
a Fermi National Accelerator Laboratory 
PERMILAB-Pub-91/203-A 
August 1991 

Non scale-invariant density perturbations 

from chaotic extended inflation 

Silvia Mollerach 

NASA / Fermilab Astrophysics Center, 

P.O. Boz 500, Bafaoia, Illinois 60510, USA. 

Sabino Matarrese 

Diportimento di Fisica “Galileo Ga[ilei”, Universitd di Padom, 

via Marzolo 8, 35131 Padoaa, Italy. 

Chaotic tiation is analysed in the frame of scalar-tensor theories of gravity. 

Fluctuations in the energy density arise from quantum fluctuations of the Brans- 

Dicke field and of the inflaton field. The spectrum of perturbations is studied for a 

class of models: it is non scale-invariant and; for certain values of the parameters, 

it has a peak. If the peak appears at astrophysically interesting scales it may 

help to reconcile the Cold Dark Matter scenario for structure formation with 

large-scale observations. 

a Operated by Universities Research Association Inc. under contract with the United States Department of Energy 



I. INTRODUCTION 

One of the most successful models for the origin of the primordial energy density 

fluctuations which gave rise to the observed structures in the universe is given by 

inflation. Quantum fluctuations of scalar fields present during the inflationary era 

give rise to classical fluctuations in the energy density. In the simplest model of 

one inflaton field driving the universe expansion, as it slowly rolls down a smooth 

potential, the resulting fluctuations are adiabatic, with scale invariant spectrum and 

Gaussian distributed. These are also the kind of primordial fluctuations usually 

considered in one of the most accepted scenarios for galaxy formation, the standard 

Cold Dark Matter (hereafter CDM) one. This scenario successfully explains many of 

the observed properties of galaxy clustering. However, it has shown to have difficulties 

in explaining some large-scale observations such as the galaxy peculiar motions,’ the 

clustering of clusters,’ the angular correlation function of galaxies3 and some peculiar 

features in the very large-scale galaxy distribution.’ 

Different models in which the inflationary paradigm can be realized have been pro- 

posed. These are generally identified as old inflation, new inflation, chaotic inflation 

and extended inflation. In the old inflation picture the universe undergoes a first order 

phase transition during which the regions in the false vacuum phase expand exponen- 

tially, it has the problem that, due to the speed of the false vacuum expansion, the 

true vacuum bubbles fail to percolate. In the new and chaotic inflationary scenarios 

this problem is solved, as inflation occurs during the slow rolling of the inflaton field 

to the minimum of its potential. The extended inflation model has recently been pro- 

posed as an alternative solution to the problems of old inflations A first order phase 

transition for the inflaton field is considered in the frame of the Bran+Dicke theory of 

gravity. This makes the universe expand as a power law (instead than exponentially) 

during the phase transition, so that the percolation of false vacuum bubbles can oc- 
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cur. However, this model has the problem that it is not possible to simultaneously 

satisfy the bounds coming from the observed smoothness of the Cosmic Microwave 

Background Radiation (hereafter CMBR) and from time-delay experiments. Modified 

versions of this model have been proposed to overcome this difficulty.’ 

Later on it has been pointed out by Linde’ that the Brans-Dicke gravity theory also 

has interesting consequences for chaotic inflationary scenarios due to the fact that 

the effective gravitational constant can take different values in different places of the 

universe. One of the modifications of the original extended inflation model proposed6 

considers more general scalar-tensor theories of gravity in which the Einstein gravity 

theory is an attractor for the solutions, but that can considerably differ from it in 

the past. The main purpose of this paper is to explore the consequences of chaotic 

type inflation taking place in these gravitational theories. We show that the fact that 

curvature fluctuations are determined by both the fluctuations in the inflaton and in 

the Brana-Dicke field gives rise to perturbations with non scale-invariant spectrum. 

In particular, it is possible that the spectrum has a peak at a given wavelength. This 

kind of spectrum can help to reconcile CDM predictions with large-scale observations 

without running into conflict with the CMBR anisotropy limits, provided that the 

peak in the spectrum appears at an appropriate wavelength. Other models in which 

this kind of spectrum can arise have been discussed in the literature.e For example, a 

mountain on the top of an underlying scale invariant spectrum arises when there is a 

hill on the scalar field potential. ” Another possibility is to consider two interacting 

scalar fields. In this case the interaction between the fields can give rise to variations 

in the effective masses of the fields during their evolution and can make mf,, change 

sign, thus originating a peak in the resulting density perturbations. (Other kinds of 

non scale-invariant fIuctuations in inflationary models have been discussed in Refs. 

11.) The mechanism considered here is quite different. The peak in the spectrum 
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originates when the effect of the inflaton fluctuations becomes dominant over the 

Bran+Dicke field fluctuations in determining the total curvature fluctuations. A 

problem of these models is that, in order to make the features in the spectrum appear 

at scales of astrophysical interest, it is necessary to impose rather precise conditions on 

the inflationary model, either on the initial conditions of the fields or on the potential 

parameters. This problem is also present in the model discussed here, as the initial 

value of the Bran+Dicke field determines the scale at which the peak in the spectrum 

appears. Another model where non scale-invariant perturbation are generated has 

been recently proposed,” in which a period of extended inflation is followed by a 

period of slowroll inflation. 

The organization of the paper is as follows. In section 2 the chaotic extended in- 

flation model is introduced; the conformal transformation to the Einstein frame, the 

equations of motion in that frame and the inflationary solutions are discussed. In 

section 3 the generation of curvature perturbations in this model is studied and the 

possibility that their spectrum is non scale-invariant at observable scales is discussed. 

The resulting spectrum of perturbations for some particular values of the model pa- 

rameters is presented. In section 4 the evolution of the inflaton and of the Bran+Dicke 

field is analysed in the frame of the stochastic approach to inflation. In section 5 we 

discuss the results. 

II. CHAOTIC EXTENDED INFLATION MODEL 

A. The model 

We will explore the realization of chaotic inflation in the frame of a class of scalar- 

tensor theories of gravity which are described by the action 

s = / d%&i ( -42 + fyg”ba.~&l#J + +%ek7 - V(c)) , 0) 
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where q+ is the Brans-Dicke field and Q the inflaton field. The scalar field q4 is nor- 

malized to be (2X*)-l at present, with K? z 87rG,v (GN being the Newton constant). 

In the standard Bran+Dicke theory w(d) is a constant, and it is constrained by 

present observations to be large, w > 500. A more general scalar-tensor theory is the 

Bergmann 13-Wagoner”-Nordtvedt’6 one, where w(4) is an arbitrary function. Special 

cases are Bekenstein’s’s “variable mass theory” and Barker’s” “constant GN theory”. 

In these theories the function w(d) can have the property that, for the present value 

of the scalar field 4, the theory is indistinguishable from General Relativity, but, 

for past values of 4, it could lead to significant differences in cosmological models. 

Particularly interesting is the case in which the system dynamically evolves to an 

attractor solution indistinguishable from General Relativity. This kind of theories 

has recently been considered in order to overcome the problems associated with the 

original extended inflationary model proposed by La and Steinhardt.6 With this scope 

a particular class of models, based on the function w(d) defined by 

+)+i = (l-&y (2) 

with p and p constants, has been analysed by Garcia-BelIido and Quir6s.s We wilI 

analyse the consequences of chaotic inflation in the frame of this gravity theory. 

The action in eq. (1) is written in the Jordan frame, where the gravitational 

coupling depends on 4. However, it shows to be more convenient to work in the 

conformally transformed Einstein frame in which the gravitational part of the action 

takes the usual form. The conformal transformation connecting the two frames is 

given by 

%b = R-‘&b, with $l = Fd. (3) 
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It is also useful to redefine the scalar field asls 

(4) 

In this frame the action (1) transforms to 

R(‘) + ;gb&$&~ + ;n-‘(~)~b&db~ - t--‘((o)v(b) . (5) 

We will call F(v) Z fP(lp) = (3?4)-‘. 

B. Evolution of the fields 

The equations of motion for the Bran+Dicke field ‘p and the inflaton o in the 

Einstein frame are given by 

(3 + 3H@= -2F(p)B,F V(u) + B,F$ (‘5) 

ir + 3Hk + ;& = -F(p)a,V, (7) 

having restricted our analysis to a homogeneous and isotropic universe. Here a dot 

denotes differentiation with respect to t and H = 6/a. The Friedmann equation reads 

Ifa = y (ffg + F(p); + F’(IP)V(u)) . (8) 

To deal with this coupled system of equations it is convenient to change the time 

variable from t to Q = ln(a/uO), where ao can be taken ES the value of the scale factor 

a at the beginning of inflation. The system transforms to 

H%p”+ K=F’Vp’= -2Fa+.F V + H’a,F$ (9) 

aF 
Had’ + K’F’Va’ + Aa+o’d= -F(y)&V, (10) 

=” = 3 - $ (p” + F(p)@)’ 
01) 
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where primes denote derivatives with respect to a. 

In what follows we will consider the particular function ~(4) quoted in equation (‘2). 

Two particular constant p values make it possible to handle the problem analytically: 

these are n = 1 and F = 2. The corresponding F(q) is given by 

F,=dvP) = cosh*(K&), (12) 
F+($J) = 1+ e+m. (13) 

In the first case the field ‘p rolls down its potential and asymptotically approaches 

‘p = o at late times. In the second case the field rolls down asymptotically approaching 

infinity. All the results obtained are qualitatively similar in the two models, so for 

definiteness we will develop the computations for the n = 2 case. 

We will consider for the inflaton a potential V(c) = M’exp(-7&r), with 7 a 

positive constant, which gives interesting possibilities for the spectrum of the resulting 

energy density perturbations.” 

It can be seen that the condition to have an inflationary expansion (‘i > 0) cotre- 

sponds to 

2 > K2(d2 + F($T)cP). (14) 

In this regime we can neglect the second term in the right hand side of eq. (9) and 

the second derivative term, so that the equation decouples from the one for o and 

can be integrated, leading to 

K&& - w) + exdrpKJ2/P) - exp(wKt/%) = $- - of). (15) 

It can be seen that neglecting the second derivative term is a good approximation 

for 4/3 < p(1 + exp(F+@@)s and that neglecting the in&ton kinetic term is a 

good approximation for 7s < 4(1 + e- ““fi). Note that for large negative values 
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of ‘p eq. (15) reduces to the solution corresponding to a scalar field rolling down an 

exponential potential, i.e. ‘p = ‘pf + 2w((I - a,). 

At late times ‘p >> 1 and F(v) approaches unity. The effective Newton constant 

tends to its present value as 4 + (2X2)-’ and from eq. (2) we see that w grows up 

making the theory indistinguishable from General Relativity. 

The evolution equation for o can be solved in the slow-rolling approximation ne- 

glecting the second derivative term. It is convenient to solve it in terms of ‘p instead 

of ~2. Combining eqs. (10) and (9), in the approximation discussed above, we get 

dip 42 -= au -rK.’ 

which can be directly integrated. The solution is given by 

o = o,+ rp 
4 ( 

,G+D -.Gvx!% . 
> 

W 

(17) 

The approximations performed hold for 813 < p(1 $ exp(Kvm))’ and 7’ & 

f3O + -d-=fC&$)b 

As we will see in the following, the relevant quantities for the study of density 

perturbations are ‘pO and Fcr”, which in this case are given by 

a 1 

QR= “‘p(1+ ,Kc,&Fy 

Fo” = 7’ 

KZ(l i-e -K!qm) . (19) 

From eqs. (18) and (19) we see that ‘p” is a decreasing function of Q (and hence of 

time), while Fd is an increasing one. Thus, for early times Q" will be the dominant 

one, while Fa” will dominate at late times. 

The exponential potential for the inflaton, as opposed to other chaotic inflation 

potentials, does not lead to a phase where the inflaton field oscillates starting the 



reheating process. The end of inflation in this case must be determined by some ex- 

ternal reheating mechanism. Without loss of generality we can consider that inflation 

ends at bf = 0, in which case M’ corresponds to the potential energy at the end 

of inflation. On the other hand, we know that at the end of inflation the value of 

the Brans-Dicke field Q, in our patch of the universe must be such that the gravity 

theory is now very close to General Relativity. As the strongest variation of the ‘p 

field occurs during the inflationary era, we will impose this constraint at the end of 

inflation, F(Q~) x 1. 

To conclude this section let us briefly discuss the relation between quantities in the 

Einstein frame and in the Jordan (physical) frame. If we write the line element in 

the Einstein frame as 

da’ = dt’ - a’(t)& 

and the one in the Jordan frame as 

ds’ = dr’ - b2(r)dfa, 

they are related by 

a(t) = F-“‘b(T), PO) 

dt = F-‘l’dr. (21) 

At late times, when F approaches unity, the two frames practically coincide. 

From eq. (20), we see that the number of e-foldings of inflation in the two frames 

is related by 

ln(a/m) = iln(Fo/F,) t ln(bt/b.), 

where quantities at the beginning of inflation have been denoted by a subscript 0 and 

quantities at the end of inflation by an f. 
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Furthermore, the condition for inflation in the Einstein frame (d*a/dtl > 0) is 

fulfilled when condition (14) holds. It can be seen that under this condition also the 

Jordan frame inflates (dlb/dT’ > 0). 

C. Constraints from Post-Newtonian experiments 

There are different constraints that an alternative theory to General Relativity must 

fulfill in order to agree with post-Newtonian experiments.” They constrain essentially 

the present value of w and the present rate of change of the Newton constant. 

As the theory that we are considering evolves approaching General Relativity, if we 

impose these constraints at the end of the inflationary era, they will be also fulfilIed 

at the present time. In the last subsection we have seen that the theory approaches 

General Relativity during inflation. It is easy to see that this is also the case during 

the radiation and matter dominated eras. The equation of motion for ‘p during the 

radiation dominated period can be written in the Einstein frame as 

$(a’$,’ = -s& - 3p) = 0, 

where we have denoted d/dt by a dot. Changing the time variable to a, this equation 

can be solved as 

Q = Qf + Qp;(l - d-fI), 

where ‘pf and Q) denote the Bran+Dicke field and its derivative at the end of inflation. 

As (o> is positive, we see that Q continues to increase during the radiation dominated 

era and consequently F(Q) --t 1, 4 -+ (2X1)-l and w -+ 00. It can be seen that Q 

also grows during the matter dominated era. The equation of motion (23) in this case 

can be written as 

3 34% 1 
Q,,+zQ’= 2K l+eKY@’ 
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which is difficult to integrate; from it, however, it is easy to see that ‘p’ is always 

positive as 

Q’ewa = Q:ewa $ 
p/1 

1 + &+‘)~ ’ 

where the subscript + denotes the values at the end of the radiation dominated era. 

The last term is always positive, thus ‘p’ > ~:t?("'-")/' > 0. (For a demonstration of 

the convergence to General Relativity starting from the Jordan frame, see Ref. 8.) 

The first constraint to be considered is the one coming from the present value of w 

determined from radar time-delay measurements, w > 500.a’ The value of w at the 

end of inflation is determined through the relation 

w + 312 

J 
= 

P 
1+ eKpm. 

Thus, the constraint on w determines a lower limit on the final value of the Brans- 

Dicke field at the end of inflation, corresponding to 

Klp,&j>ln (27) 

Another constraint comes from the present rate of change of the Newton constant. 

The observable gravitational constant is.given in terms of 4 byzo 

G,1 1+1. 4 ( 2w $3 > 

Its rate of change per expansion time in the Jordan (observable) frame is given by 

dG 1 --= @t&F 2pt l- l/F’ = 
dr GH p/a ( 2@+(1-l/F)’ --’ 1 

(29) 

Experimental limits coming from the Viking lander ranging data” constrain it to 

r] = 0.04310.08 (assuming IfI,, = (2 x 10l”yr)-I). F ram the analysis of the Q evolution, 

we see that q evolves towards zero in all the periods of interest. Thus, if at the end of 
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inflation n was inside that interval, rt will be there even more now. In order to fulfill 

this condition at the end of inflation it is necessary that 

(30) 

which always holds if condition (27) is satisfied. Big Bang nucleosynthesis imposes 

a stronger limit on the variability of G,‘s 171 < f0.018. This bound amounts to 

changing the factor 10 by a factor 15 in eq. (30); this condition is also fulfilled 

whenever condition (27) is. 

Finally, let us consider the constraint coming from the lower limit on Hqe, where 

Hs is the present Rubble constant and 7s the cosmic time, Hgo > 0.4. Making use 

of the Einstein equations 

(31) 

it can be seen that, for values of ‘p at the end of inflation like those allowed by eq. 

(27), this constraint is easily fulfilled. 

In the next section the generation of density perturbations is studied working in the 

Einstein frame, in which the treatment is closely related to the usual chaotic inflation 

case. s’ The fact that the two frames coincide at late times, when all the wavelengths 

of interest enter the Hubble radius, implies that our results apply without changes to 

the observable perturbations in the Jordan frame. An alternative method to study 

density perturbations has been developed, in which the Jordan frame is used.” 

III. GENERATION OF PERTURBATIONS 

A. Curvature perturbations 
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In this model the energy density perturbations arise as a consequence of fluctuations 

in the inflaton field and in the Brans-Dicke field. 

We will work in the longitudinal gauge where the metric takes the form 

ds” = (1 - 2iP)dt’ + a’(t)(l t 2@)@, (32) 

where ip coincides with the gauge invariant potential @a defined by Bardeen’s and 

corresponds to the usual gravitational potential. It can be expanded in a superposition 

of modes of wavenumber i, i&i (we will not include the subindex i in what follows). 

Curvature perturbations are described by the amplitude of the variable <la7 given 

by 

C=&&(P+H-‘&)+rn ( l+;(l~w)-& ) 1 
which is constant during the evolution for wavelengths much larger than the Hub- 

ble radius; w is the ratio between the pressure and the energy density. The power 

spectrum of < (variance per In le) is defined as 

P&l = 2 < 1~4’ > . 

For scales that are just entering the Rubble radius during the matter dominated 

era the amplitude of PC and P* are related by (see, e.g., Refs. 27,lO) 

PyRc = ; P$‘IHC = ; ?I,, = ; $I,, 1 (35) 

where the subscript RC refers to the Hubble radius crossing time. The amplitude of 

C modes during inflation in terms of the perturbations of Q and LT can be computed 

as follows. From the 0 - j component of the Einstein equations we have 

6 + H@ = -: ($5~ + F(Q)&%J). (3’3) 
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Thus, a good estimate of C for large wavelengths during the inflationary period is 

given by 

( N LL(ip + H-‘k) = -H($Q++Fy$+J, 

or in terms of the variable cc 

( = _ (Q’JQ + F(Q)O’66) 
Q’J + F(Q)dl . (38) 

This treatment is a good approximation in our case, as both the fields and their 

derivatives are smoothly varying during the entire period of inflation. A more careful 

treatment, integrating the evolution equation for the fields and metric perturbations, 

is instead necessary in other cases. 

B. Power spectrum 

The amplitude of the field fluctuations 6Q and 6~ is given by the quantum fluctu- 

ations of the short wavelength modes of these fields. The power spectrum per Ink 

of scalar field fluctuations can be computed from the two-point function of the field. 

For a power-law inflation it is given byss 

I (39) 

where p is the power of the expansion (a cc tP and p = 217s for the exponential 

potential V o( exp(-7x9) case) and Y E (3p - 1)/(2p - 2). For p + 00 it reduces to 

the well-known value IP/(2x)s, corresponding to a de Sitter space. At Hubble radius 

crossing time the power spectrum is given by 

P,,(k) = ‘lf2;y’ (&)1-2’a2(Q) , 
fzc 

(40) 

where the Hubble constant is evaluated at the value that Q gets when the wavenumber 

k crosses the Hubble radius. This amplitude applies only to minimally coupled scalar 
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fields. Thus, as it has been argued in Ref. 24, it can be applied to the Brans-Dicke field 

fluctuations 6’p in the Einstein frame but not in the Jordan one. For the fluctuations 

of the inflaton field 60 we cannot take that amplitude, due to the fact that its kinetic 

term does not have the canonical form, because of the factor F(Q) in its Lagrangian. 

However, for the inflaton field it is easier to work in the Jordan frame, where it is 

an ordinary minimally coupled field. Thus, in this frame we can estimate the power 

spectrum of SJU by eq. (39). Transforming to the Einstein frame we get from eq. 

(40) that, at Hubble radius crossing, 

PO,(k) = 2;$‘1 (&))- $iRC (41) 

(see also Ref. 29). 3o In the model that we are studying the universe expansion is not 

given by a single power law for the whole evolution but it can be well approximated 

by different power laws for different periods with slightly different values of p. The 

value of p can be determined from the Friedmann equations l/p = 3(1 + w)/2 = 

xz(Qp” + i+“)/2. 

From eqs. (38) and (41) it can be seen that the curvature perturbations will be 

dominated by the inflaton fluctuations in the case that cp’ < 00’ and by Brans- 

Dicke field fluctuations in the opposite case. In the last section we have seen that the 

kinetic contribution of the Brans-Dicke field is the largest one at early times while the 

iuflaton dominates at later times. Hence, curvature perturbation at larger scales are 

determined by Brans-Dicke field fluctuations &, z -6rpf$, while shorter scale ones 

are determined by inflaton field fluctuations [v z -&P/O-‘. 

1. Quolitotioe analyaia 

The qualitative shape of the spectrum at Hubble radius crossing can be determined 
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as follows. For the larger wavelengths 

Kv,v% _ @%) , 

where C(p) z (2 - 2/p)*“-‘Ir(v)l*/ rr is a factor that goes to one for p > 1 and is 

smaller than one for values of p closer to one. The spectrum (42) is a decreasing 

function of 9, it has a minimum near ‘p equal to zero, then it increases again and 

it eventually becomes decreasing for large values of ‘p. (For some values of 7 and p 

another minimum in PC can appear at a negative value of Q, however this is not the 

case in the examples that we will consider). The Hubble radius crossing condition for 

increasing wavenumbers k corresponds to decreasing values of Q. Thus, the spectrum 

of perturbations first decreases with k, it has a minimum and then increases again. 

However, when the kinetic term of the inflaton becomes dominant the curvature 

perturbations are no longer determined by eq. (42), but by 

P;“(k)x 
311 

which is a decreasing function of cp. Thus, for the shortest wavelengths leaving the 

Hubble radius during the last part of inflation, the spectrum of perturbations again 

decreases with k. Combining the two behaviours we see that a peak in the spectrum 

appears at the wavelengths that are leaving the Hubble radius when the inflaton 

kinetic term becomes dominant. The peak will appear provided that the inflaton 

kinetic energy becomes dominant for a value of ‘p larger than that corresponding to 

the minimum of PC, (eq. (42)). In order to make this happen there is a condition to be 

satisfied by the parameters appearing in F(p) and V(a), namely /37s .G 4/3. On the 

other hand, the condition that the peak in the spectrum appears at astrophysically 
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interesting scales requires a particular initial condition for the Brans-Dicke field, or 

equivalently, a particular final value of ‘p at the end of inflation. 

For large wavenumber perturbations, which cross the Hubble radius when the infla- 

ton kinetic term dominates, we can explicitly compute the spectrum of c perturbations 

at Hubble radius crossing as a function of k from eq. (43) and the crossing condition 

k = aH. It is given by 

P;“(k) = 
C(p)PM2 

24-l 
(44) 

with a, the value of the scale factor at the end of inflation. 

The spectral index of c is related to the spectral index of the energy density per- 

turbations n by Pi” 0: k(“-‘)l’ (for n = 1 the spectrum is scale invariant and Pi” 

is independent of k). Thus, we see that the spectral index corresponding to the long 

wavenumber region is approximately given by n N (1 - 37”/2)/(1 - r’/Z), which is 

the well-known result for power-law inflation with an exponential potential.rB 

It has been shown in Ref. 31 that a power spectrum with a primordial spectral index 

n smaller than one, like the one we obtain for the large wavenumber perturbations, 

can help to avoid some difficulties of the CDM scenario, as it has more power on 

large scales than the usual scale invariant spectrum. However, lowering n increases 

the amplitude of fluctuations at large scales, running into possible conflict with the 

CMBR anisotropy limits. This problem may be avoided in the model discussed here 

if the peak in the power spectrum occurs at a scale somewhat larger than 100 Mpc 

so that the amplitude of perturbations decreases for the larger scales relevant for 

the quadrupole anisotropy. The amplitude of the perturbations is determined by the 

value of M. It must be fixed with the help of eq. (35) in such a way that the limits 

on the CMBR anisotropy are satisfied. 
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2. &mph 

The shape of the spectrum for the large wavelengths does not have a simple an- 

alytical expression. Fig. 1 shows the power spectrum of C at horizon crossing for 

the case p = 4 and 7 = 0.38. As these values of the parameters are very close to 

the limits under which the analytical solutions of the equations of motion for cp and 

Q presented in section II-B are no more valid, the exact numerical solution of the 

system of eqs. (9) and (10) has been used. The value of the Bran+Dicke field at 

the beginning of the period of inflation relevant for our patch of the universe needs 

to be in the range between -3.5/K and -1.5/X in order to make the peak in the 

spectrum appear at interesting scales. The corresponding value of ‘pt is Q~K w 5.7, 

which satisfies eq. (27). We have taken M = 3.4 x lO%np that makes the amplitude 

of perturbations consistent with CMBR anisotropy limits. The value of 7 determines 

the spectral index for the shorter wavelength region of the spectrum. The considered 

value 7 = 0.38 corresponds approximately to n = 0.85. To decrease the amplitude 

of perturbations at larger wavelengths, small values of p are preferable. However, in 

order to make the universe have an inflationary expansion for large negative values 

of 1p, there is a constraint on p, i.e. p X 4. Wh en this constraint is fulfilled, as in the 

case considered in Fig. 1, the inflationary expansion can start at the Planck energy. 

On the other hand, when values of p smaller than 4 are considered, this does not 

mean that inflation does not happen at all, but just that it starts when the field Q 

becomes larger than a certain value, making the number of e-foldings smaller. In 

this case, the evolution of Q for large and negative values is too fast, making the 

kinetic energy contribution the dominant one and the expansion non-inflationary. As 

(o evolves, its kinetic term decreases and, when it becomes subdominant, inflation 

starts. Fig. 2 shows the spectrum of perturbations arising for a case like this. The 
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parameters are chosen to be p = 3, 7 = 0.43. The value of the Brans-Dicke field at 

the beginning of the last 63 e-foldings of inflation needs to be in the range -1.5/K 

and -0.5/K. The corresponding value at the end of inflation is given by X9, - 5.4, 

which satisfies the bound coming from eq. (27). The value M = 2 x lo-smp satisfies 

CMBR anisotropy limits. The spectral index corresponding to the short wavelength 

part of the spectrum in this case is given by n z 0.8. The smallest wavenumber 

appearing in the graph corresponds to the first wavelength leaving the Hubble radius 

when inflation starts. A necessary condition for the model to be consistent with 

observations is that such a wavelength is larger than our present horizon. 

IV, STOCHASTIC EVOLUTION 

The dynamical evolution of the in&ton and of the Brans-Dicke field, taking into 

account the effects of quantum fluctuations is most clearly studied in the frame of the 

stochastic approach to inflation. s’ This is also the best tool to obtain quantitative 

information about the statistics of curvature perturbations.s3J4 

In this frame the dynamics of the system is described by two coupled Langevin. 

equations for long wavelength modes (k << aH) of ‘p and Q. These equations can be 

easily written in the Einstein frame by adding to the classical equations of motion a 

noise term whose amplitude is fixed by the r.m.s. fluctuation of the fields at Hubble 

radius crossing, given by eqs. (40) and (41). They read 

2 2 p’=- - 
i- 

1 

K P (1+ e--m) 
+ yP$ ;pl :-” gE(1+ e-“‘J;Tii),(c+ 

( 1 

(45) 

1 

lJ’= -$(I + ,+$iiq + 
KM2r(V) P/2 ;-” e-y& (1 + ,+/qt,(,), 

2s3l’ ( 1 P-l Jq 

where qp and q,, are Gaussian noises with zero mean and correlation function 

(??9(a)q,(a’)) = (earl,) = &(a - cz’). In the approximation leading to these 
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stochastic equations the fine-grained components of the fields are treated as free even 

when up and g interact, thus we assume (ark,) = 0. 

By integrating these Langevin equations it is possible to compute the statistical dis- 

tribution of the field fluctuations and of the density perturbations.34 Non-Gaussian 

fluctuations in the energy density are expected to arise whenever the effect of short 

wavelength quantum fluctuations of a field becomes important compared to the clas- 

sical force in the evolution of the long wavelength part of the field. In the case of 

a single scalar field this criterion implies that non-Gaussian fluctuations are always 

associated to large amplitude fluctuations. 3s This can be easily seen by the analog of 

eq. (38) for one field, C N -K’6rp/$. In order to have C small enough to be consistent 

with CMBR anisotropy limits (O(lO-‘)), t i is necessary that the change in cp due to 

quantum fluctuations in one expansion time 69 N H/27r is much smaller than the 

change Q’ due to the classical force in the same interval. This implies that fluctuations 

of reasonable amplitude are Gaussian distributed. A similar argument applies also 

to our case. As it has been discussed above, curvature perturbations are dominated 

by the fluctuations in that field whose kinetic term gives the largest contribution at 

the time when the associated wavelength leaves the Hubble radius. (For the larger 

scales c x -6~1~’ and for the shorter ones C z -&T/U’.) For each of these regimes 

the same analysis applies. At the transition between the two regimes (when the peak 

in the spectrum appears) we do not expect non-Gaussian features to appear in the 

curvature perturbation distribution since all variables change smoothly there. These 

qualitative arguments are fully confirmed by the numerical integration of eqs. (45). 

Using the technique described in Ref. 34 we have numerically integrated the system 

of equations for the two choices of parameters corresponding to Fig. 1 and Fig. 2. 

Initial conditions have been chosen such that only fluctuations that are now inside a 

patch of the universe of the observable size are considered. From the distribution of 
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the in&ton and the Brans-Dicke field the resulting distribution of C was computed 

using eq. (38). In both cases the distribution of curvature perturbations is pretty 

Gaussian. 

V. CONCLUSIONS 

Chaotic inflation in the frame of scalar-tensor theories of gravity has been snal- 

ysed. We have considered a class of models in which the gravity theory has General 

Relativity as an attractor but that differs from it significantly during inflation. In 

particular, the generation of curvature perturbations in these models was studied. 

These perturbations get contributions from both fluctuations of the inflaton and of 

the Bran+Dicke fields. This makes it possible for the power spectrum to be quite dif- 

ferent from the scale-invariant one. The quantum fluctuations of the field that has the 

largest kinetic contribution when a given wavelength leaves the Hubble radius during 

inflation are the dominant ones in determining the amplitude of curvature pertur- 

bations. As a result, the long wavelength part of the spectrum is dominated by the 

Bran+Dicke field fluctuations, while the short wavelength part by the inflaton ones. 

The spectrum of the curvature perturbations associated to the Brans-Dicke field has 

a dip for the models considered. The spectrum associated to the in&ton fluctuations 

instead is always decreasing with k. Thus, it is possible that a combination of these 

two behaviours results in a curvature spectrum that is peaked at a certain wavelength, 

which might help to reconcile the CDM model with observations. In fact, a peak in the 

spectrum is easily obtained. However, the scale at which the peak appears depends 

quite strongly on the value of the Brens-Dicke field at the end of inflation and the 

height and width are determined by the potential parameters. In order to make the 

peak occur at sstrophysically interesting scales particular initial values for Q have to 

be chosen. The final value of the Brans-Dicke field is constrained by post-Newtonian 
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experiments as shown by eq. (27). Th is constraint is automatically fulfilled by the 

values of Qf coming from the initial values required to have the peak at an interesting 

scale. However, apart from that constraint there is no other restriction on the value 

of Q,. Thus, the reason why the initial value for the Bran+Dicke field should be in 

the allowed range cannot be explained within the model. Finally, we have analysed 

the evolution of the system in the stochastic inflation approach and we have studied 

the statistical distribution of curvature perturbations. They are very nearly Gaussian 

distributed: unlike other models where non scale-invariant fluctuations are produced, 

the feature in the spectrum of curvature perturbations does not imply a deviation 

from the Gaussian statistics. The class of scalar-tensor theory of gravity analysed is 

just one of the possible alternative theories to General Relativity that is consistent 

with observations. The results obtained show that, if gravity is given by one of this 

theories, the spectrum of curvature perturbations originated during chaotic inflation 

may be quite different from the usual one and may help to reconcile CDM models 

with large-scale observations. 
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FIG. I. Power spectrum of C for the case p = 4 and 7 = 0.38. 

FIG. 2. Power spectrum of C for the case fl = 3 and 7 = 0.43. 
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