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ABSTRACT
We recently proposed a new method to estimate coefficients, in a given order of
perturbative quantum field theory, without actually evaluating all of the Feynn_:lan Diagfa.ms
which occur in this order. Here we consider the R and R, ratios in perturbative QCD, in the

general MS-type scheme, described by the parameter t. For t = 0 (MS scheme), although the

method works well for R, it does not for R. However, due to a remarkable relation which is
satisfied by the coefficients, the method works well for R, for larger values of t. It works well

for R, for all values of t. This is true for all values of N; (0 < N; < 6).
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Perturbative Quantum Field Theory (PQFT) seems to describe nature very well, as
manifested in the Standard Model of high energy physics. However there is as yet, no way to
estimate, in a given order, the result for the coefficient, without the brute force evaluation of
all of the Feynman diagrams contributing in this order. An attempt to do this was made recently

by West! in the case of the R ratio in perturbative QCD.

o, (e*e” ~ hadrons)

R = 1)

ofe’e ~p'p)

Although this method worked well for N; = 5, where N; is the number of fermions (quarks),
it failed® for other values of N;. He is now attempting to calculate corrections to his result®.
Recently we proposed* a new method to estimate coefficients, in a given order of PQFT,
without actually evaluating all the Feynman Diagrams which occur in this order. Our method
makes use of Padé Approximants, with which we can predict the next term S, | , 4 1, in the

perturbation series S, given by

S=§,+8x+...+8  x"™ (2)

The results which we used are:

1 s, =SS,
S = S;]Sz
I S, = 285,5,/S, -~ 5;/5}, 8, =0 (3)
2 3
S} - 5,8,



We applied these results to various perturbation series in QED and QCD. Our
predictions agreed very well with the known results. Furthermore we were able to predict the
next unknown term (NT) and the next-next (second) unknown term (NNT). Our method works
best for ordinary series, positive definite, negative definite or oscillating series. For other
(unusual) series, although the method still works, it requires more terms and does not seem to
work as well as for ordinary series. Eqs (3) ensure that a positive-definite series remains
positive definite, a negative-definite series remains negative definite and an osciilating series
remains oscillating. One can tell if the method will work well in a given perturbative series by

testing to see if a condition is well satisfied or not. That condition is

A+A1=2 C)
5,8,

where A = —— (5)
5

In this paper we will consider the R ratio and the R, ratio in perturbative QCD. They

are defined as follows:

_ I'(x-~v + hadrons)
I'(t~ev V)

R

T

(6)

and R is given by eq (1).



We first consider R in the general MS - type scheme given by the parameter t.

A = ¢ Ag ™

Obviously t = O corresponds to the MS scheme, ¢ = In 4% - y = 1.95 represents the MS

scheme, t = 1.0 for the G scheme and t = 4 {(3) - 11 / 2 = -.692 yields our MNS scheme’,

The scale-dependent R (in the general MS-type scheme) is given by

R=3Y QR -14(Y Q) x? 8)

where R(t) = 1 + x + x2[(1.9857 + 2.75¢)
- N,(.1153 + .16672)] + x*[(-6.6369

+ 17.29641 + 7.56251%) - N,(1.2001 )
+ 20877t + 9167¢%) + N; (-.0052
+ .0384¢ + .02781%)]

o
where x = —and N; is the number of fermions (quarks). We neglect the second term in eq (8)
n

as it is small in all cases of interest.

Our results for t = 2, 4 and 10 are shown in Tables I, II and I, respectively. It can
be seen that the method works very well and we can predict the NT and the NNT terms. For
small t, however, the x* term is negative, as can be seen from eq. (9), we have an unusual series

and the method does not work. The NNT terms from IT and III of eqgs. (3) agree very well with



those from I and so are not listed in our Tables. In Figures 1 & 2. we plot the estimated and
exact terms as a function of t for two representative values of Ny (N; = 1 and N; =5,
respectively). It can be seen that the agreement is excellent for t > 1 and improves as t
increases. The reason for this behavior can be seen as follows.
From I of egs. (4) and eq (9) we obtain
S, = .S':/.S'2 = 3943 + 10.92¢ + 7.56251¢2

- N, (458 + 1.2962¢ + 9167s?) a0
+ N7 (0133 + .0384r + .0278¢%)

The exact result is given by the x* term in eq. (9). It can be seen by comparing this term with
eq (10) that the €, t?N,, N7 and tN7 coefficients agree. In fact, this agreement is exact! Now
we understand why the estimate and the exact result agree so well for large t.
We now turn to R,. In the general MS-type scheme R™" is given by’
R = 3R,(1)
where R () = 1 + x + x2[(6.3399 + 2.751)

- N, (3792 + .16671)] + x*[(48.5832
+ 41.2443¢ + 7.56251%) - N,(7.8795 an

+ 49905t + 9167¢%) + N, (.1579
+ 12641 + 0278¢%)]

The results for t = 0, 4 and 10 are shown in Tables IV, V and VI, respectively. It can be seen
that the method works very well and we can predict the NT and the NNT terms. The NNT

terms from II and III of eq (4) agree very well with those from I and so are not listed in our



Tables. In figures 3 and 4 we plot the estimated and exact terms as a function of t for two
representative values of N; (N; = 1 and N; = 5, respectively). It can be seen that in this case,
the agreement is excellent, even for t = 0, and, again, improves as t increases. Again, we can
see why we get this behavior.

From I of eqs (4) and eq (11) we obtain

S, = 5115, = 40.1943 + 34.8695¢

+ 7.5625¢2 - N,(4.8082 + 4.1989¢ 12)
+ 9167¢%) + Nj (1438 + 12641
+ .0278¢%)]

The exact result is given by the x® term of eq (11). It can be seen that again the 2, t°N;, t*N?
and tN7 coefficients agree. Again this agreement is exact! Moreover the t2, t?N; and 2N of eq
(10) and eq (12) also agree exactly!

In conclusion, we have shown how one can accurately estimate coefficients of PQFT.
In this paper we have considered the R ratio and the R, ratio of PQCD in the general MS-type
scheme. In our previous paper we have shown that the method works well for a, - a,, a,, a,,
R, for Ny = 3 and t = Q and the QCD beta-function for N; = 1, 3 and 5, where a, and a, are

the anomalous magnetic moments of the muon and the electron, respectively.
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TABLE CAPTIONS

TABLE 1

TABLE II

TABLE IIT

TABLE IV

TABLE V

TABLE VI

Results for R(t) for the estimated (first column) and the exact (if known)
coefficients (second column) for t = 2. NT refers to the next (unknown term and
NNT refers to the next-next (second unknown) term. I, II and III refer to eqs

3).

Results for R(t) for the estimated (first column) and the exact (if known)
coefficients (second column) for t = 4. NT refers to the next (unknown term and
NNT refers to the next-next (second unknown) term. I, IT and III refer to eqs

3).

Results for R(t) for the estimated (first column) and the exact (if known)
coefficients (second column) for t = 10. NT refers to the next (unknown term
and NNT refers to the next-next (second unknown) term. I, II and III refer to

egs (3).

Results for R(t) for the estimated (first column) and the exact (if known)
coefficients (second column) for t = 0. NT refers to the next (unknown term and
NNT refers to the next-next {second unknown) term. I, II and III refer to eqs

3.

Results for R.(t) for the estimated (first column) and the exact (if known)
coefficients (second column) for t = 4. NT refers to the next (unknown term and
NNT refers to the next-next (second unknown) term. I, IT and IIT refer to eqs

3.

Results for R,(t) for the estimated (first column) and the exact (if known}
cocfficients (second column) for t = 10. NT refers to the next (unknown term
and NNT refers to the next-next (second unknown) term. I, IT and III refer to

eqs (3).



A+ Al = 2.0014

TABL

56.04

58.21

452.59

3519.14

451.96

452.68

31512 |3

A + Al = 2.0037

43.41

40.85

253.32

1570.76

252.33

253.49

21312 3

4

A+ Al = 2.0682

32.39

24.96

109.49

480.23

99.80

111.55

3132 13

A+ Al =2.6399

22.98

10.53

23.14

50.86

-9.16

III

31.66

315 |2 |3

10

|

A + Al = 2.0000

49.52

49.35

346.04

2426.56

346.03

346.04

%1312 |3

A+ At =2.0200

37.69

32.72

174.42

929.40

170.40

175.20

31312 |3

A+ Al = 22037

27.48

17.56

58.85

197.18

=

40.09

63.27

313 2 |3




ABLE 11

For R
t = 4.
Ny = A+ AT =20072
168.63 183.55
1 2594.40 NT
36671.04 NNT
II 2577.26 NT
III 2595.83 NT
N, = A + A =2.0020
130.45 137.49
I 1654.97 NT
19921.52 NNT
I 1650.63 NNT
1T 1655.38 NT
N, =4 A+ A =2.0001
97.17 96.17
I 938.21 NT
9153.12 NNT
I 938.11 NT
1T 938.22 NT
Ne=6 A + Al = 2.0206
68.78 59.60
I 428.26 NT
3077.53 NNT
II 418.10 NT
i 429.65 NT

11

Nf=1

A+ Al =2,0051

148.93

159.92

2095.74

27463.97

2085.84

2096.63

303 1Z 13

A+ Al = 20007

113.20

116.23

1269.82

13872.55

1268.96

1269.91

%5 | (5

A+ Al =2.0040

82.36

77.29

658.22

3605.67

=

655.39

658.57

2152 |3




TABLE Il1

For R
t=10.0
N, =0 A + Al = 2.0035 N,=1 A+ A'!=2.0032
869.41 022.58 767.48 811.99
I 28866.48 NT I 23799.95 NT
903202.49 NNT 697563.86 NNT
I 28770.60 NT I 23727.94 NT
III 28869.85 NT 1T 23802.13 NT
N =2 A + Al = 2.0027 N,=3 A+ Al =20021
671.90 707.72 582.68 609.76
I 19322.67 NT I 15403.14 NT
527562.67 NNT 389095.43 NNT
I 19273.19 NT 1 15372.75 NT
11 19324.66 NT I 15404.45 NT
Ny =4 A+ A! =2.0013 N,=5 A+ Al =2.0005
499.81 518.13 423.30 432.81
I 12008.06 NT I 9104.89 NT
278296.24 NNT 191536.15 NNT
II 11993.05 NT It 9100.45 NT
111 12008.76 NT 111 0105.12 NT
Ny =6 A+ Al = 2.0000
353.14 353.81
I 6661.51 NT
125422.00 NNT
I 6661.49 NT
JUi 6661.51 NT

12




TABLE 1V
For R,
t=0.0
N, = A+ Al = 20360 N=1 A+ Al =20196
40.19 48.58 35.53 40.86
I 372.30 NT I 280.11 NT
2852.95 NNT 1920.22 NNT
I 361.20 NT I 275.34 NNT
I 374.38 NT I 281.07 NT
N, = A+ Al = 2.0051 Ne=3 A+ Al =2.0007
31.15 33.46 27.06 26.37
I 200.54 NT 1 133.62 NT
1202.02 NNT 677.22 NNT
II 199.59 NT Il 133.53 NT
Jitl 200.74 NT Jui 133.65 NT
N; = A+ A' = 2.0296 Ny=5 A+ A'!=21687
23.26 19.59 19.75 13.13
I 79.58 NT I 38.81 NT
323.26 NNT 114.71 NNT
II 76.79 NT I 28.97 NT
111 80.31 NT I 41.67 NT
N¢ = A + Al = 27865
16.52 6.99
I 12.02 NT
20.68 NNT
I -10.33 NT
I 19.32 NT

13




A+ Al =20114

TABLE V

300.67

334.56

6455.09

124546.18

6388.86

6459.15

214 2 |3

A+ Al =2.0078

232.50

253.98

4230.35

70462.65

4200.09

4232.47

21312 |3

A+ Al = 20027

173.08

182.26

2524.96

34980.14

2518.55

2525.49

31312 3

A+ At =2.0006

122.41

119.44

1288.70

13908.26

=

1287.88

1288.78

2132 |3

14

Nf=1

A + Al = 2.0098

265.49

203.16

5274.54

94899.53

5227.55

5277.16

A4 15 13

A + Al = 2.0054

201.69

217.01

3315.96

50668.77

3299.44

3317.21

21512 |3

A + Al = 2.0004

146.65

149.72

1851.16

22887.44

=

1850.38

1851.23

2132 |3




TABLE VI

For R,
t = 10.0

N,=0 A+ Al =20037

N=1 A-+A"=20035
1145.14 1217.28 1010.84 1072.02
I 43787.40 NT i 36146.61 NT
1575104.06 NNT 1218795.65 NNT
I 43633.63 NT I 36028.87 NT
III 43792.09 NT I 36150.44 NT
N=2 A+A'=20031 Ne=3 A+A'=2005
884.91 935.17 767.36 806.73
I 29399.17 NT ; 23493.95 NT
924224.42 NNT 684201.46 NNT
I 29314.25 NT I 23438.00 NT
I 29402.13 NT I 23496.25 NT
N=4 A+A'=20018 N =5 A+A'=20010
658.18 686.69 557.38 575.05
I 18380.02 NT I 14006.75 NT
491962.60 NNT 341167.80 NNT
I 18348.35 NT I 13993.52 NT
I 18381.30 NT i 14007.33 NT
Ny=6  A+A'=20002
464.95 471.82
I 10323.93 NT
225899.95 NNT
Il 10321.74 NT
11 10324.04 NT

15




Figure Captions

Fig 1 The exact (EXA) and the estimated (EST) coefficients vs t for the x* coefficient of R(t) for N, = 1.
Eig 2 The exact (EXA) and the estimated (EST) coefficients vs t for the x* coefficient of R(t) for N; = 5.
Fig 3 The exact (EXA) and the estimated (EST) coefficients vs t for the x* coefficient of R(t) for N; = 1.
Fig 4 The exact (EXA) and the estimated (EST) coefficients vs t for the x* coefficient of R (t) for N; = §.

16



_:____ |

10

Figure 1



1000

10




| I I

__ LI I I | i

Prgpa v 1

_-______

10

10000¢

1000

Figure 3



10000

1000

S4 FOR R

100

L L L L]

10




