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ABSTRACT 

We propose a new measure of statistical distribution of fluctuations on various scales, namely, counts- 

in-cells of smoothed density field. Using volume-limited samples of galaxy redshift catalogs, it is shown 

that the distribution on large scales, with volume-average of the twwpoint correlation function of the 

smoothed field 5 0.05, is consistent with Gaussian. Statistics on smaller scale are shown to agree with 

Fry’s BBGKY hierarchical model and the negative binomial distribution remarkably well, which may 

suggest that our universe started with Gaussian fluctuation and evolved keeping hierarchical form. 
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1 Introduction 

Increasing number of possible scenarios of galaxy formation have been proposed, as high energy physics 
theories are considered more deeply, which should describe the early universe when the seeds of primordial 
fluctuations are provided. It is an important role of observational cosmology to provide statistical tests 
which help us to single out the correct one. Primary tests, so far used, are the amplitude and shape of the 
two-point correlation function of galaxies as well e.s the isotropy of microwave background radiation. Both 
of which can in principle be calculated from the amplitude and spectrum of the primordial fluctuations 
once the matter content and the thermal history of the universe are specified. Scenarios yet surviving 
today, of course, satisfy minimal requirements of these constraints. In order to go a step further, we 
should apply other tests, examining different statistical properties such as the statistical distribution of 
density fluctuations, on which two-point correlation function does not provide any information. 

Although standard inflationary models predict Gaussian distribution of primordial density fluctua- 

tions, some other scenarios, such 8s cosmic strings (e.g. Zel’dovich 1980; Vilenkin 1981; Perivolaropoulos, 

Brandenberger and Stebbins 1990) global textures (e.g. Turok and Spergel 1991), or solitons (FEeman 
et a[. 1989; Griest and Kolb 1989) might have different, non-Gaussian, distributions. One expects that 
the distribution of fluctuations at earlier epochs of the evolution should still be present and observable at 

large scales, where neither gravity nor any other physical interaction has had enough time to deform it. 

At smaller scales, gravity has changed the original distribution to a different one which we know, from 
the observed galaxy distribution, it is non-Gaussian. Hence it is important to examine the shape of the 
statistical distribution of density fluctuations on various scales. 

Unfortunately, however, it is not easy to lind a good measure for this purpose. It is quite likely 

to find apparently Gaussian distribution due to the central limit theorem even though fluctuations are 
intrinsically non-Gaussian. For example, Baungart and Fry (1991) have recently investigated statistical 
distribution of the power spectrum at several wave numbers and found that it is well approximated by 
Gaussian even on small scales, where we know statistics can not be Gaussian (see below). The apparent 
Gaussian distribution they obtained would be a result of averaging over the direction of the wave number 
vector, as pointed out by Suginohara and Suto (1991). Other tests for the statistical distribution include 
analyses of higher order correlation functions (e.g. L&w et al. 1991), statistics of genus numbers (e.g. 
Gott et al. 1989) and those of contour crossing numbers (Ryden et al. 1989), none of which directly 
measures the distribution itself (see also Scherrer and Bertschinger 1991). In this paper we propose a 
different statistical test by modifying counts-in-cells method, which meawre~ the statistical distribution 
of fluctuations on various scales directly. 

Counts in cells, i.e., the probability, PN(V), to have N galaxies within a randomly chosen cell of 
volume V, reflects the statistics of fluctuations because it depends not only on the power spectrum 
or two-point correlation function, but also on arbitrary higher-order connected correlation functions or 
cumulants (White 1979). In particular if fluctuations obey Gaussian statistics the void probability is 
given by 

PO(V) = exp [-EV + +wE(v)] , (1) 

where E is the mean number density of galaxies, and t(V) is the volume average of two-point correlation 
function: 

Z(V) = /, d3T;;3T2E(lrl -*al). (2) 

One may naturally think that if primordial fluctuations had Gaussian statistics the above expression 
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would fit observational data at large enough volume V, where scale fluctuations are still in the linear 
regime, keeping the memory of initial condition (Peebles 1980 $39). In fact the above expression has been 
tested by Fry (1986 and 1989), who compared predictions of various models with observational data and 
found that the above Gaussian model was the worst even on large scales among the six different models 
considered. (See also Figure 7 below). 

This does not necessarily imply that the primordial fluctuations were highly non-Gaussian for two 
reasons. One is that no matter how large the volume is, z(V) depends on correlation function at small 
scales as well where fluctuation is non-Gaussian due to nonlinear evolution. The other, more generic 
reason, is related to the positive semidefiniteness of number-counts or density. 

In order to realize Gaussian distribution, the dispersion, i?, must be much smaller than the average 

number, iJ, to avoid negative counts. For a continuous density field Z = x6, so that (T Q x implies 

f < 1. For discrete counts Z! = d-m, so that zi < x implies 2 d: 1 - x-l. Thus the distribution 

cannot be Gaussian on scales 5 8Mpc where observed galaxy distribution has x 2 1 (Davis and Peebles 
1983). Fry (1986) has further argued that it is impossible to obtain Gaussian distribution of nunber- 
counts in a volume containing m galaxies with z 2 l/r on average. Since R is an increasing function 

of length scale in the interested range, we cannot make use of counts-in-cells statistics as it is in order to 
examine if primordial fluctuations obey Gaussian statistics. 

In the present paper we consider a statistical measure which is free from the difficulties mentioned 
above, that is, counts-in-cells of a smoothed density field. By smoothing the data we can focus on the 
information on large scales, with smaller values of <, and examine the statistics of fluctuations on various 
scales, so that we can not only probe the primordial statistical distribution but also trace its evolution 
in the presence of gravity. 

The rest of the paper is organized as follows. In $2 we consider properties of discrete and smoothed dis- 
tribution in relation to the original continuous density distribution function. $3 is devoted to explanation 
of the algorithm and discussion of the significance of our method through the analysis of artificially- 
generated data. In $4 we report the results of our analyses of four different galaxy catalogs both on large 
and small scales and their implication is discussed. Finally $5 contains the conclusion. Throughout the 

paper we take the Hubble parameter Ho = lOOhkm/sec/Mpc = lOOkm/sec/Mpc. Dependence on h is 
readily recovered by putting h-l before the unit of Mpc. 

2 Discrete and smooth density fields 

2.1 Effect of discreteness of galaxy distribution 

As stated in the introduction, our primary purpose is to extract the statistics of original continuous density 
field, p(r), out of the discrete distribution of galaxies. It is evident that the smoothing procedure of a 
point distribution alone does not recover the original distribution, since galaxy formation is considered to 
be a sort of random process which may depend on p(r) nontrivially. Here, in order to remove uncertainty, 
we assume the simplest possibility that each galaxy is a faithful tracer of background density distribution 
and that galaxy formation is a Poisson process out of it. Possible effects of biasing (Kaiser 1984, Bardeen 
et al. 1986) will be considered elsewhere. 

In the Poisson model the probability that a galaxy emerges in a volume 6V at r may be calculated 
according to the Poisson statistics with local mean number (6IV(r)) = p(r)bV. The moment generating 
function yields 

Msv(t) = 1 - p(r)dV + p(r)bVe’ = exp[(e’ - l)p(r)bV]. (3) 
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The generating function of moments of counts in a volume Vn = FR3 is found by multiplying equation 

(3): 

MD(~) = ( exp [J, p(r)dV(e’ - l)] ) E 8*(t), (4) 

where X(R) is the mean number of galaxies found in a volume VR and Icy is the corresponding 
generating function of curndants. It is related with the cumulant generating function of the original 

continuous field, Kc(t), as 
KD(t) = Kc(e’ - l), (5) 

by which we find the following equalities. 

7TaKDz = N%ca t?v, 

Yv3E D3 = N3EC3 + 3mzTEcz f 77, 

3% ~1 = ?Xc4 + 6ii%c3 + ITfs=Kc~ t F, 

‘.*.‘.‘.....T 
--.I 
N EDJ 

1 
= ihc, t zJ( J - l)~“-‘~~(~-~) + . . . + p’-’ - l)?TEcl + 7V, (6) 

where TEDJ and TECJ are volume-averaged cum&ants of discrete and continuous fields which are calcu- 
lated through differentiating generating functions as KbJ’(1 = 0) = ?Q,J and K$(t = 0) = ?EcJ, 
respectively. Thus the J-th order cunulant of observable discrete field depends lower order cumulants of 
the corresponding continuous field as well. 

As is seen above, if the cell is so small that it contains only a small number of galaxies on average, 
the last term on the right hand side of each equality, the shot noise, dominates and the distribution does 
not reflect the background density field at alI. On the other hand, we may avoid effects of shot noise 
by employing large enough cells with a large value of x, so that cumulants of discrete counts are well 
approximated by those of the original continuous field. This is a merit of counts-in-cells analysis which is 
absent in the statistics of density at each point (Saunders et al. 1991). Strictly speaking, one must have 

x%2, > iJ(J - l)KC(J-I), (7) 

in order to guarantee ?~EDJ % xJE,=~ for all J. This inequality, however, should merely be regarded 
as a sufficient condition for the probability distribution based on E&S to coincide with the original 
distribution. In practice, the measured distribution of density fluctuations might only be sensitive up to 
a finite number of J, in particular in the linear regime, and one would like to check if inequality (7) is 
satisfied up to a large enough .7 for each particular value of X. We return to this point later when we 
consider specific models of KCJ. 

2.2 Properties of smoothed distribution 

In this paper we treat each galaxy in the catalogs not as a point but as if it has a continuous Gaussian 
density distribution peaked at its original point with dispersion o. Thus, the fluctuation of the smoothed 
field at x, 6z(x), is given by 

6>(x) = /6n(i)(~~)~e-~d3d 

= 7W’ - 4 -ii 1 c&3e -%yp,,= c 1 i (&f& -w, 
63) 
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where 60 is the Dirac delta function, xi’s are original positions of galaxies, and 6%(x’) represents their 
fluctuation. We denote quantities of smoothed field with overhat and s&ix g as above. 

As is well known, physical meaning of this smoothing is prominent seen in Fourier space. Define 

Fourier transform of each fluctuation as 

b(k) = / 6n(x)e’kxd3r, 

c(k) = / 6?‘&)e’k*d3z, 

and 

respectively. Then the latter is related with former as 

c(k) = e-*6(k). (11) 

Thus the smoothed field contains full information on large scale with k < u-l but small-scale information 
is exponentially suppressed. This means that one may concentrate on large scale which keeps memory 
of initial data without being contaminated by effects of nonlinear evolution. In particular, if initial 
spectrum of fluctuation obeys Gaussian statistics with random phase and if this holds for k 5 u-l today, 

higher-order moments of fluctuation in a volume V, 63(V), are given by 

@==(V)2*) = $$ [/,, d3rld3r,(6z(T1)6;(Tz))]’ 

= 02) 

and (6>(V)aa+1) =z 0, where z and g(V) are mean number density and averaged correlation function of 
the smoothed field, respectively. Thus the probability distribution function of 63(V) will be Gaussian, 

- 

W=V-)l = J& exp -2;$:);) 1 , 

if the average value, z(V), is much larger than In-F 6,N V to ensure positivity of the distribution. 
In this paper we choose the sampling cell to be a sphere with varying radius R. (See Eli&de and 

Gaztaiiaga (1992) for dependence of discrete counts on cell’s shape.) Then (6B(V)2) F (63(R)2) 
above is given by 

(62(R)*) = 8 /(lkk)l’) (sin kR -k”;” ‘OS kR)’ dk. 

If the correlation function of the original distribution is approximated by a power law, 

4(r) = (y, 

(14) 

(15) 

then (16(k)12) is given by 

(IW’) = r;;s;i$, k+, 
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(Peebles 1980) so that (63(R)“) is theoretically calculated: 

k7-‘e-u2ka (sin kR - kR cos kR)‘dk, 

which will provide a consistency test of our analysis below. 
Somehow we have smoothed the field twice, fist with a Gaussian window of size n and them with a 

top hat window of size R. We do this for practical reasons and one should keep in mind that there is 
only one significant parameter that quantifies the smoothing. A good way to characterize the amount of 

smoothing is to follow the values of the smoothed dispersion g. 
We can also consider how smoothing affects shot noise by calculating the cumulant generating func- 

tions of the smoothed field, 

and 

d3rp(+‘,(R, r)t I> , 

for continuous and originally discrete distributions, respectively. Here the integral is over the total 
volume, VT, of the entire sample and WJR,r) represents integrated smoothing function defmed by 

I 
R 

W,(R, r) E 4n r”dr’ 0 
Differentiating equations (18) and (19) with respect to t, one can readily find that redundant terms on 
the right hand side of equalities (6) decreases considerably through smoothing, which is natural since 
shot noise is most prominent on small scales. 

3 Method to measure statistical distribution of fluctuation on vari- 
ous scales 

3.1 Algorithm 

The algorithm of our analysis is simple. First choose a set of parameters, LT and R. We always take R > g, 
since information on scales smaller than c is suppressed. Next choose a center of a sphere randomly in 
the survey sample. We adopt and compare two different prescriptions to deal with the boundary problem 
associated with it. One is to take a center so that the entire sphere is contained in the surveyed region. 
The other is to adopt a periodic boundary condition. If some part of the cell falls outside the sample, 
we choose an antipodes appropriately and place another cell there and add up counts in both cells so 
that the deficit is compensated. Either prescription, however, is by no means free from problems; the 
former tend to overweight the central region of the sample, while the latter corresponds to forbidding 
fluctuations on scales larger than the dimension of the sample. Since observational data are available only 
for a tiny portion of the entire sky today, all we may do is to compare the results of these prescriptions 
and guess the magnitude of errors caused by the smallness of the data. Both prescription should give 
the same results if R is adequately smaller than the size of the sample N 1OOMpc. Below we find that 

5 



periodic boundary condition gives a better results in general, since it mimics the contribution of galaxies 
outside the sample which is absent in the nonperiodic boundary prescription. 

Once a sphere is placed in the sample, we sum up the contribution of each galaxy to the cell. The 
galaxy at x contributes to the count in the sphere centered at the origin with the amount of 

N(0, r, CT, R) = 
&)3 Jx,<P [-%:“] d3x (20) 

= *(e~p[-(~~:)‘] -exp[-(R~‘P)Z]}+~erf(~)+~erf(~), 

where 

is the error function. 

erf(r) s -$i’: e-“dt 

We repeat the above procedure many times so that the sampling spheres overlap with each other to 
a considerable extent, which we can quantify in terms of the frequency each point is covered by a cell 
on average, which we shall calI the coverage, c. Although the value of c does not affect our estimate of 
probability distribution P[SB], it certainly does control the magnitude of estimated error bars. In fact 
if we took c too large, statistical error would be reduced incorrectly. Hence we should impose some upper 
bound on c, that is, one must know which is the total number of statistically independent cells (see Otto 
et al. 1986). 

One may wonder that it should be e = 1 to avoid overcounting. However, this is not the case, because 
what we accumulate is not the position of each galaxy within each cell but its effective total number, 

a coarse-grained quantity. Hence c can be much larger than unity in general. The information we can 
obtain, after performing the analysis with coverage c, is the effective total number of galaxies within a 

volume the of order of the “resolution volume” VR E K/e < V. all over the sample, although its size and 
accuracy may fluctuate due to the randomness of OUT sampling procedure. 

Now let us ask a question: with the above information alone, to which extent could we predict the 
effective total number of galaxies within another randomly placed sphere with volume V. ? One can write 
it as 

N = C niV~~ + C fjnjV,j, 
VRiEV. VRjE8Vc 

where the first summation is over the resolution cells, VB;, which are fully contained in V. and the second 
runs over those crossing the boundary with fj being the effective number-fraction of galaxies contained 
in V,. The former involves N Vc/V~ = c terms while the latter has N (V./VR)~/~ = # terms. It is the 
second part that causes error in the estimate of N. Thus we can predict N up to the accuracy of 

AN CV~~E~V. fjTJ’& 1 w 
- = CVR;~VeniVR< N ii ’ N 0 (22) 

If this quantity was found too small, this would imply that there had already been a cell in our analysis 
whose center was very close to the new one’s, which in turn would mean that we had placed too many 
cells in the original procedure. In order to keep independence of each cell in ou analysis, the above error 
should remain large enough. Its reasonable lower bound would be given by the statistical fluctuation in 
the sample. Thus we take the coverage to satisfy 

(23) 
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or 

This constraint becomes weaker as we increase LT or V,, since it is more difficult to verify that two different 
cells are actually dependent with each other in smoother distribution. However, it is not meaningful to 
have the resolution volume VB much smaller than the smoothing volume V, = 2u3. We have chosen 
the value of c keeping this point in mind in the case inequality (24) does not give us a strong constraint. 
In practice the number of cells placed in each calculation ranged from 210 to 770 depending on samples 
and values of parameters. 

Once the number of independent cells, N,, is calculated, one would like to set the size of the bins, 
A&%, into which we accumulate the calculated results in order to reconstruct probability distribution. 
When N, is small we have to take a larger value of A63 so that each bin contains large enough events 
to keep the relative error small enough. Thus we end up with less number of histogram bars. 

The error in the estimation of the probability of a given bin, p s P[6p]A63, is calculated in terms 
of the binomial distribution, which gives, 

(25) 

for p < I. By imposing an upper bound on this error one may iind a lower bound on A63 when P[SD] 

is known. We fn it so that pN. > 10 at the bins corresponding to 63 = EL F (6,N ). That is, each 

probability bin near the peak is estimated at least using ten cells, which is adequate for B x1 test. 

In practice, since we do not know the probability distribution a priori, we f&t assume Gaussian 
distribution with dispersion given by equation (17) using the observed values of 7 and ~0 (see Table 
1 below) for the first estimate of N. and A63. Then we run the program once to estimate P[63], 
from which we compute the fInal values of N. and A63. With these values of parameters we repeat 
the calculation for ten times to compute the fInal result of P[63] and its errors. In the figures the 

probability distribution is depicted in terms of points, indicating the hight of a histogram, with errorbars. 
The probability distribution of density fluctuation contains all the statistical information as it is related 
with the characteristic function by equation (32). 

3.2 Significance of the method 

As we are proposing a new method to probe statistical distribution of fluctuations on various scales, we 
shouldmake sure that it is not affected by some bias, suchas shot noise or the centrallimit theorem, which 
artif?ciaUy reproduces a Gaussian distribution. Although it would be interesting to generate various data 
artif?cially using N-body simulations to test our algorithm, we have generated some simple distributions 
with extreme statistical properties to check this point for the moment. We have restricted OUT simulated 
samples to have the same total volume, shape, and twepoint correlation function as the galaxy samples. 
We also change the density (with fixed correlation and volume) to check how the distribution is affected. 

First, in order to test the sensitivity to the intrinsically non-Gaussian samples, we have generated 
a non-Gaussian sample by introducing large-scale coherence i.e. a wall in which points are distributed 
randomly with higher density than the background. One could choose the size of the wall in a given 
sample to obtain the desired two-point correlation function. In Figures 1 and 2 we present the results for 
an artificial distribution with points located in the same region as the galaxy sample CfANBO (see Table 1 
below) and with the same number of points. The artificial sample, WA80, has alI the points in a spherical 



wall of 10 Mpc thick (between redshift 6500 km/s and 7500 km/s) with a density contrast of N 3. This is 

a simple simulation of the so called ‘Great Wall’ (Geller and Huchra 1989). As is seen in Figures 2, the 
statistical distribution is observed to be non-Gaussian even for very large cells and smoothing parameter 
LT. Deviation from Gaussian distribution is more important at the characteristic scale of the wall, that 
is, around 10Mpc. We have also tried various walls with different thickness and density contrast, in all 
of which we have obtained non-Gaussian distributions at some characteristics scales. These preliminary 
results prove that our algorithm is sensitive to non-Gaussian fluctuations and not affected by the central 
limit theorem. 

Next we have changed the number of points in the samples considerably, without changing the corre- 
lation function, to test if our method is affected by shot noise. As a result, no change in the statistical 
distribution was observed between the simulations with the same number of points as the galaxy sample 
and those with much more points. 

As mentioned in section 2.2 we smooth the the density field twice, so that the same amount of 
smoothing can be achieved with different combinations of the values R and n which we use to characterize 
the fluctuations. An independent way to characterize the amount of smoothing is to measure how much 

we dump the density fluctuations which is measured by E(R). A good test for our algorithm would be to 

check that the measured distribution of fluctuations depends only on c(R) and not on the combination 
of R and n. Although limited by the actual size of the sample, we have performed this test both for 
simulated samples and for real samples, and a good agreement has been found. For example, in the 

sample CfAN80 the measured value of the dispersion for v = 12Mpc and R = 18Mpc is g = 2.1, the 

same as the value obtained for c = 14Mpc and R = lGMpc, and the shape of the distribution of density 
fluctuations was found very similar to each other. This is another good proof that our analysis is free 

from the shot noise because it shows that the result is independent of the average density in a cell, x. 
As a further test, we compare the first and second moments of the probability distribution in each 

case with the expected values from the density and the two-point correlation function of the discrete 

sample. In principle the average density in a cell %$ should be equal to the sample density times the 

volume on the cell, 477R3/3, which is independent of (r. We have found, however, that z decreases with 
increasing o for very large cells. This is because the Gaussian smoothing spreads the points outside the 
boundaries of the samples. When we use the prescription of periodic boundaries most of this effect is 

compensated provided v Q R. But there are still some differences for (T N R. This discrepancy does 
not seem to affect much the shape of the distribution of fluctuations, as has been tested by comparing 
the resulting distribution with the distribution obtained when we used different values of R and n with 

larger (R - u) but with similar c. 
A further check is obtained from the agreement between periodic and non-periodic boundaries strat- 

egy. We tind both prescriptions agrees with each other reasonably well except for the fact that there is a 
characteristic cut-off in the tail of large density fluctuations for large cells in the non-periodic boundary 
prescription. This comes from the Gaussian spread of each galaxy outside the boundaries. 

4 Analysis of observational data 

4.1 Galaxy catalogs 

We use two different catalogs of galaxies for our analysis. One is North Zwicky Center for Astrophysics 
((X-4) cat&g with TW < 14.5, 6 1 0, and p 1 40’ which has a solid angle of 1.83sr (Huchra et al. 



1983). The other is the Southern Sky Redsbift Survey (SSRS) of di ameter-selected galaxies from the ES0 
catalog with 6 5 -17.5’, bl’ 5 -3O”, and th e solid angle of 1.75sr (Da Costa et al. 1988). Heliocentric 
redsbifts are corrected only from our motion with respect to the rest frame of the Cosmic Microwave 
Background; u = 365km/sec and the direction (q6) - (11.2h, -7”) (Smoot et al. 1991). 

We have taken two different volume-limited samples out of each redshift catalogy as shown in Table 
1. In addition to the limiting radius, Q,,, we have also put a cutoff at T = 25Mpc. Galaxies with smaller 
redsbift are not taken into account since their typical peculiar velocity is as large as recession velocity 
in general. Samples CfAN80 and CfAN92 include galaxies brighter than MB = nz~ - 25 - 510g%i,, 
where rn~ = 14.5 is the limiting apparent magnitude. Samples SSRSBO and SSRS115 include galaxies 
with physical diameter greater than dE, = ~,,,Scut, where t?,,, = 1’.26 is the ‘face-on’ diameter cut-off. 

We use volume-limited samples because they provide an unbiased trace of the galaxy distribution of a 
given range of absolute magnitude. This is not the case for apparent-magnitude-limited samples, where 
a selection function must be introduced. The price we pay is that we end up with a small number of 

bright galaxies. As we are interested in the smoothed field at large scales, having more galaxies does not 
necessarily give a better statistics as shown in the previous section, whereas using a selection function 
would introduce big uncertainties even in the value of the density. Properties of similar volume-limited 
samples have been studied by several authors (e.g. Einasto, Klypin and Saar, 1986; Davis et al., 1988; 

Hamilton 1988; Pellegrini et a[. 1990; Maurogordato and Lachitize-Rey 1991; Zucca et al., 1991). 
The two-point redsbift correlation function is estimated in the usual way, that is, counting pairs at 

a given redsbift separation interval, (3,s t ds). To avoid problems with edge effects, the counts are 

normalized with pair counts between the galaxies and a simulated catalog of randomly distributed points 
within the same sample boundary (the control sample), i.e., 

(26) 

Here, NDD(~) is the number of real galaxy pairs with redsbift space separation (8, s + ds), and NDR(S) 
is the number of pairs at the same separation with one point in the data and the other in the random 
control sample. The total number of galaxies in the random and galaxy catalogs are NR and ND. To 
obtain a better trace of the boundaries, the control sample has been chosen to have three times as many 
points as the corresponding galaxy sample, NR = END. Each correlation function is an average of the 
correlation functions computed over d&rent realizations of the control sample. 

For the shake of clarity, we use for Figure 3 the volume-average of two-point correlation, that is, 

t/, 
((s’)d3d = VJz(d) N ?(a) 

with V the volume of a sphere of radius 8. For a power law, VJ3(d) is just proportional to ((8) and also 
to t(s). The correlation length, so, and power index 7 of each correlation function are also shown in 
Table 1. There we have fit the data in the range of s = 5 - 20Mpc, since we are interested in these large 
scales. The best fit values of these parameters, however, change considerably depending on the range of 
scales we try to fit. Thus one should keep in mind that so and =y typically suffer from the errors of, at 
least, flMpc and hO.1, respectively. 

The correlation in all of the samples is very similar, in agreement with Davis et al. (1988) and 
Pellegrini et al. (1990), but different from the ‘standard’ value q, - 5Mpc, 7 - 1.8 (Davis and Peebles 
1983). This might be caused, partially, by redshift distortions, but it is not clear yet whether there are 
other selection effects (see Eiiasto, Klypin and Saea 1986; Hamilton 1988; Davis et al. 1988; Maurogordato 
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and Lachiize-Rey 1991; F&man and Gaztmiaga 1992). Using the average values of our samples, 7 = 1.55 
and so = 7.5Mpc, we fmd the scale of nonlinearity with t N 1 to be N 1OMpc in contrast to N BMpc 
found by Davis and Peebles (1983). 

4.2 Gaussian fluctuations on large scale 

In terms of the algorithm presented in section 3 to measure the distribution of density fluctuations, 

we have analyzed the samples with various values of R and u using a number of tests to measure how 
Gaussian the distribution is. The result is summarized in figures 4 and Tables 2, where we showed the 

dispersion c, the skewness, G z ((N - E)3)/z3, th e and consistency with a Gaussian distribution in 

terms of x1-t&. Nx represents the number of data bins used for fitting, each of which contains ten or 
more events. As is seen in Tab& 2 the distribut&zbecomes less skewed asze increase n with fixed B. 
Statistical errors are l-3% in N, and 4-6% in (6,N ), so that the error in & is around 10%. Errors for 

(63’) increase with the cell size from S-10% to up to 60%. For the smallest values of the skewness, the 
error is comparable to the observed value. 

The x2 fit does not necessarily exhibit monotonic behavior, because the test is sensitive only to those 
bins aromd~ the peak. We have also tried Kolmogorov-Smirnov test using the binned data but it always 
resulted in high consistency with more than 99%. 

Our results imply that it is not until smoothing length is as large as o 2: 14Mpc or & N .05, which 

is considerably larger than the scale of nonliniarity, that the distribution becomes practica!.ly Gaussian. 
This is consistent with previous analyses using different methods (e.g. Ryden et al. 1989). We also note 
that the calculated values of (b>(R)') were in agreement with the theoretical estimate (e.q. [17]). 
Figures 4 depicts the case m = 16Mpc for all the samples with periodic boundary condition. 

4.3 Gravitational effects on the statistics 

Aa is mentioned above, the statistics deviate from Gaussian distribution even in the linear regime with 

gel. w e now consider theoretical modeling of this deviation which is a consequence of gravitational 
instability. Although a lot of models have been tested in the discrete version of counts-in-cells (e.g. Fry 
1986; B&an and Schaeffer 1989b; Fry et al. 1989; Maurogordato and La&i&he-Rey 1991; Cappi et al. 
1991), few of them are theoretically well-motivated. Here we consider two specific models and compare 
them with observation. 

4.3.1 Hierarchical BBGKY distribution 

This model has been formulated by Fry (1985) based on the hierarchy ansatz of irreducible J-point 
correlation function, KJ, which is expressed as 

w = QJ gt”-’ 
I 

(see also Balian and Schaeffer 1989a, 1989b and references therein). Here the product of two-point 
function, [ii, is over J - 1 independent pairs of relative separations and the sum, consisting of jJea 
terms, is over equivalent reassignments of labels i,j = 1,2 , . . . , J. The above equality is supported by 
some observational evidence at least up to some finite order (Groth and Peebles 1977; Davis and Peebles 

1977). Extending the earlier work of Davis and Peebles (1977), Fry (1984) has found that BBGKY 
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equations in the strong clustering limit can be consistently solved with constant Q/s, independent of the 
form of E(T), provided we iteratively choose QJ’s to be 

QJ = (y)J-2 2(J( 1)> 

where Q is the three-point amplitude. 

Thus J-th order cumulant of fluctuation in the volume V, (6N”(V)),, is given by 

(6NJ(V)), = (TW)~ /yJ d3rl. _. d3rJnJ 

Hence the characteristic function of A = SN(V)/(?iV) is calculated as 

(P) = exp k@gkJ] 

1 
= exP Q e 

1 J 

rq7it k+ - I)] G f(t). 

Finally, the probability distribution of A is derived in terms of the inverse Fourier transform, 

J’(A) = 1 $(t)e-“A, 

(30) 

(31) 

(32) 

which depends on x and Q as well. This distribution approaches Gaussian as < decreases. The non- 
Gaussian behavior is prominent when z > (48)-s 2 .05 with Q z 1 (Fry 1985). From equations (26) 
and (29) we find that the inequality (7) is valid up to J = 5 for m = 5 in this model. To compare with 
the observational data we have performed a numerical fast Fourier transform to evaluate equation (32). 

4.9.2 Negative binomial distribution 

The other model we consider is the negative binomial or modified Bose-Einstein distribution. It has 
been used in a number of fields with different physical backgrounds such as quantum optics (Klauder 
and Sudarshan 1966), hadronic multiplicity (Carruthers and Sbih 1963), galaxy counts in a Zwicky 
cluster (Carrothers and h&h 1963) or large scale galaxy counts (Fry 1986). The distribution has been 
theoretically x-derived by Eli&de and Gastaiiaga (1992) in an appropriate manner to our problem by 
introducing a correlation to uniform Poisson distribution. 

What they call quasi-Poisson distribution is derived as follows. First divide the sample of N points 

to m identical dells of VO~UIX V, = VT/~ and consider the probability, P,=+(kl,. . , k,), of having kj 
particles in the j-th cell. We assume that each cell is independent with each other and the distribution 
is characterized by volume-averaged two-point correlation function z(V.) Q 1 with negligible higher- 

order correlations. Now we consider adding one particle to the system without disturbing its statistical 
properties. The probability that this particle is placed in the j-th cell, which contains kj particles, is 
proportional to 

pEj(kj)[Ej(kj + l)I = P[JMkj) n EAkj + 111 = WJj(kj + 111 
P[Wb)l P[JUk~)l 
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~ 1 + kj~, (33) 

where Ej(Z) denotes the event that the j-th cell contains 1 particles and we have assumed kjz << 1. Hence 
we find the following recurrence formula. 

PN(kl ,...I k,) = FPN-l(kl,..., kl - I,..., k,) ’ + (k’ - ‘)’ 
I=, m + (N - l)?’ 

which yields, 

P,v(kx,...,km) = k& ", I iji ii 
1 t (I - 1K 

m.,=lj=lm+ (&:ki+l-I)<' 

(34) 

We can also express the probability in terms of a new variable zi, number of cells containing i particles 
inside. as 

P(&J,*..,ZN) = (()!)=a .fl;N!).,, nE;‘(m + I?) ’ 
from which we find the expectation value of 2;: 

(=;) = TAT (?? t i) r (mz-l) I? ((TI - I)<-’ + N - i) 
(N - i)!i!@ (z-’ + 1) r (cm - I)?-I) ’ (37) 

(36) 

Finally the desired quantity, the probability to find i particles in a cell, is obtained by taking m -+ m 
and N -t 00 with N/m = iiV. =constant: 

Pj(Vc) = fi,g = qr ‘(1+ glvJ’-‘-x j&l + jQ, 
j=l 

which is nothing but the negative binomial distribution with volume-averaged two-point correlation 
function z(Vc). 

In the limit < + 0 equation (38) reproduces the Poisson distribution. This is why it was named 
quasi-Poisson. Note, however, that it also mimics Gaussian distribution in that higher-order correlation 

has been set to Bero in each cell and that cells are assumed to be independent with each other so that 

its power spectrum has random phase. In this sense one may well call it quasi-Gaussian as well. In the 
continuum limit ?iV. -t 00 with z = i/(EVc) constant, the probability distribution yields 

P[z] = $IllEv.Pj[v,] = r(Fi’)l(E-‘“)‘-‘-l’-~-‘.. 

If we further take the limit < -+ 0, it approaches Gaussian: 

+I = kexp [Jz;;“], L$< 1. (40) 
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As is seen above, this model has no free parameter unlike Fry’s hierarchical model. We also note that 
the negative binomial distribution, too, has the hierarchical property (e.q. [zs]) with QJ given by 

In this model the inequality (7) is satisfied up to as large J as J = 10 for m = 5, so that, in practice, 
the discrete distribution still contains information of the continuous field at large scales. 

An interesting feature of this distribution is that for all scales the density is always positive which, as 
pointed in the introduction, is not the case with the Gaussian distribution or the hierarchical BBGKY 
model. 

4.4 Comparison with observation 

Figures 5a-d show the statistical distribution of the smoothed field in a sphere of radius R = 16 or 18Mpc 
with different smoothing scales with periodic boundary condition. Those with nonperiodic boundary 
condition are depicted in Figures 6 for CfAN92 sample for comparison. In these figures we have depicted 
Fry’s distribution with Q = 0.6 and negative binomial distribution. As seen there, both of the curves 
fit remarkably well. We note, however, the best fit value of Pry’s parameter Q = 0.6 is significantly 
lower than the observed value Q N 1, although there is much mcert&.ty in it (Groth and Peebles 1977). 

In fact Q N 1 does not fit the data at all for Q 5 1OMpc where fluctuation is non-Gaussian. Tables 3 
summarize the results of fitting to Fry’s model with Q = 0.6 and negative binomial distribution based 
on the x1 test. 

Finally, for completeness, we depict the result of counts-in-cells of discrete galaxies in Figure 7. The 

scaling function, x 3 - h(P~/‘iiV,) is plotted for different values of iiV.f, where 5iVc and < are the average 
density and dispersion from the measured counts-in-cells in a spherical cell of volume V,. We have used 
a similar algorithm as in 93.1 with periodic boundary condition, which is necessary to reproduce the 
expected values of ii& and j. 

5 Conclusion 

In the present paper we proposed a new method to examine the statistical distribution of fluctuations on 
various scales. We have been able to prove that the method can significantly distinguish the deviations 
from a Gaussian distribution, and is not affected by the central limit theorem. Besides we have shown 
that the analysis is free from shot noise in the particular situation we inspected, as explained in section 
3.2. 

Although it is usually assumed that density fluctuations on very large scale should trace primordial 
density fluctuations, it is not clear how large this scale should be. We have found that the statistical dis- 
tribution of density fluctuations on large scales becomes practically Gaussian if the value of the smoothed 

correlation function drops to g w 0.05. In our analysis this value correspond to scales of N 14Mpc as 
we use a Gaussian window function. For the standard top-hat window function, the corresponding scale 
should be larger. If the correlation function is a power law with power 7 N 2, and amplitude one at 8 
Mpc, the corresponding scale for a top-hat window would be N 30 Mpc. 

Fluctuations on smaller scales evolve according to Fry’s model or negative binomial model. We 
suppose the latter is the better, since it is a natural extension of Gaussian distribution as explained 
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above2. However, this explanation is valid only when correlation is very small. On the other hand, Fry’s 
model is theoretically well-motivated in the strongly nonlinear regime. This agreement, together with 

the fact that both models approach a Gaussian distribution for small correlations (large scales) confirm 
our point that the distribution on large scale is Gaussian. Furthermore one can evaluate how large the 
deviation from a Gaussian distribution is by simply calculating <. 

With either of the models our results confmn the hypothesis that we live in a hierarchical universe. 
Independent evidence comes from the scale invariance properties of counts in cells, both in angular 
catalogs (e.g. Sharp 1981; Sharp, Bonometto and Luccbin 1984) and redshift surveys (e.g. Fry 1986; 
Balian and Schaeffer 1989b; Fry et al. 1989; Maurogordato and La&i&he-Rey 1991; Cappi et al. 1991; 
Elizalde and Gaztafiaga 1992). 

Although what we have measured is the fluctuations in redshift space, we expect them to be a good 
tracer of real space at very large scales. The analyses have been done using redsbift samples from two 
very different catalogs. Not only from different regions of the sky, (the CfA from the North galactic plane, 
SSRS from the South) but also selected with different criteria (CfA by 1 uminosity, SSRS by size). Because 
of the last point, galaxies in CfA samples have about 50% of spiral galaxies whereas in the SSRS there 
are around 80% (Table 1). There are indications of segregation of the statistical properties of galaxies 
with different morphologies at small scales: elliptic& and SO galaxies seems to be more clustered than 
spirals (Davis and Geller 1976; Giovanelli, Haynes and Cbincarini 1986) and are found preferentially in 
the cores of rich clusters (Dressier 1980; Postman and Geller 1984). We have not detected any difference 
in the distribution of density fluctuations at large scales. 

It would also be interesting to apply our analysis to redsbift surveys complete to a larger apparent 
magnitude, like the CfA2 (GelIer and Huchra 1989), where there seems to be apparent large-scale coherent 
structures, such as the ‘Great Wall’, in order to verify whether they correspond to non-Gaussian statistic. 
Although cm samples CfAN80 and CfAN92 include, at least partially, the so called ‘Great Wall’ region, 
its statistical distribution, corresponding to very large absolute magnitude, seems completely Gaussian. 

Finally we remind the reader that all our analyses have been done assuming the Poisson model is a 

reasonable approximation. If this is indeed the case, our result imply that the universe was imprinted 
Gaussian density fluctuations and has evolved keeping hierarchical form as described by Fry’s model or 
the negative binomial distribution. We plan to clarify if it is a generic feature in a gravitating system 
using N-body simulations. 
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Table 1 Samples of galaxies used for the analyses. TE,,,, MB, do,,, and Ntot denote, respectively, maximum 
distance or depth, limiting absolute magnitude (CfA), limiting physical diameter (SSRS) and total 

number of each sample. Also shown are percentage of spiral galaxies and values of x and 2 within 
the sphere of R = 16Mpc based on discrete-count. Samples CfAN80 and CfAN92 include galaxies 
brighter than MB = rns - 25 - 5logl‘l;=, where mg = 14.5 is the limiting apparent magnitude. 
Samples SSRS80 and SSRS115 include galaxies with physical diameter greater than &,, = mm&, 
where 6’cUt = 1’.26 is the ‘face-on’ diameter cut-off. 

Sample CfANSO CfAN92 SSRSBO SSRS115 

mm (MPc) 80 92 80 115 

M~l4im(k~c) -20.0 -20.3 29.2 42.0 

NO, 214 146 220 134 

Volume (Mpc3) 3.0 x 105 4.7 x 105 2.9 x 105 8.8 x 106 

A (M~c-~) 7.1 x 10-d 3.1 10-d x 7.6 x lo-’ 1.5 x 10-d 

Spiral (%) 52 55 80 a3 

so(Mpc) 8 7 7 8 

7 1.5 1.7 1.6 1.4 

T(l8Mp~) 17 7.1 18 3.3 

Z(l8MPC) 0.32 0.23 0.24 0.25 
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Tables 2: Comparison of data with Gaussian distribution. g, $, and consistency with Gaussian based 
on x2-t& are shown. Nx denotes numbers of binns used for the fitting. Periodic (non-periodic) 
boundary conditions are used. 

16 16 20 

10 12 16 

20 ( 17) 16 ( 15) 9.3 

4.3 (4.9) 1.7 (1.1) .25 

31 (.64) 74 ( 71) 92 

CfAN92 

SSRSBO 

SSRSIE 

R (Mm\ 1 16 I 16 I 16 I 16 I 20 I 
0 fMocl 

\ - I 
/ 6 I 

I 
8 I 

I 
I? -- I 

I 
I 

Id Ax I 1G _., I 
~- 

101E” / 24 ( 281 I 17 ( 19 1 7.2 (7.4) 1 5.3 f4.Sl 1 2.6 1 _I 

’ ’ 102% 10 ( 12) 5.1 (6.2) -90 (.89) .36 (.22) .ll 

XG.orr 2 6) 7.2 (.15) 1.5 (0.0) 97 (2.0) 99 ( 98) 97 

N, 13 ( 12) 20 ( 21) 14 ( 19) 8(‘5) 6 
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Tables 3: Consistency of the data with Fry’s hierarchical model with Q = 0.6 and with negative binomial 

model based on the x*-test using periodic (non-periodic) boundary conditions. 

R (MPc) 16 16 16 16 

,J (MPc) 6 8 10 12 

CfAN80 XL (%I 77 (87) 99 ( 96) 98 ( 99) 98 (95) 

XL3 (%I 91 (99) 99 (100) 86 (100) 93 (96) 

NX 7( 8) 11 ( 12) 15 ( 13) 8(g) 

R (MPc) 18 18 18 18 

0 (MPc) 5 8 11 14 

XL, mo) 73 (98) 49 (92) 74 (98) 99 (100) 

xb (%) 87 (99) 63 (99) 78 (99) 98 (100) 

N, 14 (14) 18 (14) 18 (20) 13 ( 12) 

R (MPc) 16 16 16 16 

Q (MPc) 6 8 12 14 

SSRSBO xi& (%I 98 (90) 97 (1.9) 100 (37) 98 (98) 

XL3 (%I 100 (97) 98 (4.2) 100 (34) 97 (98) 

Nx 13 (12) 20 ( 21) 14 (19) 8 ( 6) 

- 
R @PC) 18 18 18 18 

, 
o (Mm\ 

\-~-r-I I 
7 

I 
Ill -1 

I 
12 &” 

1 
IfI A” 

I 

SSRS115 XL,, (%I 75 (96) 100 (67) 98 (86) 97 (83) 

XRB (%I 98 (82) 100 (57) 86 (40) 79 (33) 

N, 15 (12) 18 (18) 19 (21) 16 (18) 
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Figure Captions 

Figure 1. Comparison of discrete two-point correlation function, t(s), of redshift sample CfAN80 (in 
Table 1) and simulated sample WA80. 

Figure 2. Probability distribution of density fluctuations, estimated from counts-in-cells of the smoothed 
density field, for a simulated non-Gaussian sample WA80. Each graph shows the distribution for a 
fixed spherical cell of radius R = 16Mpc and increasing value of cr, the dispersion of the Gaussian 
smoothing function. The short-dashed line is the negative binomial model and the long-dashed the 

Fry’s BBGKY hierarchical model (See $4 below). Also shown is the value of the dispersion, c, in 
units of &. 

Figure 3. Volume-average of the two-point correlation function, & Iv(,) [(s’)#s’ N z(s), with V(s) 
being the volume of a sphere of radius 8, as a function of the redshift separation, 8, in Mpc. The 

corresponding amplitude for the correlation function, f(s), is one at 6 +- 7.5Mpc. The dashed line 
shows a power law N s-1,8. 

Figure 4. Probability distributionof density fluctuations, estimated from counts-in-cells of the smoothed 
density field for each of the samples in Table 1. Each graph shows the distribution for a spherical 
cell of radius R in Mpc and a fmed value for the dispersion of the Gaussian smoothing function, 
Q = 16Mpc. The continuous line is a Gaussian distribution, the dashed one is the Fry’s BBGKY 

hierarchical model. Also shown is the value of the dispersion, g, in units of A. 

Figures 6. Probability distribution of density fluctuations, estimated from counts-in-cells of the smoothed 
density field, with periodic boundary conditions. Figures a,b,c and d show four different distribu- 

tions for samples CfAN80, CfAN92, SSRSBO and SSRS92 in Table 1, respectively. Each figure 
displays four distribution for a fixed spherical cell of radius R = 16Mpc (Fig.5a and Fig.Sc) or 

R = 18Mpc (Fig.5b or Fig.5d) and increasing value of (I, the dispersion of the Gaussian smooth- 
ing function. The short-dashed line is the negative binomial model and the long-dashed the Fry’s 

BBGKY hierarchical model. Also shown is the value of the dispersion, c, in units of &. 

Figure 6. Same as Fig.5b using non-periodic boundary conditions. 

Figure 7. Void probabilities, from discrete counts-in-cells, for samples in Table 1. The scaling function, 
x = - ln(Po/~V,) is plotted for different values of iiVc$, where ii and < are the average density and 
dispersion from the measured counts-in-cells in a spherical cell of volume V,, respectively. The 
continuous line is the discrete negative binomial model, the dashed one is the discrete Gaussian 
distribution. 
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