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Abstract. We study neutrino decoupling in the early Universe (t N set, T w MeV). 
In particular, we compute the distortions in the Y, and up/ur phase-space distributions 
that arise in the standard cosmology due to e* annihilations. These distortions are non- 
thermal, with the effective neutrino temperature increasing with energy, approaching an 
0.7% increase for electron neutrinos and an 0.3% increase for mu/tau neutrinos at the 
highest energies, and correspond to an increase in the energy density of v,‘s of about 
1.2% and in the energy density of v,,/vr’s of about 0.5% (roughly one additional relic 
neutrino per crnv3 per species). (The distortion for electron-neutrinos is larger than that 
for mu/tau neutrinos because electron neutrinos couple to e*‘s through both charged- and 
neutral-current interactions.) Our results graphically illustrate that neutrino decoupling 
is a continuous process which is momentum dependent. The distortions in the neutrino 
spectra affect primordial nucleosynthesis in three ways; due to subtle cancellations, only a 
tiny increase in the primordial 4He abundance, AY N 1 - 2 x 10b4, is predicted. 
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I. Introduction 

Much of the history of the Universe is well described by equilibrium thermodynamics, 
However, if thermal equilibrium were the entire story, the Universe today would be a very 
boring place. A number of crucial departures from equilibrium have taken place during 
the history of the Universe: photon decoupling, primordial nucleosynthesis, baryogenesis, 
and perhaps even an inflationary phase transition (see e.g., Ref. [I]). The departure from 
equilibrium that we address here involves neutrinos and the weak interactions. 

Around a second after the bang the rates for the weak interactions that keep neutrinos 
in thermal contact with the electromagnetic plasma (e*‘s and r’s), Y + e* c* v+e*, 
v + 6 +-+ e- + e+, v + v u Y + v, and v + fi c) v + fi, as well as those that keep the 
neutron-to-proton ratio tracking its equilibrium value, ue + n CI p + e-, I?~ + p CI n + e+, 
and to a lesser degree, n ++ p+e-+C=, become ineffective; i.e., interaction rate per particle 
l? becomes less than the expansion rate of the Universe H. The outcome of primordial 
nucleosynthesis depends crucially upon this: Were it not for the fact that the neutron-to- 
proton ratio ceased to track its equilibrium value and “froze out” at a value of about 0.2 
when the temperature of the Universe was about 0.1 MeV, the neutron abundance would 
have been negligibly small by the time that nucleosynthesis commenced (T N 0.07 MeV), 
and essentially no nucleosynthesis would have taken place. 

According to the standard treatment neutrinos decouple (T N 2MeV for ue, T - 
3 - 4MeV for vfi and v,) before the e* pairs annihilate (T N m,/3 N 0.1 MeV). and 
thus do not share in the entropy transfer from e* pairs to photons that heats photons 
relative to neutrinos. This is why the neutrino temperature is expected to be less than 
the photon temperature today. To be specific, after neutrinos decouple their temperature 
varies as the inverse of the cosmic-scale factor R(t); entropy conservation implies that 
the photon temperature varies as g; *‘3R-1(t) (g. is the number of degrees of freedom 
in thermal equilibrium with the photons). Because g* drops from 11/2 before e* pairs 
annihilate to 2 after, the photon temperature is today predicted to be larger than the 
neutrino temperature: T/T, = (4/11)‘13 (see e.g., Refs. [1,2]). 

Because neutrino decoupling occurs only slightly before the e* pairs “disappear,” neu- 
trinos (especially electron neutrinos which stay in thermal contact slightly longer because 
of their charged-current interactions) will share to a small degree in the entropy trans- 
fer, so that their “temperature” is expected to be slightly higher than the estimate above 
(31. Further, because neutrino cross sections are very energy dependent, varying as en- 
ergy squared, one also expects the degree of heating to depend upon neutrino momentum, 
which inevitably leads to a spectral distortion of the neutrino phase-space distributions. 
In previous work [3], authors have studied the “integrated effect” of the slight heating by 
e* annihilations, estimating that the neutrino energy density is increased by about 1%. 
In this paper we compute the evolution of the neutrino phase-space distribution functions 
during decoupling to study the effect of this heating in detail. 
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The primary motivation for our detailed investigation of neutrino decoupling is pri- 
mordial nucleosynthesis. The yield of 4He is sensitive to the phase-space distribution of 
neutrinos, as they play an integral role in determining when the weak interactions that 
interconvert neutrons and protons freeze out, which in turn determines the value of the 
neutron fraction at the time of nucleosynthesis. (The primordial mass fraction of ‘He is 
given by about twice the neutron fraction.) Since the accuracy to which the primordial 4He 
is known is improving, with recent estimates being given to three significant figures [4,5], 
we decided to carefully study the decoupling of all three neutrino species by numerically 
evolving the Boltzmann equations that govern their phase-space distributions. 

We find that the slight heating provided by e* annihilations increases the energy 
density in electron neutrinos over the “canonical” estimate by about 1.2% and by about 
0.5% for mu/tau neutrinos (this corresponds to roughly one additional relic neutrino per 
cmd3 per species). We also find that due to the back reaction of neutrino heating the 
increase in the number of photons per comoving volume since before e* annihilations is 
about 0.5% less than the canonical prediction of 11/4. (By canonical, we mean assuming 
that neutrinos are not heated by e* annihilations.) The neutrino phase-space distortions 
we find are nonthermal: The effective neutrino temperature rises with neutrino energy, 
where T,n = -p/In fy(p), where f”(p) is the phase-space distribution, assuming Maxwell- 
Boltzmann statistics. Our results very clearly illustrate neutrino decoupling is not an 
instantaneous event and is momentum dependent. 

The distorted neutrino distributions affect the primordial 4He abundance in three ways: 
The first two effects involve changes in the weak-interaction rates that regulate the neutron 
fraction, while the third involves the number of neutron decays after the neutron fraction 
“freezes out.” The first two effects nearly cancel, leading to a change in the 4He mass 
fraction of the order of 10w5; thus, the third effect dominates. It leads to a change in 
the primordial mass fraction of 4He of about 1 - 2 x 10e4, which, at present, is not large 
enough to be of significance. As we discuss, were it not for cancellations, the change in 
the primordial 4He abundance would have been an order of magnitude larger. 

The outline of our paper is as follows. In the next Section we derive the Boltzmann 
equations that govern the phase-space distributions of neutrinos in the expanding Universe, 
and from it the equations that govern small perturbations from the canonical thermal 
distribution with temperature decreasing as R-‘(t). In Section III we numerically calculate 
the small distortions in the neutrino spectra that develop due to slight heating by e* 
annihilations, and in Section IV we compute their effect on primordial nucleosynthesis. 
We end with some concluding remarks in the final Section. The details of evaluating 
the numerous nine-dimensional phase-space integrals that arise, some useful identities for 
Maxwell-Boltzmann statistics, and a detailed discussion of the back reaction of neutrino 
heating on the photon temperature are relegated to the Appendix. 
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II. Boltzmann Equations 

Our starting point is the Boltzmann equation that governs the evolution of the phase- 
space distribution of a neutrino species (or any particle species) in the expanding Universe. 
For simplicity, we assume all phase-space distribution functions are independent of spatial 
coordinates (homogeneity) and use Maxwell-Boltzmann statistics. Homogeneity in the 
early Universe is well justified, and because we are not interested in neutrino degeneracy 
(or Bose condensation) the use of Maxwell-Boltzmann statistics should be adequate. The 
time evolution of the neutrino distribution function f,(E, t) in the FRW cosmology is 

E afa - 
at 

-J&L& = -; 
CJ 

~l~~2m(2*)464(P, + Pl - p2 - p3) 
processes 

x wL+l++2+312 [fafl - fzf31; (2.1) 

where H E k/R is the expansion rate of the Universe, &I; E d3pi/2E;(2r)3 is the Lorentz- 
invariant phase-space volume element, and for simplicity we have only displayed 2 c* 2 
processes in the collision term (for more details concerning Eq. (2.1), see e.g., Refs. [1,6]). 
The quantity S(MI* is the matrix-element squared for the process a + 1 - 2 + 3 (CP- 
invariance is assumed), summed over the spin states of all particles except the a, times a 
symmetry factor, l/2! for identical particles in the initial or final states. Throughout we 
shall use units where h = Icg = c = 1. 

If we specialize to ultrarelativistic particles, as we will in our study of neutrino decou- 
pling, we can simplify Eq. (2.1). In the expanding Universe the momentum of any freely 
propagating particle red shifts as R(t)-‘; for massless particles, energies also red shift as 
R(t)-‘. In dealing with ultrarelativistic particles it is thus useful to introduce momenta 
that are scaled by the expansion: lj G R(t)p (9 corresponds to the covariant components of 
the four momentum in the conformal frame). For massless particles all components of the 
resealed four momentum F remain constant. For simplicity of notation we will henceforth 
not explicitly include tildes over four momenta when 2ue employ this resealing. (By simple 
dimensional analysis it will always be clear when we have used the resealing.) In terms of 
the resealed momenta, the Boltzmann equation simplifies to 

fi afa(& t) 
a at 

= +-5 c 
J 

dIW-bd&(2~)464(~a + FI - @2 - lj3) 
processes 

x Ifia+1-*+312 [fafl - f2f31; (2.2) 

where all momenta (including those in the matrix-element squared) are now resealed 
momenta. The advantages of this resealing are now manifest: The Ip’12Hafa/aE term 
drops out, and in the absence of interactions the solution to Eq. (2.2) is just f,(&, t) = 
fa(Ba, to) (to is some initial time). This, of course, is well known: The momentum distribu- 
tion of a massless, noninteracting species just red shifts with the expansion; if the original 
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distribution was thermal, then the distribution remains thermal, albeit with a temperature 
that varies as R-‘(t). In our treatment of neutrino decoupling we will use the “unper- 
turbed” neutrino temperature (G T) as the independent variable; since T cc R-’ we can 
simplify further by taking RT = 1, so that 3 = pi/T and Re5 = T5. 

Now let us apply this formalism to the decoupling of neutrinos. Around the time of 
neutrino decoupling (T N MeV, t N set), the reactions that keep neutrinos in thermal 
contact with the electromagnetic plasma and other neutrino species are 2 ++ 2 scattering 
and annihilation processes that involve neutrinos/antineutrinos and electrons/positrons. 
(Neutrino-nucleon interactions are extremely unimportant because of the scarcity of nu- 
cleans, only about one nucleon per 10’ electrons, positrons, neutrinos, and antineutrinos.) 

Scattering and annihilation processes involving electrons and positrons can ‘%heat” 
neutrinos, v + e* +-+ v + e* and v + D c* e- + e+; while scattering and annihilation 
processes involving only neutrinos can only thermalize the neutrino distributions, e.g., 
v, + up +-+ v, + up or v, + C’e H v, + I?~. All the annihilation and scattering processes 
involving electron neutrinos and their matrix-elements squared times symmetry factors are 
displayed in Table 1 (71; the analogous compilation for mu/tau neutrinos is given in Table 
2. In addition, our notation is explained in the Tables and illustrated in Fig. 1. 

The mu- and tau-neutrino phase-space distribution functions are identical, but not 
equal to that of electron neutrino, since electron neutrinos have both neutral- and charged- 
current interactions. We shall assume that the chemical potentials of all lepton species are 
very small I,LL] < T (as is known for e*‘s and is expected for all the neutrino species); this 
implies that the phase-space distribution functions of particles and their antiparticles are 
identical. This and the fact that the v,, and Y, distributions are identical means that we 
need only track the phase-space distribution functions of electron and muon neutrinos. 

We are now ready to derive the Boltzmann equations that govern the small distortions 
to the neutrino phase-space distribution functions that develop due to e* heating. Around 
the time that “neutrinos decouple,” the temperature of the electromagnetic plasma begins 
to decrease more slowly than R-‘(t), as e* pairs become fewer in number and transfer their 
entropy to photons and the remaining e* pairs. If neutrinos had completely decoupled 
by this time, their temperature would simply decrease as R-‘(t) and would be dropping 
relative to the photon temperature. It is this small temperature difference that “drives” 
residual neutrino-electron/positron interactions to heat the neutrinos. By calculating how 
well neutrinos are able to track the “rising” photon temperature, we are able to follow the 
process of neutrino decoupling. 

With these facts in mind, we write the phase-space distribution functions as 

fve(~,t) = fob) + A,(p,t), fvp = fo(p) + Avr(~>t); (2.3) 

f,+(p,t) = 4--p/T,) = exd-p(l - 6)/T] = fo(~)[l+ (p/W(t) + .+I; (2.4) 
where we take T c R-‘(t) so that fo(p) m exp(-p/T) is the unperturbed neutrino phase- 
space distribution, AYe (p, t) is the small perturbation to the electron-neutrino distribution 
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caused by slight e * heating, A,*(p,t) is the small perturbation to the mu/tanneutcino 
phase-space distribution, 6(t) E T,/T - 1 is the photon-neutcino temperature difference. 
Further, by writing f,+ (p, t) = exp(-p/T,) we assume that the electromagnetic plasma 
is always in thermal equilibrium; because of rapid electromagnetic interactions between 
electrons, positrons, and photons this is a very good approximation. In Eq. (2.4) we have 
expanded to lowest order in the neutcino-photon temperature difference since we will work 
to first order in the small quantities AWe, A,, , and 6. 

As we show in the Appendix, for Maxwell-Boltzmann statistics, when neutrinos do 
not share in the heat released by e* annihilations, the ratio of the photon and neutcino 
temperature is given by 

To7 
[ 

3 l/3 

- = 1+ [Z3K~(Z) +42*K*(2)]/4 ; T I 

s,(t) s + - 1; 

60(t) - $ (F$ 

(2.5a) 

(2.56) 

where To-, is the photon temperature when the back reaction of neutcino heating is ne- 
glected, z = me/To-,, m, = 0.511 MeV is the mass of the electron, and the limit shown is 
for z -+ 0. While the back reaction of neutcino heating on the temperature of the electco- 
magnetic plasma is a small effect (6T,/T x -2 x 10m3), it is formally first order in Ai, and 
so must be taken into account. In the Appendix we show that the change in the photon 
temperature due to back reaction is 

6T, = - 6P” 
dpEtvt/dT’ ’ (2.6) 

where pv is the small change in the energy density in neutrinos due to heating by e* 
annihilations-which is of order A;-and given by 

(2.7) 

Finally, the photon-neutcino temperature difference to the desired order is given by 

6(t) = 60(t) + 6T,/T; (2.8) 

and is shown around the epoch of nucleosynthesis in Fig. 2. 
As stated, our analysis is to lowest order in all small quantities; that is, in expanding 

[f&i - f2f3] in Eq. (2.1) we keep only terms that ace linear in b(t), A,=(p, t), or A,*(p, t). 

To illustrate, consider the terms that arise from the scattering processes v,(p) + e-(q) - 

G(P’) + e-((f): 

f,(~)fe*(~) - fve(p’)fe*(~r’) = fo(a)Av.(~,t) - fo(hL<(p’,t) 
+ 6(t)fo(p)fo(q)(p -p/)/T + ; (2.9) 
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where the zecoth-order terms cancel by energy conservation. It is now simple to write 
down the Boltzmann equation governing the electron-neutcino distortion: 

(p/T)&+(p,t) = 4G%T5 [-A.(P,~)&~(P,~) + &(p,t)@t) + &(p,t) + C:(p,t)l; (2.10a) 

A, = 
J 

dAfo(q) [(a + b + 3)s’ + bt’ + (2a + b + 8)u*] ; (2.10b) 
r 

Be = fo(p) 1 dUda [(bt* + au*)(p + q)/T + (a + b)(s* + u*)(p - p’)/T] ; (2.10~) 

Ce = 
J 

dA( -fo(p)&+(p,t)[s* + bt* + (a f 6)u*] + fo(d)&+(p’,t)[(a + b + 3)s2 

+ (a + b + 6)~*] + fo(p’)A,.(q’,t)[s’ + 4~~1); (2SOd) 

C:. = 
r [ 

dA -fob)Avp(q,t)(2s2 + 27~‘) + fo(d)Av,(p’,t)(2~*) 

+ fo(p’Pvu (q’, t)@s* + 4&] ; (2.10e) 

where dA z dII,dIIp,dIIa,(2r)454(p + q - p’ - q’) is a nine(!)-dimensional phase-space 
volume element, s = (p + q)*, t = (p - p’)*, u = (p - q’)*, a = (2sin* 8~ + l)* N 2.13, 
b = 4sin* 0~ ~0.212, the weak mixing angle sin* 8~ N 0.23, and the Fermi constant GF = 
1.17 x 10v5 GeV-‘. For purposes of numerically integrating this equation, it is useful to 
write A, (p, t) = HaA,< (p, t)/Bln T-l, where the expansion rate H(T) = 1.67gf’*T2/mpr, 
and 4G$T”/H N 1.2(T/ MeV)3 (gr N 12 and mpc = 1.22 x 101’ GeY). 

The analogous Boltzmann equation governing the mu/tau-neutcino distortion is: 

(P/W&(P,~) = 4G;T” [-A,(p,r)&+(p,t) + B,(p,r)J(r) + C,(P,~) + C;(P,~)] ; 
(2.11a) 

A,,= dAfo(q)[(b+c+3)s2+bt2+(b+2c+8)u2]; 
s 

(2.11b) 

B, = h(p) / Wo(d [(bt* + a*)(~ + q)/T + (b + c)(s* + u*)(P - p’)lT] ; (2Xc) 

C,, = 
s ( 

dA -fo(p)A,u((p,t)[2s2 + bt* + (c+ 3)u2] + fo(q’)A+(p’,t)[(b + c + 3)s’ 

+(b+c+7)u*]+fr~(p’)A,~(q’,t)[2s~ +6u*]}; (2Sld) 

c; = CL/21 (2.11e) 

where c = (2 sin’ 0~ - l)* N 0.292. 
The four different types of terms in Eqs. (2.10) and (2.11) arise from the expansion 

of [fGfi - f2f3] as noted above. Their physical significance is manifest: The “A terms” 
represent damping (i.e., disappearance of a neutcino of energy p) and arise from all the 



scattering and annihilation processes, e.g., v(p) + e- -+ Y + e-; the “B terms” represent 
the heating of neutrinos through interactions with e*’ s and arise from the scattering and 
annihilation processes involving electrons and positrons, cf. Tables 1 and 2; the “C terms” 
represent scattering interactions that simply change the momentum of a neutcino from p’ 
to p, e.g., v(p’) + e- + v(p) + e-, and hence involve an integration over A(p’, t); and 
the “C’ terms” ace analogous to the C terms except that they involve the interaction of 
electron neutrinos with mu/tau neutrinos or vice versa, e.g., v,,(p’) + I?,, + v,(p) + ce. 

It is a straightforward, but arduous, task to evaluate the coefficients Ai, B;, C;, and 
Cj. Needless to say the C and C’ terms ace the most challenging to compute. The details 
of these calculations ace left to the Appendix. The coefficients are given by 

A, = (P/T)* r[5a + 56 + 171; 

A, = (PIT)* --&5b+5c+17]; 

B, = (a + b)(p’T$+T (;i - 1) ; 

B,, = (b + c)(~~~:;-“‘~ (;g - 1) ; 

ce = _ WT12e-p~T 
187r3T4 

,, 

e-~/*T 

4 q3 A, (9, t) + 641r3tp,TlT _ 

(2.12a) 

(2.12b) 

(2.13a) 

(2.13b) 

dq’ eq’/2TA,Jq’, t) 

X ((a + b + lO)gl(p, 9’) + (2~ + 2b + 12)gz(p,q’) + (2a + 2b + lo)gs(p, q’)} ; (2.14a) 

c, = _ WT)2e-P’T 
dq q3 Au* (q, t) + 

e-~/*T 00 

18a3T4 64r3(p/T)T J 
dq’ eq”2TA,U (q’, t) 

x I@+ c + Wglb, d) + (2b +‘2c + 14)gz(p, q’) + (2b + 2c + 12)&p, q’)) ; (2.14b) 

x {3La(P, Q’) + %2(P, d) + %3(P, Q’)) ; (2.15a) 

c; = CL 12; (2.15b) 

where the functions g;(p, q’) ace defined in the Appendix, cf. Eqs. (A.21) through (A.23), 
and shown in Fig. 11. 

By comparing the source terms, Eqs. (2.13a) and (2.13b), we can see that electron 
neutrinos ace heated more than mu/tau neutrinos: The coefficient of B, is (a + b) N 2.34 
vs. (b + c) 1~ 0.502 for B,, while the coefficient of the damping term for electron neutrinos 
is only somewhat larger than that for mu neutrinos, (5a + 5b + 17) N 28.7 for A, vs. 
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(5b+5c+ 17) N 19.5 for A,,. Equations (2.10) and (2.11) provide the master equations for 
our work. 

Finally, consider the distortions to neutrino phase-space distribution functions that 
would arise due to the decay of a massive. nonrelativistic particle species, X + Vii?;. In this 
situation we neglect the small difference between the neutrino and photon temperatures, 
and as above write the neutrino distribution functions as the unperturbed piece, fo(p) = 
e--pfT, plus a small perturbation, Ai(p, t). The Boltzmann equations governing A, (p, t) 
and AvP(p, t) in this circumstance are obtained from Eqs. (2.10) and (2.11) above by 
dropping the B terms and adding a source term from decays: 

(p/T)Ai(p, t) = 4G;T5 (-A;@, t)&(~t t) + Ci(P, t) + C:(P,t)l 
47T’nxTi 

+ T2(mX/T)Hr ~(PIT - mxl2T). (2.16) 

Here T is the common photon/neutrino temperature which is assumed to vary as R-‘(t), 
T; is the branching ratio of the massive neutrino to neutrino species i = e,~, 7 is the 
lifetime of the massive particle species, and nx is its abundance (number density), which 
of course decreases as ewt17. In deriving these equations we have assumed that the mu/tau 
distributions are identical; if r,, # T,, this will no longer be true and a separate equation 
must be derived for tau neutrinos, which can be done in a straightforward manner. The 
effect of the decays of a massive particle species on the neutrino distributions will be 
addressed elsewhere [8]. 

III. Distortions of the Neutrino Distributions due to e* Annihilations 

The master equations. Eqs. (2.10) and (2.11), are coupled, partial integro-differential 
equations, which are very “stiff” at high temperatures because of rapid neutrino-interaction 
rates. quantified by G$T5/H m (T/ MeV)3. To integrate these equations, we have trans- 
formed them into 2N coupled, first-order integco-differential equations by imposing a grid 
of size N on neutrino momentum (more precisely, on p/T). For the results shown here 
N = 60, spanning p/T = l/3 to 20 in intervals of l/3. We then applied standard tech- 
niques for integrating stiff, first-order differential equations; see e.g., Ref. [9]. The actual 
numerical integrations proceeded uneventfully. 

Let us begin with the standard treatment; the neutcino species have identical Fermi- 
Dicac distributions characterized by temperature T which, since neutrino decoupling (T N 
MeV), has decreased as R-‘. In the present treatment, this corresponds to A,,. , A,” = 0. 
Before discussing our results let us imagine a world in which the Fermi constant is very 
large, so that when T N 1 MeV neutrinos are still strongly coupled to the electromagnetic 
plasma. In this hypothetical world, neutrinos would share in the electron-positron entropy 
transfer, which occurs at T - m, /3, and the neutcino temperature would always be equal 
to the photon temperature. Returning to the definitions of A, and A,&, cf. Eqs. (2.3) 
and (2.4), we see that continued equilibrium with the electromagnetic plasma would imply 
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that A”, = A,,, = J(t)(p/T)e-PIT (to first order). The real Universe lies somewhere 
between these two extremes: At very early times (T >> 1 MeV), neutrino-interaction rates 
ace sufficiently large so that neutrinos are tightly coupled to the electromagnetic plasma. 
At late times (T < 1 MeV), neutrino interaction rates are quite small, and the neutrino 
distributions “freeze out.” Our numerical treatment of decoupling allows us to follow 
the continuous change from the high-temperature, “tightly coupled” regime to the low- 
temperature, “decoupled” regime. 

With these limits in mind, consider Fig. 3, which shows A,,. as a function of p/T for 
T = 8 MeV, 4 MeV, and 1 MeV. Also shown is (p/T)e-“/*h(t), the form AYe would take if 
electron neutrinos remained tightly coupled to the electromagnetic plasma. We see that at 
highest temperatures and for large neutrino momenta, AvC does indeed “track.” However, 
even at a temperature of SMeV, neutrinos with small momenta have already began to 
decouple; indeed, for the smallest neutrino momenta, AYe is negative, corresponding to 
the fact that low-energy neutrinos are scattered up to higher momenta, thereby depleting 
low-momenta neutrinos. As the temperature drops, even for the largest momenta, A,< 
cannot keep pace with the rising (relative) temperature of the electromagnetic plasma, 
and A, levels off. Figure 3 makes clear the fact that decoupling is not an instantaneous 
event. 

It is also instructive to follow the time evolution of the neutrino distortions for several 
values of p/T. To that end, we define the effective temperature of the neutrino distribution: 

Terr SE 
ln flPp,t) = ln[e-PITYAi(p,t)j 

N T [1+ (T/p)eP’TA;(plTy I] ; (3.1) 

for a Maxwell-Boltzmann equilibrium distribution, i.e., Ai = 0, T,ff = T. Note that Tee is 
a function of both time and momentum. Based upon the discussion above, we expect that 
at early times T,e = T-, for large values of p/T, while T,tf should be between T and T7 for 
smaller values of p/T. In Figs. 4 and 5 we show the evolution of (Td - T)/T for electron 
and muon neutrinos and p/T = 3,5,10, and 15. Figures 4 and 5 illustrate very clearly the 
fact that neutcino decoupling is momentum dependent. Note too, most of the distortion 
develops by the time that the temperature has dropped to about 0.5 MeV, justifying our 
neglect of the electron mass in deriving the master equations. 

Finally, in Figs. 6 and 7 we show the perturbations to the neutrino energy densities 
that arise, 

6~“; 2Jpd3PAi/(2rir)3 -= 
Pv. Pu; 

(3.2) 

For electron neutrinos 6p,, /pyc approaches about 1.2%, while for mu/tau neutrinos it 
approaches about 0.5%. In Fig. 7 we show the effect that mu and tau neutrinos have on 
the distortion that arises in electron neutrinos: In the absence of any coupling of electron 
neutrinos to mu/tau neutrinos, the distortion to electron neutrinos is about 20% larger. 
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IV. Helium Synthesis 

We have identified three ways in which the perturbations to the neutrino distributions 
affect the yields of primordial nucleosynthesis: The first two involve changes in the weak- 
interaction rates that govern the neutron fraction-due to the distorted electron-neutrino 
distribution and due to the decreased photon temperature-while the third involves the 
change in the number of neutron decays from the time the neutron fraction “freezes out” 
(T - 0.1 MeV) until the onset of nucleosynthesis (T N O.O7MeV), because of the increased 
energy density in neutrinos (and faster expansion rate). 

The changes in the primordial abundances ace very small, and only the 4He abundance 
is known well enough for its change to be of interest. We can obtain a reasonable estimate 
for the change in the 4He abundance by simply following the evolution of the neutron 
fraction (= X,,) since the mass fraction of 4He synthesized (C Y) is given by twice the 
neutron fraction at the epoch when nucleosynthesis commences (T - 0.07 MeV): 

Y z2X,(T = 0.07 MeV). (4.1) 

The Boltzmann equation governing the neutron fraction can be written as [lo] 

in = -x,x,, + (1 - X”)& 

= -xx, + A,; (4.2) 

where X 5 X,, + Xpn, X, is proton-to-neutron conversion rate (per particle), and X,, is 
the neutron-to-proton conversion rate (per particle). Since we will only use this equation 
at early times (t < T,,), we can neglect, for the moment, neutron decays and the nuclear 
reactions that eventually gobble up all the neutrons into the light nuclei. 

The solution to Eq. (4.2) is simple to write down: 

X,,(t) = /-’ dt’X,,(t’)f(t, t’); 
Jo 

where the integrating factor f(t, t’) = exp[- &t duX(u)]. The evolution of the neutron 
fraction is shown in Fig. 8. At early times it decreases, tracking its decreasing equihb- 
cium abundance; eventually, the weak interactions that interconvert neutrons and protons 
become ineffective and the neutron fraction freezes out (T, N 0.1 MeV). Light-element 
synthesis does not begin until the temperature drops to about 0.07MeV (see Refs. [l, 2, 
61; from the time that X,, freezes out until nucleosynthesis commences, the neutron frac- 
tion decreases by about a factor of about 2/3 due to free neutron decays. For our estimates 
of the change in 4He production we will take 

gXn(Tf N 0.1 MeV) 
> 

N 1.33X,(Tf). 

We will again consider the effects of neutron decays at the end of this section. 
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The proton-to-neutron conversion rate X,, is comprised of two terms, that for p+e- --t 
n+v,andthatforp+fie-rn+e+: 

- ~I~)‘/~(E - Q)‘EeeEfTv 

+ 
J mdW2 - d)“‘(E + Q)2Efy,(E + Q) ; (4.4) 

me 

where Q = 1.293MeV is the neutron-proton mass difference, m, = 0.511 MeV is the 
electron mass, T-, is the photon temperature, and f,,.(E) is the electron-neutrino phsse- 
space distribution. The quantity X0 = lme dE(E2-m~)‘/2(E-Q)2E and 7;, is the neutron 
mean lifetime. (Note, for simplicity and consistency we have continued our use of Maxwell- 
Boltzmann statistics.) The neutron-to-proton conversion rate X,, is likewise comprised of 
two terms, that for n + v, + p + e- and that for n + e+ + p + ye: 

A,, = 1 
IS 

mdE(EZ 
X07” Q 

- m;)“‘(E - Q)2Ef&E - Q) 

+ 
J 

mdE(E2 - ~n;)l’~(E + Q)2Ee-E’T~ 
1 

. (4.5) 
m. 

We are interested in the small change in the neutron fraction (m 6X,) at freeze out that 
arises due to distortions in the neutrino distribution functions. In solving Eq. (4.2) it is 
most convenient to use a temperature as the independent variable, rather than time. since 
all the rates depend upon temperature. We find it simplest to use z m In R = In T-r as the 
independent variable; recall that T is the neutrino temperature in the absence of heating 
by e* annihilations (in the Appendix we discuss an alternate choice, photon temperature). 

In order to relate Xi, to X,’ m dX,,/dz we must compute dzldt: 

dz 
x= H; H2 = ~TGP -. 

3 

Further, to compute the expansion rate as a function of T, we must compute the total 
energy density as a function of T: p(T) = PEM(T) +p,(T). The first term, the energy den- 
sity in the electromagnetic plasma, is only a function of T7, given by its equilibrium value, 
because rapid electromagnetic interactions keep the electromagnetic plasma in thermal 
equilibrium. However, we need PEM as a function of T, not T.,. To this end we write 

T,(T) = Tel.(T) + WT); PEM(T) = PEM@OT) + ~PEMP); (4.7) 

where To7 is the photon temperature at a given value of the scale factor in the absence of 
neutrino heating by e* annihilations, 6T, (< 0) is the change in the photon temperature 
at a given value of the scale factor due to back reaction from neutrino heating, and 6pEM 
is the change in the electromagnetic energy density due to this back reaction. Because the 
electromagnetic plasma is in thermal equilibrium it follows that 6p~~ = (dpEM/dT,)bT,. 
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Similarly, we denote the total neutrino energy density as 

p,(T) = lSp/?r’ + 6p,(T); (4.8) 

where the first term is the neutrino energy density in the absence of heating by e* anni- 
hilations and the second term is the perturbation to the neutrino energy density, 

6pv= C 2 
i=e,p,7 J 

pd3PAi(P,t)/(2T1r)3. (4.9) 

In the Appendix we derive the fact that ~PEM = -6p,, which implies that the total 
energy density-and expansion rate-at a given value of the scale factor is unchanged by 
the effect of the slight heating of neutrinos by e* annihilations: At fixed value of the 
scale factor neutrino heating by e* annihilations leads to slightly more energy density in 
neutrinos and slightly less energy density in the electromagnetic plasma. While this result 
seems obvious, it actually is not. Had we used the photon temperature as the independent 
variable, we would have found that H(T.,)-that is the expansion rate at fixed photon 
temperature-is increased by the slight heating of neutrinos by e* annihilations for the 
simple reason that REM remains the same while pv increases. In addition, dz/dt (where 
now z = 1nT;‘) is not simply equal to the expansion rate (see the Appendix) and changes 
when neutrino heating is taken into account. 

We can now identify the two effects of neutrino heating on the evolution of X,,. Neither 
involve the expansion rate, since as a function of the scale factor it does not change; both 
involve perturbations to the rates X, and X,,: (i) the perturbation due to the slight 
decrease in the photon temperature, 6T, = -6p,/(dpEM/dT+,); and (ii) the perturbation 
due to the distorted electron-neutrino distribution, AYe (p, t). 

By expanding Eq. (4.3) to first order in the changes in the weak-interaction rates we 
obtain the change in the neutron fraction: 

J 
r(t) 6X,(t) = 

-co 
dz’+$;f(z, z’) [ y;($; - l,= dr”6h(r”)/H(r”)] ; (4.10) 

&n(t) = & 
(s 

m dE(E2 - mz)‘/2(E - Q)2(E26T7/T2)e--E’T 
Q 

+ 
J 

-dE(E’ - m;)“‘(E + Q)2EA,c(E + Q,t) 
> 

; 
m. 

6L,(t) = & 
(s 

mdE(E2 - m2,)“‘(E - Q)2EA,e(E - Q,t); 
On Q 

(4.11) 

+ 
J 

co dE(E2 - mz)‘/‘(E + Q)2(E26T7/T2)e-E’T ; (4.12) 
m. 

where z = lnT-‘, 6T,(t) = -6p,/(dpEM/dT,) is the perturbation to the photon tempera- 
ture, and 6X(t) = 6X,(t) +6X,,(t). B ecause the change in the neutron fraction is linear in 
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the perturbed rates, we can compute separately the change due to 6Ty1 denoted by 6x7, 

and that due to A,,, denoted by 6X,. The evolution of 6X,(t) and 6X,(r) are shown in 

Fig. 9. 
First, consider 6X,. it early times 6X, is positive. and at late times 6X, is negative. 

qyo understand this. let US consider the perturbed version of Eq. (4% 

a& = -X,6X,, + (1 - X,)6& - x6X..; (4.13) 

where here the perturbed rates only take into account the change due to A,+. The source 
terms that drive 6X,, involve the difference between 6x, times the proton fraction (= 
1 - X,,) and 6X,, times the neutron fraction; the final term can only decrease the neutron 
fraction. At early times the perturbation to the neutron fraction grows because the ratio 

%na/%, is slightly larger than X,/(1 - X,,). This is because the distortion in the 
electron-neutrino distribution is larger for high momentum. (In the limit that the distortion 
only involved neutrino momenta much greater than the neutron-proton mass difference, 

~bn/6L, -+ 1.) However, as the temperature drops, the neutron-proton mass difference 
becomes an insurmountable energy barrier and 6X,/6X,, becomes less than X,/(1 - 

X) ,, , and the source term becomes negative, so that 6X, decreases. Eventually, all the 
interactions that interconvert neutrons and protons become ineffective and 6X, reaches an 
asymptotic value of about -1.1 x 10V4. The predicted change in 4He production ks 

AY, N 1.336X,(T,) N -1.5 x 10-4. 

The evolution of 6X, is shown in Fig. 9. In Fig. 10 we show the interplay between the 
production term, (1 - X,)6&,,,, and the destruction term, X,6X,,. Note that each of 
these two terms separately would be expected to produce 6X, of order l@; it is their 
cancellation that reduces 6X, to order 10W4. 

Thereis yet another cancellation(!): The effect of the slightly lower photon temperature 
is to increase the freeze-out value of the neutron fraction, by about 1.0 x 10e4. The reason 
is simple to understand: The weak rates are very temperature dependent, varying s.s 
T.; decreasing the photon temperature decreases the rates for two of the processes that 
interconvert neutrons and protons (e- + p + n + v, and e+ + n + p + c,+), thereby 
causing the neutron fraction to freeze out earlier and at a higher value. The increase in 
4He production due to the decreased photon temperature is 

AY, z 1.33X7(2?,) 2 1.3 x 10-4. 

The change in 4He production when both the decreased photon temperature and per- 
turbed electron-neutrino distribution are taken into account is 

AY, + AY, N 6(10-5). (4.14) 

The net change in very tiny because AY,, and AY, almost equal and opposite. This is not 
completely unexpected. The coupling of neutrinos to the electromagnetic plasma lea& 
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to a slight increase in the neutrino energy density and a corresponding decrease in the 
energy density of the electromagnetic plasma (at ilxed value of the scale factor). Since 
the rates that regulate the neutron fraction involve both incoming electrons/positrons and 
incoming electron-neutrinos/antineutrinos, they depend upon both the e* energy density 
and electron-neutrino energy density. Thus, the net change in the rates that interconvert 
neutrons and protons tend to cancel because the e* energy density decreases and the 
electron-neutrino energy density increases by an equal amount. 

Were it not for all the cancellations, the change in the 4He mass fraction due to the 
changes in the weak rates could well have been as large as 10e3 or so, which would have 
been much more interesting. Because of the approximations we have made-Maxwell- 
Boltzmann statistics and neglect of the electron mass in computing A,, (p, t)-the actual 
values for AY, and AY,, could well differ from those we obtain by 10% or so, which could 
lead to a larger net change in 4He production. In any case, because both AY, and AY, 
are in magnitude order 10m4, the largest value one could imagine for their sum is order 
10-4. 

Finally, we return to the fraction of neutrons that decay from the time that the neutron 
fraction freezes out until nucleosynthesis commences. Nucleosynthesis commences when 
the photon temperature is about 0.07MeV. (The photon temperature is the relevant pa-. 
rameter as neutrinos play no role in the actual onset of light-element synthesis.) The age 
of the Universe at this epoch determines the fraction of neutrons that decay. Since the 
Universe is radiation dominated, the age of the Universe t,,, = +H-‘(T’ N_ O.O7MeV), 
which in turn is determined by the total energy density at a photon temperature of about 
0.07MeV. As we discuss in the Appendix, at fixed photon temperature, the total energy 
density is increased by amount equal to 26~“; thus, the age of the Universe when nucle- 
osynthesis commences is decreased by 6t,,,/t,,, N - 6,7,/p, which decreases the number 
of neutron decays and increases 4He production. 

Without modifying the standard nucleosynthesis code to take into account neutrino 
heating in detail, it is difficult to make a definitive statement about the size of this effect. 
We can however estimate it. To wit, consider the well known effect of additional neutrino 
species on the predicted 4He abundance: AYr, N 0.012 (see e.g., Refs. [l, 6, IO]). About 
two-thirds of this increase is due to the freezing out of the neutron fraction at a higher value 
and about one-third is due to the earlier onset of nucleosynthesis (owing to the greater 
energy density of the Universe). In this case, the perturbation to the energy density 
of the Universe is one full additional neutrino species; in the present circumstance, the 
perturbation to the energy density of the Universe is about 4% of an additional neutrino 
species. Based on this, we estimate the increase in 4He production due to the earlier onset 
of nucleosynthesis to be 

AYJ, N 
0.012 .0.04 

3 
N 1.5 x 10-4; (4.15) 

which is much larger than the change in 4He yield due to the change in rates. AY, + AY, N 
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C?( 10m5). That is, because the two competing changes to the 4He abundance involving the 
rates that govern the neutron fraction almost cancel, the largest effect is due to the change 
in the fraction of neutrons that decay-and it is the most difficult effect to compute. 

In sum, we can be confident that the change in *He production due to the slight heating 
of neutrinos by e* annihilations is small, IAYl < 10e3; without recourse to modifying the 
standard nucleosynthesis code to include neutrino heating we can only estimate the change 
to be of the order of 1 - 2 x 10e4. 

V. Concluding Remarks 

We have studied neutrino decoupling in the early Universe by numerically solving the 
Boltzmann equations that govern the neutrino phase-space distribution functions. We find 
that due to the slight heating of neutrinos by e* annihilations the current energy density 
of electron neutrinos is about 1.2% larger than the standard estimate, and that of mu/tau 
neutrinos is about OS% larger. This corresponds to roughly one additional relic neutrino 
per cmV3 per species (about 1O85 additional neutrinos in the observable Universe!). Like- 
wise! slightly less of the entropy in e* pairs is transferred to photons. so that the increase 
in the number of photons per comoving volume since before e* annihilations is about 0.5% 
less than the canonical factor of 11/4 112). 

Our work illustrates that decoupling is not an instantaneous event, and further, that 
it is momentum dependent. The distortions to the neutrino distributions are nonthermal: 
The perturbation to the effective neutrino temperature rises with momentum to almost 
0.7% for electron neutrinos and about 0.3% for mu/tau neutrinos. This is explained by 
the fact that neutrino cross sections vary as energy squared, so that the high-momentum 
neutrinos remain in thermal contact with the electromagnetic plasma longer. 

The perturbations to the neutrino distributions affect the primordial synthesis of 4He 
(and the other light elements) in three ways. The first two effects involve changes in 
the rates of the weak-interactions that control the neutron fraction: due to the distorted 
electron-neutrino spectrum, and due to the slightly lower photon temperature (at fixed 
value of the scale factor) because of the back reaction of neutrino heating. These two 
effects are of opposite sign, and their net effect is a very tiny decrease in the predicted *He 
abundance, AY, + AY, N ~7(10-~). Were it not for the fact that these two effects nearly 
cancel, their net effect could have been an order of magnitude larger. The third effect is due 
to the increased energy density in neutrinos, which hastens the onset of nucleosynthesis, 
decreasing the fraction of neutrons that decay after the neutron fraction freezes out and 
increasing the mass fraction of 4He by about 1 - 2 x 10m4. Our estimate of the change in 
4He production due to all three effects is dominated by the third, 

AY = AY, + AY,, + AY&, N AY6, N 1 - 2 x 10-4. (5.1) 

Finally, we should remind the reader of the approximations that we made. Through- 
out we have used Maxwell-Boltzmann statistics, and in computing the distortions to the 
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neutrino distributions we have neglected the electron mass. The largest effect of neutrino 
heating by e* annihilations is for large neutrino momenta, where the use of Maxwell- 
Boltzmann statistics is a good approximation. Likewise. since the perturbations to the 
neutrino distributions develop at temperatures greater than the electron mass, the neglect 
of the electron mass is justified. In addition, we have, in an ad hoc way. reduced the rates 
in our master equations by a factor of n,(m, # O)/ n .( m, = 0) to account for the Boltz- 
mann suppression of e* pairs; the changes in our results were not significant. Because of 
the approximations used, the fact that two of the three effects almost cancel, and the fact 
that we can only estimate the most important effect, we state our estimate for the change 
in the primordial production of 4He to one significant figure. 
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Appendix: Mathematical Details 

(a) Phase-space integrations 
The purpose of this part of the Appendix is to outline the calculation of the coefficients 

A,&: Di, C,, and Cl in the Boltzmann equations that govern the perturbations in the neutrino 
phase-space distribution functions, Eqs. (2.10) and (2.11). To begin, recall that 

1 d3q d3p’ d3q’ 
dA = dIII,dIIp,dII,,(2~)464(p + q - p’ - 4’) = w----;;;-“~(P + q -P’ - 4’). (A.1) 

Several of the terms can be evaluated by exploiting the Lorentz invariance of portions of 
the integrand. carrying out the dlQ and dII,l integrations in the CM frame. and the dII, 
integration in the FRW frame. Those integrals are: 

J 
p2T4 

dAs2fo(q) = 7; (~4.2) 

J ciefo(q) = J cuiu2f,,cq) = $; 
Jus~o(q,(T) =F(&+4); 

Jufocq@‘) = Jcwfo(q)(y) =$(&++ 

fob) / dAs’Ai(qa t) = p+~lT m 
6r3 l +zAi(q., t); 

fo(p) J dht*A;(q, t) = 
2 -p/T 

’ l;,s 
J 

m 

&‘dqAi(q, t); 
0 

(A.4) 

(A.5) 

(-4.6) 

(A.7) 

fo(p) J dAu’Ai(q* t) = p*e-~lT m 
I 18?r3 o q3dqAi(q, t); C-4.8) 

where ,fe(p) = e-PIT and we have not used resealed momenta. 
For many of the terms this trick cannot be used and one must carry out all of the 

integrations in the FRW frame. For these, the key is choosing the order of integration. In 
the first case we use the three-momentum part of the energy-momentum delta function to 
carry out the dII,, integration. After doing so we can express dA as 

dh = 1 d3q Sk- ~o)&‘d&$; -- 
256r5 q IF + 9’1 (A.91 

where the energy part of the energy-momentum delta function has been rewritten as an 
angular delta function, p = cos 0, 8 is the angle between p” and (p’ + Q’), and 4 is the angle 
between the plane defined by p’ and Q’ and that defined by p” and g. The quantity ~0 is 
given by 

/lo = p’ 4’ + P’(P + q) - pq, 
P’F+p’l ’ 
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the limits of the dp’ integration are p- 5 p’ 5 p+. where 

p* = (P + 4) f IF + 4’1 
2 

The use of this technique allows us to evaluate the following: 

J 
dAs’fe(q)($) =$(;+4): 

(A.ll) 

For the most taxing integrations we must use the momentum part of the energy- 
momentum delta function to carry out the dl& integration; after doing so we can express 
dh as 

dA = 128tr4pdq’dydp’d~dllk(ll - PO); (A.13) 

where now y = lp’ - ?‘I, p = cos6, and 6 is the angle between p” and (p’ - $‘), and 4 is 
the angle between the plane defined by p’ and -<’ and that defined by p” and -<. The 
quantity 

ho = Y2 - (P - Q’Y + 2P’(P - q’) 
2P’Y 

The limits of integration for dp’ are [y + (p - q’)]/2 to co, and those for dy are l(p - q’)[ 
to (p + q’). Using this representation for dA we can evaluate the remaining phase-space 
integrals: 

p3T3 p2T4 
=3-q; 

J 
dAu2fo(q’)A(p’,t) = 

J 
dAt’fo(p’)A(q’,t) 

= 
J 

dA(s’ + u* + 2us)fo(p’)A(q’, t); 

J 
dAs2fo(q’).(P’,t) = 

J 
d~s2fo(dW(q’,t); 

J 
dAu2fob’)A(d,t) = ~~~$~j Ja ddeq’/2Tgl(p, d)A(q’, t); 

J 
dA~sfo(p’W(q’,t) = i>$i) jrn dq’eq’/2Tsa(p, d)A(d, t); 

J 
dAs2fo(p’Md,t) = L:i$t) pm dq’eq’/2Tg3(p, q’)A(d, t); 

0 

where 

J 

b+q’)lT 
91 (P, 9’) = dye-Y/2[vZ - y212; 

lb-@I/T 
b+q’)/T 

92(P, 4’) = 
s lb-@l/T 

dye-Y/’ [v” - y2] 

x (y2/2 + WY/2 + (70 - v2/2) - wvs/2y - wv2/y2}; 
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(A.16) 

(A.17) 

(A.18) 

(A.19) 

(A.20) 

(A.21) 

(A.22) 



J 
(p+d)lT 

Sa(Pt 4’) = dye+ 
lb-d/T 

(u2 - y2)2[l/S - 3wv/4y2 + w2u2/8y4] - (v2 - y2)[y/2 

+ (1 + v/2)] [(2x - 3v/2) - (2a: + +w/y* + w2v3/2y4] + [y2/4 + (1 + v/2)y 

+ (2 + v2/4)] [(6x* - 4x7~ + w2/2) + (w - 4x)wv2/y2 + wzu4/2y4] 
> 

; (A.23) 

here n = (p - q/)/T, w = (p + q’)/T, and 3: = p/T. In principle, the functions g;(p, 4’) can 
be evaluated in closed form in terms of elementary functions; however, since terms (Al8) 
through (A.20) must be evaluated numerically in any case, we have simply constructed a 
a look-up table for each. In the limit that Q’ > p >> T the g;(p, q’) are simple to evaluate: 

sib, dh -gz(p, d),gdp, q’) - 64(q’/T)’ e-q”2Tep’2T. (A.24) 

The functions gi(p, q’) are shown in Fig. 9. 

(b) Maxwell-Boltzmann statistics 
Here we review a few fundamental relationships for Maxwell-Boltzmann statistics that 

prove useful. In the absence of a chemical potential the equilibrium phase-space distribu- 
tion function f = e- / , E ’ from which it follows that the equilibrium number density n, 
energy density p, and pressure P of a Maxwell-Boltzmann are 

9 m - 
n= 2r2 () J 

p2dpemEfT = $ K~+),~ - L?.$?; (A.25~) 

9 - 
p=g o J 

Ep2dpemEfT = $ [K~(.z)/z + 3~~(~)/2] - T; 
3gT4 

(A.25b) 

P=& 
J 

m P4dpe41T _ gm4 
o E 

- 2n2 K&)/z2 - $; (A.25~) 

where g is the number of internal degrees of freedom of the species, z E m/T, the K,(t) 
are modified Bessel functions (see e.g., Ref. [ll]), and the limits shown correspond to 
m/T -+ 0. 

The evolution of the ratio of the photon and neutrino temperatures when one assumes 
that neutrinos do not share in the entropy transfer from e*‘s (canonical case) is simple to 
compute. The constancy of the electromagnetic entropy per comoving volume S E R3s 
[s = (p+p)/T is the entropy density] implies that S = R3[p7 + P7 + pe* + P,+]/T = const; 
using the fact that T cx R-‘(t), it follows 

To,1 3 113 1 m 2 -= 
T 1 + [SKI(Z) + 4z*Kz(t)] /4 1 --+1+- -Z ; 

( > 36 T 
(A.26) 

where To7 is the photon temperature in the absence of the back reaction of neutrino heating, 
z = m,/T,, m, = 0.511 MeV is the mass of the electron, and the limit shown is for z + 0. 
At low temperatures (T < m,), the use of Maxwell-Boltzmann statistics leads to the 
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prediction T,/T = 3r13 N 1.44, rather than the canonical prediction, (11/4)‘13 N 1.40. 
The difference of the photon and neutrino temperatures around the time of nucleosynthesis 
is shown in Fig. 2. 

(c) “Back reaction” of neutrino heating on the photon temperature 
In computing the effect of the slight heating of neutrinos by e* annihilations on pri- 

mordial nucleosynthesis in Section IV we needed to consider the back reaction of neutrino 
heating on the electromagnetic plasma. In doing so, we must be careful in defining all 
quantities, especially perturbations (perturbation with respect to what?). To begin, it 
proves very useful to.use a temperature as the independent variable since all rates depend 
upon temperature rather than time. We find it most convenient to use the inverse of the 
cosmic-scale factor, denoted by 2’ s R-‘(t), as the independent variable. In the absence of 
the slight heating of neutrinos by e* annihilations the neutrino temperature varies as the 
inverse of the cosmic-scale factor; hence T is the unperturbed neutrino temperature. At 
the end, we shall briefly discuss using the photon temperature as the independent variable. 

Electromagnetic interactions occur very rapidly around the time of nucleosynthesis; 
hence, it is a good approximation to assume that the electromagnetic plasma (e* pairs and 
photons) is always in thermal equilibrium. We denote the value of the photon temperature 
at a given value of the cosmic-scale factor by T,(T). Thermal equilibrium implies that 
the energy density of the electromagnetic plasma PEM is only a function of T-,, given by 
p-, + pe+, where pr = 6T,/7r2 and pe* is given by Eq. (A.25b) with g = 4. Likewise, the 
entropy density associated with the electromagnetic plasma SEM is only a function of T,, 
given by (P-, + P-,)/T, + (pe* + Pet)/T7. Since T is the independent variable, we must 
express the photon temperature in terms of T, 

T-, = To,(T) + 6T,(T); (A.27) 

where To-,(T) is the photon temperature in the absence of neutrino heating by e* annihi- 
lations (the evolution of To-,/T and 6T,/T are shown in Fig. 2). Using these definitions 
and expanding sn~ and pz~ to first order in 6T, it follows that 

PEM(T~)=PEM(To~)+~PEM(T); SEM(T~) = SEM(TO~) +~SEM(T); (A.28a) 

dPEM 
~PEM(T) = - dT 6% ~sEM(T) = ‘%6T,. 

Finally, we write the energy density in neutrinos (summed over all three species) as 

p,(T) = pay(T) + bpv(T); (A.29) 

where PO,,(T) = 18T4/m2 is the energy density in neutrinos in the absence of the slight 
heating by e* annihilations, and 

6P” = c 2 J Aib,t)Pd3P/(2T)3. i=e,p,r 
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We define the entropy density associated with neutrinos, 

PY+p” 
s,(T) = T ; (A.30) 

= soy(T) + k(T); 

where the final expression follows from the fact that neutrinos are ultrarelativistic, so that 
P, = p,/3 always. While SO,, is the entropy density associated with neutrinos in the 
absence of heating by e* pairs, the expression for bs, is merely a useful definition. 

Our goal is to solve for 6T, in terms of 6p,. Recall, 6T, is the temperature difference 
at a fixed value of the cosmic-scale factor when the slight heating of neutrinos is taken 
into account; intuition strongly suggests that 6T, is negative-which is what we find. The 
starting point is the first-law of thermodynamics, 

d[R3p] = -PdR3; (A.31a) 

d[(p + P)/T3] = dP/T3; (A.316) 

where the second, more useful expression follows from the first and fact that R(t) E T-l, 
p = PEM + pv is the total energy density, and P = P EM + P,, is the total pressure. There 
is another very useful identity that applies to a system (or subsystem) that is in thermal 
equilibrium: 

dP p-+-P 
;i?;=-F. 

(A.32) 

Expression (A.32) always applies to the electromagnetic plasma and to neutrinos in the 
absence of e* heating, because peV cc p. 

In the absence of neutrino heating by e* annihilations the entropy per comoving volume 
(S cx R3s) in the electromagnetic plasma and in the neutrinos are separately conserved: 

d[R3sEM(To7)] = d[R3s,,y] = 0. (A.33) 

Using these facts, and Eqs. (A.31b) and (A.32), ‘t i is straightforward to obtain the relations 
that we are seeking, 

(A.34~) 

(A.34b) 

where the expression dpEM/dT7 is obtained by differentiating the equilibrium expression 
for PEM: 

, ST4 
-J + $$%Kl(mJT) + 3Kz(m,/T,)/(m,/T,.)] 4 
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dPm d -=- 
dT, dT, 1. (A.35) 



Through essentially all of the epoch of interest e*’ 
12T,4/.rr2, 

s are relativistic. This implies pe+ z 
so that PEM Y 18T;/a* and 6T,/T, x -i(Sp,/p), which is of the order of 

-0.2%. While the expressions we obtained for 6&M and 6T, took a bit of effort to derive, 
their physical content is simple to understand: The energy delivered to neutrinos by e* 
annihilations is taken away from the electromagnetic plasma. 

According to the usual treatment, the number of photons per comoving volume, NT = 
R3n,, increases by a factor of 3 (11/4 when the proper statistics are used) from the epoch 
before e* annihilations take place until the present epoch. When the slight heating of 
neutrinos is taken into account the factor is slightly less than 3, and is given by 

&(todw) 
N7(t < set) = 

R3(today)T;(today) 

R3(t < sec)T;(t < SW) 

=3 I--- 
( 

3213 bp, 

4 Pv >I ; today 

N 3 [l - 0(0.5%)] ; (A.36) 

where we have used the fact that today, PEM = 6T$/ z2 and dpEM/dT, = 4p~~jT~. Since 
the asymptotic value of &ipy/py is about 0.7%, due to the slight sharing of the entropy 
transfer of e* pairs with neutrinos, the number of photons per comoving volume has 
increased since before e* annihilations by about 0.5% less than the canonical estimate. 

Finally, let us end this part of the Appendix by briefly discussing how things change- 
and become much more complicated-when one uses the photon temperature TT as the 
independent variable rather than T = R-‘(t). With this choice, there is no perturbation to 
the photon temperature, nor to the energy density in the electromagnetic plasma. However, 
the energy density in neutrinos is now more difficult to compute. It is given by 

pv(T,) = 18T4(T,)/a2 +JP,; (A.37) 

where the first term is the energy density in neutrinos in the absence of heating by e* 
annihilations, and the second term is the perturbation due to heating. Here T(T,) is 
the value of the neutrino temperature (in the absence of heating), evaluated at photon 
temperature T7; it is related to T-1 by Eq. (2.8), 

T(T,) = (1 - b)T, = (1 - &)T, - bT, = (1 - 150) [ 1 1 - 2 Ty. (A.38) 

Thus the energy density in neutrinos is given by 

Pv = POV (1-4~)+6p,=~o,+26p,: (A.39) 
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where pov = 18[(1-Sc)T,]*/7? is the functional form that applies in the absence of neutrino 
heating, and in the final expression we have used 6T,/T FZ -a(6py/py) N -2 x 10e3. The 
change in the total energy density at fized photon temperature is approximately twice that 
due to the distortion of the neutrino spectra alone. 

The expansion rate at a given value of the photon temperature is related to the total 
energy density, H2(T-,) = 8rGp(T,)/3. Wh en neutrino heating is taken into account, the 
energy density at a fixed value of the photon temperature is 

P@‘,) = PEMV”) + PoY&) + ~~PAT,); (A.40) 

which is larger by the amount 26p, than in the absence of neutrino heating: TLe expansion 
rate at @ed photon temperature is increased by neutrino heating: 

6H 6~” -zz-----. 
H P 

Recall, there is no change in the expansion rate at fixed value of the scale f&or due to 
neutrino heating. The difference in these two results is explained by the fact that when 
neutrino heating is taken into account, the value of the photon temperature at a given 
value of the scale factor is smaller. 

As we discuss in Sections IV, in order to transform the time derivative in the rate 
equation that governs the neutron fraction into a derivative with respect to the indepen- 
dent variable z c 1nT;’ we must compute the quantity dz/dt. Using the first-law of 
thermodynamics and the following definitions 

gv(Ty) = 3T:, 
P 

-f% 
2; gr&) = T,4/?r2; 

it is straightforward to show that 

d.z 
z= 

H (314 + g*,/b,) 
1 - d In g,,/dr ’ 

(A.41) 

which is approximately equal to the expansion rate-and changes when the slight, heating 
of neutrinos due to e* annihilations is taken into account. For comparison, when we 
defined z m lnT-i, dz/dt = H(z), which does not change due to the slight heating of 
neutrinos by e* annihilations. 

Finally, consider the small change in dz/dt when neutrino heating is taken into account; 
it is simple to show that 

(A.42) 

The first term is just due to the change in the expansion rate (and of course is positive); 
the second term is an additional term, which is also positive. If we were to use T7 as the 

25 



independent variable in calculating the small change in the neutron fraction due to neutrino 
heating. there would be three effects: first, that due to the change in the weak-interaction 
rates from the higher neutrino temperature at fixed photon temperature, T(T,) = (1 - 
S)(l - GT,/T,)T,: second, that due to the change in the weak-interaction rates from the 
distortion of the electron-neutrino distribution; and third, that due to the change in dz/dt. 
Of course, in the final analysis, the value obtained for the change in the *He abundance 
must agree with that computed by using InT-’ as the independent variable. 
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Table 1: Scattering and annihilation processes involving electron neutrinos; the four 
momentum of the incoming electron neutrino is denoted by p; the four momentum of the 
other incoming particle is 9; the four momentum of the outgoing v, (or lepton) is p’; and 
the four momentum of the outgoing anti-lepton is q’ (see Fig. 1). Muon and tau neutrinos 
are denoted by ~/i (i = ,u, r), The invariants s, t, and u are defined by: s = (p+ q)2 N 2p. q, 
which is the total energy squared in the center-of-mass frame (CM); t = (p-~‘)~ N -2p.p’ is 
the four-momentum transfer between the incoming electron neutrino and outgoing lepton; 
and u = (p - q’)2 N -2~. q’ is the four-momentum transfer between the incoming electron 
neutrino and outgoing anti-Iepton. In computing the matrix-elements squared we have 
assumed that all leptons are ultrarelativistic, which implies that sft +?L N 0; GF 2: 1.17 x 
10m5 GeVm2 is the Fermi constant, a = (2sin* Bw + l)a N 2.13, b = (2sin’ 0~)~ z 0.212, 
and sin’ 0~ N 0.23. Both neutral- and charged-current interactions have been included. 

r PROCESS ’ Cspin I”12 

Annihilation 

u, + fi, + e- + e+ 
Y, + ~= -t Ui + pi 

Scattering 

“G;f;; ;2au2) 
F 

ue + e- +u,+e- 
v,+e+ -+ u, + e+ 
ue + ve + u, + u, 
v. + c’. + !-J, + 0, 
l/e + vi + u.2 + Vi 
Ue + Vi * U, f fii 
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Table 2: Same as Table 1, except for mu/tau neutrinos. The four momenta are denoted in 
the analogous manner: p is the four momentum of the incoming v;; p is the four momentum 
of the other incoming particle; p’ is the four momentum of the outgoing vi (or lepton); 
and q’ is the four momentum of the outgoing particle that scatters with the vi (or anti- 
lepton) (see Fig. 1); s = (p + q)‘, t = (p - p’)‘, u = (p - q’)‘, i,j = F,T, i # j, and 
c = (2sin2 0~ - 1)2 N 0.292. 

PROCESS 

Annihilation 

’ Cspin I”12 

Vi + Vi ~ e- + e+ 
vi + Vi -+ Ue + De 
pi + c’i + uj + cj 

Scattering 

““W2” -t*c4 

8G$2 

vi + e- + Vi + e- 
vi + ef + Ui+e+ 
ui + ue + Vi + U, 
Vi + Fe + U; + fie 
Vi + I/i + Vi + U; 
ui + Uj -) Ui + Uj 
Vi + Fi * Vi + fii 
ui + Cj + Ui + Yj 

8G2 (cs2 + bd) 
!f 8G,(bs2 + cd) 

8G2 2 
8G d r 
8G 8-2 

f 8G,sZ 
“;332 ) 

F 
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Figure Captions 

Fig. 1: The labeling of four momenta for neutrino interactions, cf. Tables 1 and 2: and 
our definitions of the Mandelstam variables s, t, and U. 

Fig. 2: The evolution of the temperature difference between neutrinos and photons, bs(t) z 
(To-, - T)/T, assuming that neutrinos do not participate in the e* entropy transfer (solid 
curve), and taking into account the slight back reaction of neutrino heating on the photon 
temperature, b(t) = (TL, - T)/T (broken curve). The small correction to the photon 
temperature, STY/T is also shown. Note since we have used Maxwell-Boltzmann statistics, 
today T,/T = 3’13 rather than (11/4)‘j3. 

Fig. 3: The perturbation to the electron-neutrino phase-space distribution, AWC(p/T:t), 
for T = 8 MeV, 4 MeV, and 1 MeV. The broken curves show the perturbation that would 
result if electron neutrinos maintained good thermal contact with the electromagnetic 
plasma, in which case AWe = (p/T)e-P/T6. For very small values of p/T, AvS is negative. 

Fig. 4: The evolution of the effective neutrino temperature, (T,R - T)/T, for neutrino 
momentap/T = 3,5,10,15. The photon-neutrino temperature difference J(t) z (T,-T)/T 
is also shown (broken curve). “Electron-neutrino decoupling” occurs at a temperature of 
around 2 MeV, though these curves very graphically illustrate that the decoupling process 
is not instantaneous and is momentum dependent. 

Fig. 5: Same as Fig. 4, except for mu/tau neutrinos. “Decoupling” for mu/tau neutrinos 
occurs at a temperature between 3 MeV and 4 MeV. 

Fig. 6: The evolution of cYpy/p,, for electron neutrinos (solid curve) and mu/tau neutrinos 
(broken curve). Asymptotically, 6pyt/pye + 1.2%, and 6pvP/pvv -+ 0.5%. This corre- 
sponds to roughly one additional relic neutrino per cmm3 per species. 

Fig. 7: The evolution of ~Yp,~/p, with (solid curve) and without (broken curve) the coupling 
of Y,‘S to vlr’s and vr’s. The coupling of the mu/tau neutrinos to the electron neutrinos 
does not significantly alter the heating of electron neutrinos by e* annihilations. 

Fig. 8: The evolution of the neutron fraction in the standard scenario; at a temperature 
of about 0.1 MeV the neutron fraction has frozen out at a value of about 0.2. 

Fig. 9: The evolution of 6X,(t), the change due to the decrease in the photon temperature, 
and 6X,,(t), the change due to the distortion in the electron-neutrino distribution. 

Fig. 10: The neutron production, (1 - X,)6X,,, and destruction, X,6X,,, terms in Eq. 
(4.13). 

Fig. 11: The functions gi(p,q’), cf. Eqs. (A21) - (A.24): (a) g1(p,q’)/64(q’/T)2e(P--9’)/2T; 
(b) -gz(p, Q’)/64(q’/T)2e(p-4’)/2T; and (c) ga(p, q’)/64(q’/T)2e(P-q’)/2’. 
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