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ABSTRACT

We present the Vector Equivalence technique. This technique allows a sim-
ple and systematic calculating of Feynman diagrams involving massive fermions at
the matrix element level. As its name suggests, the technique allows two Lorentz
four-vectors to serve as an equivalent of two external fermions. In further calcula-
tions, traces involving these vectors replace the matrix element with the external
fermions. The technique can be conveniently used for both symbolic and numeric

calculations.
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1. Introduction

Calculations of Feynman diagrams with external fermions occur frequently in
particle phenomenology. The traditional calculation technique calls for squaring
the amplitude while summing over polarizations. This method has the advantage
that the final expression involves only dot-products of Lorentz vectors and, possibly,
contraction with the Levi-Civita tensor. A major disadvantage of this method is
that the number of terms in the result grows as the square of the number of terms
in the amplitude. Both in trce-level and in higher order calculations, this can be a

severe shortcoming.

Several authors have proposed methods for calculating the matrix element
without squaring [1, 2]. We propose yet another such method. Its main advantage
is that it gives, much like the traditional method, a relatively simple symbolic
expression of M even when massive fermions are involved. Unlike other methods,
one can perform calculations with free Lorentz indices. A similar technique has
heen implemented using the symbolic language Form.3

Generally speaking, the method entails substituting for each pair of external
fermions, two complex Lorentz vectors, corresponding to the vector and pseudo-
vector currents. Any amplitude involving the two fermions can then be rewritten as
a trace involving the various four-vectors {and free Lorentz indices) in the problem

and these two new four-vectors.

The Vector Equivalence technique was first described, and used extensively, in
ref. 6. The technique can easily be combined with computerized packages for sym-
bolic manipulation of the Dirac algebra [4, 5]. The Vector Equivalence technique
is already implemented in the package described in ref. 4, and can easily be added

to other packages.
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This paper proceeds as follows. In the next section we derive the Vector Equiv-
alence technique. We describe how to use the two currents to rewrite arbitrary am-
plitudes, and quote some useful identities. In sec. 3 we give an example for the use
of the Vector Equivalence technique. We use it to calculate the helicity amplitude
for the process ete™ — W*W™~ in a model which includes excited neutrinos [7].
The excited neutrinos couple to the electrons via a magnetic dipole transition.
The methods described in refs. 1-2 cannot be simply used to derive this result. In
sec. 4 we present our conclusions. In order to calculate the actual vector currents,
one has to resort to an explicit representation of the spinors. In the appendix we

describe, for completeness, one such representation, closely following ref, 1.

2. The Vector Equivalence Technique

In calculating a Feynman diagram with external fermions, one cncounters ob-

jects of the form

M = a(p, siTulp', s'), (2.1}

where p and p’ are the momenta of the external fermions, s and s’ are their helicities,
and [ is an arbitrary string of Dirac gamma matrices. For simplicity, we are only
referring to fermions (as opposed to anti-fermions) in this cderivation. For the
purpose of this discussion, an anti-fermion with mass m behaves exactly like a
fermion with mass —m. Additionally, we suppress the reference to s and s’ in the

derivation.

The traditional method calls for squaring M while summing over fermion he-



licities:

Z |IM|? = Ztr {a(p, s)Tu(y, sHa(y, s'\Tu(p,s)} = o {(F + m)[(#f + m')['},

8,8

(2.2)
where T = I'®*40 and m and m' are the masses of p and p’ respectively. This
method is advantageous in that the final result is expressed in terms of easy-to-
calculate Lorentz invariants. However, it becomes cumbersome as the number of

terms 1n M increases.

We start by rewriting
M = a(p)Tu(p') = tr {Tu(p)i(p)} .

Next, express u{p/)(p) in terms of an orthogonal basis {F(")} of the four dimen-

sional Dirac space. This basis obeys the orthonormality relation
e {rOro") < g

[n terms of such a basis, one can write

u(pa(p ZV(’)F

(i)
The coefficients V) can be calculated using a projection:
: e/ Wi
VO = {u()ap)r ™} = ap)r® u(). (2.3)

Given VGl M may be written as

= a(p)Tu(p ZV(’)tl { F(i)} . (2.4)
(i)

This equation can be simplified if we consider the fact that p and p' represent



on-shell fermions obeying the Dirac equation [8]:

Wp) (¥ —m) = (¥ ~ myu(p') =
For any I'¥) we can write

-
= a(p)(§ - m)I'¢ ok u(p') Z Vv J)tr{ — m)I0) I‘(J)} ,
(5
~R . . ‘
0=a(p) LD (§f — mu(p) = Z Vi {F(*)R(}f - m’)[‘m} ,
()
or
my = Sy {ﬂ(i)ﬂr‘(j)} ,
(4)
m' v = 3 ylily {p(e‘)R ]J‘F(j)} .
()

(2.5)

Let us now consider a particular choice for the basis {[‘(")}, namely
{ro) - {.1_ A e f_}
2" 27220 2 "2
where v** = (v#v* — v¥4#)/2. The corresponding {I/’(i)} are
(vl = v, ve we v 0}

Equation (2.4) then takes the form

a(p)Tu(p’) = %tr {F(U+ v+ —\/%W}w’r"" +7° Vs + Usvs)} . (26)

The string I of equation (2.1) can always be written as a sum I' = T'ygq =+ even

where ['oqq and Teven contain an even and an odd number of gamma matrices



respectively. Equation (2.6) can be broken into

1

#(p)Togqan(p’) = 54 {Toaal¥Y +7° ¥5)}, (2.7}
ﬁ(p)r‘evenu(p’) = %tl‘ {Feven(U + U5’)’5 + %W;w"f‘w)} . (28)

If both fermions are massless, the string T’ of equation (2.1) has to contain an
odd number of gamma matrices, and we therefore have U = Uy = WH* = 0. Let
us assumme then that m # 0. Substituting () = ¥ 12:4/2 into equation (2.5) gives

1 5 1 .
W = ——e—tr {1 +7° ¥V'5)} = —=—(p"VH — pVY + i ¥PYs),
4\/§m {ﬂf (y 7 Y5)} (p pp )

T V2m

1

1 - " L 1 . ',
= tr § " 4 V)l = —— (Ve — pT Ve et Ve,
YW A+ Vs)} o P ; )
(2.9)
where e#*¥*P is a shorthand for e}“"’ﬁ%apg. Similarly, substituting U and Us for
'@ gives
1 Vep V-p
U=t {fy ++° ¥5)} = —F =
4m m nm (2 10)
_ 1 ) 5 5 __VSP_ ‘/5'1), )
Us = 1 {F°(V++° Vs)} = =

Using equation (2.9) and (2.10), equation (2.8) takes the form:

W(p)leventi(p') = i;tr{reven(yf +9° ¥s) #) (2.11)
or
#(p)Levenu(p’) = 27%“ {FeVen 2y +° }'”5)} (2.12)

Equations (2.7) and (2.11} (or (2.12)) are all one needs to calculate the generic

matrix element M of equation (2.1} in terms of the two four-vectors V# and V¥,



V# and V¥ depend on the four-vectors p and p' and the helicities s and s’. Since
we do not implicitly sum over fermion helicity, this summation has to be carried

out explicitly.

When the fermions are invelved in chiral interactions such as electro-weak

interactions, it is often more convenient to use a chiral basis for the Dirac space:

: Porn YPin "
F(;) _ { L‘ﬁ‘.’ L,R! } ’ 213
{ } V2 V2 2v2 213

where P, = (1 —4%)/2 and P, = {1 + v%}/2. The corresponding four-vectors V,,

and V; are related to V' and V5 via

1 1
Vo= —=(V=V5),  Vi=—=(V+W),
tv2 S V2 o (2.14)

_VL+VR _VL“‘VR

vz T TR

‘/’
In terms of V,, and V4, equations (2.7), (2.11) and (2.12) take the form

a(p)Toaqu(y) = J\/_—Em- {Toaa(V xPat ¥oP.)}

(P event(p’) = \/%mtr {Cevenl ¥ aPut YL P.) ¥}, (2.15)

; 1
Up)Teventt(p') = mtr {Feven FV o Pet y/LPL)} :

The entire derivation thus far did not depend on any particular representation
of gamma matrices or spinors. In order to express the four-vectors V' and V5 (or
V. and Vi) in terms of the fermion momenta p and p’, one needs to settle on a

particular representation. For the specific cases of V., V5 and V), equation (2.3)



gives

1
V= alp, syru(p, o),

1
V¥ = Sa(p, s)yryu(p, s, (2.16)

1
I’f,{i = —ﬂ(p, S)’)/#P)\U(p’, S,)'

V2
coupled with a specific representation, these equations form a prescription for cal-
culating V', V5 and V). Calculating V) is particularly convenient if one chooses a

chiral representation for the spinors, such as the one described in the appendix.

Finally, we would like to collect several identitics involving the 1’s which can

be used in simplifying and verifying calculations. From equation (2.9) one gets

p P p . P\ p . 7Y
jehreVs (_ - "“;) = (-— + —,) VY — (— + —,) Vv,
m m @ m m m T

From equations (2.10) follows:

m ’ S \m T '

When squaring an expression involving the Vs, one can make use of equation (2.2
q

to arrive at the following identities:

D ViV = pupl, + pupl — (0 P) — gy

s¢’

Z Vf "/5: = IJpPL + prL - {(p- ;U’) + 'mm_’)g“y

ss'

D e ByEvE = o(prp — pp™).

s8'



3. Example: ete™ — W*TW~ with Excited Fermions

In this section we present one calculation carried out with the Vector Equiv-
alence technique. We chose to calculate one helicity amplitude for the process
ete™ — WHTW~ in a model which extends the Standard Model by including an
excited neutrino. The excited neutrino is massive, and couples to the W and

electron via a magnetic transition [7]. The relevant effective Lagrangian is:

e

Leg = =0 a"(c — dys)ed, W, + h.c., (3.1)

|

where A is the compositeness scale. While the electron mass can normally be
neglected in high-energy collisions, we keep it finite to illustrate the treatment of

massive external fermions.

The matrix element for the process is given by

MOTAL = ¥ (p3, A7)e (pg, M)

(MEZ () + MEZ (v)+ MEZ (Z)+ MEY (H)+ MEY (),

o-ot oot o-ot oot
(3.2)

where 7, o+, A~ and AT are the helicities of the electron, positron, W~ and W+

respectively,



M) =50 (p2) (S ) AT (Y

ML -(0) = Borp2) e i (1) (20 (73,

ML (Z) = Tor (p2)ieValgo + 9. Pu Y- (p1) (1—2—) (iTZ,,)
§ — mz

(3.3)

5 (fmw gg")

— Mg
M _(H) = 54 (p2) ( - )ua-(m)
5 — ?TLH

o 2m W

MEL (V") = e (pz)a”ﬂi—e(c — ds) (ﬁ(ﬁa— ) ';mw)) §
7 t - mg.
A

ghele (C — dys)us-(p1)p5py.

Here e#*(p3, A™) and ¢"*(psAt) are the polarization vectors of the W~ and W+

respectively, s = (p; + p2)*, t = (1 — p3)?,

sin 9W 1
= , = —— . 4
g0 cos By 9 2sin Oy cos By (34)
and
LY = gv ((pa = pa) 0" + 204 g"™ — 2p59"7) (3.5)

with ¢, = e and gz = ecot fyy.

In the e*e™ center-of-mass frame, the momenta in the process take the follow-

10



ing values:

§ 8 .
p1 = \/?_(0,0,ﬁe, 1) Py = —\é—-(ﬁw sin#, 0, Fyw cosd, 1)
3.6
N G )
P2 = T(O,,O1 ---561 1) P4 = ?(—ﬁuf sind, G, —ﬁW COSG,I),

where 3, = /1 —4m?2/s and S = /1 — 4m,?2/s. The W polarization vectors

are.:

1
€ (ps, ) = %(cosﬁ', +:,—siné,0) € (pg, ) = 72_)((:059,:{:2} —sinéd, 0)

€*(p3,0) = Vs (sinf, 0,cos 8, Gy ) ¢*(psg,0) = ﬁ-(— sin#, 0, — cos 8, Gw).
Qmw 2an

(3.7)

The vectors V°7°" and V¢¥? are given in table 1.

Table 1. The vectors V' ¢ and veteT

(a*o™) yete V50+a_

) (0,0,0,—me//s) (0,0,0, —m./\/s)
(+-) (Ber/3/2, —iBe/5/2,0,0) (Bev/3/2, ~iBe+/5/2,0,0)
(—+) (=Bev/3/2,—iBe+/5/2,0,0) (=Bev/s/2, —18:1/5/2,0,0)
(—-) (0,0,m./,/3,0) (0,0,0,—m,/\/5)

Applying eqns. (2.7) and {2.11) to equ. (3.3) gives (dropping the o¢to™ for

11



convinience):
. gt .
MBw) = T .mz)tr (v Pu(th— bV (¥ + Vor5)}
' p
—g_ Y e _ QV I _ Vo
Z V2(t - m2) ( e (p1 = p3)aVig + (p1—p3) - Vig

—(p1 = p3)'V.¥ — (p1 — p3)'V¥)

M#(y) = =i, VT

puT

o0 (3.8)
MH(Z) = =i Tl (90V" + V29,V7)

g (p2- V)"

M) = S
2 a8
M) = s (= e {0 (= ) (Y + FPm)} -

My,

tr{(c + &% = 2edys)a P (V4 Vo) 4y } ).

Me

Equation (3.2) together with equations (3.5)-(3.8) allow a straight-forward, if

lengthy, calculation of the various helicity amplitudes.
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4. Conclusion

To summarize, we have developed a technique for calculating Feynman am-
plitudes involving (possibly massive) fermions. The technique uses two (complex)
four-vectors V' and V5 which depend on the fermion momenta and helicities. Equa-
tions (2.7) and (2.11) contain the prescription for expressing any Feynman ampli-
tude as a trace involving these two four-vectors.

In addition to the calculation of tree-level amplitudes with massless or massive
fermions, the method can also be used in the calculation quantities arising in loop

calculations provided the spinors can be taken to be in 4 dimensions.

The Vector Equivalence technique easily lends itself to computerized evaluation

of helicity amplitudes. The HIP package [4] implements the method symbolically.

APPENDIX

Expressing the four-vectors V and Vs in terms of the fermion momenta can
only be done in the context of a specific spinor representation. For completeness
we provide a full description of one such representation. Qur deseription closely

follows that of reference 1.

The gamma matrices are given by

u 0 a'i 5 _ -1 0 A
’\f - o.n“ O 3 ’Y— 0 1 b (1)

where o, = (1, +0), and

itz (01N [0 =) (10
S (o e



The spinors u(p, A) and v(p, A) are given by

u(p, A)=
U(P,A)=( #:) ) a(p, ) = (u(p, )} u(p,M)),

u(p, A
(P, Ad+ (A3)
U(p: /\)'— - T 1-
v(p,A) = o op,A) = (v(p M) w(p,A)L).
U(pa /\)+
The explicit components of vy and vy are given by
u(p, A)x = wx(P)xa(p)\v(p, A)x = £Awr(p)x-a(p), (A.4)
where wi(p) = /E * |p| and yi{p) are the helicity eigenstates
J .
22 xa(p) = Malp), (A:5)
|p|
and are given by
) 1 Ip| + p- 1 V14 cosé
X* 2Nl + 72) \pe+iny ) V2 \ VI = cosheis "
) 1 —pz + ipy 1 [ =1 —=cosfe *® '
X-(p) = =—
V2Ipl(ipl +p2) \ Pl + p: v2\  VT+cosd
For an arbitrary momentum p# = (E, p) where
P = (pz,py. p:) = (sinfcos ¢|p|, sin@sin¢|p|, cosf|p)). (A.7)

In the special case of 8§ = 7 (p; = —|p|) we use

{0 ~1
x+{p) = E x-(p) = 0 | (A.8)

The equations in this appendix, together with eqn. (2.16) can be used to cal-

culation ¥V, V5 and V), in terms of the fermion momenta and helicities. The result

14



of the calculation is:

V2 = (p-p'y = p+r_)pLP — porh) )
V2 = —is(—p_p!y + prp ) por'L + porh) |
VP = (p-ply — pep MphpL + por'y)

VP = (p—p!y + psp ) (phpy — por',) J

V == (Ip{|p'| port) "V,

_]_ 2 R
V5 =2 (Ip||p'|poph) M2V

W] e | =

A

Ve = (=p—v_ + 40 ) phpL + pop',)
Vy = is(—p-p_ + p+pl ) phpL — pory)

Ve = (p-p_ — o420 )(p1r'L — poph)

Ve = (p-p_ + pepl ) ol + poph)

1

e = (p-ply + p4p )N =pLp) + poph)
Vy = —is(p_p!y +p+p ) pLp| + porh)
Ve = —(p-2ly + p+22)(pop . + popl)

~

Vi = (=p-pl + p3p XpopL — por’y) )

VY = (p=p_ + p4 ) phopa + pop’) )

V2 =is(p_p_ + pely Xpbpy — popr'L)

V2 = —(p_p"_ + p4P ) p1p — poph)

o
I

—(p-p_ = p+Py XpLp' + pop}y) )

(s =s),
(s =-s'),
(s =),
= —s),

(A.10)

(A.11)

(A.12)

(A.13)

where s') is the helicity of p (~lhelicity for an anti-fermion), ¢/ is 1 {-1) for an

15



(anti) fermion,

Ip®| = [p..,:(’)z +py"? +pz(’12] 1/2..

po’ = [p"] + pz1",
p-"" = [E® - |pm”1/2? (A.14)

pell = s [ED 4 Ip‘”l]llz,

PL=pz—ispy, and  p| =p} +is'p,.

In the limit po, p, " — 0, one should take p, "/ /po™ — Vv 2phf.
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