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ABSTRACT 

An approach to providing scientific users with the means to code complex algorithms in a 

natural way is to provide portable tool sets implementing the concepts of each scientific 

field. These tool sets facilitate implementation on massively parallel systems, but often 

tend toward large numbers of small inter-CPU data transfers, adversely impacting 

efficiency. We present techniques for mitigating this effect without affecting the way the 

user sees the tools. Efficiency improvements obtained by transfer coalescing via “multi- 

threading” arc studied in the context of Lattice Gauge Theory computations. 
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1. Intro- 

Much scientific work using massively parallel computers has traditionally been done by 

scientists who have become expert in the techniques of efficiently utilizing each particular 

system [ 11. This situation was appropriate when supemomputers were expensive and rare 

- the CPU time was a very critical resource. However, massively parallel systems are 

becoming more accessible; we are entering a realm where the scientists’ time, effort, and 

creativity are the key to advances in many fields. Hardware power is improving 

tremendously, but there are areas where the largest gains will be achieved by improvements 

in algorithms. 

Tools can be provided to help the scientist who is not expert in parallel programming for 

a particular system [2]. An important class of such tools leads naturally to implementations 

which are fairly efficient except for one effect: The pattern of interprocessor 

communication becomes dominated by small transfers. In most of today’s systems, 

frequent transfers force unacceptably low efficiencies, invalidating this promising 

approach. 

Fortunately, improvements to the implementation of these tools can mitigate this problem. 

The idea is to coalesce multiple transfers between processors, without affecting the way the 

user sees the transfers. When an algorithm has a greater degree of logical parallelism than 

that of the actual system, a useful coalescing scheme is that of “multi-threading”. The 

benefits of these improvements depend on the nature of the system and the algorithms; we 

present representative studies based on calculations necessary for Lattice Gauge Theory 

[3,41. 

1.1 Tool Sets and Small Transfer Lengths 

To facilitate exploration of complicated algorithms, it is useful to separate the creative 

effort of algorithm development, from the effort of actually coding up the desired 

algorithms. The scientist should be able to code algorithms for massively parallel systems, 

without becoming expert in any particular system. 

The scientist can code complex algorithms in a natural, portable way if provided with a 

concept oriented tool set. This implements an appropriate set of the concepts that the 



scientist is familiar with, and allows programs based on these concepts to run on any 

massively parallel system supporting that tool set. Any particular tool set will not be 

useful for every application - the set of concepts would be be. too broad to implement 

efficiently. But a well-chosen set of concepts can be applicable for a wide spectrum of 

algorithms. For example, for problems involving discretizing differential equations on a 

grid, some appropriate geometrical concepts would be those of the site, offield data 

associated with each site, of directions and neighboring sites in each direction. An 

execution concept is that of the tusk, to be performed over each site in some set, without 

regard to ordering. 

Such a tool set should shield the user from details about the system - distribution of data 

and work, access of data residing on non-local processors, and so forth. The system need 

not perform automatic parallelization; the user-guided by the set of available concepts - 

supplies knowledge about the parallel nature of the algorithm. This knowledge is so 

instinctive to the scientist that its value is easy to overlook, but it provides the system with a 

much better view of the nature of the algorithm than could be derived automatically. The 

tool set can use that information to handle all the details involved in setting up for parallel 

execution. 

These tools can be based on a paradigm of the massively parallel system: the distribution 

of memory within the system, the nature of interprocessor communication, and so forth. 

The underlying model makes it possible to port the concepts to various machines of the 

same general nature, but with widely differing hardware details. 

For convenient programming models, the underlying paradigm tends to make optimistic 

assumptions about the hardware. To the extent that these assumptions are not accurate, 

applications built upon a tool set may be inefficient. A practical paradigm of a massively 

parallel model is a distributed memory, flat global access model. Main memory is divided 

among the local memories of the many processor nodes; data might reside on any node 

being used for the application, and may be accessed from any node in the system. This 

model is clean and powerful, and can be used as the basis for implementation of convenient 

tool sets. 
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These gains in user convenience are easiest to implement based on the assumption that 

frequent, small transfers will be acceptable (from an efficiency viewpoint). That is, the 

paradigm allows the user to think in terms of the natural chunk of execution for the 

problem, and moves data accordingly. In the above example, the natural transfer size 

would be field data associated with one site. Such small transfers exacerbate the impact of 

per-communication costs. While low communications overheads and transfer latencies are 

desirable, they are not easy to achieve when designing massively parallel systems. Many 

of today’s powerful systems become inefficient for computations requiring many small 

transfers. 

So a given concept oriented tool set will be more valuable if a means of coalescing many 

small transfers into fewer, larger transfers can be found. Such an enhancement must have 

no impact on the paradigm of the system as seen by the user, and minimal impact (if any) 

on coding issues; otherwise, it will sacrifice the benefits of these tools. 

In section 2 we will present the paradigms and concepts of a particular tool set, suitable 

for grid-oriented problems. In section 3, we examine performance implications: For 

sample applications, efficiency degrades due to frequent internode transfers. In section 4 

we present techniques for transfer coalescing, and discuss how this improves performance. 



21 Canw 

2.1 Concepts 

Canopy [S] is a tool set designed for exploring algorithms for Lattice Gauge Theory; it is 

applicable to many other scientific grid-oriented applications as well. The concepts selected 

are suitable for automated implementation on massively parallel systems. In fact, Canopy 

originated as the “language” for coding applications on the massively parallel 5 - 50 Gflop 

ACPMAPS systems built at Fermilab [6]. 

The user sees geometric and computational concepts. Geometric concepts include those 

of sires, direcrions, and neighbors. A collection of sites forms a grid, an application may 

define one or more grids. (Pre-packaged grids, e.g. n-dimensional rectilinear grids, are 

used for most applications, but arbitrary grids may be specified by supplying connectivity 

and coordinate functions). In theoretical physics a ubiquitous concept is that of a field-an 

object which has a value at each point in space. In Canopy, one or more fields can be 

defined on the grid; for each field, room for one instance of a structure is allocated at each 

site. (Link fields, defined on the links between neighboring sites, are also supported, 

these are a common concept in Lattice Gauge Theory.) 

The large bodies of data in problems suitable for massively parallel systems are organized 

into fields. The field data is accessed only by Canopy routines such as field-pointer (to 

read a field) and put-field (to write field data). 

The basic computational concept in Canopy is that of the tusk. This is a routine which is 

to be done by each site in a set, in principle in parallel. A set of sites can be defined 

explicitly, or an entire grid can be specified. In addition, compound (partially ordered) sets 

of sites are supported - a task done on such a set will logically run for sites on level 1 

before those on level 2, and so forth. Orthogonal to the task concept is that of the control 

program, which does non-parallel computations for the job as a whole. The control 

program issues tasks to initiate parallel execution. 

During a task, each site can be viewed as a virtual processor; the task routine is the 

program, and an instance of the field data is part of local memory. Since the number of 

sites for a problem is typically many times the number of physical processing nodes, the 



5 

responsibility for many sites will be allocated to each node. Although the work for each 

site can vary, balance in workload is achieved in a statistical sense. Canopy automates the 

distribution of data and work; the user need not be concerned with how many nodes are 

used for a particular job. 

2.2 Model of the System 

Task routines for a particular “home” site often access field data belonging to other 

(typically neighboring) sites. The user sees only the high-level geometric concepts, 

specifying the target site by directions, paths along the grid, and so forth. For example, 

the routine field-pointer(field, dir) supplies a pointer to the field data for a neighboring site 

in the specified direction. The tool set implementation must supply access to the desired 

data, wherever it resides on the system. When the target site is not on the same node as the 

home site, a copy must be made by transfering data from (or to) off-node locations, using 

lower-level communications primitives. 

Canopy supports a broad range of applications, including non-lockstep algorithms. A 

task might even include data-dependent logic determining which site’s data is to be 

accessed next. Since the access pattern is not known in advance by remote nodes, they 

cannot prepare data for subsequent transfer. That is why the communications model of the 

system must be that of “flat, global access” - any node can access the field data of any 

other node in the job, without the prior knowledge or cooperation of the remote node. The 

relevant low-level routines are remote-read and remote-write, specifying the target node 

and an address and length of the desired remote data. 

At first glance, this underlying model might eliminate a very important class of machines 

- those with message-passing communications. From the hardware viewpoint, that style 

of communications can be cleaner to implement. For example, Intel systems (the iPSC 

series, the Delta and the Paragon) use message passing system calls, with the ability to 

associate a handler with specific incoming messages. Similar models are supported for 

other systems; fewer systems support direct flat global access. 

Fortunately, the remote access model can be expressed in terms of the message passing 

paradigm, as long as handlers can be associated with incoming messages, and non- 



blocking receive requests can be posted. The trick is that each node repeatedly posts 

receives for incoming “transfer request” type messages. (Implementing remote access 

routines as a layer over message passing does not seriously degrade performance.) 

Similarly, message passing (including handlers) can be implemented in terms of 

remote-read and remote-write, if a remote-interrupt capability is also available. 

A tool set will be portable ifits potential system dependencies are put in terms of simple- 

to-specify low level routines (including interprocessor communications). Then supporting 

a new machine involves porting the small number of “hardware interface” routines, rather 

than a large body of higher level user support functions. A side benefit is that several 

distinct tool sets might share one hardware interface definition; then porting one is 

tantamount to potting them all. Canopy is written on top of the Canopy Hardware Interface 

Package (CHIP). CHIP deals with remote access routines rather than message passing, 

since these are more convenient for the Canopy paradigm. By using CHIP (or an 

analogous interface for tools based on message passing [7]), tools written for one system 

can be ported to many different systems with little effort. 

An important technical point in defining a remote access interface is that of access 

causality. The proper rule is that if processor A writes to B, and later A writes to C telling 

C to read B, then C must see the newly wrirren value in B. Higher level tools tend to rely 

on this property in subtle ways, leading to undesired behavior if a particular access is 

delayed by the right interval to violate the above rule. In systems based on message- 

passing hardware, where a given message might have arbitrary transit time, 

implementations of remote-read and remote-write must be carefully guarantee access 

causality. For example, this requires an ‘acknowledge’ return message for remote-write. 



3. Performance Imolications 

3.1 Communications Latency and Overhead 

Canopy benefits from partitioning the data space and work into many relatively 

independent parts (sites). The natural approach to dealing with communications is to 

(logically) transfer data needed to process one site, when that data is required. This may 

necessitate an off-node access, to be done immediately. 

This approach has performance implications, which can be illustrated using examples 

from lattice gauge theory applications. (The Fermilab theorists have been running a 

spectrum of applications on ACPMAPS; these results vary by a factor of two, depending 

on the algorithms used.) In the dominant tasks for typical applications, each site reads field 

data from nearby sites, and performs computations to alter data at the home site. The fields 

comprise small complex matrices; computations involve various matrix multiplies, 

accumulates, and other steps. 

A well-implemented tool set will tend to cluster neighboring sites on the same node, but 

since the grid is 4-dimensional, the “internode boundaries” are not negligible. Depending 

on the size of the problem and the number of processors, about one field access in 4 

requires off-node access. One representative task routine requires 8000 cycles and an 

average of 4 off-node field accesses. On systems used today, the internode data bandwidth 

is adequate for this flow, but transfer latencies and overheads are a serious concern. 

The overhead of an off-node access has several components: the master node must verify 

that the target is sensible; the transfer must be set up (in software); the hardware protocol 

must proceed; the slave hardware (and possibly software) must respond to the transfer; 

and any completion handshakes must be done. To these costs must be added the loss of 

processing time on the slave node (for cooperation in the access). One less obvious effect 

is “cache backwash”: When transfer processing code misses cache, in addition to the direct 

increase in communications latency, an almost equal cost will be incurred after the transfer 

is completed, to get useful data replaced into cache on the master and slave nodes. 

For hardware and system design focusing on excellent communications latencies, the 

total per-access cost can be as small as a few hundred cycles. Then the inefficiency due to 
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numerous transfers is an acceptable 15%. (This was the case for the 5 Gflop ACPMAPS 

system, and should ultimately be true for the Intel Paragon, with transfers handled 

smoothly by the auxiliary communications processor on each board.) However, for many 

systems, (e.g. earlier Intel systems, and the 50 Gflop ACPMAPS system) a read access 

can cost 2,000 - 6,000 cycles. This leads to performance degradation by a factor of 2-4 - 

unacceptable for many key applications. 

Much of the work done to date on massively parallel systems [1,8,9] implements 

algorithms with regular data access patterns, and fixes the distribution of field data in 

advance. With these restrictions, the user program can explicitly prepare large blocks of 

data to send, minimizing transfer overheads. Very high efficiency can be achieved, 

especially when running suitable algorithms on restrictive special architectures. This 

approach sacrifices the benefits of concept oriented tool sets: it requires the algorithm to fit 

a mold, and the user to consider explicitly how to distribute work and data. 

Many potential scientific users would prefer to code in a more natural manner, and are 

willing to trade off some performance. Still, one would like to avoid unnecessarily large 

degradations. This can be accomplished if the implementation of the tool set finds some 

way -transparent to the user - to coalesce many transfers between the same two nodes. 

If the extra work required to coalesce the transfers is no more than a few hundred cycles 

per block, then communications latencies can be amortized over many blocks transfered 

together. 

3.2 Contention for Communications Channels 

Transfer coalescing techniques can gain even when their CPU costs are not small. 

Several nodes may share the same communications resources, which can become 

bandwidth bottlenecks. If those resources are occupied during part of the transfer 

overhead, then frequent transfers exacerbate the bottleneck. In this case, the reduced 

number of transfers will gain, and extra CPU overhead to implement coalescing is moot 

with respect to the critical resource. 

This effect is important on the ACPMAPS 50 Gflop system. Sixteen i860 processors 

nodes reside in each crate, sharing bandwidth to neighboring crates. This intercrate 
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bandwidth is a limitation for many large jobs. The per-transfer overhead incurred with the 

channel open is about twice the actual data transfer time for a typical field. So, transfer 

coalescing becomes more important as problem size increases. 

3.3 Performance Without Transfer Coalescing 

The applications studied illustrate various aspects of lattice gauge computation. Two are 

local, highly structured algorithms typical of applications brought up on massively parallel 

systems without the Canopy tools: a gauge field Monte Carlo (MC), and a conjugate 

gradient quark propagator computation (CC). Another is a gauge-fixing application, 

accelerated by a highly non-local FFT (GF). 

The last algorithm looked at is a propagator computation, inverting an operator using a 

Minimum Residual method with Lower/Upper decomposition preconditioning f&U). This 

is a highly non-lockstep algorithm involving significant synchronization issues and is 

exceedingly difficult to program for parallel systems without the aid of Canopy. It 

inevitably runs at a low efficiency when measured in Flops done per second. It is worth 

pursuing because it converges to the correct result much more rapidly than alternative 

methods, for situations which take the most time: operators with large condition number 

[lo]. Studies of systems with light quarks fall into this category. 

Each application was coded using Canopy, and studied on ACPMAPS across a range of 

problem sizes, scaling the number of nodes with lattice size. The results are shown in 

Figure 1. 
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Figure 1: Efficiencies (relative to single-node performance) of several algorithms without 
transfer coalescing. 

Although for more than 16 nodes communications channel contention plays a major role 

on ACPMAPS, this behavior illustrates the general situation: Frequent communications 

severely degrade performance. Algorithms which are communications-intensive and non- 

local perform particularly poorly on large systems. 
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4. The Multi&read Strategv 

4.1 Theory 

Communications intensive tasks usually involve many logical block transfers between a 

given pair of nodes. The idea is to coalesce multiple transfers between processors, without 

affecting the way the user sees the transfers. Ideally, the user would face no changes or 

restrictions associated with transfer coalescing; in our implementation, the restrictions are 

minimal and do not hurt the usefulness of the tool set. 

The implementation takes advantage of two key properties of applications which do 

frequent transfers: There are usually many sites per processor node, and communications 

tend to be local. That is, the allocation of sites to nodes can usually be arranged such that 

most nodes will frequently access the same several “neighboring” nodes. For local 

algorithms in gauge theory on a 4-dimensional lattice, almost all accesses involve a small 

number of “neighboring processors” for a given node. Even for non-local algorithms, the 

pattern of communications from a given node will typically favor several nodes as transfer 

targets. 

The strategy of multi-threading is as follows: 

When an off-node field access is done, the underlying tools record information about the 

requested transfer, and allocate space for incoming data, but do nor actually do the remote 

access. Instead, the processor moves on to do the task routine for another site - another 

“thread” of execution. The actual accesses are done later, when no further work can be 

done without the required data. At that time, threads which have had their requests 

satisfied will be marked as eligible to resume processing. The key point is that of the many 

access requests accumulated, several will involve the same remote node. These requests 

can be coalesced into a single transfer. 

Three conditions must exist for this strategy to be. worthwhile: (1) There must be 

efficient remote scatter/gather communications routines. (2) The CPU cost of a thread 

switch must be small enough that it does not impact performance. (3) The degree of 

coalescing - the number of blocks to LX accessed from each remote node - must be large 

enough to make the effort worthwhile. 
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4.2 Scatter/gather 

Coalesced transfers require data blocks from many specified addresses on the target node 

to be read in to the accessing node, and placed at specified addresses. This is a remote 

gather (with local scatter) operation. Since the remote node will not have prepared data for 

transfer, at least the gather aspect on the remote node must be performed by the 

communications primitive. 

On an arbitrary system without explicit remote scatter/gather hardware, it might not be 

possible to accomplish remote gather efficiently. Fortunately, for systems using the 

message passing paradigm as the underlying mechanism for remote access transfers, it is 

easy to create a remote-gather routine - a control block is passed, and the desired data is 

sent back. 

Multi-threading will lead to short data blocks within the remotegather access, and there 

is some per-block “bookkeeping” overhead associated with such transfers. But this 

overhead is small: On the ACPMAPS system, transfers of multiple 20-word blocks 

proceed at about 80% of the maximum possible transfer rate. Therefore, no new 

communications bandwidth problems are introduced by multi-threading. 

4.3 Light context switching 

Although multi-threading is a very simple form of multi-tasking, the “threads” of 

execution in this approach are as “lightweight” as can be. This is not a pre-emptive multi- 

tasking environment. Threads can lose the CPU only at well-defined points in their 

execution (when off-node data access is requested). All that needs to bc done is: 

l Save any registers which are to be preserved across subroutine calls. 

l Set up a new stack context, by pointing to an available stack area and storing the return 

address. 

l Select the next site available for execution. 

l A few internal variables, such as the pointer to the current home site, must be saved and 

set to their new values. 
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Much of the usual work associated with context switching is avoided. For example, the 

task routine is already in memory. New memory mapping and allocation are not needed - 

the new stack pages are selected from among a set which were allocated at the start of 

processing. Flushing and restoring the floating point pipeline is not necessary. The thread 

context switch involves neither traps nor system calls. 

The number of threads which may be active at one time is established when multi- 

threading is initiated; thread stacks are created at that time. Each thread requires memory 

for stack space and for local allocation to place incoming data. Remote data transfers 

proceed when the number of threads is saturated (or every site has a thread) and no 

remaining threads are eligible for execution - every thread is waiting for data. 

4.4 Degree of Coalescing 

The degree to which multi-threading succeeds in coalescing transfers can be defined by a 

ratio: 
number of internode transfers done in the absense of coalescing 

actual number of transfers done with coalescing 

Obviously, this ratio will be dependent on the application, the number of threads 

available, the distribution of sites among the nodes, and the order in which sites are 

processed. Although apriori estimates of the degree of coalescing may be useful, we have 

also studied the actual degree of coalescing by running applications using various numbers 

of nodes and numbers of threads. The results are shown in Table 1. 

Number Number Aleorithm 
of nodes ofthreads MC a a U 

96 20 7.7 4.6 26.3 12.5 

96 50 14.8 9.1 49.6 18.0 

2;: 
100 22.8 15.5 87.4 20.6 
100 25.8 16.1 84.5 18.1 

96 250 49.6 35.6 186.1 21.9 

96 500 90.6 59.0 260.6 23.8 
Table 1: Degree of coalescing for four representative algorithms. 

(Most trials were on 96 nodes; some 256~node trials were examined to verify that the 

degree of coalescing is not strongly dependent on number of nodes.) 
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For structured local algorithms, the degree of coalescing goes up linearly for large 

number of threads - geometric arguments would predict this. The highly non-local PPT 

benefits substantially from “vertical coalescing” (discussed in 4.7 below); multiple transfers 

associated with a task are grouped before moving to the next thread, giving excellent 

coalescing. (In this case, the degree of coalescing can exceed the number of threads.) 

The LU preconditioning algorithm has limited coalescing for large number of threads. 

This is due to a special site distribution, which minimizes task startup and synchronization 

losses. For smaller numbers of threads, the order in which sites are processed tends to 

bunch transfers to the same several nodes. Because of this effect, and synchronization 

issues, LU decomposition runs best on ACPMAPS with about 50 threads. 

In all these instances, overhead associated with internode transfers can be amortized over 

lo-50 or more blocks, so the cost of a transfer has been replaced by a few percent of that 

cost, plus one thread switch. For systems on which the transfer cost is large and/or the 

thread switch is fast, this can mean considerable savings. 

4.5 Impact on User Code 

To take advantage of multi-threading, the user code indicates how many threads to use 

and how much stack space to reserve for each active thread. Although large local stack- 

allocated arrays can be created in C, most task routines use very little stack memory for one 

site. (The huge field data structures associated with a large problem are not on the stack.) 

For most applications, a default value of 8K suffices for stack space. (The system can 

warn the user if this stack space is ever overflowed.) The number of threads is chosen, 

keeping in mind the need for one thread stack apiece - multi-threading does involve a 

trade of memory space for speed. On systems with 16 Mbytes or more per node, 256 or 

more threads are commonly possible, but as few as 50 threads gives an adequate degree of 

coalescing, so it is easy to choose a suitable number of threads. 

Another impact on the user program, involving global variables, occurs in relatively few 

codes, but is more noxious when it appears. Global variables make sense in massively 

parallel computing when they are written (and broadcast) only by the control program in 

between parallel tasks, and are treated as read-only by the distributed tasks. If a task 
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routine were to write to a global variable and broadcast it to other nodes, it would be ill- 

defined as to whether the same task routine running for another site would read the old or 

new value. Thus Canopy discourages the use of task-written globals. 

However, there is one case of a task-written global variable which will work properly in 

the absence of multi-threading: A “task global”, which has a scope of one task routine, and 

is logically meaningful only during the execution of that task for a single site. For instance, 

such task globals can be used instead of passing computed values as arguments down a 

chain of subroutines. (While some consider this poor coding practice, it is occasionally 

convenient.) When the task routine ends, the value of the variable is discarded. 

Such task global variables are logically dangerous, since task routines are in principle 

executed in parallel. They work properly in a single-threaded environment because each 

node processes sites one at a time. They will not work properly in the multi-thread 

environment: The task might set a global, then request a remote access and lose its thread. 

Another task can then set the same global to a different value. The context switching 

mechanism has no way of preserving the original value, because there is nothing to identify 

which global variables are being used in this manner. 

Fortunately, there is an easy fix for this problem. Task globals are turned into elements 

of an array dimensioned by the number of threads, and indexed by a special variable 

CAN-my-thread, which is always set to the executing thread number. This f= does force 

the user to modify code, which is undesirable. We could automate the modifications by a 

pre-processor, with the user only identifying task globals. However, the user would still 

need to identify task globals, and watch out for caveats associated with the automated 

procedure. It is easier to apply the fix by hand in the rare cases where it is necessary. 
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4.6 Effect on Performance 

The effects of transfer coalescing were studied for lattice gauge theory applications 

running on ACPMAPS - configuration generation, gauge fixing, and propagator 

calculation. As shown in 3.5 above, these applications perform poorly in the absence of 

multi-threading, as the problem size and number of nodes grow together. (Both 

communications overhead and channel contention effects are mitigated by transfer 

coalescing.) 

We ran the identical programs, selecting a moderate and a large number of threads. The 

effects of multi-threading are shown in figures 3 and 4. It can be seen that this technique 

gains considerably, especially for large problem and system sizes. 

Monte Carlo Conjugate Gradient 
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Figure 3: Effect of number of threads on performance of algorithms with local 
communications patterns. The top, middle and bottom cmves show 512 threads, 64 
threads and single-threaded (no coalescing) performance. 



17 

Gauge Fix with FFf 

1.00 

Lower/Upper 
Preconditioning 

0.80 1 .oo 

2 0.80 0.60 

Ei 0.60 
'?j 0.40 
.- 
E 

0.40 
0.20 0.20 

0.00 0.00 
1 IO 100 1000 1 IO 100 1000 

Number of Nodes Number of Nodes 

Figure 4: Performance of algorithms with non-local or complex patterns of 
communication. The bottom curve shows non-coalesced performance. LU 
preconditioning was not done for 512 dueads. 

On ACPMAPS, transfer coalescing typically gains a factor of about two; for structured 

yet highly non-local communication patterns such as FIT, the gain is more than a factor of 

three. Very large numbers of threads am not important; the gains achieved for 64 threads 

arc almost identical to those for 512. 

4.7 Special Features and Techniques 

Multi-threading may enhance system performance beyond the basic savings of 

communications overhead. For instance, transfers can now be non-blocking: If the 

channel to a remote node is unavailable, pending accesses to other nodes can be attempted. 

If one pending transfer succeeds, the threads which had requested data from that node can 

be activated. This effect, though beneficial, is small because the non-blocking feature is 

only important when the communications channels are nearly saturated, and gains CPU 

time, rather than communications bandwidth. Suppressing the non-blocking feature was 

found to cost up to 6%. 

In multi-threading, routines to read remote field data participate in coalescing. It is more 

natural in typical applications to read data from other sites, rather than to change it. 

However, a simple technique suffices to coalesce data to be written to remote nodes. The 

put-field routine can mark (and/or copy) data for transfer, but delay the transfer until the 
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task completes for each site. For programs which do a lot of remote writing, this can 

improve performance. Algorithms using the Fast Fourier Transform benefit from this 

improvement, by 35% or more for large problems. (One subtlety - to avoid data 

coherency problems, it is best to “flush” pending remote writes whenever a remote read is 

initiated, and vice versa. Otherwise, a field can be written at another site and then read 

back as its old value.) 

Another technique which can be important but requires some simple user guidance is that 

of “vertical coalescing”. Many task routines need to pull in several data fields from various 

sites, before manipulating that data. The basic multi-threading scheme would involve a 

context switch as each off-node access is requested, even though the data is not needed 

until later. With user guidance, the system can be informed about when the data is needed, 

by bracketing the field-pointer0 calls with calls indicating the beginning and end of a 

vertical coalescing block. This not only saves the context switching overhead, but also 

increases the degree of coalescing, by making more transfers available to coalesce for a 

given number of threads. Opportunities to apply vertical coalescing are common in lattice 

gauge theory, and save an average of 9% on algorithms sampled. 

4.8 Other Tool Sets 

The merits of transfer coalescing are not restricted to lattice gauge theory, or to problems 

on a static grid. The properties of many virtual processes per node and nearly-local transfer 

patterns are not unique to Canopy. Tool sets involving dynamic grids and re-allocation of 

work, or using non-grid paradigms, can still profit from the trick of using light-weight 

controlled context switches to enable better structuring of communications, in a user- 

transparent manner. 
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5. Summaw 

Tool sets which provide implementations of appropriate scientific concepts are 

invaluable, but they can logically imply frequent internode communications. Our objective 

was to minimize the performance degradation in situations where many small transfers are 

generated, by coalescing internode traffic into larger blocks. To avoid sacrificing the 

advantages of the tool set, these techniques must have minimal effect on the users’ view of 

the tools. 

The Canopy tool set, which is appropriate for problems on arbitrary but static grids, was 

used as a testing ground for approaches to this issue. Canopy was ideal for this purpose 

because it implements high-level concepts, and quite a few lattice gauge applications - 

written without regard to transfer coalescing issues - were available for study. The 

strategy used to coalesce transfers was “multi-threading”, involving light-weight context 

switches without system calls. 

Transfer coalescing requires the addition of remote scatter/gather to the set of 

communications capabilities required to support the tool set on various systems. Creating 

these new “primitives” is straightforward in systems based on message passing. 

The impact of multi-threading on user code is minimal - the paradigm of considering 

each site as a virtual processor remains intact. Some attention must be paid to the use of 

read/write global variables during task routines which are logically executed in parallel. 

Multi-threading also places an additional small burden on memory. 

For the applications studied, multi-threading achieved a high degree of coalescing, and 

improved performance significantly. The gains are largest on jobs running on many 

processor nodes. Typical applications gained a factor of two; in extreme cases, 

applications which could not sensibly be mn on large numbers of nodes without transfer 

coalescing were improved by factors of 3 or more. 

The key point in implementing transfer coalescing techniques is to keep the user model 

clean. Assumedly, a tool set being considered for performance improvements contains a 

carefully constructed set of concepts and interfaces for its intended users. The tools were 

created to make programming easier, more natural, and more portable. When modifying 
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the tools to improve efficiency, these concepts and interfaces must remain unchanged, to 

retain those advantages. Fortunately, automated coalescing is often possible within that 

constraint. 

The Lattice Gauge Theory group at Fermilab were valued participants in these 

performance studies: The physics production applications studied were created by E. 

Eichten, G. Hackney, A. Kronfeld, A. El-Khadra, and P. Mackenzie. Dr. Hackney was 

also a key contributor to the implementations of Canopy and of the multi-thread 

enhancements. 
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