
Fermi National Accelerator Laboratory

FEFWlLAEF’ub-92437-E

The E791 Parallel Architecture Data Acquisition System

S. Amato, J.R.T. de Mello Neto and J. de Miranda

Centro Brasileiro de Pesquisas Fisicas
Rio de Janeiro Brasil

C. James

Fermi National Accelerator Laboratory
P.O. Bw 500, Batauia, Illinois 60510

D. J. Summers

University of Mississippi, Department of Physics and Astronomy

Oxford, Mississippi 38677

S.B. Bracker
317 Belsize Drive

Toronto, Ontario M4SlM7 Canada

May 1992

Submitted to Nuclear Instruments and Methods

$ Operated by Univmifes Research Association Inc. urrzt-sr Contract No. DE-AWZ-76CH03000 witi the United States Deparhent of Energy

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof nor any of
their employees, makes any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein do not necessarily state
or reflect those of the United States Government or any agency thereof:

The E791 Parallel Architecture Data Acquisition System

S. Amato, J. R. T. de Mello N&o*, and J. de Miranda

Centro Bras&Go de Pesquisas F&as

Rio de Janeiro Brasil

C. James

Fermilab, Batavia, IL 60510 USA

D. J. Summers

Department of Physics and Astronomy

University of Mississippi, Oxford, MS 38677 USA

S. B. Bracker

317 Belsize Drive

Toronto, Ontario M4SlM7 Canada

Abstract

To collect data for the study of charm particle decays, we built a high speed data ac-

quisition system for use with the E791 magnetic spectrometer at Fermilab. The DA system

read out 24,000 channels in 50 micro-seconds. Events were accepted at the rate of 9,000 per

second. Eight large FIFOs were used to buffer event segments, which were then compressed

and formatted by 54 processors housed in 6 VME crates. Data was written continuously to

42 Exabyte tape drives at the rate of 9.6 Mb/second. During the 1991 fixed target run at

Fermilab, 20 billion physics events were recorded on 24,000 Bmm tapes; this 50 Terabyte data

set is now being analyzed.

‘Now at the Universidade Estadual do Rio de Janeiro, RJ, Brasil.

1

Introduction

Experiment 791, Continued Study of Heavy Flavors, located in Fermilab’s Proton-East

experimental area, examines the properties of short lived particles containing a charm quark.

Events involving charm quarks are rare and difficult to recognize in real time. The exper-

iment’s strategy was to impose only loose constraints when recording data, and select the

events of interest offline when time and computing resources are more available. Therefore

the DA system must collect and record data very quickly.

The Fermilab Tevatron delivered beam during a 23 second spill, with a 34 second interspill

period, so that the experiment generated data for 23 seconds approximately every minute.

The data consists of discrete packets known as events, each of which contains particle tracking

information and calorimetry for one interaction. The E769 data acquisition system used

previously for this detector [l] was able to read data at 1400 kb/sec during the beam spill,

and record data at 625 kb/sec during both the spill and interspill; the digitizing time per

event was 840n-sec. The physics goals of E791 called for recording at least 10 times the events

collected by E769, in about the same amount of beam-time. The detector’s digitizing and

readout time had to be reduced by at least a factor of 10; a 50p-see dead time per event was

achieved by replacing almost all the front-end digitizers with faster systems. Events arrived

at the DA system at an average rate of 26 Mb/ see during the beam spill, and were recorded

at more than 9 Mb/set during both the spill and interspill using 42 Exabyte-8200 tape drives

PI.
The following section will discuss the overall architecture and the hardware components

in more detail. Following that are sections on the software used in the DA processors, and a

discussion of performance and possible upgrades.

Architecture and Hardware

A schematic of the E791 DA system is shown in Fig. 1. Events were digitized in a variety

of front-end systems and delivered into Event FIFO Buffers (EFB) along eight parallel data

paths. The buffers stored 80Mb of data apiece, enough to allow the rest of the DA system

to be active during both the spill and interspill. Care was taken to ensure that each data

2

path carried about the same amount of data. Data are distributed through Event Buffer

Interfaces (EBI) to processors housed in six VME crates. The processors (CPU) read event

segments from the buffers, compressed them into formatted events, and recorded them on

tape through a SCSI magnetic tape controller (MTC).

The DA system is parallel in several respects. Data arrives along parallel data paths.

Processors act in parallel to prepare data for logging. Many parallel tape drives record data

concurrently.

Front Ends

The E791 detector contained silicon microstrip detectors, drift chambers, and propor-

tional wire chambers for tracking charged particles. Calorimeters based on scintillators and

phototubes measured particle energies. Gas cerenkov detectors performed particle identifica-

tion, and plastic scintillators were used for muon identification. The detector elements were

digitized by various electronics systems, which were in turn managed by front-end controllers

which delivered data to the DA system. The front-end hardware is summarized in Table 1.

The DA system placed specific requirements on the front-end controllers. The data paths

from the controllers conformed to the EFB inputs, which were 32-bit wide RS-485 lines

accompanied by a single RS-485 strobe. Data was delivered at a maximum rate of 100 nsec

per 32-bit word. Each event segment on the data paths was delimited by a leading word

count, calculated and placed there by the data path’s front-end controller. A 4.bit event

synchronization number was generated for each event by a scaler module and distributed to

all front-end controllers. The controllers accepted this number and made it a part of each

event’s segments. The DA system used the synchronization number to assure that all event

segments presented at a given moment derived from the same event in the detector. Finally,

because we had 16 digitizing controllers and only 8 data paths, each data path was shared

by two front-end controllers using simple token passing.

3

Event FIFO Buffers

Each Event FIFO Buffer (EFB) [3] consisted of an I/O card, a FIFO Controller card,

five 16Mb Memory cards, and a custom backplane, housed two per crate in 9U by 220mm

Eurocrates. The I/O card contained the RS-485 input and output data paths, Status and

Strobe lines, and a Zilog 280 processor with a serial port used for testing. The Controller

card kept track of internal pointers and counters, and managed the write, read, and memory

refresh cycles. The Memory cards used low cost 1Mb by 8 DRAM SIMMs. In E791, the

EFBs received data in bursts of up to 40 Mb/set and delivered data at several megabytes/set

concurreutly.

The data was pushed into the EFB’s through a 32.bit wide RS485 data port, controlled

by a strobe line driven by the attached front-end controller. Each longword of data delivered

by a front-end controller was accompanied by the strobe which latched the data in the EFB

and updated the EFB’s internal pointers. The output side of the EFB had a similar data

port and strobe, driven by the receiving device. The EFB maintained 4 Status lines: Full,

Near Full, Near Empty, and Empty. The thresholds for Near Full or Near Empty were set by

the I/O card’s processor. The Near Full LEMO outputs were used in the E791 trigger logic

to inhibit triggers whenever any EFB was in danger of overflowing. The Near Empty Status

was used by the event building processors, and is described below.

Event Buffer Interface

The EBI [4] was a VME slave module designed specifically for the E791 DA system. Its

job was to strobe 32-bit longwords out of an EFB and make them available to VME-based

CPUs used to process events. Figure 2 details the connections between a single EFB and its

EBIs. Each VME crate held one EBI for every EFB in the system, so that every CPU had

access to the output data path from every buffer. The EFB status lines were also bussed to

the EBIs, so that the CPUs could determine how much data was available in the buffers. At

any moment in time, only one CPU is granted control of a particular EFB. When a CPU in

one crate is finished reading data from an EFB, it passes control of the buffer to the next

crate through a token passing mechanism built into the EBIs.

4

The EBI was a simple module with a few basic operations : (a) read a data word from

the EFB and strobe the next word onto the output path, (b) read the EFB status, (c) check

for the buffer control token, (d) pass the buffer control token to the next EBI, and (e) set or

clear the buffer control token.

VME CPUs

The assembling of events was performed by VME b ased CPUs [5]. They contained a 16

Mhz Motorola 68020 processor, a 68881 coprocessor, and 2 Mb of memory, and were able to

perform VME master single-word transfers at 2 Mb/ sec. There were 8 Event Handler CPUs

in each VME crate, plus one Boss CPU. An Absoft Fortran compiler was available for the

CPUs, and most of the E791 DA code was written in Fortran, except for a few time-critical

subroutines which were written in 68020 Assembler.

The VAX-II/780

The VAX-11/780 was used to download and start the VME system; the DA system

operator’s console and status displays were also connected to the VAX. A low speed link

between the VAX and VME was provided by a DRll-W on the VAX Unibus, a QBBC [5]

branch bus controller, and branch bus to VME interfaces (BVI) [5] in each VME crate.

Magnetic Tape Controller and Drives

Tape writing was handled by a VME to SCSI interface, the Ciprico RF3513 (61. The

tape drives used were Exabyte-8200s writing single-density, 2.3 Gigabyte 8mm cassettes. As

shown in Table 2, the choice of Exabyte drives was driven by the media costs of storing the

large amount of data we expected to record.

In principle, each Magnetic Tape Controller (MTC) could be connected to 7 Exabyte

drives, but we found that a single SCSI bus saturated when writing continuously to only

four drives. We required a data rate to tape of about 1.6 Mb/set in each VME crate, but

Exabyte drives write at a speed of only 0.24 Mb/ sec. Our solution was to use 2 MTCs per

5

VME crate, and connect them to 4 and 3 Exabytes, respectively. Thus there were 7 Exabyte

drives controlled from each VME crate, for a total of 42 drives in the DA system.

The MTCs stored their SCSI commands in circular command descriptor queues. The

queues for both MTCs in a VME crate were managed by themselves and one CPU in that

crate. The command descriptors held information on the VME address of a block of data

and the length of the block. The MTC acted as a VME master and performed the actual

transfer of a block of complete events from an event building CPU onto a single tape. The

tape handling software was written to ensure that all 7 Exabyte drives on a VME crate were

filling their tapes at about the same rate. All 42 d rives were loaded with tapes at the same

time, the DA system started, and all 42 tapes filled with data at approximately the same

rate. All the tapes became full within a few minutes of each other, and all 42 tapes were

stopped and unloaded at the same time. During data taking, the tapes were full when 3

hours of beam time had elapsed.

Software

The DA software was comprised of three main programs. At the top was VAX, which ran

in the VAX-11/780. It accepted user commands, generated status displays and error logs,

and fetched a tiny fraction of the incoming data to be monitored for data quality. Next was

Boss, a program that ran in one CPU in each VME crate. It managed the other CPUs in its

crate, and controlled the crate’s magnetic tape system. Finally was EH, the Event Handler

program which ran in several CPUs in each VME crate. Event Handlers did most of the real

work, reading and checking event data, formatting and compressing events, and assembling

blocks of events for eventual output to tape. The interprocessor communication protocol

used by the three programs was the same as used by the E769 DA system [l].

Operator commands were entered on a VAX terminal, transmitted to the crate bosses

by VAX, and sent to the event handlers by Boss. Status information was gathered from

the event handlers by Boss and compiled into a crate report; crate reports were gathered by

VAX, which generated displays and report files for the operator.

6

All three programs consisted of a once-only initialization code and a processing loop which

ran until the program was terminated. Specific tasks were placed on the processing loop,

rather like beads on a string. Each time control passed to a task, it would proceed as far

as possible without waiting for external responses, set a flag recording its present state, and

pass control to the next task on the loop. When that task was re-entered on the next pass

of the loop, it continued where it left off, and so on until the task was completed. Good

real-time response was maintained while avoiding entirely the use of interrupts.

Event Handler Program

The EH program had two basic states, grabber and muncher. Only one CPU in each crate

could be in the grabber state at any given time. The grabber’s sole duty was to read event

segments from the EFBs and place them in a large internal event array, big enough to hold

ZOO-300 events. When the crate Boss noticed that a grabber’s event array was becoming

quite full, it changed that grabber to the munching state, and appointed a new grabber.

Because the throughput of the entire system depended on efficient event grabbing, grabbers

were free of all other obligations, and the grabbing code was written in assembly language.

Munchers took events from their event arrays, formatted and compressed the data, and

grouped events into physical blocks suitable for output to tape. Munching the data could

take several times longer than grabbing it, so that at any moment each crate would have one

grabber and several busy munchers. Munchers were also subject to other obligations, such

as responding to requests for status information and binning histograms requested by the

operator.

In order to achieve high system throughput from these rather slow processors, event

grabbing had to be orchestrated very carefully. At the start of data taking, one grabber

would be appointed in each crate, and one crate would be designated number 1. As data

arrived in the EFBs, the grabber in crate 1 would extract the event segment from EFB 1

and pass that buffer’s token to crate 2. As the grabber in crate 1 moved on to reading the

second segment of the first event from EFB 2, the grabber in crate 2 would start reading the

first segment of the second event from EFB 1. Soon the grabbers in all six crates would be

active, each reading from a different EFB. B ecause there were eight EFBs but only six crates

with one grabber each, all the grabbers would be busy all the time.

Normally the crate Boss would replace a grabber with a new one before the old grabber’s

event array became full. If that reassignment were delayed, the existing grabber would

simply pass tokens through to the next crate without reading data, giving up the event to

other grabbers that might be able to handle it. Only if all grabbers were glutted with data

and no event handlers could be recruited as new grabbers would data taking slow down.

As grabbers read data from the EFBs, they checked to ensure that the event segment word

counts were reasonable and that all event segments being joined together in an event had the

same event synchronization number. Illegal word counts and unsynchronized events usually

indicated that a front-end readout system had failed. To overlook such a failure would be

very serious; pieces of unrelated data could end up being joined together into a bogus event,

and the error would propagate forward for all subsequent events. When such failures were

noted, the grabber notified its Boss, the Boss notified the VAX, and the VAX inhibited

data taking, flushed the EFBs, and instructed the system to restart. Synchronization errors

occurred with depressing regularity throughout the data taking, so it was fortunate that the

DA system had the ability to recognize and respond to them quickly and automatically. A

few spills a day were thus lost.

Event munching consisted of compressing the TDC d a a t f ram the drift chambers (which

arrived in a very inefficient format), formatting each event so that it conformed to the E791

standard, and packing events into tape buffers for output. Munchers did not control tape

writing however; they submitted output requests to their Boss, who queued the necessary

commands to the tape controller, checked the status, and notified the event handler when

the tape buffer could be reused. Each muncher had 10 tape buffers, each capable of holding a

full-sized tape record of 65532 bytes. Although the Boss managed all tape writing, the data

itself never passed to the Boss; the MTC extracted the data directly from the event handler’s

tape buffers.

Most of the event munching time was spent compressing TDC data to about r/s of its

original size. Since the TDC data was a large fraction of the total, it was important to

8

compress the data, to conserve tape writing bandwidth and minimize tape use. In choosing

readout hardware for high-rate experiments, it is important to evaluate the details of the

data format very carefully (although in this instance we had no alternate choice of vendors).

The Boss Program

The CPU running the Boss program controlled the scheduling of each EH as a grabber

or muncher. It polled the EHs on a regular basis to check the need for rescheduling. The

main criteria to retire a grabber and select a new one was whether the input event arrays

were full or nearly full. When the system was heavily loaded, protection against too frequent

rescheduling was applied.

Managing tape writing was also the Boss’s job. The Boss made periodic requests to all

EHs for a list of tape buffers ready for writing. The EHs responded by giving the boss the

VME address and the length of their full tape buffers. The Boss used the information to

construct the commands for the MTCs. The Boss also selected which MTC and tape drive

to send a tape buffer to, based on how full the MTC’s command queue was and how full the

tape in the drive was. The MTCs performed the block transfer of the tape buffer from the

EH processor to the Exabyte tape drive. When a tape buffer was written, the MTC informed

the Boss, and the Boss in turn notified the EH that the particular tape buffer was ready for

reuse.

The Bosses were also responsible for gathering status information and reports of recov-

erable errors and passing the information to the VAX program. The Bosses sent occasional

Request Sense commands to the drives, which returned the number of blocks written to tape

and the number of blocks rewritten (soft write errors). All commands sent to the Exabyte

drives were returned by the MTC with a status block, and if a drive error occurred while

writing data, the status block gave details on the error type. Drive errors of some types were

not recoverable, and the offending drive was taken offline until the end of the data taking

run. Likewise, any EH which did not respond to Boss commands within a given time limit

was reset and temporarily removed from the active system. Event processing could continue

9

even if a few EHs or Exabyte drives failed since there were multiple drives and EHs in each

VME crate. The throughput of the DA system would be slightly reduced, but not stop.

The VAX Program

The VAX program managed and monitored the rest of the DA system. A schematic

is shown in Fig. 3. The DA Control Console is shown in Fig. 4, and provided the user

with general status information and a command menu. In regular data taking t,he user

executed a LOAD after the tapes were placed in the drives, then a START to begin a data

taking run. Another option was to read out the detector without sending the events to tape

(START NOTAPE). During data taking the run could be suspended for a short time (PAUSE,

RESUME) and under special circumstances the user could clear the EFBs (CLEAR-BUFF).

The Bosses polled the tape drives for fullness of the tapes, and sent the information to the

VAX program. When 20% of the active drives were 95% full, the VAX program automatically

sent the END command. The user could also END data taking whenever he wished.

In ending data-taking runs, it was necessary to allow a smooth run down of the system.

The VAX first inhibited the triggers to stop the flow of data into the EFBs. The Bosses

stopped the current grabber and did not schedule another one. The VAX cleared any data

that remained in the EFBs, but all the events that were already in the EH input event

arrays were allowed to be written to tape. The VAX waited until the Bosses reported that

all tape writing was complete and file marks written before informing the user that the run

was ended. The user could not START another data taking run or execute the tape drive

UNLOAD command until this END process was complete.

The EHs stored a few events for online monitoring. During data taking, the VAX retrieved

these events and passed them on to an event pool managed by VAXONLINE software [7].

The event pool was accessible by other VAX workstations in the local cluster, and an entirely

separate set of programs analyzed and displayed the pool events for online monitoring of the

detector. Typically, the rate at which events were sent to the pool for was fast enough for

most monitoring needs. The DA system also provided a much faster alternative detector

monitoring method. Monitoring a detector typically means making histograms (hit maps) of

10

the detector elements. One can look for dead or noisy channels. Part of the EH munching

code constructed such histograms upon user request. The user specified a particular section

of the detector to histogram using a very simple program; the program sent the request to the

VAX DA program using a DEC Mailbox facility. The request was distributed to the VME EH

processors, and all the EHs in the system would accumulate all events for a period of about

one minute. The Bosses and ultimately the VAX summed up the histogram contributions

from each EH, and entered the final product into the event pool as a special event type. The

user’s program retrieved the histogram from the event pool and could use a variety of means

to display it. In this way the user could get a hit map of a part of the detector with high

statistics, 200,000 events or so, in a very short time.

The VAX program retrieved status information from the Bosses on a regular basis while

a data taking run was in progress. Information such as the numbers of events processed, the

fullness of the tapes, and any errors that occurred were displayed on various monitors and

on the DA Control Console. For every data taking run, a disk file was created which held a

unique run number, the date and time the data was recorded, the number of events written

to each drive during the run, the drive’s soft error rate as a percent of blocks written, and

whether the drive failed during the run. This file of numbers was entered automatically into

an electronic database when the run was ended.

Performance and Conclusions

The DA system hardware performed well. As mentioned earlier, the system was tolerant

of errors encountered by CPUs running the EH program and of Exabyte drives with write

errors. While all the hardware components in the system experienced some infant mortality

in the initial testing phases, all the components, with one exception, had very few failures in

9 months of data taking. The exception was the Exabyte drives, which, after 2000 hours of

operation, will often require head replacement. System wide failures that halted data taking

were extremely rare, and recovery if they did occur was rapid.

Running in a test mode, data was pushed into the DA system from the front end controllers

at a rate exceeding real data taking. The DA system then gave a maximum data rate to tape

11

of about 9.6 Mb/set, or 1.6 Mb/set through each VME crate. Throughput in each part of

the DA system components were well matched. The data rate into the EFBs times the length

of the beam spill matched the size of the EFBs; the grabbing speed matched the munching

speed times the number of munchers in each VME crate; the output rate from each crate

matched the tape writing speed times the number of drives per crate. However, during real

data taking, the maximum 9.6 Mb/set throughput was usually not attained simply because

the accelerator did not deliver enough beam to create the events.

In a 5 month period of data taking in 1991 and early 1992, E791 recorded 20 billion physics

events on 24,000 8mm tapes. This 50 Terabyte data set is now being analysed at parallel

RISC computing facilities similar to those used previously in E769 [8]. The experiment’s goal

of 100,000 reconstructed charm particle decays should easily be met.

The parallel architecture of the E791 DA system is central to its success. The performance

of the system could be increased with more parallel front-end controllers for faster read out,

larger Event FIFO Buffers, faster CPUs with much better I/O capability, and by upgrading

the 0.24Mb/sec Exabyte 8200 drives to double-speed, double-density Exabyte 8500 tape

drives.

Acknowledgements

We thank the staffs of all the participating institutions and especially S. Hansen, A. Baum-

baugh, K. Knickerbocker, and R. Adamo and his group, all of FNAL. This work was sup-

ported by the U. S. Department of Energy (DE-AC02-76CH03000 and DE-FG05-91ER40622)

and the Brazilian Conselho National de Desenvolvimento Cientifico e Tecnologico (CPBF

NF-013-92).

12

References

[l] C. Gay and S. Bracker, “The E769 Multiprocessor Based Data Acquisition

System”, IEEE Transactions on Nuclear Science, Vol. NS-34, No. 4, (1987)

870.

[2] Exabyte Corp., 1745 38th Street, Boulder, CO 80301 USA.

[3] A. E. Baumbaugh et al., “A Real Time Data Compactor (sparsifier) and 8 Mb

High Speed FIFO for HEP”, IEEE Transactions on Nuclear Science, Vol. NS-

33, No. 1, (1985) 903.

K. L. Knickerbocker et al., “High Speed Video Data Acquisition System (VDAS)

for HEP”, IEEE Transactions on Nuclear Science, Vol. NS-34, No. 1, (1986)

245.

[4] S. Bracker, “Specification of the E791 Event Buffer Interface”, E791 internal

document.

Sten Hansen, FNAL Physics Dept., personal communication.

[5] R. Hance et al., “The ACP Branch Bus and Real Time Applications of the ACP

Multiprocessor System”, IEEE Transactions on Nuclear Science, Vol. NS-34,

No. 4, (1987) 878.

[6] Ciprico, 2955 Xenium Lane, Plymouth, Minnesota 55441 USA.

[7] V. White, et al., “The VAXONLINE Software System at Fermilab”, IEEE

Transactions on Nuclear Science, Vol. NS-34, No. 4, (1987).

[8] C. Stoughton and D. J. Summers, “Using Multiple RISC CPUs in Parallel to

study Charm Quarks”, (accepted by Computers in Physics).

[9] Phillips Scientific, 305 Island Rd., Mahwah, New Jersey 07430 USA.

[lo] LeCroy Research, 700 Chesnut Ridge Rd., Chesnut Ridge, NY 10977 USA.

13

[II] Chuck Rush, Ai Nguyen, Ron Sidwell, Dept. of Physics, The Ohio State Uni-

versity, personal communication.

[12] Nanometric Systems, 451 South Blvd., Oak Park, IL 60302 USA.

[13] G. Cancelo, et al., “An Intelligent Readout Controller for FASTBUS, The Fer-

n&b FSCC”, (submitted to IEEE T ransactions on Nuclear Science).

[14] S. Bracker, “Description of the Damn Yankee Controller (DYC)“, E791 Internal

Document.

Sten Hansen, FNAL Physics Dept., personal communication.

[15] Milind Purohit, Dept. of Physics, Princeton University, “Princeton Scan-

ner/Controller Manual”, E791 Internal Document.

[16] S. Hansen, et al., “Fermilab Smart Crate Controller”, IEEE Transactions on

Nuclear Science, Vol. NS-34, No. 4, (1987) 1003.

14

Table 1. E701 Front End Digitization Systems and Read Out Controllers.

system Drift &renkov,
Chamber Calorimeter

Silicon Micro-
vertex Detector

Proportional CAMAC
Wire Chamber

Digitizer Phillips (91 LeCroy 4300B Ohio State [ll], L&coy 2731A LeCroy
lOC6 TDC FERA ADC [lo] Nanometric N339P, Latch 4448 Latch,

Nanometric S710/810 4508 PLU,
[U] Latches 2251 Scaler

Mean Dead Time 30 psec 30 p-set 50 p-set 4 p-set 30 ,‘-set
Pre-Controllers none 2 LeCroy 4301s 81 Princeton Scanners 2 LeCroy 2738s none
Controller FSCC [13] Damn Yankee [14] Princeton [15] Damn Yankee SCC [16]
No. of Controllers 10 2 2 1 1
Channels / System 6304 554 15886 1088 80
Event Size to EFB 480 longwords 160 longwords 110 longwords 20 longwords 11 longword.
Event Size to Tape 300 longwords 160 longwords 110 longwords 20 longwords 12 longwords
On Tape Fraction 50% 27% 18% 3% 2%

Table 2. A Comparison of Storage Media. The Bmm, g-track, and 3480 tape prices

are from the Fermilab stockroom catalog. The 4mm DAT price is from the New York Times,

20 Jan. 1991, page 31. Prices do not include overhead.

Tape Type Length Capacity $/tape

8mm Video 106m 2.3 Gb $3.92

4mm DAT 60m 1.2 Gb 97.79

IBM 3480 165m 0.22 Gb $4.60

g-track 732m 0.16 Gb $9.31

15

8 / 50 Terabytes Tapes /

50 Terabytes

% 85,217 21,739

$ 324,583 41,667

$1,045,455 227,272

$2,909,375 312,500

Figure Captions

Figure 1. A schematic of the VME part of the E791 DA system. Two complete VME crates

are shown, with the Event Fifo Buffers and data paths from the digitizers at the base.

Figure 2. Detail of the connections between a single EFB and the six EBIs attached to

it. Each EBI is in a different VME crate. The output data pat11 and the EFB status lines

are bussed across all six EBIs. The output data path connects to the VME backplane of

each crate through the EBI. The EBI s s dare I the data path by communicating along the EFB

token line.

Figure 3. Schematic of the entire E791 DA system. The VAX 11/780 was the user interface

to the VME part of the system, via the DA Control Display. The Vax part of the DA

program handled the status and error displays, sent events for monitoring to the event pool,

and received histogram requests via the mailbox. An entirely separate set of programs picked

up events from the event pool or sent histogram requests to the mailbox.

Figure 4. Detail of the E791 DA Control Display. The lower half of the screen contained

commands to the system, executed by using arrow keys to move the shaded box over the

command. The upper half of the screen contained contained information on the current

state of the system (RUNNING or IDLE, tapes LOADED or UNLOADED, tape writing ON

or OFF), the Run Number if a data-taking run was in progress, and the number of events

written to tape.

16

Figure # 1

To four
- additional

I VME crates

II II DEEhs

FIFO
Buffets

RS485
Data Paths

Data from Digitizing Electronics

Figure #2

,A, Crate 6
E outA
B

E outA

7 in*
I

iI
E outA
B
I in

E Out 1
B
I in

FB Token Line
11111

OUTPUT
Data Path

-IllI

Data from One
Front-End System

Figure #3

Vax-online

Mailbox

COMMANDS

Workstations

cl% EVENTS FOR MONITORING
HISTOGRAM BIN ARRAYS

ERROR REPORTS
STATUS REPORTS

Event Reconstruction
Event Display

Detector Monitoring

I,,

42 EXABYTE DRIVES

VME
SYSTEM

(6 CRATES)
ALL EVENTS

BUFFERS

ALL EVENTS

READOUT SYSTEMS

Figure #4

Run Number 560 Tape Writing ON Hist Number

Run Time 45.3 Tape Used 22.5% Evls to Pool 40,553

Interspill RUNNING Evts Munched 6456792

Date 21 -JUL-91 Time 16:32:07 Loop Number 120,350

Error reports received : no new errors reported

LOAD

START
START / NOTAPE

PAUSE

RESUME

UNLOAD CLEAR-BUFFER
END PRINT-ERRORS

QUIT

