
Fermi National Accelerator Laboratory

FE--Conf-9WO76

A Multi-thread Approach to Coalescing Small Transfers
Generated by Portable Tool Sets

Mark Fischler and Mike Uchima

Fermi National Accelerator Laboratory
P.O. Box 500, Batauia, Illinois 60510

April 1993

Submitted for presentation at Supercomputing ‘93,
Portland, Oregon, November 15.19, 1993

e Operated by Universities Research Association Inc. under Contract No. DE-AOX-76CH03000 with the United States Depabmnt of Energy

Disclaimer

This report UKZS prepared as an account of work sponsored by an agency of the United States
Gouernment. Neither the United States Government nor any agency thereof, nor any of
their employees, makes any warranty, express or implied, OP assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any information,
apparatus, product, OP process disclosed, OP represents that its use would not infringe
privately owned rights. Reference herein to any specific commercial product, process, or
service by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States
Government or any agency thereof The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States Government or any agency
thereof.

A Multi-thread Approach to Coalescing Small Transfers

Generated by Portable Tool Sets*

Mark Fischlert and Miie Uchimatt

Fermilab”, Batavia, IL 60510

ABSTRACT

An approach to providing scientific users with the means to code complex algorithms in a

natural way is to provide portable tool sets implementing the concepts of each scientific

field. These tool sets facilitate implementation on massively parallel systems, but often

tend toward large numbers of small inter-CPU data transfers, adversely impacting

efficiency. We present techniques for mitigating this effect without affecting the way the

user sees the tools. Efficiency improvements obtained by transfer coalescing via “multi-

threading” arc studied in the context of Lattice Gauge Theory computations.

* Paper submitted for presentation at Supercomputing ‘93, as a TECHNICAL. PAPER.
t M. Fischler (presenting author): mf@fnal.fnal.gov (708)&W4339 FAX (708)840-8208
tt M. Uchima: uchim@fnal.fnal.gov (708)840-2671 FAX (708)&M-8208
** Fermilab is operated by Universities Research Association, Inc. under contract with the U.S.

Deparmenl of Energy

1. Intro-

Much scientific work using massively parallel computers has traditionally been done by

scientists who have become expert in the techniques of efficiently utilizing each particular

system [11. This situation was appropriate when supemomputers were expensive and rare

- the CPU time was a very critical resource. However, massively parallel systems are

becoming more accessible; we are entering a realm where the scientists’ time, effort, and

creativity are the key to advances in many fields. Hardware power is improving

tremendously, but there are areas where the largest gains will be achieved by improvements

in algorithms.

Tools can be provided to help the scientist who is not expert in parallel programming for

a particular system [2]. An important class of such tools leads naturally to implementations

which are fairly efficient except for one effect: The pattern of interprocessor

communication becomes dominated by small transfers. In most of today’s systems,

frequent transfers force unacceptably low efficiencies, invalidating this promising

approach.

Fortunately, improvements to the implementation of these tools can mitigate this problem.

The idea is to coalesce multiple transfers between processors, without affecting the way the

user sees the transfers. When an algorithm has a greater degree of logical parallelism than

that of the actual system, a useful coalescing scheme is that of “multi-threading”. The

benefits of these improvements depend on the nature of the system and the algorithms; we

present representative studies based on calculations necessary for Lattice Gauge Theory

[3,41.

1.1 Tool Sets and Small Transfer Lengths

To facilitate exploration of complicated algorithms, it is useful to separate the creative

effort of algorithm development, from the effort of actually coding up the desired

algorithms. The scientist should be able to code algorithms for massively parallel systems,

without becoming expert in any particular system.

The scientist can code complex algorithms in a natural, portable way if provided with a

concept oriented tool set. This implements an appropriate set of the concepts that the

scientist is familiar with, and allows programs based on these concepts to run on any

massively parallel system supporting that tool set. Any particular tool set will not be

useful for every application - the set of concepts would be be. too broad to implement

efficiently. But a well-chosen set of concepts can be applicable for a wide spectrum of

algorithms. For example, for problems involving discretizing differential equations on a

grid, some appropriate geometrical concepts would be those of the site, offield data

associated with each site, of directions and neighboring sites in each direction. An

execution concept is that of the tusk, to be performed over each site in some set, without

regard to ordering.

Such a tool set should shield the user from details about the system - distribution of data

and work, access of data residing on non-local processors, and so forth. The system need

not perform automatic parallelization; the user-guided by the set of available concepts -

supplies knowledge about the parallel nature of the algorithm. This knowledge is so

instinctive to the scientist that its value is easy to overlook, but it provides the system with a

much better view of the nature of the algorithm than could be derived automatically. The

tool set can use that information to handle all the details involved in setting up for parallel

execution.

These tools can be based on a paradigm of the massively parallel system: the distribution

of memory within the system, the nature of interprocessor communication, and so forth.

The underlying model makes it possible to port the concepts to various machines of the

same general nature, but with widely differing hardware details.

For convenient programming models, the underlying paradigm tends to make optimistic

assumptions about the hardware. To the extent that these assumptions are not accurate,

applications built upon a tool set may be inefficient. A practical paradigm of a massively

parallel model is a distributed memory, flat global access model. Main memory is divided

among the local memories of the many processor nodes; data might reside on any node

being used for the application, and may be accessed from any node in the system. This

model is clean and powerful, and can be used as the basis for implementation of convenient

tool sets.

3

These gains in user convenience are easiest to implement based on the assumption that

frequent, small transfers will be acceptable (from an efficiency viewpoint). That is, the

paradigm allows the user to think in terms of the natural chunk of execution for the

problem, and moves data accordingly. In the above example, the natural transfer size

would be field data associated with one site. Such small transfers exacerbate the impact of

per-communication costs. While low communications overheads and transfer latencies are

desirable, they are not easy to achieve when designing massively parallel systems. Many

of today’s powerful systems become inefficient for computations requiring many small

transfers.

So a given concept oriented tool set will be more valuable if a means of coalescing many

small transfers into fewer, larger transfers can be found. Such an enhancement must have

no impact on the paradigm of the system as seen by the user, and minimal impact (if any)

on coding issues; otherwise, it will sacrifice the benefits of these tools.

In section 2 we will present the paradigms and concepts of a particular tool set, suitable

for grid-oriented problems. In section 3, we examine performance implications: For

sample applications, efficiency degrades due to frequent internode transfers. In section 4

we present techniques for transfer coalescing, and discuss how this improves performance.

21 Canw

2.1 Concepts

Canopy [S] is a tool set designed for exploring algorithms for Lattice Gauge Theory; it is

applicable to many other scientific grid-oriented applications as well. The concepts selected

are suitable for automated implementation on massively parallel systems. In fact, Canopy

originated as the “language” for coding applications on the massively parallel 5 - 50 Gflop

ACPMAPS systems built at Fermilab [6].

The user sees geometric and computational concepts. Geometric concepts include those

of sires, direcrions, and neighbors. A collection of sites forms a grid, an application may

define one or more grids. (Pre-packaged grids, e.g. n-dimensional rectilinear grids, are

used for most applications, but arbitrary grids may be specified by supplying connectivity

and coordinate functions). In theoretical physics a ubiquitous concept is that of a field-an

object which has a value at each point in space. In Canopy, one or more fields can be

defined on the grid; for each field, room for one instance of a structure is allocated at each

site. (Link fields, defined on the links between neighboring sites, are also supported,

these are a common concept in Lattice Gauge Theory.)

The large bodies of data in problems suitable for massively parallel systems are organized

into fields. The field data is accessed only by Canopy routines such as field-pointer (to

read a field) and put-field (to write field data).

The basic computational concept in Canopy is that of the tusk. This is a routine which is

to be done by each site in a set, in principle in parallel. A set of sites can be defined

explicitly, or an entire grid can be specified. In addition, compound (partially ordered) sets

of sites are supported - a task done on such a set will logically run for sites on level 1

before those on level 2, and so forth. Orthogonal to the task concept is that of the control

program, which does non-parallel computations for the job as a whole. The control

program issues tasks to initiate parallel execution.

During a task, each site can be viewed as a virtual processor; the task routine is the

program, and an instance of the field data is part of local memory. Since the number of

sites for a problem is typically many times the number of physical processing nodes, the

5

responsibility for many sites will be allocated to each node. Although the work for each

site can vary, balance in workload is achieved in a statistical sense. Canopy automates the

distribution of data and work; the user need not be concerned with how many nodes are

used for a particular job.

2.2 Model of the System

Task routines for a particular “home” site often access field data belonging to other

(typically neighboring) sites. The user sees only the high-level geometric concepts,

specifying the target site by directions, paths along the grid, and so forth. For example,

the routine field-pointer(field, dir) supplies a pointer to the field data for a neighboring site

in the specified direction. The tool set implementation must supply access to the desired

data, wherever it resides on the system. When the target site is not on the same node as the

home site, a copy must be made by transfering data from (or to) off-node locations, using

lower-level communications primitives.

Canopy supports a broad range of applications, including non-lockstep algorithms. A

task might even include data-dependent logic determining which site’s data is to be

accessed next. Since the access pattern is not known in advance by remote nodes, they

cannot prepare data for subsequent transfer. That is why the communications model of the

system must be that of “flat, global access” - any node can access the field data of any

other node in the job, without the prior knowledge or cooperation of the remote node. The

relevant low-level routines are remote-read and remote-write, specifying the target node

and an address and length of the desired remote data.

At first glance, this underlying model might eliminate a very important class of machines

- those with message-passing communications. From the hardware viewpoint, that style

of communications can be cleaner to implement. For example, Intel systems (the iPSC

series, the Delta and the Paragon) use message passing system calls, with the ability to

associate a handler with specific incoming messages. Similar models are supported for

other systems; fewer systems support direct flat global access.

Fortunately, the remote access model can be expressed in terms of the message passing

paradigm, as long as handlers can be associated with incoming messages, and non-

blocking receive requests can be posted. The trick is that each node repeatedly posts

receives for incoming “transfer request” type messages. (Implementing remote access

routines as a layer over message passing does not seriously degrade performance.)

Similarly, message passing (including handlers) can be implemented in terms of

remote-read and remote-write, if a remote-interrupt capability is also available.

A tool set will be portable ifits potential system dependencies are put in terms of simple-

to-specify low level routines (including interprocessor communications). Then supporting

a new machine involves porting the small number of “hardware interface” routines, rather

than a large body of higher level user support functions. A side benefit is that several

distinct tool sets might share one hardware interface definition; then porting one is

tantamount to potting them all. Canopy is written on top of the Canopy Hardware Interface

Package (CHIP). CHIP deals with remote access routines rather than message passing,

since these are more convenient for the Canopy paradigm. By using CHIP (or an

analogous interface for tools based on message passing [7]), tools written for one system

can be ported to many different systems with little effort.

An important technical point in defining a remote access interface is that of access

causality. The proper rule is that if processor A writes to B, and later A writes to C telling

C to read B, then C must see the newly wrirren value in B. Higher level tools tend to rely

on this property in subtle ways, leading to undesired behavior if a particular access is

delayed by the right interval to violate the above rule. In systems based on message-

passing hardware, where a given message might have arbitrary transit time,

implementations of remote-read and remote-write must be carefully guarantee access

causality. For example, this requires an ‘acknowledge’ return message for remote-write.

3. Performance Imolications

3.1 Communications Latency and Overhead

Canopy benefits from partitioning the data space and work into many relatively

independent parts (sites). The natural approach to dealing with communications is to

(logically) transfer data needed to process one site, when that data is required. This may

necessitate an off-node access, to be done immediately.

This approach has performance implications, which can be illustrated using examples

from lattice gauge theory applications. (The Fermilab theorists have been running a

spectrum of applications on ACPMAPS; these results vary by a factor of two, depending

on the algorithms used.) In the dominant tasks for typical applications, each site reads field

data from nearby sites, and performs computations to alter data at the home site. The fields

comprise small complex matrices; computations involve various matrix multiplies,

accumulates, and other steps.

A well-implemented tool set will tend to cluster neighboring sites on the same node, but

since the grid is 4-dimensional, the “internode boundaries” are not negligible. Depending

on the size of the problem and the number of processors, about one field access in 4

requires off-node access. One representative task routine requires 8000 cycles and an

average of 4 off-node field accesses. On systems used today, the internode data bandwidth

is adequate for this flow, but transfer latencies and overheads are a serious concern.

The overhead of an off-node access has several components: the master node must verify

that the target is sensible; the transfer must be set up (in software); the hardware protocol

must proceed; the slave hardware (and possibly software) must respond to the transfer;

and any completion handshakes must be done. To these costs must be added the loss of

processing time on the slave node (for cooperation in the access). One less obvious effect

is “cache backwash”: When transfer processing code misses cache, in addition to the direct

increase in communications latency, an almost equal cost will be incurred after the transfer

is completed, to get useful data replaced into cache on the master and slave nodes.

For hardware and system design focusing on excellent communications latencies, the

total per-access cost can be as small as a few hundred cycles. Then the inefficiency due to

8

numerous transfers is an acceptable 15%. (This was the case for the 5 Gflop ACPMAPS

system, and should ultimately be true for the Intel Paragon, with transfers handled

smoothly by the auxiliary communications processor on each board.) However, for many

systems, (e.g. earlier Intel systems, and the 50 Gflop ACPMAPS system) a read access

can cost 2,000 - 6,000 cycles. This leads to performance degradation by a factor of 2-4 -

unacceptable for many key applications.

Much of the work done to date on massively parallel systems [1,8,9] implements

algorithms with regular data access patterns, and fixes the distribution of field data in

advance. With these restrictions, the user program can explicitly prepare large blocks of

data to send, minimizing transfer overheads. Very high efficiency can be achieved,

especially when running suitable algorithms on restrictive special architectures. This

approach sacrifices the benefits of concept oriented tool sets: it requires the algorithm to fit

a mold, and the user to consider explicitly how to distribute work and data.

Many potential scientific users would prefer to code in a more natural manner, and are

willing to trade off some performance. Still, one would like to avoid unnecessarily large

degradations. This can be accomplished if the implementation of the tool set finds some

way -transparent to the user - to coalesce many transfers between the same two nodes.

If the extra work required to coalesce the transfers is no more than a few hundred cycles

per block, then communications latencies can be amortized over many blocks transfered

together.

3.2 Contention for Communications Channels

Transfer coalescing techniques can gain even when their CPU costs are not small.

Several nodes may share the same communications resources, which can become

bandwidth bottlenecks. If those resources are occupied during part of the transfer

overhead, then frequent transfers exacerbate the bottleneck. In this case, the reduced

number of transfers will gain, and extra CPU overhead to implement coalescing is moot

with respect to the critical resource.

This effect is important on the ACPMAPS 50 Gflop system. Sixteen i860 processors

nodes reside in each crate, sharing bandwidth to neighboring crates. This intercrate

9

bandwidth is a limitation for many large jobs. The per-transfer overhead incurred with the

channel open is about twice the actual data transfer time for a typical field. So, transfer

coalescing becomes more important as problem size increases.

3.3 Performance Without Transfer Coalescing

The applications studied illustrate various aspects of lattice gauge computation. Two are

local, highly structured algorithms typical of applications brought up on massively parallel

systems without the Canopy tools: a gauge field Monte Carlo (MC), and a conjugate

gradient quark propagator computation (CC). Another is a gauge-fixing application,

accelerated by a highly non-local FFT (GF).

The last algorithm looked at is a propagator computation, inverting an operator using a

Minimum Residual method with Lower/Upper decomposition preconditioning f&U). This

is a highly non-lockstep algorithm involving significant synchronization issues and is

exceedingly difficult to program for parallel systems without the aid of Canopy. It

inevitably runs at a low efficiency when measured in Flops done per second. It is worth

pursuing because it converges to the correct result much more rapidly than alternative

methods, for situations which take the most time: operators with large condition number

[lo]. Studies of systems with light quarks fall into this category.

Each application was coded using Canopy, and studied on ACPMAPS across a range of

problem sizes, scaling the number of nodes with lattice size. The results are shown in

Figure 1.

10

1 .oo
P

0.90

0.80

0.70

r 0.60
g
.g 0.50

g 0.40

w 0.30

0.20

0.10

AA A A

no
q 0

80 o o

A Gauge Monte Carlo

q Conjugate Gradient

0 Lower/Upper Precon

0 Gauge Fix (FFT)

A
A

0

0 ri
0.00 4 I

0 100 200 300 400 500 600

Number of Nodes

Figure 1: Efficiencies (relative to single-node performance) of several algorithms without
transfer coalescing.

Although for more than 16 nodes communications channel contention plays a major role

on ACPMAPS, this behavior illustrates the general situation: Frequent communications

severely degrade performance. Algorithms which are communications-intensive and non-

local perform particularly poorly on large systems.

11

4. The Multi&read Strategv

4.1 Theory

Communications intensive tasks usually involve many logical block transfers between a

given pair of nodes. The idea is to coalesce multiple transfers between processors, without

affecting the way the user sees the transfers. Ideally, the user would face no changes or

restrictions associated with transfer coalescing; in our implementation, the restrictions are

minimal and do not hurt the usefulness of the tool set.

The implementation takes advantage of two key properties of applications which do

frequent transfers: There are usually many sites per processor node, and communications

tend to be local. That is, the allocation of sites to nodes can usually be arranged such that

most nodes will frequently access the same several “neighboring” nodes. For local

algorithms in gauge theory on a 4-dimensional lattice, almost all accesses involve a small

number of “neighboring processors” for a given node. Even for non-local algorithms, the

pattern of communications from a given node will typically favor several nodes as transfer

targets.

The strategy of multi-threading is as follows:

When an off-node field access is done, the underlying tools record information about the

requested transfer, and allocate space for incoming data, but do nor actually do the remote

access. Instead, the processor moves on to do the task routine for another site - another

“thread” of execution. The actual accesses are done later, when no further work can be

done without the required data. At that time, threads which have had their requests

satisfied will be marked as eligible to resume processing. The key point is that of the many

access requests accumulated, several will involve the same remote node. These requests

can be coalesced into a single transfer.

Three conditions must exist for this strategy to be. worthwhile: (1) There must be

efficient remote scatter/gather communications routines. (2) The CPU cost of a thread

switch must be small enough that it does not impact performance. (3) The degree of

coalescing - the number of blocks to LX accessed from each remote node - must be large

enough to make the effort worthwhile.

12

4.2 Scatter/gather

Coalesced transfers require data blocks from many specified addresses on the target node

to be read in to the accessing node, and placed at specified addresses. This is a remote

gather (with local scatter) operation. Since the remote node will not have prepared data for

transfer, at least the gather aspect on the remote node must be performed by the

communications primitive.

On an arbitrary system without explicit remote scatter/gather hardware, it might not be

possible to accomplish remote gather efficiently. Fortunately, for systems using the

message passing paradigm as the underlying mechanism for remote access transfers, it is

easy to create a remote-gather routine - a control block is passed, and the desired data is

sent back.

Multi-threading will lead to short data blocks within the remotegather access, and there

is some per-block “bookkeeping” overhead associated with such transfers. But this

overhead is small: On the ACPMAPS system, transfers of multiple 20-word blocks

proceed at about 80% of the maximum possible transfer rate. Therefore, no new

communications bandwidth problems are introduced by multi-threading.

4.3 Light context switching

Although multi-threading is a very simple form of multi-tasking, the “threads” of

execution in this approach are as “lightweight” as can be. This is not a pre-emptive multi-

tasking environment. Threads can lose the CPU only at well-defined points in their

execution (when off-node data access is requested). All that needs to bc done is:

l Save any registers which are to be preserved across subroutine calls.

l Set up a new stack context, by pointing to an available stack area and storing the return

address.

l Select the next site available for execution.

l A few internal variables, such as the pointer to the current home site, must be saved and

set to their new values.

13

Much of the usual work associated with context switching is avoided. For example, the

task routine is already in memory. New memory mapping and allocation are not needed -

the new stack pages are selected from among a set which were allocated at the start of

processing. Flushing and restoring the floating point pipeline is not necessary. The thread

context switch involves neither traps nor system calls.

The number of threads which may be active at one time is established when multi-

threading is initiated; thread stacks are created at that time. Each thread requires memory

for stack space and for local allocation to place incoming data. Remote data transfers

proceed when the number of threads is saturated (or every site has a thread) and no

remaining threads are eligible for execution - every thread is waiting for data.

4.4 Degree of Coalescing

The degree to which multi-threading succeeds in coalescing transfers can be defined by a

ratio:
number of internode transfers done in the absense of coalescing

actual number of transfers done with coalescing

Obviously, this ratio will be dependent on the application, the number of threads

available, the distribution of sites among the nodes, and the order in which sites are

processed. Although apriori estimates of the degree of coalescing may be useful, we have

also studied the actual degree of coalescing by running applications using various numbers

of nodes and numbers of threads. The results are shown in Table 1.

Number Number Aleorithm
of nodes ofthreads MC a a U

96 20 7.7 4.6 26.3 12.5

96 50 14.8 9.1 49.6 18.0

2;:
100 22.8 15.5 87.4 20.6
100 25.8 16.1 84.5 18.1

96 250 49.6 35.6 186.1 21.9

96 500 90.6 59.0 260.6 23.8
Table 1: Degree of coalescing for four representative algorithms.

(Most trials were on 96 nodes; some 256~node trials were examined to verify that the

degree of coalescing is not strongly dependent on number of nodes.)

14

For structured local algorithms, the degree of coalescing goes up linearly for large

number of threads - geometric arguments would predict this. The highly non-local PPT

benefits substantially from “vertical coalescing” (discussed in 4.7 below); multiple transfers

associated with a task are grouped before moving to the next thread, giving excellent

coalescing. (In this case, the degree of coalescing can exceed the number of threads.)

The LU preconditioning algorithm has limited coalescing for large number of threads.

This is due to a special site distribution, which minimizes task startup and synchronization

losses. For smaller numbers of threads, the order in which sites are processed tends to

bunch transfers to the same several nodes. Because of this effect, and synchronization

issues, LU decomposition runs best on ACPMAPS with about 50 threads.

In all these instances, overhead associated with internode transfers can be amortized over

lo-50 or more blocks, so the cost of a transfer has been replaced by a few percent of that

cost, plus one thread switch. For systems on which the transfer cost is large and/or the

thread switch is fast, this can mean considerable savings.

4.5 Impact on User Code

To take advantage of multi-threading, the user code indicates how many threads to use

and how much stack space to reserve for each active thread. Although large local stack-

allocated arrays can be created in C, most task routines use very little stack memory for one

site. (The huge field data structures associated with a large problem are not on the stack.)

For most applications, a default value of 8K suffices for stack space. (The system can

warn the user if this stack space is ever overflowed.) The number of threads is chosen,

keeping in mind the need for one thread stack apiece - multi-threading does involve a

trade of memory space for speed. On systems with 16 Mbytes or more per node, 256 or

more threads are commonly possible, but as few as 50 threads gives an adequate degree of

coalescing, so it is easy to choose a suitable number of threads.

Another impact on the user program, involving global variables, occurs in relatively few

codes, but is more noxious when it appears. Global variables make sense in massively

parallel computing when they are written (and broadcast) only by the control program in

between parallel tasks, and are treated as read-only by the distributed tasks. If a task

15

routine were to write to a global variable and broadcast it to other nodes, it would be ill-

defined as to whether the same task routine running for another site would read the old or

new value. Thus Canopy discourages the use of task-written globals.

However, there is one case of a task-written global variable which will work properly in

the absence of multi-threading: A “task global”, which has a scope of one task routine, and

is logically meaningful only during the execution of that task for a single site. For instance,

such task globals can be used instead of passing computed values as arguments down a

chain of subroutines. (While some consider this poor coding practice, it is occasionally

convenient.) When the task routine ends, the value of the variable is discarded.

Such task global variables are logically dangerous, since task routines are in principle

executed in parallel. They work properly in a single-threaded environment because each

node processes sites one at a time. They will not work properly in the multi-thread

environment: The task might set a global, then request a remote access and lose its thread.

Another task can then set the same global to a different value. The context switching

mechanism has no way of preserving the original value, because there is nothing to identify

which global variables are being used in this manner.

Fortunately, there is an easy fix for this problem. Task globals are turned into elements

of an array dimensioned by the number of threads, and indexed by a special variable

CAN-my-thread, which is always set to the executing thread number. This f= does force

the user to modify code, which is undesirable. We could automate the modifications by a

pre-processor, with the user only identifying task globals. However, the user would still

need to identify task globals, and watch out for caveats associated with the automated

procedure. It is easier to apply the fix by hand in the rare cases where it is necessary.

16

4.6 Effect on Performance

The effects of transfer coalescing were studied for lattice gauge theory applications

running on ACPMAPS - configuration generation, gauge fixing, and propagator

calculation. As shown in 3.5 above, these applications perform poorly in the absence of

multi-threading, as the problem size and number of nodes grow together. (Both

communications overhead and channel contention effects are mitigated by transfer

coalescing.)

We ran the identical programs, selecting a moderate and a large number of threads. The

effects of multi-threading are shown in figures 3 and 4. It can be seen that this technique

gains considerably, especially for large problem and system sizes.

Monte Carlo Conjugate Gradient

1 .oo 1 .oo

0.60 0.60

0" 0.60 0.60

5
'ij 0.40 0.40 .-

fe 0.20 0.20

0.00 0.00

1 10 100 1000 1 10 100 1000

Number of Nodes Number of Nodes

Figure 3: Effect of number of threads on performance of algorithms with local
communications patterns. The top, middle and bottom cmves show 512 threads, 64
threads and single-threaded (no coalescing) performance.

17

Gauge Fix with FFf

1.00

Lower/Upper
Preconditioning

0.80 1 .oo

2 0.80 0.60

Ei 0.60
'?j 0.40
.-
E

0.40
0.20 0.20

0.00 0.00
1 IO 100 1000 1 IO 100 1000

Number of Nodes Number of Nodes

Figure 4: Performance of algorithms with non-local or complex patterns of
communication. The bottom curve shows non-coalesced performance. LU
preconditioning was not done for 512 dueads.

On ACPMAPS, transfer coalescing typically gains a factor of about two; for structured

yet highly non-local communication patterns such as FIT, the gain is more than a factor of

three. Very large numbers of threads am not important; the gains achieved for 64 threads

arc almost identical to those for 512.

4.7 Special Features and Techniques

Multi-threading may enhance system performance beyond the basic savings of

communications overhead. For instance, transfers can now be non-blocking: If the

channel to a remote node is unavailable, pending accesses to other nodes can be attempted.

If one pending transfer succeeds, the threads which had requested data from that node can

be activated. This effect, though beneficial, is small because the non-blocking feature is

only important when the communications channels are nearly saturated, and gains CPU

time, rather than communications bandwidth. Suppressing the non-blocking feature was

found to cost up to 6%.

In multi-threading, routines to read remote field data participate in coalescing. It is more

natural in typical applications to read data from other sites, rather than to change it.

However, a simple technique suffices to coalesce data to be written to remote nodes. The

put-field routine can mark (and/or copy) data for transfer, but delay the transfer until the

18

task completes for each site. For programs which do a lot of remote writing, this can

improve performance. Algorithms using the Fast Fourier Transform benefit from this

improvement, by 35% or more for large problems. (One subtlety - to avoid data

coherency problems, it is best to “flush” pending remote writes whenever a remote read is

initiated, and vice versa. Otherwise, a field can be written at another site and then read

back as its old value.)

Another technique which can be important but requires some simple user guidance is that

of “vertical coalescing”. Many task routines need to pull in several data fields from various

sites, before manipulating that data. The basic multi-threading scheme would involve a

context switch as each off-node access is requested, even though the data is not needed

until later. With user guidance, the system can be informed about when the data is needed,

by bracketing the field-pointer0 calls with calls indicating the beginning and end of a

vertical coalescing block. This not only saves the context switching overhead, but also

increases the degree of coalescing, by making more transfers available to coalesce for a

given number of threads. Opportunities to apply vertical coalescing are common in lattice

gauge theory, and save an average of 9% on algorithms sampled.

4.8 Other Tool Sets

The merits of transfer coalescing are not restricted to lattice gauge theory, or to problems

on a static grid. The properties of many virtual processes per node and nearly-local transfer

patterns are not unique to Canopy. Tool sets involving dynamic grids and re-allocation of

work, or using non-grid paradigms, can still profit from the trick of using light-weight

controlled context switches to enable better structuring of communications, in a user-

transparent manner.

19

5. Summaw

Tool sets which provide implementations of appropriate scientific concepts are

invaluable, but they can logically imply frequent internode communications. Our objective

was to minimize the performance degradation in situations where many small transfers are

generated, by coalescing internode traffic into larger blocks. To avoid sacrificing the

advantages of the tool set, these techniques must have minimal effect on the users’ view of

the tools.

The Canopy tool set, which is appropriate for problems on arbitrary but static grids, was

used as a testing ground for approaches to this issue. Canopy was ideal for this purpose

because it implements high-level concepts, and quite a few lattice gauge applications -

written without regard to transfer coalescing issues - were available for study. The

strategy used to coalesce transfers was “multi-threading”, involving light-weight context

switches without system calls.

Transfer coalescing requires the addition of remote scatter/gather to the set of

communications capabilities required to support the tool set on various systems. Creating

these new “primitives” is straightforward in systems based on message passing.

The impact of multi-threading on user code is minimal - the paradigm of considering

each site as a virtual processor remains intact. Some attention must be paid to the use of

read/write global variables during task routines which are logically executed in parallel.

Multi-threading also places an additional small burden on memory.

For the applications studied, multi-threading achieved a high degree of coalescing, and

improved performance significantly. The gains are largest on jobs running on many

processor nodes. Typical applications gained a factor of two; in extreme cases,

applications which could not sensibly be mn on large numbers of nodes without transfer

coalescing were improved by factors of 3 or more.

The key point in implementing transfer coalescing techniques is to keep the user model

clean. Assumedly, a tool set being considered for performance improvements contains a

carefully constructed set of concepts and interfaces for its intended users. The tools were

created to make programming easier, more natural, and more portable. When modifying

20

the tools to improve efficiency, these concepts and interfaces must remain unchanged, to

retain those advantages. Fortunately, automated coalescing is often possible within that

constraint.

The Lattice Gauge Theory group at Fermilab were valued participants in these

performance studies: The physics production applications studied were created by E.

Eichten, G. Hackney, A. Kronfeld, A. El-Khadra, and P. Mackenzie. Dr. Hackney was

also a key contributor to the implementations of Canopy and of the multi-thread

enhancements.

References

111

PI

131

141

[51

161

r71

@I

Several examples of such applications appear in ‘Proceedings of the First Intel Delta
Workshop” edited by T. Mihaly and P. Messina, CCSF-14-92, Caltech Concurrent
Supercomputing Facilities.

D. Cheng, “A survey of Parallel Programming Languages and Tools” (available from
NASA Ames Research Center) describes a number of tool sets appropriate for
various scientific fields.

E. Eichten, G. Hackney and H. Thacker, “Lattice Calculation of the B-Meson Decay
Constant”, Nucl. Phys B (Proc. Suppl.) 20 (1991) 500.

A. El-Khadra, G. Hackney, A. Kronfeld and P. Mackenzie, “A Determination of the
Strong Coupling Constant from the Charmonium Spectrum”, Phys. Rev. Letters
69,729 (1992).

M. Fischler, G. Hackney, and P. Mackenzie, “Canopy 5.0”, Fermi National
Accelerator Laboratory technical document. The Canopy manual is available (as a
LATEX source doucument) over anonymous ftp at fncrd7@fnal.fnal.gov.

M. Fischler, “The ACPMAPS System: A Detailed Overview”, FERMILAB-TM-
1780, 1992.

R. Butler and E. Lusk, “User’s Guide to the p4 Programming System”, ANL-92/17,
1992. The p4 library defines primitives expressing both message passing and shared
memory paradigms.

2. Dong and N. Christ “QCD Phase Structure with 8 Light Quark Flavors”, Nucl.
Phys B (Proc. Suppl.) 26 (1992) 314.

[9] F. Butler, H. Chen, J. Sexton, A. Vaccarino, and D. Weingarten, “Infinite Volume
Continuum Limit of Valence Approximation Hadron Masses”, Nucl. Phys B (Proc.
Suppl.) 26 (1992) 287.

[IO] G. Hackney, “Comparison of Inversion Algorithms for Wilson Fermions”, Nucl.
Phys. B (Pmt. Suppl.) 17 (1990) 301-304. Several varieties of pre-conditioners and
orderings of sites for the LU pre-conditioner were explored.

