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ABSTRACT 

We complete formalization of the theory of Euclidean As-operation undertaken in the pre- 
vious publications [l]-[3], by presenting formal regularization-independent proofs of general 
formulae for Euclidean asymptotic expansions of renormalized Feynman diagrams (inlcuding 
short-distance OPE, heavy mass expansions and mixed asymptotic regimes etc.) derived earlier 
in the context of dimensional regularization [8]-(111. This result, together with the variant of 
the theory of UV renormalization developed in (31, d emonstrates the power of the new tech- 
niques based on a systematic use of the theory of distributions and establishes the method of 
As-operation as a comprehensive full-fledged-and inherently more powerful-alternative to 
the BPHZ approach. 
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1 Introduction 

In the preceding three papers [l]-[3] we undertook a regularization-independent formalization 
of the heuristic reasoning behind a series of publications [4]-[ll] in which efficient methods of 
perturbative calculations were found (for references to various 2-, 3-, 4- and 5-100~ calculations 
performed using that techniques see [12]). Th e new techniques for studying multiloop Feynman 
diagrams is based on a systematic use of the ideas of the distribution theory, and the key notion 
is that of asymptotic expansion in the sense of distributions [4], [S], [l]. A very general con- 
text in which to construct such expansions is established by the estension principle [4], [l]-an 
abstract functional-analytic proposition analogous to the classical Hahn-Banach theorem. A 
specific realization of the recipe implied by the extension principle-and the key instrument of 
our techniques-is the so-called As-operation [8], [2]. The Euclidean version of As-operation 
constructed in [S], [2] is defined on a class of products of singular functions comprising inte- 
grands of Euclidean multiloop Feynman diagrams and returns their expansions in powers and 
logarithms of a small parameter (e.g., a mass) in the sense of distributions. 

In the first paper [l] an analytical technique was developed for describing singularities 
of distributions, as well as a combinatorial formalism (universum of graphs) to work with 
hierarchies of graphs and their subgraphs-a formalism which makes it easy to utilize inherent 
recursive structures in problems involving multiloop diagrams. As a warm-up exercise, a very 
compact proof of a (localized) version of the familiar Bogoliubov-Parasiuk theorem in coordinate 
representation was presented with a purpose of illustrating in detail the typical ways of reasoning 
within the new techniques. 

In [2] we began studying asymptotic expansions of Euclidean multiloop Feynman diagrams 
with respect. to masses and momenta, which is done most naturally-cf. a detailed analysis of 
this problem from the point of view of apllications in [8]- in momentum representation. It 
was constructively proved that the As-operation exists for a large class of products of singular 
functions that includes integrands of Euclidean Feynman diagrams in momentum representa- 
tion. The simplest example of such an expansion is with respect to a mass in a product of 
propagators, while the As-operation applied to such a product yields asymptotic expansions in 
powers and logs of the small mass, with coefficients given by explicit expressions. 

In [3] the techniques of [l] and [2] was extended and applied to the problem of studying 
UV divergences in momentum representation. Thus, it was found [3] that a straightforward 
subtraction from the integrand of all those and only those terms of its asymptotic expansion 
“in the UV regime” that are responsible for UV divergences, is equivalent to the standard 
Bogoliubov R-operation. The UV finiteness of the R-operation in the new representation is 
ensured by definition and what had to be proved was equivalence to the standard formulation 
of the R-operation.’ The class of subtraction schemes that naturally corresponds to the new 
definition (the so-called generalized minimal subtraction--or GMS-schemes) comprises mass- 
less schemes (including the MS scheme [14]) h c aracterized by an extremely important property 
of polynomiality of the renormalization group functions in masses [16]. 

‘which, strictly speaking, is not necessary, because one can prove correctness of the new representation 
directly, without reducing it to the standard construction. Such a proof would be easier but it requires to 
establish properties like existence of short-distance OPE considered in the present paper. 
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An extremely important result of [3] is that the coefficients of the As-operation constructed 
in [2] are exactly renormalized Feynman diagrams corresponding to subgraphs of the initial 
diagram. This fact has a dramatic technical impact on the problem of asymptotic expansions 
fof Feynman diagrams in momenta and masses. 

The present paper addresses the problem of Euclidean asymptotic expansions of renormal- 
ized multiloop diagrams. Systematically using the techniques developed in [l]-[3], we present 
a compact and straightforward derivation of general Euclidean asymptotic expansions in the 
form of As-operation for integrated diagrams first introduced in [lo]. Then the combinato- 
rial techniques developed in [lo] immediately allows one to obtain expansions for perturbative 
Green functions in OPE-like form. 

The importance and feasibility of the general problem of Euclidean asymptotic expansions 
was realized in [S]-[ll]. In those papers, a compact derivation of closed general formulae for 
such expansions was presented. The derivation of [8]-[ll], however, aimed at obtaining the 
results in a shortest way and in a form immediately useful for phenomenological applications, 
so that a heavy use was made of the dimensional regularization and the MS scheme [14].* This 
left an open question of to what extent the results of [8]-[ll] are independent of regularization. 
The question becomes even more interesting if one recalls the notorious difficulties that the 
dimensional regularization encounters when applied to models involving 7s or supersymmetry. 

Another important realization of [8]-[ll], [6] was that a proof of any asymptotic expansion- 
be it Wilson’s OPE or a heavy-mass expansion or asymptotics of the quark formfactor in the 
Sudakov regime-is phenomenologically irrelevant unless the result exhibits perfect factorizelion 
of large and small parameters. At the technical level of diagram-by-diagram expansions, perfect 
factorization means that the expansions run in pure powers and logarithms of the expansion 
parameter. Such expansions possess the property of uniqueness (cf. the discussion in [2], section 
1) which is tremendously useful from the technical point of view; for example, one immediately 
obtains that the As-operation must commute with multiplications by polynomials (see [9] and 
[2]). Another example is that one need not worry about properties like gauge invariance of the 
expansion in a given approximation: such properties are inherited by the expansion termwise 
from the initial amplitude, provided the expansion is “perfect” in the above sense.s 

For the above reasons, we consider it our major task to clarify the issue of existence of 
“perfect” expansions in regularization-independent way. 

It is a interesting fact that the derivation of OPE and, more generally, Euclidean asymptotic 
expansions presented in this paper-being more formalized than that of [8]-[II]-leads to a final 
formula which is much easier to deal with at the final stage of obtaining expansions for Green 

*One can ponder on the tremendous heuristic potential of the dimensional regularization and the MS scheme. 
Although the understanding of the analytical aspects of the problem-including existence of the representation 
of the UV renormalization in the form described in [3]- was hardly lacking in [El-[ll], the presentation turned 
out feasible due to the property of dimensional regularization to nullify certain types of scaleless integrals. 

3As was pointed out by J. Collins, such a property should be even more important for the problem of asymp- 
totic expansions in Minkowskian regimes where both gauge invariance plays a greater role for phenomenological 
reasons, and the expansions one has to deal with are considerably more complicated. It may be said that the 
“relentless pursuit of perfection” (in the above sense) is one of the characteristic differences of the philosophy 
of the As-operation from the old BPHZ paradigm. 
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functions in a global “exponentiated” form. For example, unlike [ll], we don’t have to study 
inversion of the R-operation. However, as was stressed in [S], the derivation presented there was 
geared to the calculational needs of applied quantum field theory (primarily, applications to 
perturbative quantum chromodynamics) and, therefore, dealt explicitly with UV counterterms 
etc. From practical point of view, the formalism of the present paper offers, at least in its 
current form, no advantages as compared with the explicit recipes of [8]-[ll]. 

Nevertheless, from theoretical point of view the formalization undertaken in the present 
series is more than just an exercise in rigour: there is the major unsolved problem of asymptotic 
expansions in non-Euclidean regimes, and it seems to be intrinsically intractable by the BPHZ 
method. On the other hand, extension of the As-operation to non-Euclidean regimes-taking 
into account the accumulated experience [19] w K h’ h only needs to be properly organized within 
an adequate technical framework-seems to be a matter of near future. We hope, the experience 
gained in Euclidean problems will play a role in the more complicated cases. 

One of the main points in any proof of OPE is to study the interaction of UV renormal- 
ization and the expansion proper. As we are going to show, within our formalism the problem 
reduces to double asymptotic expansions. Indeed, a renormalized Feynman diagram in the 
GMS formulation of [3] has a form of an integral of the remainder of the As-expansion of the 
integrand in the regime when all the dimensional parameters of the diagram are much less than 
the implicit UV cutoff. When one applies the second expansion with respect to some of the 
diagram’s masses or external momenta, there emerges, essentially, a double As-expansion. All 
one has to prove is that the double expansion thus obtained factorizes into a composition of 
two commuting As-expansions and that the remainder of such a double expansion is bounded 
by a factorizable function of the small parameters. 

The plan of the paper is as follows. In section 2 the problem of the asymptotic expansion 
of renormalized Feynman diagrams is reviewed, its heuristic analysis from the point of view 
of As-operation is given, and a recursive expansion formula is obtained. Section 3 is devoted 
to a detailed combinatorial analysis of that formula. In section 4 a convenient expression for 
expanded renormalized diagrams is obtained in a combinatorial form similar to UV R-operation, 
and its exponentiation on perturbative Green functions is considered. All analytical details are 
dealt with in section 5 where the key theorem on double asymptotic expansion is formulated 
and proved. Some less important technical results are relegated to two appendices. 

The notations used in the present paper are largely the same as in [l]-[3]. 
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2 Expansions of renormalized diagrams. 

2.1 Formulation of the problem. 

The feasibility and usefulness of considering asymptotic expansions of Feynman diagrams for 
general Euclidean asymptotic regimes was realized in [S]-[ll]. The formulation of the Euclidean 
asymptotic expansion problem follows [9] except that we now use GMS-schemes instead of 
dimensional regularization and the MS-scheme (which is a special case of GMS-schemes) and 
consider only the simplified version of the expansion problem without contact terms. 

Asymptotic regime. Let G be an arbitrary Euclidean multiloop Feynman diagram. Let 
G(p, .) be its unrenormalized momentum-space integrand, where p collectively denotes its 
integration (loop) momenta while dots stand for other dimensional parameters on which G 
also depends. Those parameters include masses (which enter the propagators of G(p, . . .)) and 
external momenta, and will be referred to as esternal parameters of the diagram G. We wish 
to construct asymptotic expansion for the diagram G in the asymptotic regime when some of 
the external parameters of G are much larger than others. 

Denote the large (or “heavy”) external parameters of G collectively as M, and small (or 
“light”) as m. Formally speaking, As-expansions that we study require presence of a scalar 
parameter with respect to which to expand. As an abuse of notation, we will use the same 
symbol m to represent such a parameter which goes to zero and to which all the light parameters 
are proportional. Thus, the asymptotic regime we wish to consider is described as m + 0 and 
M = O(1). 

It makes sense to assume that neither the set M nor m are empty. 

Perfect factorization. An extremely important requirement on expansions at the diagram 
level is that they should ran in powers and logs of the expansion parameter. At the level of 
Green functions, this means that the coefficient functions depending on large parameters should 
not contain non-analytic (logarithmic) dependences on light parameters. It has been realized 
that only expansion possessing the property of perfect factorization have phenomenological 
significance; in particular, only such expansions are useful in models with massless particles 
like QCD. Moreover, such expansions possess the property of uniqueness which turns out to 
be extremely useful; e.g. it simplifies study of gauge properties of expansions since they then 
inherit the gauge properties of non-expanded Green functions [20]. Detailed discussion of 
phenomenological and technical aspects of this requirement are discussed in detail in [9]. Here 
we only note that in the papers [13] w h ere the fact of power-and-log nature of expansions was 
established at a formal level, no convenient explicit formulae were presented, while the standard 
BPHZ derivation of OPE resulted in expansions in which coefficient functions that contained 
all the dependence on the large momentum also depended on the light masses in a non-trivial 
way. OPE possessing the property of perfect factorization was obtained in [6]. 

Renormalization. We assume that the diagram G (i.e. the integral of G(p,...) over p in 
infinite bounds) is renormalized using the GMS prescription of [3]. (Following [3], we will 
denote GMS-renormalized diagram as 7&G.) The GMS prescription comprises all the schemes 
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that possess the property of polynomial dependence of the corresponding renormalization group 
functions on dimensional parameters. 4 This is an important assumption both technically and 
conceptually. 

Conceptually, the asymptotic expansions in mssses and momenta obtained within such 
schemes possess, as we will see, the above mentioned property of perfect factorization.5 

Technically, the GMS prescription amounts [3] to subtraction from the integrand of those 
and only those terms in the asymptotic expansion in the UV regime that generate UV di- 
vergences, while the necessary modification of the logarithmic terms at zero momentum (the 
operation f) does not affect the dependences on the dimensional parameters. The net effect, 
as we will see, is to trivialize the problem of expansion of renormalized diagrams by reducing 
it to a study of double As-expansions (see subsec.2.3 below). 

Renormalization introduces an additional external parameter for G besides its masses and 
external momenta. Such parameter is usually denoted as n. The dependence on n is known 
explicitly: ‘RUG is a polynomial in log n. Therefore, it is of no practical consequence whether 
n is considered as a heavy or light parameter. For definiteness, we will treat it as a heavy 
parameter. 

External momenta as fixed parameters. The simplest version of the expansion problem 
emerges if one fixes them at some values and then treats them on an equal footing with masses. 
This is what we will assume for now. It should be emphasized that in principle it is not 
necessary to fix the momenta at generic non-zero or otherwise non-exceptional values as long 
as the initial expression one wishes to expand is well defined. We will discuss this point in 
more detail below. Here we only wish to note that the precise conditions of when a diagram is 
well-defined depend on the details of the structure of specific Feynman diagrams in a specific 
model, and it is not our aim to discuss such conditions. The only important thing is that our 
techniques is insensitive to such details. 

A somewhat more complicated (and more general) version of the problem would be to 
consider the diagram as a distribution in the external momenta. Here one expects additional 
terms to appear in the expansion; such “contact” terms should be proportional to &functions 
of linear combinations of the external momenta (cf. below the discussion of IR singularities of 
the non-expanded diagrams). This case will be considered in a separate publication. Note that 
within the framework of dimensional regularization and the MS-scheme explicit expressions for 
contact terms were obtained in [lo], [ll]. 

Linear restrictions on momenta. Another aspect of the problem is how one divides the 
external momenta into heavy and light. The point is that certain sums of heavy external mo- 
menta should be allowed to be light, i.e. O(m), in some physically meaningful situations. This 
amounts to imposing linear restrictions on the heavy external momenta. Such restrictions were 
analyzed in detail in [lo], [ll] w h ere an important class of natural restrictions was identified. 

“The first and most important example is the MS-scheme [14], f or which the polynomiality property was 
established in [16]. 

SThe fact that the property of perfect factorization is a necessary condition for existence of OPE in the MS- 
scheme was observed in [15]. For non-GMS-schemes perfectly factorized expansions have a more complicated 
form. 
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The natural restrictions can be described as follows. One divides the external lines of G through 
which heavy external momenta flow, into several “bunches”. Then for each bunch one imposes 
a single restriction that the (algebraic) sum of the corresponding momenta is O(m) (i.e. it is 
equal to a combination of the light momenta only). Otherwise the heavy momenta are assumed 
to take generic values. Note that there always is at least one such restriction due to overall 
momentum conservation: the sum of all heavy momenta must be equal to the sum of all light 
momenta. As a rule our analysis at the level of individual diagrams is quite general, but the 
interpretation of the results at the level of Green functions turns out to be more transparent 
for asymptotic regimes with natural restrictions. 

Infrar~ed divergences. It should be pointed out that Feynman integrands in models with 
massless particles possess singularities at finite values of p due to massless propagators. Such 
singularities can formally be even non-integrable but, nevertheless, spurious in the sense that 
they cancel out after performing integrations and taking into account specific algebraic prop- 
erties of the integrands like gauge invariance (cf. the Kinoshita-Poggio-Quinn theorem [17]), 
or they may require special treatment whose exact form is determined by additional consid- 
erations. Such considerations are “orthogonal” to the expansion problem proper (in the sense 
explained below) and their discussion goes beyond the scope of the present paper. However, 
the following remarks can be made here. 

One can remove such singularities from the initial integrand using a version of the special 
subtraction operation fi introduced in [2, 31. Th en one can perform all the reasoning of the 
present paper taking into account that our techniques is essentially insensitive to presence of 
such l? in the integrand (see section 7 in [2] and our subsect.3.4). 

Alternatively, one can regularize such singularities by introducing a mass, mo, for the mass- 
less particles, and after the expansion in m. is done, to consider the limit ms + 0. This would 
be technically equivalent to considering double expansion in the regime ms < m < M. Such 
a problem can be studied by straightforward application of the results of the present paper. 
Indeed, our main concern here is exactly the extension of the results on simple As-expansions 
to the case of double As-expansions (see below subsec.2.3). Needless to say, further extension 
to three-fold expansions etc. is completely straightforward. The net effect, is that the multiple 
As-expansions of the above type can be obtained by performing simple expansions sequentially, 
in any order. Thus, one can first expand in the regime when ms and m are much less than M, 
and after that, perform termwise expansion of the result for mn < m. How many terms in the 
expansion in mn one should retain, and what one should do with the singularities in ms , is 
to be decided from the specifics of the problem. This way to proceed is essentially equivalent 
to the first one based on the use of the operation l%, because the As-expansion in mn-as any 
As-expansion-can be expressed as an R with suitably chosen finite counterterms. However, 
introduction of a non-zero mass mn has an advantage of not requiring new notations. 

Either way, the factors in the final expansion that depend on the heavy parameters of the 
problem (e.g. the coefficient functions of the OPE which depend on the heavy momentum 
&) are independent of the IR structure of the initial diagram.s Only the factors in which 

GAnother way to put it is to say that the OPE coefficient functions are analytical in the light mass parameters, 
including the regulator mass mo, Therefore, whatever one does with m. afterwards (e.g. taking it to 0) will 
not, essentially, affect the coefficient functions. 
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the dependence on the light parameters is concentrated are sensitive to IR structure. This is 
essentially the property of perfect factorization. 

To reiterate: what happens when ms is taken to zero depends on details like gauge invariance 
of the model and UV-renormalization procedure adopted, and affects only those factors in the 
expansion which contain the non-trivial dependence on the light parameters. On the other 
hand, what we wish to concentrate on is the analytical aspects of the expansion problem 
proper, avoiding inessential details. All that can be said in this respect is that our techniques 
offers efficient ways to deal with such singularities. For the above reasons, in what follows we 
will simply ignore such singularities, in order to avoid unnecessary notational complications. 
This will allow us to concentrate on the non-trivial aspects of our techniques. 

Lastly, it is convenient to assume that the set of heavy parameters M is non-empty, because 
otherwise the expansions in K and n coincide and the problem degenerates into a trivial one. 
(Triviality means that the renormalised diagram itself is a power of m times a polynomial in 
log m, so that its As-expansion coincides with the diagram itself.) 

2.2 Expansion of “regularized” diagram. 

The GMS-renormalized diagram can be represented as follows [3]: 

RoG( M, m) z lb / dp G(p, M, m) 

E hl 
/ 

dpHA(p) [G(p, M, m) - i;oAs:*G(p, KM, ~m)]~=~ 

We have introduced an auxiliary parameter h: on the r.h.s. of (2.1) in order to formally describe 
the asymptotic expansion of the integrand in the UV regime in which all dimensional parameters 
of G are small as compared to the cutoff A. 

What we ultimately wish to do is to determine the explicit expression for the As-expansion 
of (2.1) in m << M which we denote by the same symbol As as we use for the As-operation on 
non-integrated products: 

%G(M,m) N As,+G(M,m) =? (2.2) 
m-n 

Such a notation is very natural both in view of the general definitions of section 2 of (21 and 
because the new version of the operation As (2.2), as we will see, is closely related to the 
operation As already defined on non-integrated products. Note that the As-operation was first 
introduced for integrated diagrams, in [lo]. 

It is natural to try to find the expression for (2.2) by applying the operation As,, which 
has already been defined on products of singular functions, to the expression in square brackets 
on the r.h.s. of (2.1). As ‘we will see, this is indeed possible. Moreover, the corresponding 
calculation exhibits a recursive pattern: in order to derive (2.2) for G itself one has to assume 
validity of an expansion of the type (2.2) for integrated renormalized graphs with a lesser 
number of loops than G. 
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Studying (2.1) at fixed A. First of all, let us fix A < cc and study the expansion at m -+ 0 
of the resulting “regularized” integral. One can immediately write down the expansion for the 
first term on the r.h.s. of (2.1), JdpH*(p) G(p, M, m), by d’ uectly using the techniques of [2], 
i.e. by applying the As-operation to G(p, M, m): 

/dpff”(p)G(p,M,m) N jdpH”(p)As,nG(~,M,m). 
m-0 

In order to expand the remaining contributions to (2.1), one should consider the structure of 
the expression ioAs:oG in more detail. From eqs.(2.22)-(2.24) in [3] it follows that: 

ioAs:aG(p, KM, m)l~;=1 (2.3) 

= ?TGT fro AL TeG\r(p, KM, nm)lfi=1 x Rajdp:P,(p:)7(P:,nl,m). 

(Note that the summation here runs over subgraphs corresponding to the singularities of the 
formal expansion in K.‘) 

As a convenient abuse of notations we will often omit n in expressions like the r.h.s. of (2.3) 
everywhere except in T,: 

‘bG\y(p, KM, ~m)rr=~ --+ %.oG\y(p, M, m). 

This should cause no confusion. 

(2.4) 

The r.h.s. of (2.3) is a sum of terms in which the dependences on the integration mo- 
menta p and on the external parameters are completely factorized. Indeed, the distribution 
& {S,(p,) T,oG\y(p,. .)} is a polynomial of the external parameters M and m (this is due to 
the action of T, and the fact that k does not affect M- and m-dependences). On the other 
hand, the factor Ra J dp!, ‘P,(pk) 7(p!,, M, m contains a non-trivial dependence on M and m ) 
but is independent of p. Moreover, the latter factor has the same form as the initial expres- 
sion (2.1) up to a replacement p -+ p, and G(p) + ‘?Je(p,) x 7(p7). Therefore, it is natural 
to make an inductive assumption that the operation As has been defined on the products 
Ro J dpk ‘Pa(pk) y(p!,, M, m) for all y < G. Then the As-expansion of (2.3) is given by applying 
such As to the last factor in (2.3): 

&.As:oG(p, M, m) N As,o~nAs:oG(p, M, m) (2.5) 
m-4 

= ?TGT f& ~L~P,)T&\~(P, Mm)1 x Aw=/ dd, pmb;) d&, M,m). 

It is important to note that there has emerged a compact recursive pattern which is character- 
istic of our techniques: expansion of the GMS-renormalized diagram G (2.1) is reduced to an 
essentially similar problem but with a lesser number of integration momenta. 

‘We will also have to deal with singularities of, and the corresponding operation km for, the expansion in 
m. The resulting notational complications will be dealt with in subsec.3.1 below. 
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In the case of a single loop momentum in the initial diagram G (or one-dimensional p if one 
does not limit the discussion to Feynman diagrams proper), our expansion problem degenerates 
into a trivial one. Because of this and owing to the explicit recursive pattern in (2.5) we can 
assume that the problem has been solved for all GMS-renormalized diagrams with lesser number 
of loop momenta, i.e. that the operation As on the r.h.s. of (2.5) is well defined. Using this 
inductive assumption completes the expansion of the “regularized” integral. 

Explicit expressions for As,o%G which provide solution to the above recursive procedure, 
will be presented below in section 3. 

2.3 The limit A -+ co. 

The only important question of analytical nature that needs to be answered is whether the 
asymptotic expansion constructed above for fixed A remains such after taking the limit A -+ 00, 
i.e. whether the As-operation defined by the expressions: 

As,c%/dpG(p, M, m) + ii& /dp@(p)As,+ - ioAs:]oG(p, M,m) (2.6) 

delivers a true As-expansion for the integral (2.1). Th e answer is yes, and it can be justified in 
two steps. 

(i) As a first step, it is natural to consider existence of the limit on the r.h.s. of (2.6). To 
this end we split the integration region in (2.6) into two parts by introducing an intermediate 
cut-off at the radius p in order to explicitly separate the non-trivial asymptotic region p + cc 
from the point p = 0 where the expression is complicated by the operator i but the expansion 
is essentially straightforward: 

As,,,~R~ / dpG(p, M, m) = 1 dp H’(p) -bn# - f-As:l~G(~, M, m) 

+l>% 
I 

dpH;(p)As,# - As;]oG(p,M,m). 

(For definition of the functions H see subsec.8.5 of [l].) Th e second term in this expression will 
be finite if the two As-operations commute: 

As,aAs: = As:oAs,. w3) 

Then the operator 1 - As: can be taken out to the left of As,, so that existence of the limit 
A -+ cc will follow automatically (recall in this respect the motivations and construction of the 
operation R in section 1 of [3].) 

The commutativity (2.8) (see also (3.6)) 1 is one of the central results of the present paper. 
Its nature is essentially algebraic. Here we only note that explicit formulae for As~‘J&G follow 
from (3.6) (see section 3). 

sAs should be clear from the above construction, the composition of the two As-operations here is purely 
algebraic: the second operation is applied termwise to the series generated by the first one irrespective of 
approximation properties of the realting expression. 
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(ii) The second step is analytical in nature: one verifies that the remainder of the expansion 
(2.7) vanishes at the required rate as m + 0. This is formally expressed as 

[l- As;]&/dpG(p,M,m) 

‘kf hn/dpHA(p)[l - As;]+ - ioAs:]oG(p,M,m) = o(m”). 

To check (2.9), one splits the integration region as in (2.7): 

[I -As~]~R~/dpG(p,M,m) 

(2.9) 

s 
J 

dpH’(p)[l - As;]+ - ?oAs:]oG(p, M,m) 

+,‘Lm, 
I 

dpH;(p)[l - As”,]o[l - As:]oG(p,M,m). 

For the first term on the r.h.s. the estimate (2.9) IS rue by definition of As and because H”(p) t 
is an ordinary test function. For the second term, one represents H;(p) as an integral over 
spherical layers of radius X (see subsec.8.5 of [I]): 

H;(P) =L*+(P). (2.10) 

Then one rescales the integration variable p -+ Xp and uses the uniformity properties of G to 
arrive at the following expression: 

JAdX J ~ x &m(p) [l - As;]+ - As,/&G(p, Mn/X,mn/X). (2.11) 

Recall that one can retain only those terms in As: that are responsible for UV divergences (see 
the text immediately after (1.4) of [3]). S ince X always divides K in the above expression, one 
can see that the o(m”) estimate for (2.11) follows from an estimate of the type 

IJ dpqx(p) [l - As;]+ - As$G(p, KM, m) < o(m”) x o(~‘). (2.12) 

This can be adopted as (part of) an exact analytical interpretation of the informal statement 
that the algebraic composition of the two (commuting) As-operations yields a true double 
asymptotic expansion in the sense of distributions for the integrand G(p, KM, txn). 

The inequality (2.12) is easy to understand at a heuristic level. Indeed, the remainder 
of an asymptotic expansion is often estimated (at least in the cases when the expansion has 
a relatively simple analytical nature-in our case one deals with expansions of integrals of 
rational functions, however cumbersome) by the last discarded term, which in our case is 
O(m”+’ ) x O(n’+‘) (up to inessential logarithms), which immediately explains (2.12). 

Actually, the inequalities that we prove in Theorem 1 (see below section 5) are more stringent 
than (2.12); in particular, they also describe dependence of the bounds on the support of the 
test function. 
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2.4 Summary 

We have exhibited the recursive structure of the As-operation for GMS-renormalized diagrams 
and identified the inductive assumptions as well as the propositions that have to be proved. To 
proceed, we first have to study the structure of our expressions in more detail and derive an 
explicit expression for As,,,oRo J dp G. This will allow us to check the formal commutativity of 
the two As-operations As,,, and As,. Second, we have to present and prove the inequalities 
that guarantee validity of (2.12). 

3 Explicit expressions for As,~R~G. 

We are now going to derive explicit formulae for (2.2). We will do this assuming (by induction) 
that the two As-operations commute on subgraphs of G. After that it will not be difficult 
to check the commutativity on F itself. Note that the recursion is correct because whatever 
property one wishes to prove for a graph, one only has to make assumptions about its subgraphs. 

3.1 Some notations. 

Operation R on integrands. So far we have been using the operation R defined on integrated 
diagrams. But since now we will have to work with integrands, it is convenient to use the same 
symbol ‘R to denote the operation of UV subtractions prior to integrations over p: 

R d&f 1 -foAs:. (3.1) 

This operation is defined on graphs G as well as on the products of the form P*(p,) x y(p,) 
where Pa(p,) is a polynomial while y is any (K- or m-) subgraph of G. 

R associated with R. Although the entire arbitrariness in the definition of ‘R for an individual 
diagram G is in the operator i; (more precisely, e(o)), it is more convenient to think about i in 

terms of the operation R (which also involves operators i;t,) for y < G). This is because all the 

explicit expressions for R (cf. eq.(2.22) of [3]) involve R. On the other hand, the two points 
of view are equivalent if one recalls that in the problems of perturbative quantum field theory 
one deals with the entire universum of graphs: specifying the family of operations R(G) on the 
entire universum of graphs G is equivalent to specifying the family of operators i(o). Then, to 
fix an operation R (or, equivalently, &As:) on a hierarchy of graphs, it is sufficient to fix an 
operation R on it. 

For the above reasons we will say that an operation R (and FoAs:) is associated with some 
operation R, whenever it is necessary to indicate this kind of relationship between the two 
operations. 

n- and m-subgraphs. Since there are two expansions-in K and m-in our problem that one 
has to deal with simultaneously, there are two systems of singular planes, complete subgraphs 
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etc. in the same graph G.9 In order to distinguish the objects from the two systems, we will 
call them n- and m-subgraphs etc. 

We will retain the symbols 6 and ‘R for the operations associated with n-singularities, and 
use the symbols fi’” and R” for the operations associated with m-singularities. 

By default, a subgraph in a formula is rc-subgraph. Presence of m-subgraphs will be explic- 
itly indicated. 

The relation between the two systems of subgraphs is based on a simple principle: any factor 
9 E G which is “m-singular” (i.e. develops singularities after expansion in m) is automatically 
“n-singular”-because the set of momenta and masses with respect to which the expansion 
is done in the latter case comprises all such parameters in the former case. Thus, to every 
m-subgraph P there corresponds a unique rc-subgraph H obtained from P by “n-completion”. 

3.2 General formula for the expansion As,~R~G. 

Let us first explain the structure of (2.8). The dependence on p, m and M in (2.8) can be 
described as follows: 

Ado%, M, m) = c D(P) x C(M, ml, (3.2) 

which correponds to the expansion (2.3). It is clear that D(p) are distributions well-defined 
everywhere except for the point p = 0. The action of As,,, in (2.5) can be described as 

As,~As:~G(p, M, m) = c D(p) As,L’(M, m) = c D(p) A(M) B(m) 

(the explicit fromulae for As,,,4 are yet to be determined). On the other hand, 

kn~G(p, M, m) = c C’(P, M) B’(m) 

(3.3) 

(3.4) 

(cf. the explicit expression below in (3.7)), and 

As:oAs,oG(p, M,m) = c As:oC’(p, M) B’(m) = c D’(p) A’(M) B’(m). (3.5) 

So far we don’t know the form of C’ and how As: does its job on C’ (which will be explained 
below). Nevertheless, the commutativity (2.8) implies that D = D’ etc.” It follows immediately 
that the commutativity is preserved if one replaces As: by FoAs:: 

As,aioAs: = FoAs:oAs,. (3.6) 

Indeed, on both sides of (3.6) the operator i: acts-as demonstrated above--on exactly the 
same p-dependent distributions D(p). 

‘In general, one should also consider the third system of subgraphs-the one corresponding to singularities 
of unrenormalized non-expanded integrand G(p, .) that were discussed in subsect.2.1. In order to keep nota- 
tions simpk, we agreed not to indicate explicitly the possible presence of such singularities, the corresponding 
operation R etc. 

“‘Strictly speaking D etc. depend on a summation index so that one may need to take linear combinations 
to establish the equality. 
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The explicit version of (3.4) is analogous to (2.3) (cf. eqs.(2.22)-(2.24) of [3]): 

AsmQp, M, m) = ,<&, cit”o [&(a) TmoG\r(~, M, ml1 x R”‘+‘a,r * r), (3.7) 
a 

r ia n&bgraph 

where 

Rrno(%,r * r) E pa,, * vor) z tz 
/ 

dp; HA(p) Pa,r(p;) v.qp;,, m). (3.8) 

Note that since P is an m-subgraph of G, the object (3.8) is an almost-uniform (in the sense 
of [2], subsec.l.2) function of m and is independent of M and p. On the other hand, all 
the dependence on p is concentrated in the square-bracketed factor on the r.h.s. whose m- 
dependence is trivial while the M-dependence is not. 

We now wish to apply the operation R = 1 - FoAs: termwise to the above expansion 
(similarly to (3.5)). Owing to (3.6) this is equivalent to As,*RoG. Since As-expansion of a 
product is a product of As-expansions [2] and since the only non-trivial dependence on n is via 
M in G\r(p, M, m), one has: 

As,~R~G(p, M, m) 

= &G F 
%&f-L”‘* [S,,r(pr)T,oG\F(p, M, m)] X Rm+‘a,r * r). 

r ia ksubgaph 

(3.9) 

The action of ‘R on the somewhat unusual expression in square brackets will be explained in 
the next subsection. 

The above eq.(3.9) constitutes the final result of the analysis of the problem of Euclidean 
symptotic expansions of Feynman diagrams as seen from the point of view of the abstract 
theory of As-expansions of products of singular functions. Below in section 4 we will transform 
it-using specific properties of Feynman diagrams proper-to a more convenient form similar to 
the As-operation as presented in [ll]. The immediate remarks to be made here are as follows. 

(i) The non-analytic dependences on the heavy parameters M and the light parameters m 
are clearly factorized in (3.9). Indeed, the expression in angle brackets is independent of M by 
construction. On the other hand, the M-dependent distributions over p in square brackets are 
pure power series in m (due to the action of T, and the fact that neither Bm nor R affect the 
resulting powers of m). Therefore, it is clear-in the context of ordinary short-distance OPE- 
that the angle-bracketed expressions correspond to matrix elements of OPE (the polynomials ‘P 
then correspond to vertices with composite operators) while the square-bracketed expressions, 
to coefficient functions. 

(ii) All the quantities in (3.9) are finite by construction: the angular-bracketed “matrix 
element” has its UV divergences removed by ‘R.‘“, while the IR and UV singularities of the 
square-bracketed “coefficient functions” are eliminated by g”’ and R, respectively. 

(ii;) The expression (3.9) as a whole is independent of the specific choice of the operation R”’ 
and the associated operation ‘R”. This is a usual feature of representation of an As-expansion 
in terms of an intermediate h-operation (recall that an As-expansion is unique [9], (21). 
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3.3 Defining i’~As~~k”‘~[. . .] in (3.9). 

Consider the following object from (3.9) (A is the integration momentum implied in (. . .); it 
is isomorphic to pr): 

~&(a) T,cG\r(p, M, mj x PdA) (r is m-subgraph). (3.10) 
0 

When 6. is integrated out, its derivatives also affect G\r. Let us exhibit this explicitly using 
the fact that the above pattern of the polynomials Pa and the &functions 6, is characteristic of 
the operation of Taylor expansion (cf. eq.(9.8) in [I]). W e use the following elementary identity: 

~khr)F(~r) x P.(P;) = ~~&‘I-) x T,;°F(P;)%(P;). (3.11) 

Now split the variable p as 

P = br,Pc\rL 

and define 

T- = (TIT), 4 = (TP;). (3.12) 

Then we can rewrite (3.10) as 

eq.(3.10) = C&(a) x [T,,&‘\I%~\r, M, ml)] P&k). 
b 

(3.13) 

The variables po\r on the r.h.s. parameterize the singular plane xy on which the entire expres- 
sion is localized. Note that G\I‘ is being expanded in p’,, so that all the singularities are with 
respect to po\r. 

The above formula allows one to define km on such expressions (cf. the reasoning in sub- 
sect.2.4 in [3]) as follows: 

c km0 [&(pr) T,oG \r(p, M, m)l x Pdpk) (r is m-subgraph) (3.14) 
D 

f&r c hb(Pr) X km~Tm~~G\IYpc\r, M, m’) Pb(&) 
b 

= 6(pr) x kmaT,loG\T(po\r, M, m’) + . . , 

where on the r.h.s. we have not shown the terms proportional to derivatives of the &function- 
such derivatives vanish after integration over p which eventually has to be done. Note that 
there need not be any correlation between the definitions of the operation km on T,G and on 
T,,,,oG\r (cf. the reasoning in section 2 of [3]). 

In (3.9), the expression (3.14) is being acted on by R = 1 - inAs:. Here one only has 
to deal with the non-trivial dependence on M on the r.h.s., and it is easy to understand 
that As: should be applied termwise to the r.h.s., effectively getting combined with firn.‘i 

“In [2] the formulae for the As-operation were presented only for a class of singular functions without non- 
integrable singularities prior to expansion. In the present ewe, we for a first time encounter a situation where 
an As-operation-As:-is being applied to an expression (3.14) w K mvolves an k-operation. As was noted h’ h 
in [Z], extension the formula for As-operation to the case of singular initial expression is straightforward (see 
also below subsect.3.4). 
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It remains to note that, as usual, the operator i on As~~fi”‘~T,~*G\T (or, equivalently, fi 
on the T,oT,,oG\I’ = T,,G\l?, where n’ = (K,&)) can be chosen independently from i on 
As~~R”‘~T,~G (cf. section 2 of [3]). 

Finally, eq.(3.9) takes the form: 

As,&G(p, M, m) (3.15) 

= ,<gG 6(a) x R+P;-‘L -G\r(pc\r, M, m’) xmor(&, M, m) + . . . 

I- is m-mbg,aph 

Note that G\r depends on pk through m’. It should also be remembered that the integration 
over p; should be understood in the sense of the principal value (operation *). 

Eq.(3.15) eliminates the last unknown in (3.9) and represents a convenient starting point 
for studying exponentiation of As-operation on collections of Feynman diagrams corresponding 
to Green functions (section 4 below). 

3.4 As-operation on products involving k and b-functions. Proof 
of commutativity of the two As-operations. 

Both in (3.9) and in (3.15) one has to consider As-expansions of products involving and fi- 
operation and/or J-functions. Therefore, it is worthwhile to consider this point from a general 
point of view. Moreover, it turns out that the object 

firno [L.r(~r) ‘JkoG\r(p, M, m)] (3.16) 

from (3.9) can be analyzed without performing projections_onto the plane singled out by the 
&+r(pr)-in complete analogy with expressions of the form R”oG. The simplicity and straight- 
forward character of the resulting formal proof of commutativity (3.6) is another example of 
how the meticulous attention to the formalism and notations in the preceding papers [I]-[31 
pays off. 

Indeed, with some experience with the formalism and understanding of the mechanism of 
the As-operation, an explicit expression for ‘R on the distribution in square brackets in (3.9) 
can be written down offhand. In view of (3.1), it is sufficient to present expressions for the 
operation ioAs:. 

To start, recall the expression for ioAs:oG (2.3), which we here rewrite in slightly different 
notations similar to those used above: 

~-%G(P, M, m) = ,<%, 7”’ {&(P,) T~(P, M, m)} x %(% * Y). (3.17) 

-, ia &ubgraph 

First we wish to write down a similar expression for the product G replaced as 

G(P, M, m) + G’(p, M, m) = I?mOT,oG(p, M, m). (3.18) 
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To put it simply, some of the factors have been replaced (owing to the action of T,) by 
arbitrarily singular factors; on top of everything, the singularities of the resulting expression 
have been subtracted using a’“. Expressions of this form appear in (3.15). 

Second, we also wish to consider expressions obtained from (3.18) by replacing the group of 
factors corresponding to the m-subgraph T by one factor-the J-function 6,: 

G’(p, M, m) + G”(p, M, m) = km0 [k&r) T,aG\r(p, M, m)] . (3.19) 

The crucial thing to realize is that neither the philosophy nor the reasoning of the theory of 
As-operation developed in [2] need to be changed in order to deal with such products. In- 
deed, as to the singularities and the additional R-operation (the operation I?“’ in our case), 
one only has to bear in mind the following. As a “formal expansion” one should take the 
original product &ho& the additional R-operation but with the factors that can be expanded, 
expanded. One then proceeds to constricting the counterterms (introducing an intermediate 
R-operation etc.) treating on an equal footing both the “old” singularities (i.e. corresponding 
to the factors that are singular prior to expansion) and those generated by formal expansion. 
However, in constructing the counterterms via consistency conditions, one uses the initial ex- 
pression which contains both non-expanded factors and the additional R-operation. The entire 
procedure becomes perfectly obvious if one recalls the philosophy of constructing the expansion 
by considering it first in an open region in the space of p where all the factors are regular and 
then expanding the domain of definition of the expansion by adding counterterms porportional 
to J-functions. By analogy with (3.17), one immediately obtains a similar expression for G’: 

i;oAs:@oT,,,0G(p, M, m) (3.20) 

= ,<z, 7 fin {bb,)T~~G\-i’(P, M, m)l x R+f’b * fi”~Tm~+~(p, M, ml). 

-, are icsubgraphs 

Note that we have replaced T,oT, acting on G\y by T,. 

Turning to the expression (3.19), ‘t r is not difficult to realize that the J-function is as good as 
any other factor from the point of view of the formalism-provided one considers it as a singular 
factor. Its only effect is that now every Kc-subgraph h must contain the &function plus, perhaps, 
some other n-singular factors. A simple combinatorial observation is that the subgraphs h are 
in one-to-one correspondence with n-subgraphs 7 of G such that 7 > I. Without more ado we 
get: 

F,As:&’ 0 Mpr) TmoG\G M, m)l (3.21) 

= ,<2, T rio i6b(PT) Td\-dP, M, m)) X wpb * firno kL(pr) %o~\r(p, M m)l). 

One should remember that in this expression y are K;-subgraphs in G, while I are m-subgraphs. 
Summation runs over y in accordance with the above observation about one-to-one correspon- 
dence between n-subgraphs in G and in the product G” given by (3.19). 

It is a good excercise to verify equivalence of (3.21) and the expressions that can be obtained 
along the lines of the preceding subsection. 
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It remains to note that now one can easily check the formal commutativity of the two 
As-operations (3.6) by substituting (3.20) into the r.h.s. of (3.6) and using the expression 
for its 1.h.s. that has already been discussed-provided As,,, on the 1.h.s. can be put under 
integration. The final justification for the latter comes from inequalities of the type (2.12) that 
will be obtained in section 5. 

4 “Diagrammatic” form of As,oRoG. 

The formulae derived in the preceding section are not immediately useful for deriving As- 
expansions for Green functions in OPE-like form. To this end one should recast eq.(3.15) into a 
form that would take into account specific properties of Feynman diagrams that were irrelevant 
at the analytical stage. 

The diagrammatic analysis of Euclidean As-expansions was performed in much detail in 
[lo], [ll]. The combinatorial aspects which we are going to discuss in this section are not very 
sensitive to whether one deals with expansions in dimensionally regularized form, as in [ll], 
or in formalism without regularizations, as in the present paper. Therefore, we will give only 
an outline of the reasoning and consider just two key examples: the ordinary short-distance 
OPE and the expansion in heavy masses (which extends the decoupling theorem of Appelquist 
and Carrazzone-for a review see [16]. An interested reader can find further examples and a 
detailed description of the combinatorial techniques in [ll]. 

4.1 Using factorization properties of G\F. 

At this point we may suppose that G is an ordinary Feynman diagram and use the factorization 
properties of the expression G\r(p, M, m).l’ 

An m-subgraph I? is any set of lines and vertices of G such that every line from I is singular 
after expansion in m (irrespective of whether or not the line is singular before expansion); 
I must also satisfy the completeness condition (see subsect.4.2 in [l]). In the present case 
completeness of P means the following: 

(i) When one nullifies all light external momenta from the set m as well as all the momenta 
flowing through the lines of P, no other m-singular line of G will have its momentum nullified 
owing to momentum conservation at vertices; 

(ii) I contains all those and only those vertices of G whose all incident lines belong to P; 
no heavy external momentum from the set M is allowed to enter into such a vertex. 

Consider the complement of J? in G, denoted as G\I’. The graphical image for G\P is 
obtained by deleting the lines and vertices belonging to P from the diagram G. We have already 
encountered a similar situation in [3], where G\P decomposed into a set of 1PI UV-subgraphs. 

“The reasoning below follows section 3 of [3] w ic in h’ h t urn is reminiscent of [ll] 
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Consider the connected components of G\I’, denoting them generically as e: 

Denote the set of the loop momenta that are internal with respect to 5 as p( (t may have no 
loops at all in which case pc is empty; this has no effect on our formalism). Then the variable 
p can be decomposed as follows: 

Then 

P= (Pr,Pl,~..,Pi,...). 

where we have introduced the notation mi for the collection of parameters which contains those 
light parameters from m, as well as those components of pr, on which [; depends. 

The As-expansion we are dealing with is independent of the choice of the operation fim. in 
particular, we may fix k”’ to be factorized in the sense of section 11 of [I]. Then the associated 
oueration R will be also factorized (see Annendix A). Therefore, performing integration over .> 
p, we obtain instead of (3.9) the following expression: 

As,,, 0% 
I 

dpG(p, M, m) = c ‘R”o dp,- 
0<I-<G I 

r is m-subgraph 

where: , 

L II A”ofi(M, m;) 
> 

~‘(a, m), (4.1) 

‘~~fi(M, mi) = R’J dpi iLmoT,;.fi(Pi, M, m;). (4.2) 

(Note that only the “counterterms” A are sensitive to the operation R in the initial diagram, 
while the operation ‘R” used to perform UV subtractions on the r.h.s. of (4.1) is associated 
(in the sense of subsect.3.1) with the operation km used to subtract IR singularities from the 
formal expansion on the r.h.s. of (4.2). Recall that pi are loop momenta of fi.) 

A “fool-proof’ recipe for enumeration of subgraphs in (4.1). It is interesting to note, 
following [ll], that the condition of m-completness of I? admits a universal and very convenient 
“fool-proof” reformulation. The above formulae will remain correct if, instead of summing over 
m-subgraphs r, one performs summations over all collections of pairwise non-intersecting and 
otherwise arbitrary subgraphs f. Then in order to nullify superfluos terms it is sufficient to 
demand that 

(i) whenever the operation T, generates meaningless expressions of the type l/O (due to 
a propagator carrying only a combination of light external momenta) A; should be equated to 
zero; 

(ii) if setting M = co in r produces a factor l/so in denominator (due to a heavy line that 
happened to remain outside all <i’s) then such terms should be put to zero in the sum in (4.1). 

Such a reformulation is very convenient for studying exponentiation of expansions of Green 
functions. 
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Interpreted graphically, eq.(4.1) corresponds to shrinking the subgraphs & to vertices to 
which there correspond the factors (4.2) which are polynomials of the momenta entering the 
new vertices. 

The two formulae (4.1) and (4.2) re p resent a fundamental explicit expression for the As- 
operation on a renormalized Feynman diagram. 

4.2 Exponentiation of the As-operation into OPE-like form. 

The two expressions (4.1) and (4.2) h ave exactly the same combinatorial structure as that of 
the As-expansions in the dimensionally regularized form studied in [ll]. As was pointed out 
there, similarity of their structure to that of the R-operation in the MS scheme allows one to 
easily obtain expansions for entire collections of diagrams corresponding to Green functions in 
the global OPE-like form. In fact, the situation here is even simpler than in [ll] because now 
all the terms in the expansion (4.1) which is a starting point for studying exponentiation, are 
finite. Therefore, one need not perform the step of inversion of the R-operation, which was the 
most cumbersome part of [ll] (th e role of inverted R-operation is played by the operation it”’ 
in (4.2)). Repeating the reasoning of [ll] mutatis mutandis one can immediately write down 
exponentiated forms for expansions of Green functions. 

Recall that for each asymptotic regime one only has to find, starting from the basic defini- 
tions of the m-subgraph F, diagrammatic characterization of the connected components fi of 
its complement G\F--wherein the above “fool-proof’ enumeration recipe is very convenient. 

(i) Consider the case corresponding to the short-distance OPE. Then one has only two (one 
independent-after taking into account momentum conservation) heavy external momenta, 
while all the masses are considered as light parameters. One finds: 

‘R.0 < T dze”” A(z)B(O) exp i[L: + 951) >e 

N CCi(q)R”o < T{O;(O) expi[L:+cpJ]} >s, 
qb-co ; 

with the coefficient functions C; specified by the following expression: 

CC;(4)Oi(O) =R~~m~T,~Idseis’T{A(z)B(0) expi/Z}CO”“. 
i 

To correctly interpret these expressions one should keep in mind that the standard perturbative 
formalism of interaction representation is used here. Thus, A, B and Oi are local monomials of 
free fields (&rho& normal ordering) while radiative corrections are generated by the chronolog- 
ical (T-) exponents of the interaction Lagrangian L: (integration over the space time is included 
into C). UV renormalization is performed by the operations 77,“’ and R. The operation T, 
acts as follows: one expands the T-product on the r.h.s. of (4.4) in Wick normal products of 
the free fields, retains only connected diagrams that cannot be divided into disconnected parts 
by cutting any one of propagators corresponding to the light fields (cf. the above “fool-proof’ 
recipe) and the operation T, expands the resulting loop diagrams both in masses and the 
momenta corresponding to the free fields in normal products. 
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Individual coefficient functions Ci can be extracted by taking corresponding matrix elements 
of both sides of (4.4) (only tree-level diagrams will be present on the 1.h.s. since there is no 
T-exponentiated Lagrangian there to generate radiative corrections). Such a procedure is anal- 
ogous to the algorithm of calculating coefficient functions of OPE in the MS scheme described 
in [7]. 

We see that our formulae are in direct correspondence with the formulae and algorithms 
developed at an informal level in [6]-[Ill. Th is should be no wonder because the methods we 
used were developed from the very beginning as a straightforward formalization of the reasoning 
of those works. 

It is also worth stressing that our formalism contains nothing similar to the oversubtraction 
techniques of [21]. 

(ii) As a second example, consider the case when the set of heavy parameters M consists 
of only heavy masses. Consider the generating functional of Green functions of light particles: 

Ro < T exp[iL(cp, a) + pJ] >o, (4.5) 

where L(v, ‘P) is the total (integrated over space-time) Lagrangian of the system which depends 
on heavy and light particles. Supposing that typical momenta of cp and the masses of the light 
fields m are of the same order of magnitude and much less than the masses M of the heavy 
fields, one obtains: 

eq.(4.5) = R”o < T exp[i&(+9) + $1 >s, (4.6) 

where the effective low-energy Lagrangian whose expression is similar to (4.4): 

i&(q) = R~fL”‘~T,o {Texp iL: - l}‘ghhtlpP (4.7) 

= ~Sn.eR(M) / d+,(z), 

where g,,,eE(M) are the couplings of the effective Lagrangian. Note (cf. [ll]) that & can 
contain contributions that are quadratic in the light fields. This corresponds to the finite 
M-dependent field renormalization in the usual formulation of the decoupling theorem (for a 
review see (161. Also note that only analytic dependence on the light masses is allowed in &. 
“light-1PI” means (cf. the above “fool-proof” recipe) that one has to take into account only 
diagrams that have no heavy external fields and such that they cannot be divided into two 
disconnected pieces by cutting a line corresponding to a light particle. 

This completes our discussion of the structure of Euclidean asymptotic expansions of Feyn- 
man diagram within the formalism of the As-operation. 
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5 Double As-expansions: existence and properties. 

The aim of the present section is to prove a theorem on double As-expansions which summarizes 
all analytical facts that are necessary for derivation of Euclidean asymptotic expansions of 
renormalized Feynman diagrams. Explicit formulae have already been presented in section 3. 

We will perform the reasoning in an abstract manner of [I]-[2], without explicit mention- 
ing of Feynman diagrams proper. All the analytical formulae here-however cumbersome in 
appearance-are based on a primordially primitive power counting. The apparent abstruseness 
is due to presence of two expansion parameters and another one used to describe singularities- 
each of the three accompanied by an integer-valued index etc. Nevertheless, the powerful for- 
malism of [l]-[2] allows one to use the recursive structures inherent in the problem and cut 
through all the complexities of the proof in an explicit algebraic fashion. 

An abstract mathematical character of the following text makes it necessary to recycle 
some of the physics-inspired notations used in the preceding sections: the symbols m and 
M-alongside of n and N-will be used for interger-valued indices while the two expansion 
parameters will be denoted as n and 0. We will not need M in its old meaning. Other 
notations follow [l]-[2]. 

5.1 Double As-expansions. 

We start with a formal definition of double As-expansion and present a simple but rather 
interesting lemma, which can be considered as a generalization of the uniqueness property to 
the case of double As-expansions. 

Let G(n, U) be a distribution which depends parametrically on two real parameters n and 
0 from a rectangle (0, no) x (0, go). 

Suppose there exist asymptotic expansions of G in powers and logs of the parameters n and 
cr. In the notations of [I], [2] the sum of terms of order K” IS denoted as as:oG and the partial 
sum of the terms through the power n, as As:oG (and similarly for cr). By the definition of 
As-expansion the following asymptotic estimate must be fulfilled for all o: 

(1 - As:)aG = o( n”). 

Each term of the expansion is a distribution parametrically depending on 0. Assume that 
there exist As-expansions of those distributions in 0. Denote the double series thus obtained 
as As,QAs.~G. We can reverse the order of expansions and ask a natural question, whether 
the two resulting double series As,QAs,~G and As,oAs,oG coincide. Generally speaking, they 
don’t (the simplest example is the numeric function l/(n + 0)). However, it is possible to 
formulate a necessary condition for the commutativity of the two As-operations based on the 
notion of double As-ezppansion. 

Consider the double remainder ((1 - As:)a(l- AsFa)oG, up). By definition, it is o(nn) for all 
g, but its behaviour as 0 -+ 0 is a priori unpredictable. It is natural to introduce the following 
definition: 
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Definition. A double series in powers and logs of h: and a-its partial sum of terms through 
O(n”) x O(C) is denoted as As>,” , OG-is called double As-ezpansion if: 

I((1 - As; - As,mo + As:;,“)oG,ip)I < o(n”).(,“‘), 

and there exist integers no, ms such that as:;: 0G = 0, provided n 5 ns or m 5 ms . 

One can see that the double As-expansion is unique. Moreover, its existence implies nice 
properties of the double series obtained by termwise composition of the two one-parameter 
As-expansions like As,~As,~G, which can be summarized in the following elementary lemma: 

Lemma 1. If there exist a double As-expansion of the graph G then there exist series 
As,oAs,~G and As,QAs,oG, and, moreover: 

As,oAs,aG = As.oAs,oG = As,/G. 

Therefore, to prove the commutativity of the two As-operations it is sufficient to construct 
the double As-expansion-which is the purpose of the rest of this section. 

5.2 Object of expansion. 

The objects we are working with the so-called graphs (formally defined in section 1 of [l] 
and section 7 of [2]). A graph in this sense is an abstraction to describe products of singular 
functions encountered on a regular basis in studies of multiloop diagrams (e.g. integrands of 
multiloop diagrams in momentum-representation). As we now wish to study expansions in two 
parameters, the notations of [I], [2] should b e extended. Namely, the linear functions l,(p) 
(which describe the way the integration (loop) momenta p are combined in the argument of the 
g-th factor) is now required to have the form: 

l,(p) = Ii(p) + .ur; + Klr, 

where 1; and 1: represent linear combinations of small and large external momenta, respectively, 
and are independent of p. Some of the functions F’ which used to depend on the expansion 
parameter K, now acquire dependence on the second expansion parameter o of the form: 

Fg(% K) -+ F&4% KU), 62) 

i.e. instead of n we now have the product ICC. Otherwise, the properties of the functions F 
remain the same. 

The assumptions (5.1)-(5.2) are crucial for existence of double As-expansion. 

To simplify formulae, we assume that the formal expansions of F’s start from noa”, which 
can always be achieved by multiplying F by the corresponding powers of n and (r. 

We are going to show that the graph G(p, n,o) has a double asymptotic expansion in 
powers and logarithms of n and 0 with the remainder bounded by an expression in which the 
dependencies on K and g are factorized, i.e. that there exist double As-expansion of G. 
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The theorem on double asymptotic expansions presented below is, essentially, a logical 
outcome of the conditions (5.1)-(5.2). H euristically, it is clear why this is so: a numeric 
function of the form l/(1 + IC + na) with a structure analogous to (5.1), can be expanded into 
a double As-expansion in n and o. The latter property is naturally inherited by any products 
of such functions. The pathological cases of the sort mentioned in subsec.5.1 are prohibited by 
the imposed restrictions. 

Theorem 1. Under the above conditions, there exists a double asymptotic expansion of the 
graph G(p, n, u); it is given by a termwise composition of the two As-operations as described 
in the preceding sections (see also below eqs.(5.5)-(5.6); and it has the following properties: 

(a) As,~As,QG = As,~As,~G = As,,*G. 

(b) As::,“0 G = 0 for R < A”’ or m < AaG, where 

ARC = FF? (OPI-1, A”~ = F$c” (O,w). 
I- is r-sibgraph r is &bgraph 

(c) The operation As,,, is local in the sense of [2]. 

(d) For the terms of the expansion the following estimate holds: for all up E D(P) such that 

d SUPP ‘P I 4 

1 (as::,” .G,cp)I 5 nnumd-uG-nCdkSk(cp)A(d,nru). 
k>O 

(Here and below we do not indicate the upper limits of summations since their exact expressions 
are cumbersome and of no practical use. They can, however, be restored from the proofs in a 
straightforward manner.) 

(e) The remainder of the double expansion, defined as 

A n,m dgf 1 - As: - As: + As:;,“, 

satisfies the following “factorizable” estimate: one can fix a constant C > 0 such that for all 
d > CK and ‘p E D(P) with radsuppp 5 d: 

I@n,m~G,v4 I t?‘+lum+ld-wG-“-l gd%‘(+i(d, n, u). (5.3) 

(f) The expansion possesses the following minimality property: 

( as::,“aG * P,,,o) = (A,,,oG + P,,c) = 0, for 1~1 5 WC + n. 

5.3 Proof of theorem 1 

The proof of the theorem will be carried out by induction over the hierarchy of m-subgraphs 
r < G. It is convenient to include into the induction the following lemma containing useful 
auxiliary estimates: 
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Lemma 2. 

(i) Vq E D(P), radsupp ‘p 5 d: 

](aszo(l - As,“)oG)] 5 ~~u’“+rd-~~-” c d’Sk(q)A(d, n, o), 
1120 

(ii) 3C > 0 Vd > CK Vq E D(P), radsuppv < d: 

](@o(l - As:)oG)] 5 i?+lomd-wo-n-’ c dkSk(cp)A(d, ,c,o). 
k>O 

The statements of the theorem and the lemma are trivial for the empty graph G = 1. Let 
us suppose that they hold for any subgraph of G. The proof can be divided into three logical 
steps. First, one defines As-expansion as a distribution on D(P\{O}) using decompositions of 
unit (cf. section 10 of [2]) and verify the conditions of the theorem for it. Second, one performs 
a natural extension of the distributions obtained at the first step onto the space of functions 
from D(P) with zero of the order B,, = wo + n + 1 (such space is denoted as Z&,,(P)). Third, 
one continues the As-expansion onto the entire D(P) and determines a finite renormalization 
to ensure asymptotic estimates. 

It is convenient to carry out the first and second steps simultaneously. 

Steps l-2. To begin with, take a function ‘p E ‘&r,(P) and a cutoff q,~ E ‘D(P\{O}). Using 
the sector decomposition of unit we define as,,,oG on ‘pnx: 

( as$“.G, WA) = c c (as:;,“J , t~-“@r-m~G\r Br pnA). 
I-aG n<N 

m<M 

Using the estimate (d) for F < G (which holds by inductive assumptions) and the auxiliary 
estimate (B.l) we conclude that: 

1 (asY .G, qqx)l 5 K”U” c Xk-“O-“S’(cp)A(X,n,~). 
k>& 

Integration over X (cf. [2)) completes steps 1-2 for the estimate (d). 

The estimate (i) is proved similarly using the auxiliary estimate (B.2). 

The estimates (ii) and (e) are of a somewhat different kind, which should be clear from their 
look. First of all, we prove the following lemma: 

Lemma 3. Vv, radsuppq < CK: 

I(4 oG, q)l 5 9’ c t~~-“~S~(pp)i\(q KC), 
k>O 

I((1 - As,“)oG, p)] 5 urn+++ c kk-‘Wk(q)A(o, a). 
k>O 
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The unusual way of how K enters the r.h.s. is due to two reasons. First, now the test 
function is localized in a neighbourhood of radius O(n) so that n plays the role normally 
reserved for d. Second, the formal expansion of G in o prior to expansion in n results in a 
situation with several maximal subgraphs (in the context of this lemma we are dealing only 
with m-subgraphs). This would normally prevent one from obtaining estimates describing 
singular behaviour of subgraphs (recall that in the proofs of [l]-[2] one normally deals with one 
maximal subgraph whose singular plane is the point p = 0 so that behaviour near p = 0 can 
be described by dependence on the radius of support of test functions). In the present case, 
however, the singular product expanded in o depends parametrically on K-in an interesting 
way (here the reader should review the pattern of how the factors G depend on n and b-see 
subsect.5.2). Consider the factors that develop singularities after expansion in 0 but prior to 
expantin in n. The only dependence on n that remains in such factors is in their momentum 
argumermts. This means that the eventual expansion in K will result in an O(K) shift’s of their 
singular planes, while after expansion in K there will remain only one maximal subgraph (G 
itself) whose singular plane is p = 0. Therefore, our standard estimates are still meaningful 
proviM the test functions satisfy the condition in the lemma. 

The proof proceds as follows. In section 5 of (11 there was constructed a decomposition of 
unit isdating the singular planes of maximal (m-) subgraphs of G, whereby a smooth function 
nr is r&grmd to each T E S,,[G], so that 

c W(P) = 1. 
WS,..Pl 

It is convenient (in fact, natural) to choose qr to have the form nr(p/n), so that the decompo- 
sition of unit works for all n. Using (5.4), one can write down the following identity: 

k,” .G,d= C CC asFor , ty-mG\r 7r 9). 
rcs”..[q ms.+f 

Since every r is maximal in itself, the parameter o appears in its expansion only in com- 
bination M. Therefore, the estimate (9.10) from [2] may be applied to ns:aT after replacing 
d-+~andn-+na: 

(We assume that LT 5 1 and, hence, on 5 n and n > radsuppv.) Noticing that: 

s&,,,,(t~-“oG\r) 5 ~~-“‘~-~~\r-~l\(o, n), 

we obtain the desired estimate. The second statement of the lemma is proved similarly. 

Noah let us return to the theorem. We now have to deal with singularities of the expansion 
in K and, therefore, with n-subgraphs. To prove the estimates (ii) and (e) we choose the 
decomposition of unit 1 = H”(p) + H,(p) (H” non-zero in a neighbourhood of p = 0), with H” 
fixed so that V’r Q G and Vg E G\I’: 

Su~~WW no;(G) = 0, 

13and/or rotation in the more general situation of the expansion problem with contact terms. 
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where O;t,l is the n-vicinity of g defined as in [2] but with the following modifications. The 
singular plane ?ri of an element g at o = 0 can be displaced from the one at K = 0, rri, by 
const x n. Therefore we can take a neighbourhood of the plane rr,” with a radius const x n and 
containing the singular plane ?r,” for all n + 0. 

Since rad supp H” = Cn, we use our usual representation of H, as an integral over spherical 
layers of radius X, H, = J& dX/Xr)x, and get for (ii) with ‘p replaced by ‘pr)~ in analogy with 
the proof of (d),(i) for X > Cn (using (B.3)): 

](as:o(l - As:)oG, qnx)] 5 ~“+iu”’ kg Xk-“G-“-‘Sk(cp)A(X, K, 0). 
- ” 

Integrating over X from Cn to d we immediately obtain a “half” of (ii) (i.e. for qH, instead of 
ip). The second half, 

(asFo(1 - As:)oG, pH”) = (asToG, rpH”) - ~(as~~as:oG, vH”), 
&II 

is estimated with the help of lemma 3 (the first term) and (d) which has been already proved. 
The estimate (e) may be obtained in the same manner. This completes steps l-2 of the proof. 

Step 3. The extension procedure have already been performed for the series As,aG and As,oG 
in [2]. Our purpose is to extend As,,,aG to the distribution on D(P) maintaining all the 
estimates. It can be done in two strokes. The first stroke is to apply the special subtraction 
operator i to as:;,“oG so that it obey the estimates (d). This procedure is performed in the 
manner of [2]. The second (and the last) stroke is the finite renormalization of as:;,“eG to 
satisfy the estimate (d) (and, of course, (i) and (ii)). Namely, let: 

asz;J’oG = iaasz;,“aG + c 6, (PI q?t (5.5) 
I.l=max(uo+n,O) 

It is straightforward to check that the choice 

Es :,: = (P,,G * [ as:* G - iaioAs~“+’ oG]) (5.6) 

satisfies all the requirements, which completes the proof of the theorem 1. 

A few remarks are in order. 

(e) Theequations (5.5) and (5.6) g ive explicit recursive formulae for the double As-expansion. 
They can be resolved along lines of [3] which has already been done in the precedent section. 

(b) The theorem can be readily generalized to the case of N-fold expansions. For example, 
if one wished to study a two-scale expansion of a renormalized diagram, one would have to use 
a three-fold As-expansion etc. 

(c) In our main inequality (5.3) the graph G is compared to a rather weird expression 
As,oG + As,nG - As,+,oG. However, this is only necessary for obtaining factorized bounds. 
Should one need just an approximation for G irrespective of whether it should be achieved due 
to smallness of K or o or both-as is often the case in applications-it is sufficient to use a 
suitably truncated series As,,,oG. 
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Conclusions. 

A theory that pretends to be a comprehensive alternative to the BPHZ method should be 
able to address at the formal level, as a minimum, the problem of UV renormalization and 
that of operator product expansions. The theory of As-operation, which has already enjoyed 
success in applications, has now fulfilled this criterion. 

As was observed in 1121 the key difference between the two paradigms-BPHZ and our 
techniques based on the As-operation-is how the basic dilemma of the theory of multiloop 
Feynman diagrams is resolved. The dilemma consists in the conflict between the inherently 
recursive nature of the problems of perturbative quantum field theory involving hierarchies of 
Feynman diagrams, and the singular nature of the objects participating in such recursions. The 
BPHZ approach consists in systematically getting rid of the singularities by explicitly resolving 
the corresponding recursive patterns and thus reducing the problem to absolutely convergent 
integrals. However, those recursive structures are inherently natural, and to ignore them-as 
the BPHZ approach does-means to lose the heuristic advantage of dealing with complicated 
objects in a manner respectful of their true nature. 

The techniques of the As-operation, on the contrary, allows one to preserve and make 
efficient use of the recursive structures by offering means to directly work with singular expres- 
sions. As a result, formal proofs become algebraically explicit and compact, while the final 
calculational formulae, powerful. 

To put it shortly: the BPHZ formalism is only an instrument of proof; the techniques of 
the As-operation is also an instrument of discovery. 
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Appendices. 

A Factorizability of the operation 72. 

Let us prove factorizability of the operation R. It is always possible to fix the associated A- 
operation to be factorized whence the factorization of ‘R follows. The corresponding proof was 
not given in [3] and we carry it out here. 

For clarity, we consider the case of just two factors and use the general notation consistent 
with the reasoning of [3]. 

Let G’(p’, K) and G”(p”, K) be two graph s, with p’ and p” independent. We assume that the 
operation As, is well-defined on both of them. We wish to prove that, provided the operation 
i; is chosen to be factorized, the operation R = 1 - &As: factorizes as follows: 

% / dp’ dp” G’(p’, K) G”(p”, K) = Ro / dpf G’(p’, K) x m / dptt G”(p”, K). (A.11 

We will present simple arguments which use only factorizability of the operation As, (which 
follows from uniqueness of As-expansions-see section 2 of [2]) and the fact that the expression 
‘??.a JdpG(p) (where p = (p’,p”)) is exactly the coefficient of b(p) in the As-expansion of G(p, K) 
in n in the sense of distributions: 

As,oG(p, K) = ioAs:oG(p, K) + 6(p) ‘Ro J dpG(& K) + higher derivatives of 6(p). (A.21 

The proof runs as follows. First one writes: 

As,o[G’(p’, K) x G”(p”, K)] (A.3) 

= ioAs’,o[G’(p’, K) x G”(p”, K)] + 6(p’)6(p”) Ro J d$d$’ G’(p’, tc)G”@“, K) + . . . . 

Then for each factor one has a similar expression; e.g. for G’: 

AskoG’(p’, 6) = ioAs:oG’(p’, K) + ~5(~‘) Rn / d$ G’(@‘, K) (-4.4) 

Recall that Ass factorizes (see section 2 of [2]): 

As,.[G’(p’, n)G”(p”, tc)] = As,oG’(p’, K) x As,oG”(p”, K). (A.5) 

Substituting (A.3) and (A.4) into (A.5) and comparing terms (taking into account that we 
always choose i to be factorizable-see section 5 of [2]) one finds, first, that 

iaAs’,o[G’(p’, .s) x G”(p”, K)] = ioA+G’(p’, 6) x ~oAs’,oG”G”(~“, K) (‘4.6) 

+As,ol+(p’, K) x s(d) Ro / dp” r”($‘, tc) + As,C”(p”, K) x ,s(~‘) ~0 / d$ r!($, n), 

whence follows (A.l). 

It remains to note that the factorization conditions that we always impose on i and l? 
ensure factor&ability of ‘R. 
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B Auxiliary estimates. 

Let H be a subproduct of G, H c P, and let K be a compact region not intersecting any of 
the singular planes of H, which is formally expressed as follows: 

K c qc,\ lJ rg. ilm 
Then 

S&(t:.t,maH) < (;)” 0”’ :‘t+“!, 

S;s,,(t:o(l - Tr)aH) < (;)“u-+i :(t+;). 

Moreover, there exists a constant C (depending on H and I() such that for x > cn: 

S;;,,((l - T:)ot;aH) < (;)n+lc- I:(dxH;:), 

S;;,,((l -T:)o(l-Tz)oH) < (;)““cr-+i:‘a,;;). 

P.1) 

P3.2) 

U3.31 

03.4) 

All the above estimates formalize elementary power counting with respect to each of the three 
parameters-K, rr and X. 
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