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Abstract 

To collect data for the study of charm particle decays, we built a high speed data ac- 

quisition system for use with the E791 magnetic spectrometer at Fermilab. The DA system 

read out 24,000 channels in 50 micro-seconds. Events were accepted at the rate of 9,000 per 

second. Eight large FIFOs were used to buffer event segments, which were then compressed 

and formatted by 54 processors housed in 6 VME crates. Data was written continuously to 

42 Exabyte tape drives at the rate of 9.6 Mb/second. During the 1991 fixed target run at 

Fermilab, 20 billion physics events were recorded on 24,000 Bmm tapes; this 50 Terabyte data 

set is now being analyzed. 

‘Now at the Universidade Estadual do Rio de Janeiro, RJ, Brasil. 
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Introduction 

Experiment 791, Continued Study of Heavy Flavors, located in Fermilab’s Proton-East 

experimental area, examines the properties of short lived particles containing a charm quark. 

Events involving charm quarks are rare and difficult to recognize in real time. The exper- 

iment’s strategy was to impose only loose constraints when recording data, and select the 

events of interest offline when time and computing resources are more available. Therefore 

the DA system must collect and record data very quickly. 

The Fermilab Tevatron delivered beam during a 23 second spill, with a 34 second interspill 

period, so that the experiment generated data for 23 seconds approximately every minute. 

The data consists of discrete packets known as events, each of which contains particle tracking 

information and calorimetry for one interaction. The E769 data acquisition system used 

previously for this detector [l] was able to read data at 1400 kb/sec during the beam spill, 

and record data at 625 kb/sec during both the spill and interspill; the digitizing time per 

event was 840n-sec. The physics goals of E791 called for recording at least 10 times the events 

collected by E769, in about the same amount of beam-time. The detector’s digitizing and 

readout time had to be reduced by at least a factor of 10; a 50p-see dead time per event was 

achieved by replacing almost all the front-end digitizers with faster systems. Events arrived 

at the DA system at an average rate of 26 Mb/ see during the beam spill, and were recorded 

at more than 9 Mb/set during both the spill and interspill using 42 Exabyte-8200 tape drives 

PI. 
The following section will discuss the overall architecture and the hardware components 

in more detail. Following that are sections on the software used in the DA processors, and a 

discussion of performance and possible upgrades. 

Architecture and Hardware 

A schematic of the E791 DA system is shown in Fig. 1. Events were digitized in a variety 

of front-end systems and delivered into Event FIFO Buffers (EFB) along eight parallel data 

paths. The buffers stored 80Mb of data apiece, enough to allow the rest of the DA system 

to be active during both the spill and interspill. Care was taken to ensure that each data 
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path carried about the same amount of data. Data are distributed through Event Buffer 

Interfaces (EBI) to processors housed in six VME crates. The processors (CPU) read event 

segments from the buffers, compressed them into formatted events, and recorded them on 

tape through a SCSI magnetic tape controller (MTC). 

The DA system is parallel in several respects. Data arrives along parallel data paths. 

Processors act in parallel to prepare data for logging. Many parallel tape drives record data 

concurrently. 

Front Ends 

The E791 detector contained silicon microstrip detectors, drift chambers, and propor- 

tional wire chambers for tracking charged particles. Calorimeters based on scintillators and 

phototubes measured particle energies. Gas cerenkov detectors performed particle identifica- 

tion, and plastic scintillators were used for muon identification. The detector elements were 

digitized by various electronics systems, which were in turn managed by front-end controllers 

which delivered data to the DA system. The front-end hardware is summarized in Table 1. 

The DA system placed specific requirements on the front-end controllers. The data paths 

from the controllers conformed to the EFB inputs, which were 32-bit wide RS-485 lines 

accompanied by a single RS-485 strobe. Data was delivered at a maximum rate of 100 nsec 

per 32-bit word. Each event segment on the data paths was delimited by a leading word 

count, calculated and placed there by the data path’s front-end controller. A 4.bit event 

synchronization number was generated for each event by a scaler module and distributed to 

all front-end controllers. The controllers accepted this number and made it a part of each 

event’s segments. The DA system used the synchronization number to assure that all event 

segments presented at a given moment derived from the same event in the detector. Finally, 

because we had 16 digitizing controllers and only 8 data paths, each data path was shared 

by two front-end controllers using simple token passing. 
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Event FIFO Buffers 

Each Event FIFO Buffer (EFB) [3] consisted of an I/O card, a FIFO Controller card, 

five 16Mb Memory cards, and a custom backplane, housed two per crate in 9U by 220mm 

Eurocrates. The I/O card contained the RS-485 input and output data paths, Status and 

Strobe lines, and a Zilog 280 processor with a serial port used for testing. The Controller 

card kept track of internal pointers and counters, and managed the write, read, and memory 

refresh cycles. The Memory cards used low cost 1Mb by 8 DRAM SIMMs. In E791, the 

EFBs received data in bursts of up to 40 Mb/set and delivered data at several megabytes/set 

concurreutly. 

The data was pushed into the EFB’s through a 32.bit wide RS485 data port, controlled 

by a strobe line driven by the attached front-end controller. Each longword of data delivered 

by a front-end controller was accompanied by the strobe which latched the data in the EFB 

and updated the EFB’s internal pointers. The output side of the EFB had a similar data 

port and strobe, driven by the receiving device. The EFB maintained 4 Status lines: Full, 

Near Full, Near Empty, and Empty. The thresholds for Near Full or Near Empty were set by 

the I/O card’s processor. The Near Full LEMO outputs were used in the E791 trigger logic 

to inhibit triggers whenever any EFB was in danger of overflowing. The Near Empty Status 

was used by the event building processors, and is described below. 

Event Buffer Interface 

The EBI [4] was a VME slave module designed specifically for the E791 DA system. Its 

job was to strobe 32-bit longwords out of an EFB and make them available to VME-based 

CPUs used to process events. Figure 2 details the connections between a single EFB and its 

EBIs. Each VME crate held one EBI for every EFB in the system, so that every CPU had 

access to the output data path from every buffer. The EFB status lines were also bussed to 

the EBIs, so that the CPUs could determine how much data was available in the buffers. At 

any moment in time, only one CPU is granted control of a particular EFB. When a CPU in 

one crate is finished reading data from an EFB, it passes control of the buffer to the next 

crate through a token passing mechanism built into the EBIs. 
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The EBI was a simple module with a few basic operations : (a) read a data word from 

the EFB and strobe the next word onto the output path, (b) read the EFB status, (c) check 

for the buffer control token, (d) pass the buffer control token to the next EBI, and (e) set or 

clear the buffer control token. 

VME CPUs 

The assembling of events was performed by VME b ased CPUs [5]. They contained a 16 

Mhz Motorola 68020 processor, a 68881 coprocessor, and 2 Mb of memory, and were able to 

perform VME master single-word transfers at 2 Mb/ sec. There were 8 Event Handler CPUs 

in each VME crate, plus one Boss CPU. An Absoft Fortran compiler was available for the 

CPUs, and most of the E791 DA code was written in Fortran, except for a few time-critical 

subroutines which were written in 68020 Assembler. 

The VAX-II/780 

The VAX-11/780 was used to download and start the VME system; the DA system 

operator’s console and status displays were also connected to the VAX. A low speed link 

between the VAX and VME was provided by a DRll-W on the VAX Unibus, a QBBC [5] 

branch bus controller, and branch bus to VME interfaces (BVI) [5] in each VME crate. 

Magnetic Tape Controller and Drives 

Tape writing was handled by a VME to SCSI interface, the Ciprico RF3513 (61. The 

tape drives used were Exabyte-8200s writing single-density, 2.3 Gigabyte 8mm cassettes. As 

shown in Table 2, the choice of Exabyte drives was driven by the media costs of storing the 

large amount of data we expected to record. 

In principle, each Magnetic Tape Controller (MTC) could be connected to 7 Exabyte 

drives, but we found that a single SCSI bus saturated when writing continuously to only 

four drives. We required a data rate to tape of about 1.6 Mb/set in each VME crate, but 

Exabyte drives write at a speed of only 0.24 Mb/ sec. Our solution was to use 2 MTCs per 
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VME crate, and connect them to 4 and 3 Exabytes, respectively. Thus there were 7 Exabyte 

drives controlled from each VME crate, for a total of 42 drives in the DA system. 

The MTCs stored their SCSI commands in circular command descriptor queues. The 

queues for both MTCs in a VME crate were managed by themselves and one CPU in that 

crate. The command descriptors held information on the VME address of a block of data 

and the length of the block. The MTC acted as a VME master and performed the actual 

transfer of a block of complete events from an event building CPU onto a single tape. The 

tape handling software was written to ensure that all 7 Exabyte drives on a VME crate were 

filling their tapes at about the same rate. All 42 d rives were loaded with tapes at the same 

time, the DA system started, and all 42 tapes filled with data at approximately the same 

rate. All the tapes became full within a few minutes of each other, and all 42 tapes were 

stopped and unloaded at the same time. During data taking, the tapes were full when 3 

hours of beam time had elapsed. 

Software 

The DA software was comprised of three main programs. At the top was VAX, which ran 

in the VAX-11/780. It accepted user commands, generated status displays and error logs, 

and fetched a tiny fraction of the incoming data to be monitored for data quality. Next was 

Boss, a program that ran in one CPU in each VME crate. It managed the other CPUs in its 

crate, and controlled the crate’s magnetic tape system. Finally was EH, the Event Handler 

program which ran in several CPUs in each VME crate. Event Handlers did most of the real 

work, reading and checking event data, formatting and compressing events, and assembling 

blocks of events for eventual output to tape. The interprocessor communication protocol 

used by the three programs was the same as used by the E769 DA system [l]. 

Operator commands were entered on a VAX terminal, transmitted to the crate bosses 

by VAX, and sent to the event handlers by Boss. Status information was gathered from 

the event handlers by Boss and compiled into a crate report; crate reports were gathered by 

VAX, which generated displays and report files for the operator. 
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All three programs consisted of a once-only initialization code and a processing loop which 

ran until the program was terminated. Specific tasks were placed on the processing loop, 

rather like beads on a string. Each time control passed to a task, it would proceed as far 

as possible without waiting for external responses, set a flag recording its present state, and 

pass control to the next task on the loop. When that task was re-entered on the next pass 

of the loop, it continued where it left off, and so on until the task was completed. Good 

real-time response was maintained while avoiding entirely the use of interrupts. 

Event Handler Program 

The EH program had two basic states, grabber and muncher. Only one CPU in each crate 

could be in the grabber state at any given time. The grabber’s sole duty was to read event 

segments from the EFBs and place them in a large internal event array, big enough to hold 

ZOO-300 events. When the crate Boss noticed that a grabber’s event array was becoming 

quite full, it changed that grabber to the munching state, and appointed a new grabber. 

Because the throughput of the entire system depended on efficient event grabbing, grabbers 

were free of all other obligations, and the grabbing code was written in assembly language. 

Munchers took events from their event arrays, formatted and compressed the data, and 

grouped events into physical blocks suitable for output to tape. Munching the data could 

take several times longer than grabbing it, so that at any moment each crate would have one 

grabber and several busy munchers. Munchers were also subject to other obligations, such 

as responding to requests for status information and binning histograms requested by the 

operator. 

In order to achieve high system throughput from these rather slow processors, event 

grabbing had to be orchestrated very carefully. At the start of data taking, one grabber 

would be appointed in each crate, and one crate would be designated number 1. As data 

arrived in the EFBs, the grabber in crate 1 would extract the event segment from EFB 1 

and pass that buffer’s token to crate 2. As the grabber in crate 1 moved on to reading the 

second segment of the first event from EFB 2, the grabber in crate 2 would start reading the 

first segment of the second event from EFB 1. Soon the grabbers in all six crates would be 



active, each reading from a different EFB. B ecause there were eight EFBs but only six crates 

with one grabber each, all the grabbers would be busy all the time. 

Normally the crate Boss would replace a grabber with a new one before the old grabber’s 

event array became full. If that reassignment were delayed, the existing grabber would 

simply pass tokens through to the next crate without reading data, giving up the event to 

other grabbers that might be able to handle it. Only if all grabbers were glutted with data 

and no event handlers could be recruited as new grabbers would data taking slow down. 

As grabbers read data from the EFBs, they checked to ensure that the event segment word 

counts were reasonable and that all event segments being joined together in an event had the 

same event synchronization number. Illegal word counts and unsynchronized events usually 

indicated that a front-end readout system had failed. To overlook such a failure would be 

very serious; pieces of unrelated data could end up being joined together into a bogus event, 

and the error would propagate forward for all subsequent events. When such failures were 

noted, the grabber notified its Boss, the Boss notified the VAX, and the VAX inhibited 

data taking, flushed the EFBs, and instructed the system to restart. Synchronization errors 

occurred with depressing regularity throughout the data taking, so it was fortunate that the 

DA system had the ability to recognize and respond to them quickly and automatically. A 

few spills a day were thus lost. 

Event munching consisted of compressing the TDC d a a t f ram the drift chambers (which 

arrived in a very inefficient format), formatting each event so that it conformed to the E791 

standard, and packing events into tape buffers for output. Munchers did not control tape 

writing however; they submitted output requests to their Boss, who queued the necessary 

commands to the tape controller, checked the status, and notified the event handler when 

the tape buffer could be reused. Each muncher had 10 tape buffers, each capable of holding a 

full-sized tape record of 65532 bytes. Although the Boss managed all tape writing, the data 

itself never passed to the Boss; the MTC extracted the data directly from the event handler’s 

tape buffers. 

Most of the event munching time was spent compressing TDC data to about r/s of its 

original size. Since the TDC data was a large fraction of the total, it was important to 
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compress the data, to conserve tape writing bandwidth and minimize tape use. In choosing 

readout hardware for high-rate experiments, it is important to evaluate the details of the 

data format very carefully (although in this instance we had no alternate choice of vendors). 

The Boss Program 

The CPU running the Boss program controlled the scheduling of each EH as a grabber 

or muncher. It polled the EHs on a regular basis to check the need for rescheduling. The 

main criteria to retire a grabber and select a new one was whether the input event arrays 

were full or nearly full. When the system was heavily loaded, protection against too frequent 

rescheduling was applied. 

Managing tape writing was also the Boss’s job. The Boss made periodic requests to all 

EHs for a list of tape buffers ready for writing. The EHs responded by giving the boss the 

VME address and the length of their full tape buffers. The Boss used the information to 

construct the commands for the MTCs. The Boss also selected which MTC and tape drive 

to send a tape buffer to, based on how full the MTC’s command queue was and how full the 

tape in the drive was. The MTCs performed the block transfer of the tape buffer from the 

EH processor to the Exabyte tape drive. When a tape buffer was written, the MTC informed 

the Boss, and the Boss in turn notified the EH that the particular tape buffer was ready for 

reuse. 

The Bosses were also responsible for gathering status information and reports of recov- 

erable errors and passing the information to the VAX program. The Bosses sent occasional 

Request Sense commands to the drives, which returned the number of blocks written to tape 

and the number of blocks rewritten (soft write errors). All commands sent to the Exabyte 

drives were returned by the MTC with a status block, and if a drive error occurred while 

writing data, the status block gave details on the error type. Drive errors of some types were 

not recoverable, and the offending drive was taken offline until the end of the data taking 

run. Likewise, any EH which did not respond to Boss commands within a given time limit 

was reset and temporarily removed from the active system. Event processing could continue 
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even if a few EHs or Exabyte drives failed since there were multiple drives and EHs in each 

VME crate. The throughput of the DA system would be slightly reduced, but not stop. 

The VAX Program 

The VAX program managed and monitored the rest of the DA system. A schematic 

is shown in Fig. 3. The DA Control Console is shown in Fig. 4, and provided the user 

with general status information and a command menu. In regular data taking t,he user 

executed a LOAD after the tapes were placed in the drives, then a START to begin a data 

taking run. Another option was to read out the detector without sending the events to tape 

(START NOTAPE). During data taking the run could be suspended for a short time (PAUSE, 

RESUME) and under special circumstances the user could clear the EFBs (CLEAR-BUFF). 

The Bosses polled the tape drives for fullness of the tapes, and sent the information to the 

VAX program. When 20% of the active drives were 95% full, the VAX program automatically 

sent the END command. The user could also END data taking whenever he wished. 

In ending data-taking runs, it was necessary to allow a smooth run down of the system. 

The VAX first inhibited the triggers to stop the flow of data into the EFBs. The Bosses 

stopped the current grabber and did not schedule another one. The VAX cleared any data 

that remained in the EFBs, but all the events that were already in the EH input event 

arrays were allowed to be written to tape. The VAX waited until the Bosses reported that 

all tape writing was complete and file marks written before informing the user that the run 

was ended. The user could not START another data taking run or execute the tape drive 

UNLOAD command until this END process was complete. 

The EHs stored a few events for online monitoring. During data taking, the VAX retrieved 

these events and passed them on to an event pool managed by VAXONLINE software [7]. 

The event pool was accessible by other VAX workstations in the local cluster, and an entirely 

separate set of programs analyzed and displayed the pool events for online monitoring of the 

detector. Typically, the rate at which events were sent to the pool for was fast enough for 

most monitoring needs. The DA system also provided a much faster alternative detector 

monitoring method. Monitoring a detector typically means making histograms (hit maps) of 

10 



the detector elements. One can look for dead or noisy channels. Part of the EH munching 

code constructed such histograms upon user request. The user specified a particular section 

of the detector to histogram using a very simple program; the program sent the request to the 

VAX DA program using a DEC Mailbox facility. The request was distributed to the VME EH 

processors, and all the EHs in the system would accumulate all events for a period of about 

one minute. The Bosses and ultimately the VAX summed up the histogram contributions 

from each EH, and entered the final product into the event pool as a special event type. The 

user’s program retrieved the histogram from the event pool and could use a variety of means 

to display it. In this way the user could get a hit map of a part of the detector with high 

statistics, 200,000 events or so, in a very short time. 

The VAX program retrieved status information from the Bosses on a regular basis while 

a data taking run was in progress. Information such as the numbers of events processed, the 

fullness of the tapes, and any errors that occurred were displayed on various monitors and 

on the DA Control Console. For every data taking run, a disk file was created which held a 

unique run number, the date and time the data was recorded, the number of events written 

to each drive during the run, the drive’s soft error rate as a percent of blocks written, and 

whether the drive failed during the run. This file of numbers was entered automatically into 

an electronic database when the run was ended. 

Performance and Conclusions 

The DA system hardware performed well. As mentioned earlier, the system was tolerant 

of errors encountered by CPUs running the EH program and of Exabyte drives with write 

errors. While all the hardware components in the system experienced some infant mortality 

in the initial testing phases, all the components, with one exception, had very few failures in 

9 months of data taking. The exception was the Exabyte drives, which, after 2000 hours of 

operation, will often require head replacement. System wide failures that halted data taking 

were extremely rare, and recovery if they did occur was rapid. 

Running in a test mode, data was pushed into the DA system from the front end controllers 

at a rate exceeding real data taking. The DA system then gave a maximum data rate to tape 
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of about 9.6 Mb/set, or 1.6 Mb/set through each VME crate. Throughput in each part of 

the DA system components were well matched. The data rate into the EFBs times the length 

of the beam spill matched the size of the EFBs; the grabbing speed matched the munching 

speed times the number of munchers in each VME crate; the output rate from each crate 

matched the tape writing speed times the number of drives per crate. However, during real 

data taking, the maximum 9.6 Mb/set throughput was usually not attained simply because 

the accelerator did not deliver enough beam to create the events. 

In a 5 month period of data taking in 1991 and early 1992, E791 recorded 20 billion physics 

events on 24,000 8mm tapes. This 50 Terabyte data set is now being analysed at parallel 

RISC computing facilities similar to those used previously in E769 [8]. The experiment’s goal 

of 100,000 reconstructed charm particle decays should easily be met. 

The parallel architecture of the E791 DA system is central to its success. The performance 

of the system could be increased with more parallel front-end controllers for faster read out, 

larger Event FIFO Buffers, faster CPUs with much better I/O capability, and by upgrading 

the 0.24Mb/sec Exabyte 8200 drives to double-speed, double-density Exabyte 8500 tape 

drives. 
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Table 1. E701 Front End Digitization Systems and Read Out Controllers. 

system Drift &renkov, 
Chamber Calorimeter 

Silicon Micro- 
vertex Detector 

Proportional CAMAC 
Wire Chamber 

Digitizer Phillips (91 LeCroy 4300B Ohio State [ll], L&coy 2731A LeCroy 
lOC6 TDC FERA ADC [lo] Nanometric N339P, Latch 4448 Latch, 

Nanometric S710/810 4508 PLU, 
[U] Latches 2251 Scaler 

Mean Dead Time 30 psec 30 p-set 50 p-set 4 p-set 30 ,‘-set 
Pre-Controllers none 2 LeCroy 4301s 81 Princeton Scanners 2 LeCroy 2738s none 
Controller FSCC [13] Damn Yankee [14] Princeton [15] Damn Yankee SCC [16] 
No. of Controllers 10 2 2 1 1 
Channels / System 6304 554 15886 1088 80 
Event Size to EFB 480 longwords 160 longwords 110 longwords 20 longwords 11 longword. 
Event Size to Tape 300 longwords 160 longwords 110 longwords 20 longwords 12 longwords 
On Tape Fraction 50% 27% 18% 3% 2% 

Table 2. A Comparison of Storage Media. The Bmm, g-track, and 3480 tape prices 

are from the Fermilab stockroom catalog. The 4mm DAT price is from the New York Times, 

20 Jan. 1991, page 31. Prices do not include overhead. 

Tape Type Length Capacity $/tape 

8mm Video 106m 2.3 Gb $3.92 

4mm DAT 60m 1.2 Gb 97.79 

IBM 3480 165m 0.22 Gb $4.60 

g-track 732m 0.16 Gb $9.31 

15 

8 / 50 Terabytes Tapes / 

50 Terabytes 

% 85,217 21,739 

$ 324,583 41,667 

$1,045,455 227,272 

$2,909,375 312,500 



Figure Captions 

Figure 1. A schematic of the VME part of the E791 DA system. Two complete VME crates 

are shown, with the Event Fifo Buffers and data paths from the digitizers at the base. 

Figure 2. Detail of the connections between a single EFB and the six EBIs attached to 

it. Each EBI is in a different VME crate. The output data pat11 and the EFB status lines 

are bussed across all six EBIs. The output data path connects to the VME backplane of 

each crate through the EBI. The EBI s s dare I the data path by communicating along the EFB 

token line. 

Figure 3. Schematic of the entire E791 DA system. The VAX 11/780 was the user interface 

to the VME part of the system, via the DA Control Display. The Vax part of the DA 

program handled the status and error displays, sent events for monitoring to the event pool, 

and received histogram requests via the mailbox. An entirely separate set of programs picked 

up events from the event pool or sent histogram requests to the mailbox. 

Figure 4. Detail of the E791 DA Control Display. The lower half of the screen contained 

commands to the system, executed by using arrow keys to move the shaded box over the 

command. The upper half of the screen contained contained information on the current 

state of the system (RUNNING or IDLE, tapes LOADED or UNLOADED, tape writing ON 

or OFF), the Run Number if a data-taking run was in progress, and the number of events 

written to tape. 
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Figure #2 
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Figure #3 
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Figure #4 
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