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Abstract 

A new transverse lattice model of 3 + 1 Yang-Mills theory is constructed by intro- 
ducing Wess-Zumino terms into the 2-D unitary non-linear sigma model action for 
link fields on a 2-D lattice. The Wess-Zumino terms permit one to solve the basic 
non-linear sigma model dynamics of each link, for discrete values of the bare QCD 
coupling constant, by applying the representation theory of non-Abelian current 
(Kac-Moody) algebras. This construction eliminates the need to approximate the 
non-linear sigma model dynamics of each link with a linear sigma model theory, as 
in previous transverse lattice formulations. The non-perturbativc: behavior of the 
non-linear sigma model is preserved by this construction. While the new model is 
in principle solvable by a combination of conformal field theory, discrete light-cone, 
and lattice gauge theory techniques, it is more realistically suited for study with a 
Tamm-Dancoff truncation of excited states. In this context, it may serve as a use- 
ful framework for the study of non-perturbative phenomena in QCD via analytic 
techniques. 
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1. Introduction 

The transverse lattice approach to 3 + 1 Yang-Mills theory (QCD) originally de- 

veloped by Bardeen and Pesrson[l] over ten years ago, incorporates conceptual and 

computational advantages that are found separately in other formulations. Like the 

4-D Euclidean lattice formulation, the physical degrees of freedom are link variables 

of a discrete lattice which are interpreted as phase factors e ’ .f A. The transverse lat- 

tice models incorporate the non-perturbative dynamics of QCD and are well suited 

for studying the bound state spectrum[2]. H owever in the transverse lattice con- 

struction, the lattice is only two-dimensional. Local 2-D continuum gauge fields 

are also present to gauge the symmetries at each site. The local gauge invariance 

is then used to eliminate, via gauge fixing, the 2-D gauge fields in favor of a non- 

local Coulomb interaction for the link fields. This is accomplished in a light-cone 

gauge A- = 0 and with light-cone quantization so that A+ can be eliminated by 

using its equation of constraint. All physical states have positive light-cone energy 

P+. This eliminates two degrees of freedom and simplifies the classification of the 

bound states (see ref. [3] for further discussion of the advantages of the light-cone 

approach). 

The basic action for each link on the transverse lattice is the 2-D unitary SU(N) 

principal chiral non-linear sigma model. Although this sigma model is exactly 

solvable via a Bethe-ansatz technique[4], th is solution cannot be easily applied in 

the transverse lattice context. The Bardeen Pearson model is a linear sigma model 

approximation of the non-linear model in which the unitarity constraint of the link 

fields is relaxed. The IV x N matrices of the linear sigma model are constrained 

by introducing potential terms into the theory which are designed to drive the 

system into the non-linear phase[5]. In the numerical work of Bardeen, Pearson, 

and Rabinovici[2], glueballs are constructed from local two-link and four-link bound 

states which are smeared over the 2-D lattice. This truncation of the Hilbert space 

is a non-perturbative light-front Tamm-Dancoff approximation to the QCD bound 

state problem[6]. The numerical results based on this approach were inconclusive. 

The links were weakly coupled via the Coulomb interation, and the spectrum was 

qualitatively similar to what would be obtained from a strong coupling expansion 

in ordinary lattice gauge theoryl’i]. 

There are a number of changes one could make to their original analysis that 

might improve the situation. This paper will focus on directly solving the non-linear 
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sigma model dynamics instead of using the linear sigma model approximation. By 

introducing Wess-Zumino[8] t erms into the sigma model action, we will describe the 

non-linear sigma model dynamics in the basis of operators given by the well-studied 

and exactly solvable Wess-Zumino-Witten[9] (WZW) model. The WZW currents 

will be the linear variables which describe exactly the dynamics of the non-linear 

sigma model. The Wess-Zumino terms in the action will become irrelevant operators 

in the continuum limit. 

The non-linear aspects of the principle chiral sigma model are retained in the 

WZW model. The unitary link fields (and products of link fields) appear as the 

primary fields of the WZW model, and play a crucial role in defining the highest 

weight states of the Hilbert space of the WZW model. The highest weight states 

correspond to zero modes of Wilson loops on the transverse lattice. This zero mode 

structure is lacking in the linear sigma model treatment of the transverse lattice 

theory. (The structure presumably corresponds to the space of soliton excitations 

of the linear sigma model fields.) 

The advantage of exactly solvable non-linear sigma model dynamics must be 

weighed against the two potential disadvantages of this approach. First, this WZW 

model approach will only work for the discrete values of bare sigma model coupling 

constants which correspond to the non-trivial WZW fixed points. This will in turn 

place a constraint on the QCD coupling constants that this model can obtain in the 

continuum limit. These particular values are not special points in the context of 

3 + 1 QCD, but rather these are points where we can apply our limited knowledge 

of the 2-D non-linear sigma model to simplify the local dynamics of the link fields. 

Second, the continuum limit may be difficult to obtain because the irrelevant terms 

added to simplify the local link dynamics may be large for finite lattice spacings. 

This issue can only be resolved by explicit numerical simulation. 

Preliminary work on the use of the gauged WZW model to describe the dy- 

namics of lattice model links was discussed in ref. [lo]. A transverse lattice model 

with one lattice dimension and two continuum dimensions was studied, and it was 

found that assigning the same Wess-Zumino term, with the same coupling constant, 

to each link leads to an order a term in the continuum limit, where n is the lattice 

spacing. This order a term generates the 2 + 1 pure Chern-Simons action in the 

continuum limit, and its dynamics was discussed in some detail. The states of the 

Chem-Simons model correspond to zero modes of Wilson Loops; similar states will 

generate the vacuum sectors in the 3 + 1 QCD model. .4n important lesson from 

this work is that one cannot simply assign the same Wess-Zumino term to each 
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link in the 3 + 1 QCD case, because the leading terms in the continuum limit must 

go as order a2 in this case, and not order a as in the 2 + 1 Chern-Simons theory. 

This means that the Wess-Zumino terms must be staggered from site to site, with 

coupling constants +k. The study of how to correctly stagger the Wess-Zumino 

terms is the major topic of this paper. 

Section 2 is review of the basic transverse lattice construction of QCD based 

on the (unitary) non-linear sigma model. The degrees of freedom on the lattice 

are introduced, and the “naive” continuum limit is taken by performing a Bloch 

wave expansion of the link fields. In section 3, we begin the analysis of adding 

Wess-Zumino terms to the action. It is found that the structure of the staggered 

Wess-Zumino terms which generate the Coulomb potential that in turn correctly 

drives the system to the desired continuum limit violates local gauge invariance by 

generating non-Abel& anomaly terms. In section 4 this difficulty is resolved by 

defining a new model which has a different structure of local gauge invariance, but 

has the correct continuum limit. In the new model, pairs of nearest neighbor links 

are associated with a single local 2-D gauge symmetry, and the anomalies from the 

Wess-Zumino terms for each pair of sites cancel. The local 2-D gauge symmetry is 

reduced by a factor of two from the transverse lattice construction with no Wess- 

Zumino terms. The remaining local gauge symmetry for each pair of links in the 

bilocal transverse lattice model is then properly gauge fixed in light-cone gauge. In 

section 5, the current algebraic solution of the WZW model is reviewed and the 

quantum theory of the new model is discussed. Particular emphasis is placed on 

the highest weight states of the current algebras, which generate the space of Wilson 

loop zero modes on the lattice. Aspects of future bound-state calculations and other 

applications of this construction are discussed in section 6. 
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Fig. 1. The degrees of freedom associated with each site ZL are the 2-D gauge fields A+(L?~), and 
the link fields U,(Z-,) and U,,(z?l), defined on the links as in fig. 1. 

2. The Basic Transverse Lattice Construction 

In this section; the non-linear sigma model-based formulation of the trans- 

verse lattice construction of QCD is reviewed, and the process of taking the naive 

continuum limit is studied. 

Consider the matrix-valued chiral fields U,(Zl; x+, r-), where 01 = 1,2, which 

belong to the fundamental representation of N(N). These fields lie on the links 

[Z-L, ?l+ Z] of a discrete square lattice of points ZL = o(nz, ny), with lattice spacing 

a and basis vectors 6 = (a, 0) or (0, o). The link fields are continuous functions of 

the light-cone coordinates I* = (z” f I’)/$& so that the two-dimensional lattice 

describes a partially discretized 3 + 1 dimensional Minkowski space field theory’(see 

fig. 1). 

The links fields are defined to transform on the left and right under independent 

local 2-D gauge transformations associated with the sites that the links connect, 

SGU, = A&(Xfi)U, - u,Az,+~(x’) (2.1) 

To construct a gauge invariant action, introduce SU(N)r, gauge fields &(ZJ.) = 

iA’$(Zl)T”, where the group generators T’ satisfy [T”, Tb] = ifobcTc and Tr T”Tb = 

$6ab. The infinitesimal transformation law for the gauge fields is 

SGA+(CL) = &AZ, + [AZ,, Ak(zc’l)] , (2.2) 

and the covariant derivative is 

D,ua(~c’l) = a,U, - A,,(Sl)Uc, + UoA,,(ZL + 6;) (2.3) 

1 The indexes a, p, denote transverse coordinates z, y, and p, u, denote longitudinal cc+ 
ordinates xi 
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The transverse lattice action is given by[l] 

As the lattice spacing a is taken to zero, the interaction terms will select smooth 

configurations as the dominant contributions to the quantum path integral; both the 

interactions mediated by the local 2-D gauge fields and the plaquette interactions 

will generate large potentials, unless the link configurations are smooth. For the 

plaquette term this is obvious; for the gauge interactions, this is clear only after 

studying the Coulomb potential obtained by gauge fixing in light-cone gauge A- = 0, 

in the context of light-cone quantization[2]. W e will discuss this process further in 

the next sections for the new transverse lattice model. Inserting the Bloch-wave 

expansion 

U, = exp [-aA,(s’l+ +Z)] , (2.5) 

and keeping only the lowest order contributions, one obtains from the gauged sigma 

model kinetic term 

IK = $ c / dZzFpuF~~ + qa4) , 
21 ,a 

and from the the plaquette term 

IP= $ C /dZ+'d+o(a4). 
41 P,P 

(2.7) 

In deriving eqn. (2.6), the fields AA were also assumed to be slowly varying 

on the lattice. Combining these three terms and tuning the coupling constants to 

gi = gs = g yields the continuum 4-D QCD action. For the quantum theory on the 

lattice, the Lorentz covariant critical point for each lattice spacing a is determined 

by examining specific properties of the states, such as the mass spectrum 3 + 1 

Lorentz multiple& and the covariant dispersion relations[2]. 

This is the non-linear sigma model (NLSM)-b ased transverse lattice model of 

&CD. In an ideal world, there would be an exact solution to the primary chiral sigma 

model, which could be used as a kernel to solve the entire model perturbatively in the 

interactions. The idea would be to use the states that are diagonalize with respect 
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to the NLSM Hamiltonian as a basis for construction of the singlet bound states of 

the full theory. This is the approach pioneered by Schwinger in his solution to 1 + 1 

massless QED[ll]. There, the full Hamiltonian was diagonalized in the basis of 

free fermions. While there has been some progress in understanding the quantum 

NLSM[4], the progress is still insufficient to generate a Schwinger-type solution 

to the problem at hand. A “Fock space” of operators with simple commutation 

relations is required. 

3. Transverse Lattice with Wess-Zumino Terms 

Now consider the NLSM with Wess-Zumino termZ[9], 

I wz,y = $ J d’sTr d,u8’u+ + kr , (3.1) 

where U is a unitary matrix. The non-local Wess-Zumino term I? is well-defined 

only up to r --t r + 2n, and therefore the coupling constant x1 is an integer. The 

model is exactly solvable for the restricted critical values of the NLSM coupling 

constant 

A+ (3.2) 

For these values there exist a complete basis of conserved vector and axial-vector 

currents from which a Fock space representation of the quantum theory can be 

constructed. For positive k, the conserved currents are 

J-(x--) = (&U)U’ ) J+(s+) = u+(a+u) , (3.3) 

and for negative k, 

j+(x’) = (a+u)u’ , j-(x-) = U’(&U) (3.4) 

An elegant current algebraic solution for the quantum theory was given by Dashen 

and Frishman[l3] for Ic = 1, and was later generalized for arbitrary k by Knizhnik 

and Zamolodchikov[l4]. This solution will be discussed further in section 5. 

To apply the WZW NLSM technology to the transverse lattice formulation of 

QCD, we associate a WZW field U with each link U,(Z',)". For each link U,(ZL), 

* Normalization of the kinetic term differs from ref. [Q] because of a different definition of the 
trace. See ref. [17] for a thorough discussion of such normalization issues. 

3 The analysis here generalizes the 2 + 1 dimensional transverse lattice construction given in 
ref. [lo]. 

6 



the currents J*,a and j*+ are defined via eqns. (3.3) and (3.4). The gauge variation 

of the J currents is given by 

ScJ+,e = - a+&,+, + [Ae,+z, J+,,l + @a+kUe , 
6cJ-,, =a-A,, + [Apl, J-,a] - U,cXA,,+& , 

(3.5) 

where the currents J+ are specified at 51. The variations of the j currents are 

similar. 

The action is invariant under the global symmetry U -+ AUB, where A, B are 

constant unitary matrices. The Wess-Zumino term must be gauged so it can be 

added to a transverse lattice action. (The kinetic term of the WZW model is easily 

gauged by introducing the covariant derivative as in the previous section.) The 

gauge variation of the Wess-Zumino term is local[9] and can be written in terms of 

the currents, 

GGr(uo(51)) = & J dzrTr[hi,(a,J-,, -a-j+,,) 

- &,+,(a- J+,a - a+&)] . 
(3.6) 

It is straightforward to construct the “gauged” Wess-Zumino term for each link, 

F(U,(S.L)) = I? + & J dZrTr 
I 

[A+(?.&,, - A-(Zl + G)J+,, 

+ A+(~L)U,A-(Z’I + G)U; 1 1 - A-(FL).?+,, (3.7) 

- A+t(z~ + ,‘&a + A.-(Z’I)U,A+(Z~ + G)U;] } 

This term actually is not gauge invariant, but instead transforms as 

6GF(Uo(s-L)) = & / dZ~Tr[A~,P’a~A,(z~) - A~L+&‘Yd,A,(Z1 + c?)] , (3.8) 

where ef- = 1. This lack of gauge invariance has the same form as the non-Abelian 

anomaly in two dimensions, and is realized at the classical level. Note that the 

vector subgroup of SU(N)l,f, 8 SU(N),i,h, for each link is anomaly free[l5]. Also, 

the global gauge symmetries for each site (z * independent gauge transformations) 

are unbroken. 

Since more than one link is coupled to each site, the anomaly can cancel between 

the links. This is the mechanism that was introduced in ref. [lo] to cancel the 

anomalies at each site of a 2 + 1 dimensional transverse lattice model. For the case 



(4 ON (c) 
Fig. 2. Up to an o_verall change of sign, the figures 2(a)-(c) d mote the anomaly-free vertices 
allowed for the action ITL. The signs correspond to Was-Zumino coupling fk, where k is a positive 
integer. 

at hand, each link on the 2-D lattice is assigned a Wess-Zumino coupling constant 

ks,,,. The full action, including the Wess-Zumino term, is given, by 

~TL = ITL + c kz,,afVJe(~c’l)) 
21 ,o 

(3.9) 

and it is anomaly free for each site ZL if 

G 
kzl,, - kz, -~,a = 0 (3.10) 

In the remainder of this paper, we will assign either +k or -k Wess-Zumino 

coupling to each link, where k is positive, and the NLSM coupling constant will be 

fixed to the critical point g2 = 4r/k. 
There are three pairs of anomaly free vertices (i.e., six total) that can be con- 

structed for each site. The members of each pair are related by an overall flip of 

signs, and representatives of each pair are given in fig. 2. Each link is labeled by f 

signs which denote the Wess-Zumino coupling. 

The simplest configuration to consider is a lattice of all “+” links, so that all 

vertices are all of the type 2(a). Unfortunately, this does not work because the 

continuum limit of the gauged Wess-Zumino terms are order a, 

c Wa(ZL)) = c Tr (&PF-+A” + A+&A- - A-&A+] + u(d)} (3.11) 
21 ,a ZI ,a 

This expression, for a one-dimensional lattice, is the pure Chern-Simons term in 

2 + 1 dimensions. It was discussed in some detail in ref. [lo]. The leading O(a) 

part comes from the terms in the action that were added to gauge the Wess-Zumino 
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term P. The Wess-Zumino term itself contributes only to order u3, as can be seen 

by expanding the variation 6P with respect to the link fields U given in ref. [9]. 

A possible resolution is to stagger the gauged Wess-Zumino terms from site to 

site with alternating signs. Clearly, there are a number of ways to stagger these 

terms. The “correct” ways will be those which lead to the right continuum limit. 

In particular, we argued in section 2 that the Coulomb and plaquette interactions 

between links would drive the system to a smooth continuum limit. With the 

necessity of staggering, this is no longer as obvious for the Coulomb interactions, 

since the gauge couplings to each link are not the same on a staggered lattice. 

Recall that the Coulomb interactions are mediated by the longitudinal gauge fields 

A*. These fields can be eliminated in the light-cone gauge A- = 0, at the expense 

of generating a non-local Coulomb potential. We need to study the form of this 

potential on a staggered lattice. 

In the gauge A- = 0, the part of the path integral which depends upon the 

gauge field A+ is 

ZGF = n[det a-],, /[dA+(Z,)]e-‘-f d*={a’/*g: (a-a+(i,))‘+A+(~~)~-(P~)} , 
PI 

(3.12) 
where det a- is the Fadeev-Popov determinant for each site, and the currents 

J-(Sl) are given by reading off the couplings in eqn. (2.4). The form of the current 

simplifies dramatically at the WZW critical points X2 = 4r/k. For these cases, 

J-(~L) = & C{J-,,+(S-l) - -i-,,-(Z-, -Z)} ( 
o* 

where the sum over o+ (a-) is over links with +k (-k) Wess-Zumino coupling. 

In the context of the WZW model, the currents ,‘j- depend only upon x-. The 

Coulomb interaction is obtained by completing the square in A+. After completing 

the square, the integral over A+ cancels the Fadeev-Popov determinant and the 

path integral (3.12) becomes 

ZGF=fle 
ifd’=g:/20’(~~-_(51))’ 

ZL 
(3.14) 

where 

&J-C ZL; z-) = %3 * - 
J 

dy-ly- -z-lJ-(~c’l; y-1 + fi-,(z+) (3.15) 

9 



The importance of keeping the integration constant fsL(z+) in the context of the 

massless Thirring model was recently discussed in ref. [16]. In our context, it is 

easy to calculate by gauge fixing with the condition A+ = 0, thereby introducing 

the currents 

3++(21) = ; c{.Jv,a-(,-,) - J-,oc(zl -Z;)} (3.16) 
,* 

These currents in the WZW model depend only on z+. After completing the square 

in this case, the path integral (3.12) is 

zGF = r~ ei .f d’zg?/*d &-J+7+(E1))* 
21 

(3.17) 

where 

&++(ii; c = $8, J dy+ly+ - z+lz+(~‘l; Y+) + fQ(z-1 (3.18) 

Equating the two results for the same gauge-fixed path integral yields 

fi-,(z+) = ;a+ J c+,+ly+ - z+lz++(zc’l; y+) , (3.19) 

and the path integral ZGF = e”‘e, where 

~c = $ z J d*zTr ( J dY-J--(s-)lz- - y-IJ-.(Y-) 

(3.20) 

+ J ~Y+J++(~+II~+ -my+)} 

As in the Schwinger model, the Coulomb potential does not mix left- and right- 

mover currents. In the current algebra solution to the quantum theory discussed in 

the next section, the Coulomb terms are treated as potential terms. The currents 

.Y- and J+ then remain functions of z- or z+ in the WZW model with Coulomb 

interactions. This is the same situation found in the massless Schwinger model (see 

the analysis of ref. [12]). 

The Coulomb interactions are proportional to l/a*. As a + 0, configurations 

which minimize the full action should dominate the path integral. The question 

is whether these configurations correspond to the smooth continuum limit that 

we desire. Consider the link U,~(?A). According to eqns. (3.13) and (3.16), it 

interacts at z.51 by contributing to the J-(Zl) current and interacts at 21 + 6 by 

contributing to ,7+(?~ + G). Similarly, U,- (2-1) interacts at 21 by contributing to 
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(4 (b) 
Fig. 3. The two vertex configurations for which all four links couple symmetrically to each other. 
In figure 2(a) all four links contribute to the J+ current at the vertex, and in figure 2(b) all four 
contribute to J-. 

the J’+(Z~) current and interacts at 5-i + 6 by contributing to J--(21 + 6). For 

each of the anomaly-free vertices in figure 2, the links interact pairwise with each 

other. None of the vertices have all four links contributing to J+ or J-. Rather, 

two links contribute to J+ and two links contribute to J-. Therefore minimizing 

the Coulomb interaction as a + 0 does not necessarily drive the system to the 

smooth continuum limit that is required to reproduce continuum &CD. Further 

evidence that the vertices of figure 2 do not generate the correct continuum limit 

was obtained by studying the vacuum structure, following the analysis discussed in 

section 5 for the correct result. 

4. Bilocal Gauge Invariance, and a New Transverse Lattice Action 

The two vertices that have all four links contributing to either J+ or J- are 

given in figure 3. While these vertices have the correct behavior under the Coulomb 

interactions, they are both anomalous with respect to the local gauge invariance at 

each site. Recovering QCD in the continuum limit is our paramount consideration, 

so we will consider breaking some of the local gauge symmet.ry. Specifically, we will 

gauge only the anomaly free local symmetries. The anomalous local symmetries 

will be become global symmetries. The unbroken local symmetries will then have 

to be gauge fixed, and the coupling of the links via Coulomb interactions will need 

to be re-examined. 

The solution to the problems of the previous section will make use of the fact 

that the two vertices of figure 3 break gauge invariance in opposite ways. To be 
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specific, label each site 2~ = a(n,, ny) with the Zs quantum number 

PL(ZL) = (-l)“=+“, (4.1) 

which will be referred to as lattice parity . Even (odd) sites have lattice parity +l 

(-1). As in the previous section, we consider the transverse lattice action with 

Wess-Zumino terms, eqn (3.9). However, now we consider configurations which 

violate the gauge invariance constraint eqn. (3.10). The assignment of the Wess- 

Zumino coupling constant is given by 

Uo(Zl) = U,+(C?-L) , Z-I even , 

U~(ZJJ = U,- (ZL) , Z, odd , 
(4.2) 

where the notation o* corresponds to assigning Wess-Zumino coupling fk. The 

vertex at odd (even) sites is the type shown in fig. 3(a) (fig. 3(b) ). The anomaly 

at each site is 

&in,(?L) = fi(~l)$ J d*zTr A(Z~)&‘“L?,A,(I~) (4.3) 

Define nearest neighbor pairs (c? I, z?J, which by the above construction have op- 

posite anomslies, as 

(Z+ I, 2’;) = (CL,b?A +(-l)“‘:i), VZI s.t. fi(2-L) = 1 , (4.4) 

where 2 = (a, 0). Every site on the square lattice belongs to one pair. By construc- 

tion, z4* (L?;) is an even (odd) site. 

For each of these nearest neighbor pairs, the anomaly breaks one of the local 

gauge symmetries, and preserves the other local symmetry and the two global sym- 

metries. Gauging the local symmetries for this transverse lattice model no longer 

requires one independent vector potential for each site. Rather, the gauge fields at 

5; sites can be parametrized as 

A,,(Z’;) = G,;A,(zy)Gt- , 
=I (4.5) 

where G,- is a constant (z I * independent) unitary matrix which transforms as 

L-G,; = &;G,; , 

under gauge transformations. The field G,; corresponds to the unbroken global 

symmetry at the 5’; sites. So instead of having a 2-D gauge field .4, for each site, 
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I+ I- 
Fig. 4. For the bilocal model, each gauge field A,(z?) t 
the case where tiL is to the right of FL. 

m eracts with seven links. Figure 4 shows 

we now have the set (A,,, G,;) for each pair of sites. The links and vector fields 

transform as given by eqns. (2.1) and (2.2) as long as the the infinitesimal variations 

at the I- sites satisfy the constraint 

A&*) = AZ; + G,;A&*)Gt- 
=A 

With this construction, the gauge variations from the x- sites cancel the anomaly 

from the ++ sites. The path integral measure is redefined as 

~[&I -+ rb%(CN n&l , (4.8) 
fL e i; 

where [dG] is the left invariant Haar measure for G. The full action is given by 

eqn. (3.9), with the Wess-Zumino coupling constants given by eqn. (4.2), and the 

field identification (4.5). 

It is important that the local gauge symmetry at each site remain unbroken. 

Otherwise, each pair of links (U,+, U,- ) would transform the same way under the 

remaining local gauge invariance, effectively doubling the number of link degrees of 

freedom in the gauge theory, and the theory would not have QCD as the “naive” 

continuum limit. Each of the remaining local symmetries are associated with two 

nearest neighbor sites, paired together as prescribed by equation (4.4). The above 

construction will be referred to as a bilocal transverse lattice model. Each gauge 

field A,,(tiL) is coupled to seven links instead of four (see fig. 4). This difference is 

obviously significant at the lattice level. But again, the point is that there are many 

models which have the same continuum behavior which differ at scales of the lattice 

spacing. The bilocal model has the advantage of being more easily treatable at the 

lattice level than the basic transverse lattice model without Wess-Zumino terms. 
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The Coulomb dynamics of the bilocal model is studied by gauge fixing in the 

A- = 0 gauge as in the previous section. The part of the path integral which 

depends upon the gauge field A+ is 

.&F = n[det a-],, /[dA+(zF)]e-‘I dZn {~1/~:(a_A+(~:))2+~+(~:)~-(~:)} 

3: 

(4.9) 

There is an additional factor of two in front of the (a-A+)’ term, relative to 

eqn. (3.12), from the contribution to the kinetic energy term from the Z’; sites. 

Note that the Gr;s cancel out of this expression. The current J-(ZT) is given by 

eqn. (3.13), and all four links connected to the site z?l contribute to it. Completing 

the square yields eqns. (3.14) and (3.15), up to the additional factor of two, and 

where J-(?‘;) = 0. The functions jr; (r+) remain to be determined. Following the 

previous analysis, we gauge fix in the A+ = 0 gauge and find 

ZGF = fl[det a+],: /W-(~y)l[dG,;l 
2: 

Xe 
-i/d’rTr {~2/~:(~+A-(~f))z+A-(i~)G~;~++(Z;)Gr-} 

1 . 

(4.10) 

After completing the square and comparing to the A- = 0 case, one finds 

&(x+) = ;a+ / dy+ly+ - x+p++(q; Y+) (4.11) 

The nonlocal Coulomb effective action for the bilocal theory is 

Ic=&/dZxTr(~J dy-J-(x-)1x- - Y-I~-+--) 

I 

+ c/ dy+J+(s+)l~+ - Y+V+(Y+)} 

3; 

(4.12) 

While in the gauge invariant bilocal model action the Gr, dependence is required 

to preserve the global gauge invariance at I- sites, the G,; dependence cancels in 

the gauge fixed action because it is bilinear in the currents. (The path integral over 

the Gr; is finite since the group SU(N) 1s compact.) These Coulomb terms have 

precisely the properties that we desired to obtain the correct continuum limit. All 

links connected to a given site 2’1 interact with each other via (4.12). While the 

pairing of sites (4.4) broke a discrete lattice symmetry by differentiating between z 

and y directions, this symmetry is restored in the Coulomb effective action. As the 
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lattice spacing a goes to zero, the Coulomb dynamics drives the system to a smooth 

continuum limit. 

The naive continuum limit is studied, as in the previous sections, by insert- 

ing a Bloch-wave expansion into the gauge invariant action. Recall that the A, 
dependence in (2.5) was determined by requiring that it transform as a gauge field, 

~GA~(ZL + +z) = 
h- 

=l+%- 
A- 

=* + [Az,A, - AorAzLid] + qa) (4.13) 

For the bilocal model it is still possible to meaningfully expand the A’s as 

k,+ci - .4rL = aa,~z, + u(2) , (4.14) 

since the constraint (4.7) allows for arbitrary Ai; transformations at I- sites, 

i.e. the global gauge invariance at each site is retained. A, transforms as a gauge 

field as a -S 0 and the Bloch-wave expansion (2.5) is valid for the bilocal model. 

In the continuum limit, the undesired order a terms (3.11) cancel between even 

and odd sites as a + 0. This is due to the staggering of the Wess-Zumino terms 

which is built into the model. The cancellation of the gauged Wess-Zumino terms 

between pairs of adjacent even and odd links is to order u3, because parity prevents 

the gauged Wess-Zumino terms from contributing to order a’. They are therefore 

irrelevant operators in the continuum. 

In fact, the order a terms are explicitly cancelled locally in the gauge fixed 

lattice action, and there is no need to invoke a cancellation between sites, as in the 

gauge invariant analysis. To see this, expand the currents J+ or j* for each link 

order by order in lattice spacing a. The currents J+ and .?- given by eqns. (3.13) 

and (3.16) are order us, and therefore the Coulomb interaction (4.12) for each site 

is order oz. The kinetic and plaquette terms for the link fields are also order u2 by 

the analysis in section 2. (The bare ungauged Wess-Zumino terms are order u3 for 

each link field as discussed in section 3.) 

The bilocal transverse lattice model satisfies the primary constraint that its 

continuum limit be &CD, at the expense of introducing a somewhat complicated 

structure of gauge invariance on the lattice. 

5. Quantization of the Bilocal Transverse Lattice Model 

In this section, the quantum theory of the new bilocal transverse lattice model 

constructed. The “discrete light-cone” approach of ref. [3] is followed when the 
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Hilbert space is defined. The goal of this section is to set up the theory for future 

computational study of the bound state problem. 

The approach taken is to solve the WZW model for each link and treat the 

Coulomb and plaquette terms as additional potential terms. The current algebra 

solution of the WZW model was first given by Dashen and Frishman[l3] for level 

k = 1, and later generalized to arbitrary level by Knizhnik and Zamolodchikov[l4]. 

The current algebra is specified by Sugawara-type algebras for the left and right- 

moving currents. For even (odd) link s with Wess-Zumino coupling k (-k), the 

currents are by J* (J+). For right movers of an even link, the current commutation 

relations are 

[J”(Lr-), Jb(y-)] = if”*‘J’(x-) - gPQ(x- - y-) , 

where JE is[17] 

1 T”J”(Z’I) = $J-(51) 
a 

(5.2) 

The same type of expressions hold for currents &, JT and jt (z- -+ xi for the + 

currents). Left- and right-mover currents commute, as do currents defined for differ- 

ent links. These algebras are the equal time commutation relations translated into 

light-cone coordinates. One can specify initial conditions on the light fronts zi = 0 

and z- = 0 for the massless currents J- and J+ in the WZW model. However, be- 

cause of the complicated form of the plaquette interaction term, initial conditions 

will be specified on an equal time surface. 

To make the connection between the commutators above and Kac-Moody alge- 

bras, infared cutoffs for the light-cone coordinates are introduced by hand. With z* 

defined on the interval [-L, L], and fields taken to be periodic, a mode expansion 

for the currents takes the form 

J; =& c e--isnz+/L J,” , 

n 

j; = & C e-i*nz+/Ljy; , 

n 

Jf =& c e-iznz-/LJ; , jt = & C e-irnz-/L~; , 
(5.3) 

n ” 

where the site dependence of the currents has been suppressed. The currents Jz, Ji 

are defined for even links, and Kg,R,” are defined for odd links. The delta function 

in the current algebra (5.1) is easily defined for period boundary conditions, and 

the current algebra is equivalent to the Kac-Moody algebra 

[Jz, J,!,] = ifabcJzin + km6”“6,,-, (5.4) 
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for each of the mutually commuting currents. The zero modes J,” form a subalgebra 

equivalent to the original SU(N) Lie algebra. 

The light-cone singlet vacuum IO), defined for each chiral algebra, is the unique 

highest weight state which satisfies 

J,“lO)=O,n>O, J,“lO)=O. (5.5) 

The definition of normal ordering is with respect to this vacuum state, 

: J;J; :=J$J;: m < 0, 
=JplJ; 77220. (5.6) 

For the even link WZW models, the Lorentz generators I’+ = H + P and 

P- = H - P are given by 

p&w = &+ q c : JZJ”” : = &Lo , 
PGZW = 2L(2;+ N) ;: : I;??” : = &to ; 

” 

(5.7) 

the odd link Lorentz generators are the same with (J, f) + (I<, I?). The modes of 

the currents are diagonal with respect to the light-cone momenta, and have non- 

vanishing commutation relations [Lo, J?,] = m.JE, and [La, .P,] = mfz,. 

The space of states for each link is built up by applying a product of raising 
- 

operators {J$,,}{It,} upon a highest weight (vacuum) state ]&) @ I!,) for the 

right-mover and left-mover sectors. This construction is analogous to the Fock 

space basis of the linear sigma model states. For the right-mover sector, these 

states satisfy 
J;le,) = 0, m > 0 , 

Jq&) = 0 1 
(5.8) 

where E$ and H,J are the zero mode currents J,” in the Cartan-Weyl basis of the 

algebra. Similar results apply for the left-mover sector. The vacuum states are 

the highest weights of finite dimensional SU(N) re p resentations ]I!) generated by 

applying zero modes E,“. This will be referred to as the zero mode sub-sector of 

the full space of states. The zero modes have non-vanishing zero point momenta 
-- 

&It) = A$?) and Lo]!) = A,N where At = Cc/2(N + X-), and Cr is the quadratic 

Casimir of the representation e. The representations of the full Kac-Moody algebra 

for each highest weight are unitary if the highest weights have Young tableaux with 

the number of columns less than or equal to k[lS]. 
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The representations ]e) are the zero modes of dimensionless primary fields $8(u) 

of the chiral algebras. The primary fields have simple commutation relations with 

the currents[l3][14]. For the even links, 

[J,“, &(z+)] =Pnz+/L qi((z+) t; , 

[Ii, &(x-)1 =ei=“=-lL t; &(z--) , 
(5.9) 

and for the odd links, 

[I<:, &(z+)] =eirnz+/L t; &(z+) , 

P?, &(~--)I =e ianz-/L $e(z-) t; , (5.10) 

where t: is a generator of SU(N) in the irreducible representation e. Note the 

ordering difference here between even and odd links. The primary fields are in- 

tertwining operators of the space of states, since they interpolate between vacuum 

sectors. Let 11) denote the fundamental representation of SU(N). The products 

of left-mover and right-mover primary fields $ r r C$ f or even links, and c$,$, for odd 

links, are the quantum fields which correspond to the classical unitary chiral field 

U in the classical action. Since the classical unitary field transforms on the left and 

right in the same representation, we will consider only the diagonal[M] products of 

the highest weight fields as the vacuum states in the transverse lattice theory. The 

reader is referred to refs. [9][14][18] and in particular the review article ref.[17] for 

further information on the WZW model. 

The gauge fixing proceedure of the previous section left the global symmetry at 

each site untouched. The generators of these gauge transformations in the quantum 

theory are constructed from the zero modes of the currents 

~~(~)=~[~~(~~,u)-~~(~:-~,u)] , 

~~(r’I)=C~~(lI,a)-~~(~I-a’,~)] 
a 

(5.11) 

In the classical theory, all physical states are gauge invariant. In the quantum 

theory, this restriction can be relaxed somewhat, since it is the gauge invariance of 

expectation values of states (operators) that is required4. Following the previous 

a A modern example of this treatment of gauge symmetries is found in string theory, where 
conformal invariance is a crucial property of the quantum theory. The Virasoro modes L, generate 
conformal transformations, and physical states need to be annihilated by only the modes with n 2 0. 
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I” ?’ m> 

(4 

-AI + m> 

II> II> 

(b) 
Fig. 5. The two cases encountered when gluing together the zero modes of two links to satisfy 
the global gauge invariance constraints at a site. Figure 5(a) (5(b)) denotes two links of the same 
(opposite) lattice parity. 

treatment of this point for the the 1-D transverse lattice[lO], we require 

&Jphysical) = 0 , 

‘Milphysical) = 0 , 
(5.12) 

where Z,‘“, ‘7-f; denote ,7: in the Cartan-Weyl basis. In the 1-D transverse lattice 

case, these constraints led to the correct set of physical states. 

This criterion can first be applied to the subspace of states obtained by taking 

products of zero mode states on the lattice. In the 1-D transverse lattice construc- 

tion, non-trivial states of this type were found. They were interpreted as zero modes 

of Wilson loops on the lattice. Each link is associated with a product of left-mover 

zero modes Ia) and right-mover zero modes m. Even and odd links at U,(ZJ have 

zero mode structure 
NzL,, x 14,1,, ,even link, 

14 Pl,a x mZI+ ,odd link 
(5.13) 

Consider gluing together two links with non-trivial zero mode structure at a site 

51, such that (5.12) is satisfied. There are two basic cases to consider, as shown in 

figure 5. In figure 5(a) (5(b)), the two links have the same (opposite) lattice parity. 
-- 

In figure 5(a), two right-mover zero modes Im) x If) need to be glued together. The 

constraints (5.12) arc satisfied if we project onto the singlet sector of the tensor 
-- 

product: P,‘&{ Im) @ It)}. This is because the constraint involves the sum of currents 

for each link, i.e. the diagonal subalgebra of the link zero mode algebras. For the 

other case denoted in figure 5(b), the constrains involve the difference between the 

currents for each link. This was the situation encountered in the 1-D transverse 

lattice analysis. The solution to the constraints is to project onto the highest 

weights of the same representation: I&,) x Irn,,) 6+,,. These two rules for gluing 
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together zero modes at a site can be used to construct a wide variety of solutions 

to the gauge invariance conditions. For example, a plaquette solution is of the form 

p” t 
- 
PJ’),$,, GYz+,,, led,+ led,:.,,, 1 (5.14) 

xp” t 
- 

F72_:+z,s @ le+)i:+g,z l&z:+,,, lK!),~,y > I 
where et is the conjugate representation of e. This plaquette state is the zero 

mode of a Wilson loop with flux in representation e, flowing in the counterclockwise 

orientation. It has zero point energy (P$,, + P&,+,)/2 = 2Ar/L and momentum 

(P&, = P\;izw)/2 = 0. This is the part of a Wilson loop that can never be gauged 

away. While in the linear sigma model transverse lattice theory[l][2] these type of 

states are presumably soliton excitations, in the new non-linear theory they arise 

quite naturally as vacuum sectors. The space of states for the new transverse lattice 

model breaks up into different vacuum sectors of Wilson loop zero modes, and the 

intertwining operator, which takes states from one sector to another, is the plaquette 

operator discussed below. 

The contribution of the Coulomb interactions to the Lorentz generators is ob- 

tained by inserting the mode expansions (5.3) into the effective action (4.12) and 

normal ordering with respect to the vacuum state (5.5), 

P,‘=2L & 
( > 

2c 2 $ :J-:(q)J:(q:, 
P- “=--m 

:a 2; 2 $ :.mq-).m~3: , P,-=2L - 
( > + “=-co 

(5.15) 

where 
Jy(z$) = c Iq(z?, a) - J,“(Z+I - cs, 0) , 

0 
Jy(?J = c I;(?;, a) - lqz; - 5, a) 

a 

Note that the light-cone momenta P,$ are proportional to the infared cutoff L. The 

contribution to the mass operator from the Coulomb potential Mz = P$,,Pe + 
PGzwP,’ is therefore independent of L. Diagonalization of Mz on a basis of states 

defined in the cutoff theory is therefore the exact (cutoff independent) result in 

that basis. The masses are finite only if the potentially infared divergent n = 0 

coefficients in P: vanish 

: &yZl)&-(ZJJ := 0 ) v zc’i (5.17) 
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This is a statement of charge neutrality for each site. The incoming charge must 

equal the outgoing charge, where the direction is defined by the arrows associated 

with each link (See figure 4). The zero mode states discussed above, and in par- 

ticular the state given by eqn. (5.14), satisfy this constraint by construction. In 

fact, the constraints (5.17) and (5.12) are equivalent. For a localized state, such 

as a link-antilink excitation, the constraint requires that physical states be gauge 

singlets at each site. 

The structure of the Coulomb term for each site ?c’l is similar to that obtained 

in 1 + 1 QCD with massless fermions quantized following the same approach[l9]. In 

that case, it is known that there is no mass gap[20] generated by the Coulomb inter- 

actions, because states can be constructed from the U( 1) fermion number current 

which commutes with the non-Abe&n currents that make up the Coulomb poten- 

tial. This is not the case for the new transverse lattice model, since this current 

does not exist in this case. Analysis of the ‘tHooft equation[21] for link-antilink 

bound states can make this result quantitative by determining the bare mass gap 

for these states. Preliminary calculations show that a linear Regge trajectory for 

the mass spectrum is obtained in the large N limit. 

The plaquette interaction in (2.4) explicitly mixes left-mover and right-mover 

modes, like a mass term. In principle, then, one could eliminate left-movers in 

terms of right-movers by solving a constraint equation for each equal light-cone 

time surface x+ = const. However, in practice this is very difficult because of the 

complicated form of the interaction in terms of the WZW currents. Therefore, 

the plaquette term will be treated as an interaction in the quantum theory with 

independent commutation relations for both left- and right-movers. The relevant 

Cauchy surface on which to fix initial conditions is an equal time surface. The WZW 

model current algebras are equal time commutation relations written in light-cone 

coordinates (see in particular sec. 2 of ref. [22].). 

For fixed time quantization, the link fields are functions of the single variable I, 

and for t = 0 it is useful to define the complex variable z = e ‘=f fiL. The quantum 

link fields are products of left-mover and right-mover highest weights 

U(z) = : &(z*)4i(t) : , even link , 

U(z) = : &(z)&(z*) : , odd link , 
(5.18) 

where 41 is the primary field in the fundamental representation of SU(N). The 

conjugate Ut can be similarly defined in terms of the conjugate primary fields 4i. 

The contribution of the plaquette interaction to the Lorentz group generators is 
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then 

Pp” a,“,ia2 j dz z Tr [I - UAZ~U~(Z~ + G)u;‘(z~‘~ + $)u;‘(;,)] 
m 

(5.19) 

The trace in eqn. (5.19) denotes a projection onto products of highest weights for 

each site such that the gauge invariance constraints are satisfied. The plaquette 

interaction does not contribute to the spatial momentum (P+ - P-)/2. 

6. Discussion 

Like any other theory which describes non-perturbative behavior of &CD, the 

transverse lattice construction outlined above is very complicated. The basic ad- 

vantage over 4-D lattice simulations is that a continuum analysis is used to describe 

local link dynamics. To take advantage of the continuum description, one has to 

find a suitable truncation of the full model that still contains the desired physics. 

For the calculation of glueball masses in in the Bardeen Pearson model[2], the ba- 

sic degrees of freedom were truncated to link-antilink and four-link bound states. 

These states mix under the plaquette interaction, which also provides for transverse 

motion. It is essential to complete this basic analysis for the new transverse lattice 

model and verify that in this case the link number expansion is a valid one, i.e., that 

link number violation is strong enough to allow for transverse motion of the states, 

yet small enough to validate the link number expansion. 

The physical state of the link-antilink and four-link truncated basis is a Wilson 

loop smeared over the lattice. The link-antilink states correspond to Wilson loops 

which extend in the longitudinal directions. This type of state in the gauge fixed 

transverse lattice model is the bilinear V(z)Ut(y) integrated over a wavefunction. 

The Link-antilink bound state is nof a bilinear J”J” of WZW currents. Although 

the currents are the linear degrees of freedom of the WZW model, the real degrees 

of freedom of the lattice theory are the link fields. 

The spectrum of bound states that can be constructed by the above formalism 

is degenerate because the zero mode of the state can be shifted and boosted by 

Lorentz transformations. We want to select a basis of bound states that does not 

contain copies of the same state. Moreover, we want a basis of states for which one 

of the momentum operators is manifestly diagonal. For instance, in the linear sigma 

model analysis[2], P- was manifestly diagonal. This type of analysis in the bilocal 

22 



model is complicated, because as discussed above both the left- and right-mover 

currents are treated as dynamical. There is no simple constraint equation which 

can be used to solve for one set in terms of the other. 

There is a basis of states one can use to study, in the simplest way, the bound 

state spectrum. It is defined by allowing zero-mode excitations for both left- and 

right-movers, but truncating all non-zero mode excitations of the left-movers. (The 

parity conjugate basis is equally simple.) There is no proof that all physical states 

have a representative is this truncated basis. However, this truncation is similar to 

the analysis of ref. [23], where the spectrum of the massless Schwinger model was 

studied. There, bound states were constructed from fermions of only one chirality. 

In this chiral Schwinger model, there exists only one copy of the free massive scalar 

boson, instead of the infinite number of degenerate copies which exist in the full 

Schwinger model[l6]. Nevertheless, the single copy has the correct mass. Again, 

the idea here is to suggest a starting point for the explicit calculation of the mass 

spectrum. 

In the truncated basis, a local link-antilink state is given by 

‘ykmP Tr: $i(*)$!(y) : 16) @m (‘3.1) 

For the link-antilink state, the only possible right-mover singlet state is the vacuum. 

Periodicity in the z and y variables quantizes the momenta P and k to be integers. 

The diagonal contribution to the light-cone momentum Pf is from the WZW model. 

Using the conformal field theory commutator [Lo, qb1(z)] = (n3, + A,)$,, one finds 

&Lv IP) = p;;A1 IP) 

In the truncated basis, the contribution PC’ from the Coulomb interactions always 

vanishes. And as discussed in the previous section, the contribution Pp’ from the 

plaquette inter&ion mixes this state with four link states. A physical two link state 

is a local state(6.1) smeared over the entire lattice with a wavefunction specifying 

the transverse momentum distribution. 

The simplest non-trivial local four link state is obtained by replacing the right- 

mover zero modes in equation (5.14) with integrals over the link fields. There 

are actually a number of local four link configurations to consider (see fig. 2 of 

ref. [2]). The reader is referred to ref. [2] for a complete description of the method 

for determining the mass spectrum of the 3 + 1 L orentz multiplets in the two and 

four link basis. 
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The U(1) case avoids all of the complications developed in sections 3 and 4, and 

therefore may be a good laboratory to probe the recovery of 4-D Lorentz invariance 

from the transverse lattice construction. The non-linear sigma model action is then 

the Gaussian model for the fields 0, where U = exp 8. The plaquette interaction is 

a product of normal ordered U(1) vertex operators. However, it may be difficult, 

if not impossible, to approach the continuum limit for the Abelian case, since link 

number violation will be large for a deconfined theory. 

Unlike 4-D lattice gauge theory, the transverse lattice construction may be able 

to generate structure functions of relativistic bound states, since the wavefunctions 

of the states are explicitly calculated when diagonalizing the mass spectrum. Only 

when such a problem, impossible to work out by conventional techniques, is solved 

via the transverse lattice construction, will this new approach be fully accepted as 

a tool for probing non-perturbative physics. 

The transverse lattice construction connects 2-D physics to more realistic higher 

dimensional models. Since string theory has motivated a great deal of recent 

progress in 2-D field theory, there are surely many more connections that can 

be made, to the benefit of both mathematically- and phenomenologically-oriented 

physicists. 
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