict the calculation of BK. A more serious obstacle to the treatment of non- 
leptonic decays is the presence of two (or more) hadrons in the final state. 
The technical aspect is the difficulty of separating the particles in the finite 
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volume. The conceptual aspect is the determination of final-state phase shifts 
from purely real quantities computed in Euclidean field theories [105, 1061. It 
is rigorously known [107] how to determine the properties of the p resonance, 
which decays through an interaction in the QCD Hamiltonian. The stumbling 
block is evidently the application of the ideas in Reference (1071 when the par- 
ticle decays through an interaction being treated as a perturbation, as for weak 
decays. Note that these difficulties do not stem from the lattice cutoff, but 
from other features, finite volume and imaginary time, introduced to make the 
computational method tractable. Nevertheless, until these issues are resolved, 
lattice results for non-leptonic decays probably will not warrant attention from 
non-experts. 

6 Summary and Prospects 

The coming generation of calculations will be done on computers with speeds 
of tens of gigaflops. In a few years, computers with hundreds of gigaflops or 
perhaps a teraflop will probably be available (1081. These machines will make 
possible crucial improvements in lattice calculations, but increases in comput- 
ing power alone with no methodological improvements will probably be in- 
sufficient to make possible first principles caiculations with light sea quarks. 
Algorithms for the direct inclusion of sea quarks in QCD simulations made 
dramatic progress during the 1980’s. The current best algorithms are orders of 
magnitude more eflicient than those proposed for the first Monte Carlo spec- 
trum calculations around 1980. However, for large lattices and medium quark 
masses they still exhibit extremely long correlation times which are not under- 
stood theoretically, and whose scaling behavior in such quantities as the lattice 
volume and quark mass are not understood. The current consensus is that one 
order of magnitude in computing power is likely to be too little to do definitive 
calculations including light sea quarks, without further theoretical insight. 

What direction will lattice phenomenology take if there are no new algo- 
rithmic ideas? For heavy QQ mesons, nonrelativistic arguments should make 
possible rock solid understanding of all errors aside from quenching errors, and 
decent understanding of those. For hadrons containing light quarks, it now ap 
pears that good control of all errors aside from quenching errors is likely to be 
achievable in the coming generation of calculations. The uncertainties shown 
in Figure 4 [35], will be checked in the coming few years (and perhaps reduced 
to the point that the degree of disagreement of the quenched approximation 
with the real world stands out more clearly). If the mazs of one of the light 
hadrons were unknown, one might take the typical disagreement with the known 
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quantities as a phenomenological estimate of the quenching uncertainties. 
Today there are a couple of phenomenoiogically interesting lattice QCD 

calculations in which, because they are in one way or another special cases, a 
complete error analysis has been attempted. For the more demanding case of 
the light hadron spectrum, a systematic calculation this year made corrections 
for all of the sources of error within the quenched approximation, but did not 
completely estimate the uncertainties of all of the corrections. It is likely that 
such estimates for light ha&on calculations will prove possible in the quenched 
approximation on the current and coming generation of large scale computers 
without great conceptual breakthroughs (although with much labor). If this 
becomes the case, many of the most crucial applications of lattice QCD to 
standard model phenomenogy will be likewise calculable. 
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