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1. Introduction 

In the years following the discovery of Hawking radiation and the associated evapora- 

tion of black holes [l], there have been many efforts to either prove or refute the resulting 

implication that an initially pure state can collapse into a black hole and evaporate into a 

mixed state. The fact that such efforts have not proven successful is due to a combination 

of complications, including principally those of the beckreaction of the Hawking radiation 

on the metric, and of the regions of large curvature (and hence strongly coupled quantum 

gravity effects) which are expected in gravitational collapse. 

Recently, Callan et. el. (CGHS) proposed a model which seemed to avoid some of 

these difficulties [2]. It consistts of gravity coupled to a dileton end conformal matter in 

1+ 1 dimensions. For a single matter field it was found the beckscatter (i.e., the Hawking 

radiation) occured in a region of strong coupling. By proliferating the number N of matter 

fields, it was believed that the essential physics was occur in a region of small coupling end 

hence be amenable to a systematic l/N semiclassical expansion. 

These initial hopes were dashed [7][5] by the observation that the dileton develops 

a singlurity at a finite value, dependent on N, precisely in the region where quantum 

fluctuations begin to become large. As a result, a number of groups [4][6][3] have recently 

tried to explore, both numerically and analytically, the solutions of the large N field 

equations. In particular, one is interested in the final “endpoint” of the Hawking radiation. 

Therefore, in [4][6][3]the fields were assumed to depend only on a “spatial” coordinate (of 

which there are a few natural choices). For example, in [3], a series of solutions with 

finite ADM mass end vanishing incoming and outgoing flux were found. Starting at weak 

coupling at spatial infinity, they were found to “bounce” back to weak coupling in the 

region of the singularity mentioned above. 

The static approximation used to derive these results is a significant simplification, 

but makes it difficult to consider the approach to the endpoint of the Hawking process. 

In the following, we will consider time-dependent (approximate) solutions to the CGHS 

equations. We will find solutions which still have finite ADM mass end vanishing flux, 

as well as regions with a time-dependent singular event horizon. In a later section, we 

will also discuss a series of perturbetive, time dependant solutions which he entirely in the 

Liouville region, followed by some concluding remarks. 



2. The CGHS Model 

The CGHS model of dilaton gravity coupled to N conformal matter fields in 1 + 1 

dimensions with coordinates (T and T is defined by the action 

s = & / dZ~&&+“(R + 4(6’# +4x2) - ; $(af$], (2.1) 
,=I 

where g,d, and fi represent the metric, dileton, end matter fields, respectively, and AZ is 

the cosmological constant. Integrating out the matter fields end going to conformal gauge, 

where 

g+- = -p, (2.2) 

g++ = g-- = 0, (2.3) 

(z+ = r f u), the resulting action is 

s = i JPc+-y8+(21$ - p)EJ-(2qs - p) - X2e2q + (g - e-~qa+pLLp]. (2.4) 

The equations of motion for p and 4 are 

(2.5) 

-4a+a-4 + 4a+@-~ + 28+&p + AZt?ZP = 0. (2.6) 

Since the gauge has been fixed as in (2.3), th e*e are two constraint conditions, namely, 

T ff = e-‘9(4a*@*p - 2&$4) - f-$*pa* - a;p + &(a+)) = 0, (2.7) 

where the functions t* are fixed by boundary conditions. 

The simplest and most important nontrivial solution of (2.5)and (2.6)is the linear 

dileton vecuum 

p = 0, $4 = -&+ - a-). (2.8) 

This vacuum has a singulrity at 

I$ = &, = -;I”$, 

as seen by calculating the sign of the kinetic operator in (2.4). As in previous papers, we 

will call the region of I# < 4.r the dilaton region, and 4 > 4.r the Liouville, or strong 

coupling region. 
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3. Finite Mass Solutions 

Solutions to (2.5) and (2.6) with finite ADM mass were first found in [3]by assuming 

that both 4 and p are time independant. In that case, (2.5) end (2.6) become 

T+- = e-2+(-;#r + ,j,‘2 - ~2~2~) + !$” = o, (3.1) 

(3.2) 

where the primes denote d/du. Linearizing about the linear dilaton vecuum solution (2.8), 

for vanishing incoming and outgoing flux t*, asymptotically the resulting equations can 

be expressed as 

2Aay + 2XZ6p - Xbp’ = 0, (3.3) 

&j” = 6p”(l - &p-,. 

The asymptotic form of the solutions of these equations is 

(3.4) 

64 = -;e-=, + . . .) (3.5) 

6p=-$8X”+..., (3.6) 

where the parameter M is the ADM mass, given by evaluating 

M = 2eax”(X6p + 64’). (3.7) 

et spatial infinity. 

Before going beyond the static case, it should be noted that one can expand 64 end 

6A in powers of c = e-sxu, 

6Q) = 2 a,,?, 6p = 2 b,P, (3.8) 
n=i n=!, 

with al = b1 = -$$. Substituing into the full linearized equations, one finds the relations 

(1 - ~?)a,+1 - b,+l + $z’bn = 0, 

(n + l)b, = 2na,, 
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from which one easily finds 

N 72 
a,+‘=~n3+n2-nnlaa”. (3.11) 

For large n, this suggests that we must have g 5 1 for the series to converge. For example, 

for g = 1, the resulting series for 64 is roughly 

thus implying that our linearizing approximation is breaking down for small o. It is perhaps 

of interest that the requirement g 5 1 implies (2.9) that & > 0 so that the effective 

critical coupling constant es+=- > 1. 

Let us now proceed beyond the static limit, but continue to require a finite ADM 

mass. Including time derivatives, in the C, T coordinate system the linearized equations 

reed 

e’p(-;6@ - 2X6# - 2Az6p+ ;6& + ;(S,J” - 6;) = 0, (3.13) 

6#’ - 64 + 2X6# + $6; - ;6,” + 2X26p = 0. (3.14) 

From (3.7), we see that finite ADM mess requires both 6p and 64 vary asymptotically 

as e-sA*, as in (3.5)and (3.6). If we express the perturbations about the linear dilaton 

vacuum as 

64 = z(T)~-“~, (3.15) 

6p = y(~)e-~~~, (3.16) 

then to leading order (3.13) and (3.14) become, respectively, 

2x2+ - 2Py + + = 0, (3.17) 

1” 
zy-3i:=o. (3.18) 

It is a simple matter now to essume that z and y both vary as ewr and solve for w and the 

relative amplitudes. Of course, one solution is just 

(3.19) 



as in (3.5)(where a = 0). The other solution is easily seen to be 

Z(T) = ;y(~) = ae-=r + b&=7’. 

Substituting (3.20)into (3.7), we seen that the time dependsncy of 64 and of Sp cancel, 

and the ADM mass is constant, even thought the metric and the dilaton are certainly not. 

Presumably, we should set the coefficient b in (3.20) t o zero, so that the solution is well 

behaved as T + 00, as should the coefficient of the linear term in the w = 0 solution. 

The behavior of these solutions can be understood in much the same manner as in the 

static case [3]. Let us concentrate on the M = 0 solution, as it has been suggested that 

it represents the true quantum vacuum of the theory [3]. In any case, for T sufficiently 

negative, the time dependant terms dominate over the static terms. As one integrates the 

equation of motion in from spatial infinity, the solution may approach the singularity at 

& (in the static case, this approach was guaranteed). In this region, we can essentially 

set p = 0, and 4 = d., + ‘p. The resulting equation of motion is 

(3.21) 

If we continue to assume that C+ = -2+, then (3.21)can be integrated, yielding 

A 10 

+FJ 
- -+I2 = x2, 

where A is an integration constant. As long as A # 0, this is the equation for a particle 

in a potential with an infinite barrier at the origin, so I,U will bounce back to the weak 

coupling regime. 

We can also discuss the behavior of the solutions for any region where p + -00, in 

particular as o + -00, assuming that aeezAr < g, as w&s discussed in the static case in 

[3], by dropping terms proportional to e*P which become irrelevant for p + -cm. For in 

that case we have 

e-w = -EP + a+~+ + a-o- + b, 

e-q-- ;w/q+ e-q = f(rn-) +g(r+), (3.24) 

where a* and b are constants, and f and 9 are arbitrary functions of their arguments (in 

the static case [3], one has f +g = --ao + c), the only priviso being that f must be smooth 
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(i.e., f(g-) is the integral f o a completely arbitrary function). Concentrating on a region 

where f + g + 00, we have 

e-2+ - f + g + g&f + g), 

P - -;(f + g) - ;ln(f +g) - a+~+ - a-c- - b. 

Using the formula for the curvature, 

we have 

R = 8e-2QB+& P, (3.27) 

RN 0+&-f e~(f+g-.+e+-a-o--b) 
f+g 1 (3.28) 

(where we have redefined the constants a* and b). Taking, for example, g(m+) N (g+ - 

~;)--=, cc > 0, we see that ut is a singular event horizon. Since c+ = T + q, the location 

of the horizon is not constant in time 7. Furthermore, the fact that 6p grows more rapidly 

than 64, as seen in (3.20), suggests that such regions might be of greater importance in 

understanding the full evolution of the system, particularly for the M = 0 solution, which 

has been proposed to be the true vacuum of the theory. In fact, in the original, unperturbed 

field equation (2.5) , we see that if 4’ = 4 = -2X4, then p is forced to approach -m, 

unless e*b N 24/N. Of course, at this point, depending on N, we may no longer be in the 

weak coupling regime which we have been discussing, but rather in the strong coupling, 

or Liouville region, which we consider below. 

Of course, for large 7, the time dependant terms are small, and the solution behaves 

as in the static case, where 4 penetrates closer and closer to tier before bouncing back to 

weak coupling [3]. But for r sufficiently large and negative, we are effectively dealing with 

the M = 0 solution, in which p will tend to grow faster than 4 and singular event horizons 

should appear. It is questionable whether or not this is a reasonable condition for the 

true vacuum of the theory. Actually, it seems more reasonable that the final state of the 

system, in response to some incoming matter, would have a potentially complicated causal 

structure. Of course, our solutions are nonsingular at 4 ,.. whereas the incoming matter is 

singular there, so the interpretation of these solutions remains unclear. 

To complement these solutions, we should in prinicple search for time dependant 

solutions with regular horizons, as was done in [6], [3], and [4], generally by using the 

“spatial” variable s = z+z- and then imposing continuity conditions at the horizon at 

s = 0. Including time dependant terms, of course, will affect the location of the horizon in 

general, and we have not yet made a determined effort to analyze the range of possibilities. 

Work on this problem is in progress. 
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4. The Liouville Region 

As argued in [7], [S], solutions which lie entirely in the Liouville region contain im- 

portant information concerning the behavior of extremal four-dimensional d&ton black 

holes. Secondly, it might be possible that a configuration in the Liouville region might 

evolve into the weak coupling region, even if the reverse is impossible. 

To analyze this region, we introduce the new dependant variable [3] 

1c, = e-b, 

in terms of which the action is just 

s = i 
I 

dZ~(4s++3-$ + 44t1+$a-~ - ~,~,y~v= + ;a,Pa-P). 

(4.1) 

(4.2) 

The resulting field equations (which can just as easily be derived from the original field 

equations upon substituting (4.1) ) are 

T+- = -2B+@‘-$ - ~@+EL$ - X2+2eZP - ;a+a-p = 0, (4.3) 

4a+a-* + 2$d+a-p + XZ*eZP = 0. 

The simplest solution to these equations is the trivial solution 

(4.4) 

11, = 0,p = 0. (4.51 

If we now perturb these equations about (4.5), we see that every term in (4.3) is quadratic 

except the last term, so we just have 

6P = f+(a+) + f-(a-), (4.6) 

where fk are arbitraty functions. Similarly, the linearization of (4.4) yields simply the 

Klein Gordon equation 

8+8~5+ + ;S$ = 0 (4.7) 

for a particle with m2 = X2/4. 

Another solution of (4.3) (4.4) is [3] 

P=&, 
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p = -ln( a(r), (4.9) 

which is an example of anti-deSitter space, as the curvature turns out to be R = -4X*. 

Linearizing again, we find 

-2 

and 

4 

Adding the equations, we have 

28-a + 67,b - 9 = 0 
CT2 ’ 

which is just the equation for a particle in a l/@ potential. For example, going to the 

static limit, we have 

64,” = --$6$, (4.13) 

with solutions 

a?/, = aI& + al&, (4.14) 

where the ai are constants and the pi are the solutions of the quadratic equation a? -z+2 = 

0. Since the pi are therefore complex, whereas ?/, should be real, it would seem that this is 

an inappropriate background for such a perturbative analysis. 

5. Discussion 

Spurred on in part by recent advances in string theory [9] , we have witnessed a 

great increase in the number of toy models, particularly in low dimensions, made available 

for the study of phenomena such as Hawking radiation and the final state of black holes 

which involve fundamental issues surrounding quantum gravity. The CGHS model is an 

especially simple yet sufficiently rich example of such a model. Unfortunately, there remain 

significant barriers which interfere with our greater understanding of quantum gravity. Of 

the various groups who have studied the CGHS system, there are adherents of a variety 

of scenarios, including naked singularities [4] , macroscopic objects [lo] , the “bounce” 

scenario [3] , and so on. 



In this letter, we have tried to begin the program of going beyond the static limit 

applied earlier [3] [4] [6]. We know that the classical no-hair theorems, which essentially 

say that a black hole is characterized by the quantum numbers of long range fields, such as 

mass, charge, angular momentum, cannot contain quantum mechanical information. What 

we have found is that specifying the mass of the black hole does not fully specify the metric 

or dilaton, even to leading order asymptotically. There is active research underway on a 

variety of quantum-mechanical effects on black holes, see [Illfor example for a thorough 

discussion of quantum hair and Aharonov-Bohm type interactions of black holes. 

In the present case, in the original CGHS model (i.e., N = l), the picture of the black 

hole was of an asymptotically flat plane connected via a throat-like horizon to a semi- 

infinite cylinder-like region. When matter impinges on this system, one might imagine, for 

example, that while the asymptotically flat region would eventually see a constant mass, 

the matter might be hurtling down the cylinder behind the event horizon in a complicated 

and possibly singular fashion. Even the horizon itself need not be fixed, though of course 

that would be measureable to an asymptotic observer. 

Another important factor which we have come across is the problem of the crossover 

between weak coupling and Liouville regions. In spite of the initial hopes, it appears that 

the important physics is occuring precisely in this region, where we cannot ignore futher 

quantum corrections. This region is small (of order X-i) in the large N limit, so the model 

may yet be viable for questions regarding longer range phenomena. Furthermore, because 

of this great uncertainty, we cannot say for certain that propagation through the apparant 

singularity is in fact forbidden. Perhaps a further exploration of the appropriate boundary 

conditions or additional terms in the l/N expansion will suggest a way out of our present 

dilemnas. 

Acknowledgements: The author would like to thank J. Lykken, S. Chaudhuri, H. Dyk- 

stra and J.D. Cohn for useful discussions. 
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