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1. INTRODUCTION 

The production of W*Z pairs at hadron supercolliders will be an important 

process for testing the standard model.’ The observation of W*Z pairs pro- 

vides a test of two crucial parts of the standard model that lack experimental 

verification, namely, the gauge-boson self-interactions and the electroweak sym- 

metry breaking mechanism. In order to perform these tests it is important to 

have precise calculations of W*Z production to compare with the experimental 

measurements. 

In the standard model the W*, 2, and -y are the gauge bosons of a local 

SU(2)xU(l) symmetry which governs the interactions between the gauge bosom. 

There are important cancellations in the standard model amplitudes for W*.Z 

production which rely on the gauge structure of the WWZ t&near coupling. 

Anomalous couplings at the WWZ vertex wilI lead to enhancements in the W*Z 

cross section at high invariant masses? 

The W* and 2 bosons acquire masses due to the spontaneous breakdown of 

the SU(2)xU(l) symmetry. Although the mechanism responsible for spontaneous 

symmetry breaking is unknown, there are two possibilities: either there is a scalar 

particle much lighter than 1 TeV or the longitudinal components of the W* and 

2 bosom interact strongly at center of mass energies of order 1 TeV or more? 

Strongly interacting W and 2 bosons would be signaled by enhanced production 

of longitudinally polarized W-W+, 22, and W*Z pairs. If no efficient method 

is available for determining the polarization of the W and 2 bosom, then the 

standard model process ql& -+ W&Z, which produces W and Z bosons primarily 

of transverse polarizations, is an irreducible background to strongly interacting 

W*Z production. The process ql@ -+ W’Z is also a background to tech&rho 
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mesons* which appear in technic&x models of electroweak symmetry breaking; 

the techni-rho mesons decay primarily to W-W+ and W’Z find states. 

In hadron collisions W*Z pairs are produced via quark anti-quark annihila- 

tion which proceeds via t- and u-channel quark exchange and s-channel W-boson 

exchange.’ Until now W*Z production has been calculated only in the leading- 

logarithm approximation and the order cr, corrections have only been estimated’ 

using the soft-glum approximation? A complete next-to-leading-logarithm 

NLL) calculation of hadronic W*Z production is presented in this paper. At 

the parton level this involves computing the contributions from the 2 -+ 3 real 

emission processes ql& + W*Zg, qlg --t W*Zqz, and @g + W’Zijl as well as 

the one loop corrections to the 2 + 2 process qlqz -+ W*Z. 

The NLL calculation presented here makes use of a combination of analytic 

and Monte Carlo integration methods. The same methods have been used to per- 

form NLL calculations for hadronic 22 and W-W+ production,s’g direct photon 

production,” photoproduction,” I2 symmetric di-hadron production, and W 

production.‘3 The Monte Carlo approach to NLL calculations has many advan- 

tages over a purely analytic calculation. The Monte Carlo approach allows one 

to calculate any number of observables simultaneously by simply histogramming 

the appropriate quantities. Futhermore, it is easy to tailor the Monte Carlo cal- 

culation to different experimental conditions, for example, detector acceptances, 

experimental cuts, and jet definitions. Also, with the Monte Carlo approach one 

can easily study the NLL corrections for different observables, the variation of 

the NLL corrections in different regions of phase space, and the dependence of 

the NLL cmss section on the choice of scale. 
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The procedure for the NLL W*Z calculation is identical to the procedure 

used in Refs. 8 and 9 for the NLL 22 and W-W+ calculations, respectively. 

In fact, most of the expressions for the W*Z case can be obtained from the 

corresponding expressions for the 22 case by simply replacing the 22 Born 

cross section with the W’Z Born cross section. The only exception to this rule 

is the finite virtual correction, which must be calculated anew. Thus only the 

final expressions for the NLL W*Z calculation will be given in this paper. Details 

on the derivations of these expressions can be found in Ref. 8. 

The remainder of this paper is organized as follows. Section 2 describes the 

techniques used in the Monte Carlo approach to NLL calculations. The NLL 

calculation of W*Z production is described in Section 3. Results are presented 

in Section 4 and summary remarks are given in Section 5. Finally, there is an 

appendix containing loop integrals which arise in the calculation of the virtual 

corrections. 

2. MONTE CARLO FORMALISM 

The Monte Carlo formalism for NLL calculations has been described in detail 

in Refs. 8-13 so the discussion here will be brief. The basic challenge is to de- 

sign a program which retains the versatility inherent in a Monte Carlo approach 

while ensuring that all of the required cancelations of singularities still takes 

place. In order to discuss the technique for isolating the various singularities, 

let the four-vectors of the two-body and three-body subprocesses be labelled by 

pl + pa + p3 + p4 and pi + p2 -+ ps + p4 + ps , respectively, and define the 

Lorentz scalars sij = (pi + pi)’ and tij = (pi - pj)2 . The W’Z calculation 

contains infrared (IR) and collinear singularities but no ultraviolet singularities. 
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Dimensional regularization’4 is used to isolate the singularities. First, three- 

body phase space is partitioned into singular and finite regions by introducing 

soft and collinear cut-off parameters, 6. and 6,. The soft region of phase space 

is defined to be the region where the gluon energy in the subprocess rest frame 

becomes less than 6,&,,/2. The collinear regions of phase space are defined to 

be those regions where any invariant (“ii or tij) becomes smaller in magnitude 

than 6, ~12. Next, the squared three-body matrix elements are approximated in 

the singular regions; the soft gluon and leading-pole approximations are used in 

the soft and collinear regions, respectively. The resulting expressions are then 

integrated over the singular regions of phase space. At this stage the integrated 

expressions contain finite two-body contributions as well as singular pieces. The 

singularities from the soft region will cancel the virtual IR singularities while the 

singularities from the collinear region will be factorized into the parton distribu- 

tion function. The remainder of three-body phase space contains no singularities 

and the subprocesses can be evaluated in four dimensions. 

The calculation now consists of two pieces - a set of two-body contributions 

and a set of three-body contributions. Each set consists of finite parts, all singu- 

larities having been cancelled or factorized. At this stage both pieces depend on 

the values chosen for the two theoretical cut-offs 6, and 6, so that each piece by 

itself has no intrinsic meaning. However, when the two- and three-body contri- 

butions are combined to form a suitably inclusive observable all dependence on 

the cut-offs cancels. The cut-offs merely serve to distinguish the regions where 

the phase space integrations are done by hand from those where they are done 

by Monte Carlo. When the results are added together, the precise location of the 

boundary between the two regions is not relevant. The results reported below 
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are stable to reasonable variations in the cut-offs, thus providing a check on the 

calculation. 

3. NEXT-TO-LEADING-LOGARITHM FORMALISM 

3.1 BORN PROCESS 

The Feynman diagrams which contribute to the Born amplitude for the re- 

action 

nl(Pl) + @(Pa) - W(P3) + Z(P4) 1 (1) 

are shown in Fig. 1. The Born amplitude in N dimensions is 

,+‘rn = 6. 2 
1112 = II 

4-N 
v,m G(P3) G(P4) c ewql P(pz)P-,T’“U(pl) , 

r=f 
(2) 

where 6i,i, is the color tensor (il,iz are color indices for quarks 1 and 2), e is 

the electromagnetic coupling constant, p is a mass parameter introduced to keep 

the couplings dimensionless, Vqlql is the Cabibbo-Kobayashi-Maskawa (CKM) 

quark mixing matrix, $(p3) and eE(p4) are the W- and Z-boson polarization 

tensors, and Pr denotes the left- right-projection operator Pr = i(1 + ~75). In 

the Feynman gauge the tensor !P” is 

T”” = g’+t 7’ M - 114)y + gqlzql ,” WI - lls+ 
21 7 t 

- (Ql - Q2) 
cot 8, 

s _ &f$ + iFwMw [(?53 - ?Mspu + 2P:Y” - 2PW] , 

(3) 

where Q1 and Q2 are the electric charges of quarks 1 and 2 (in units of the proton 

charge e) and (Q1 -Q2) is the charge of the W-boson. The right- and left-handed 
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weak-bosomto-quark couplings are denoted by gzvq, 

g”Wd = g!W” = uWd_ dWu _ 
9+ -g+ - 0, 

gpzq = T: 
(4) 

sin 0, cos 8, 
-Qqt=kv, g:zq = -Qq tan 0, , 

where Qq and Tz denote the electric charge and the third component of weak 

isospin of quark 9, and 8, is the weak mixing angle. The kinematic invariants 

s, t, u are defined by 

8 = (PI + P2)2 , t=(Pl-Pd2, u = (PI - p4)2 . (5) 

As explained in Ref. 8 (see also Refs. 15 and 16), the 7s matrix can be eliminated 

tram alI traces, thus making it straightforward to evaluate the traces in N di- 

mensions. The algebra for this paper was evaluated using the computer algebra 

program FORM.17 

The squared amplitude summed over final state polarizations and initial state 

spins can be written 

IM Borni = NC e4 p4’ IVql, I2 (gBwql)’ k Ai 23; 1 

i=l 

where NC is the number of colors, Ai contains coupling and propagator factors, 

Bi are dimensionless functions of the kinematic invariants, and the number of 

space-time dimensions is N = 4 - 26. For the process ud -+ W+Z the Ai factors 
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are 

Al = (g?)2 , A2=A1(u+d), 

A3 = 
2 

Cot2 @w (s - &q&)2 + (FW&fW)2 ’ 

A4 = g”Z”gfzd , 
(7) 

As = - g!!Z” cot 8, 
s(s - M$) 

(3 - M&)2 + (l?wMw)2 ’ 
As=A5(u-+d), 

and the Bi expressions are 

- c(1 -c)-+ -M&M;), 

B2 = Bl(t H IL), 
(8) 

& = (t + u12 (fu - MSG) 
82 M&M; 

+(1-c){2(t+32[&+3 - i(Mz, + M;) + @t - M&M;)} , 

B4 = _ 2 (tu - Mi&) 
MgM; +(l-r)(s~(M~-i-M~)--4a[~+~]} 

- ~(1 - &tu - M&M;), 

Bs = _ 2(t + ~1 (tu - M&M;) 
9 M&M; 

+ (I- c) i(M& + Mj) - ;(tu - M&M;) - 4(t + u)[& + $1) , 

B6 = - &(1+-+ u). 

For the charge conjugate process da + W-Z, the Ai factors are obtained by 

interchzmging u tt d and replacing cot 8, + - cot f?, in Eq. (7) and the B; 

expressions are unchanged. 



The Born subprocess cross section is 

dhBorn(qlq2 + WZ) = ; ; & jMBorn12 dN+2 , 

where the factors j and i are the spin average and color average, respectively, 

and two-body phase space is 

with v = i(1 + cos ~9). Here X is the two-body phase space function 

X(&Y, 2) = z2 + y2 + 2 - 2zy - 2zz - 2yz . (11) 

It is convenient to decompose the squared Born amplitude into three terms cor- 

responding to the power of e that appears in the squared amplitude 

IM -72 = lMf-72 + clMF12 + 4,,492, (12) 

with this decomposition the Born cross section can be written 

d&.Born = &$X=X + e d&F + &+fWl . (13) 

This decomposition will be useful later for writing the virtual and soft corrections. 

The leading-logarithm (LL) cross section is obtained by convoluting the sub- 

process cross section with the parton densities and summing over the contributing 

partons, 

nLL(pp + WZ) = c / dc%‘-‘(qlqz -+ WZ) 
ql,h 

x Gq,,,(+1,,M2)GQ.,p(~z,M2) + ~1 - 12 d+ld+a . [ 1 
(14) 
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3.2 VIRTUAL PROCESSES 

The order a, virtual correction to qlq2 + WZ comes from the interference 

between the Born graphs of Fig. 1 and the virtual graphs shown in Fig. 2. The 

interference between these amplitudes has been evaluated in N dimensions using 

the Feynmau parameterization technique. There are two mitigating factors which 

simplify the qlq2 -+ WZ virtual calculation. The first is that the calculation does 

not contain UV singularities since the graphs in Fig. 2 do not contribute to the 

renormalization of the strong, electromagnetic, or weak coupling constants. The 

second is that the self-energy insertions on the external quark lines vanish due 

to the cancellation of the UV and IR divergences.‘s Basically, what happens is 

that the UV and IR poles cancel when one does not distinguish between them. 

Because the loop integrals associated with the four-point function from the 

box diagrams in Fig. 2 are very difficult to evaluate when powers of the loop 

momenta appear in the numerator, it is advantageous to first multiply the Born 

amplitudes times the virtual amplitudes and evaluate the resulting traces. The 

numerator of the resulting expression can then be rewritten, using momentum 

conservation relations, such that propagator denominator factors cancel with 

identical factors in the numerator. This way the four-point functions with powers 

of the loop momentum in the numerator are reduced to a four-point function 

with a constant numerator and three- and two-point functions which are easier 

to evaluate. The loop integrals can be reduced to a set of twelve integrals which 

were given in Refs. 8 and 9 for the case of equal mass weak bosons. For the 

present case of unequal mass weak bosons, four of the twelve integrals must be 

generalized and are given in au appendix. 
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The order ~2~ virtual contribution to the 41q2 --+ WZ cross section is 

&+rt 
- cFz (?$)‘,‘,‘,‘~-d, { e;d+ir tdc+?‘y ;d@y 

dv 

(15) 

where d+F and dSForn are defined by Eq. (13) and CF = f is the quark- 

gluon vertex color factor. In the last term, which is the order Q, finite virtual 

correction, the A; are the coupling factors defined in Eq. (7) and the V; are 

dimensionless functions of the kinematic invariants. The Vi expressions are too 

lengthy to reproduce here, however, to facilitate future comparisons with the 

present calculation, the finite virtual contribution to the NLL cross section will 

be plotted in the results section. 

3.3 SOFT GLUON EMISSION 

The Feynmm diagrams for the real emission subprocess 

,a(Pl) + ,72(P2) - W(P3) + Z(p4) +g(ps) , (16) 

are shown in Fig. 3. In the soft gluon region of three-body phase space, which is 

defined by Es < 6, fi/2, the soft gluon contribution to the cross section is 

x 07) 

,~ 
dg?orn 

d&p 
+ 410g(6,)2T - 4log(&) dv + zdv , 1 

where 6, is the soft cut-off parameter defined in Sec. 2. 
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3.4 HARD COLLINEAR CORRECTIONS 

The 2 + 3 real emission processes have hard collinear singularities when 

tls -+ 0 or tz5 + 0. These singularities must be factorized and absorbed into 

the initial state parton distribution functions. The collinear regions of three- 

body phase space are defined to be those @OXIS where any invariant (s;j OIY 

tij) becomes SIIM&Z in magnitude than 6c~12, where 6, is the dli~t~~ cut-off 

parameter defined in Sec. 2. After the factorization is performed, the remnants 

of the hard collinear singularities take the form 

a, d&p 
+wz)=2x- 

dv 08) 

l-6. 

x %,/phr~2) / ~%/P(~~~~P-&) 
21 

+G..,pWf”)j $G&M2)&(~) 
21 

1-s. 

+ Gq,~/ph~~) J %&~2)h&) z 21 
+Gq,/,b2,M2) 

’ dz 

I 
yGs,p(~Jf2)k(4 , 1 =1 

with 

Fij(Z) FE Pij(Z) lIl(e 6~ $) - .Pij(Z) - XFCF;j(Z) (19) 

The Altar&-Parisi splitting functions in N = 4 - 2e dimensions for 0 < .z < 1 
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are 

1 + 22 
P,,(z,d = CF l--k - E(1 - 2) 

1 1 , 

Png(z,c) = l 2(1 -e) I 
t2 + (1 - *)2 - E 1 ) 

(20) 

and can be written 

Pij(Z,E) = Pij(Z) + ePij(t) , (21) 

which defines the Pij functions. The functions F,, and F,, depend on the choice 

of factorization convention and the parameter XFC specifies the factorization 
- 

convention; XFC = 0 for the universal (MS) convention and XFC = 1 for the 

physical (Deep Inelastic Scattering DIS) convention. For the physical convention 

the factorization functions are 

&(~)=CF [++(e) -;&+2a+3] , 

{z" +(I - z)"} In + 841 - z) - 1 1 . 

(22) 

The parameter M2 is the factorization scale which must be specified in the process 

of factorizing the collinear singularity. Basically, it determines how much of the 

collinear term is absorbed into the various parton distributions. 

The upper limit on the integrals appearing in Eq. (18) is determined by 

requiring that the hard collinear term not overlap with the soft region previously 

discussed. If such an overlap were to occur, then that region of three-body phase 

space would be counted twice. 
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3.5 SOFT COLLINEAR SUBTRACTION TERM 

The Ma dependent subtraction piece which is used to absorb the collinear 

singularity into the parton distribution functions involves an integral over split- 

ting functions with the upper limit corresponding to z = 1, not 1 - 6.. Therefore, 

there is one last piece to be subtracted which, for the t15 case, takes the form 

1 

x J { : -fP,,M + XFCW} Q(z) . l-6. 
Inserting Pnn and F,, and integrating yields 

+ {; +210g(6.)}{log(&) “,+i; + d&I:} 

+ AFC{; + ; + ; log(&) - log(6.)‘) T] , 

(23) 

(24) 

where terms proportional to a power of the soft cut-off 6# have been discarded. 

The soft collinear singularity in the t25 -+ 0 region yields an identical result. 

3.6 NEXT-TO-LEADING-LOGARITHM CROSS SECTION 

The NLL cross section, which consists of two- and three-body contributions, 

can now be assembled from the pieces described in the previous sections. The 
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two-body contribution is 

cr;~f&,,(pp+ WZ)= c jdudzldz2 (25) 
gldl 

d,+NLL 
x Gg,,p(~~,~2)Gh,p(~~r~2)_;1;;_(q~~2 -+ W~)+(+I ++zn)+$ , 1 

where the sum is over all contributing quark flavors, dC/dv is defined in Eq. (18), 

and 

d&NLL 
-&+I42 

&hXn &+virt d&t d&l5 
+WZ)=- - --- 

+ dv + dv 
dcYz5 

dv dv - dv ' 
(33) 

The $ and i poles cancel when the terms in Eq. (26) are summed [see Eqs. (9), 

W, (1% ad (24)l. 

The three-body contribution to the cross section is 

u3 body(~p + wz + x) = C J dS(ab --t Wzc) 
d,c 

x 1 G,,,(~~,M2)Gb,p(~z,M2)+(~l ++ ~2) d=l drz, 1 
(27) 

where the sum is over alI partons contributing to the three subprocesses 41~ --t 

WZg, qlg --t WZq2, and @g -+ WZql. The squared matrix elements for the 

2 -+ 3 subprocesses were evaluated numericalIy via helicity amplitude methods as 

described in Ref. 19. The integration over three-body phase space and dtl dxz is 

done numerically by standard Monte Carlo techniques. The kinematic invariants 

8ij and tij are first tested for soft md ~dli~e~~ singularities. If m invariant for a 

subprocess falls in B soft or collinear region of phase space, the contribution from 

that subprocess is not included in the cross section. 
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4. RESULTS 

The numerical results presented in this section have been obtained using the 

two-loop expression for a,. The QCD scale A ~CD is specified for four flavors of 

quarks by the choice of parton distribution functions and is adjusted whenever 

a heavy quark threshold is crossed so that ad is a continuous function of Q2. 

The heavy quark masses were taken to be mb = 5 GeV and mt = 140 GeV 

(Ref. 20). The standard model parameters were taken to be Mz = 91.17 GeV, 

Mw = 80.0 GeV, and a(Mw) = l/128. Th ese mass values are consistent with 

” recent measurements at the Tevatron, the SLAC Linear Collider:’ and the 

CERN e+e- collider LEPf3 The soft and collinear cut-off parameters were taken 

to be 6. = 5 x lo-’ and 6, = 10m3. The parton subprocesses have been summed 

over u, d, c, and s quarks and the Cabibbo mixing angle has been chosen such that 

cm2 6’~ = 0.95. Except where otherwise stated, a single scale Q2 = Mkz, where 

Mwz is the invariant mass of the WZ pair, has been used for the renormalization 

scale p2 and factorization scale M2. For comparison, LL predictions obtained 

with the two-loop running coupling for aa are also given. Using the two-loop 

running coupling for both the LL and NLL results provides a consistent expansion 

parameter so that one can judge the degree of convergence of the results. The 

results presented here for W*Z production are qualitatively similar to the results 

for ZZ and W-W+ production? 

In order to get consistent NLL results it is necessary to use parton distri- 

bution functions which have been fit to next-to-leading order. The dependence 

of the total cross section on the choice of parton distribution functions is shown 

in Table 1 where the total cross section for W+Z production at the Tevatron, 

LHC, and SSC are given for the HMRS” sets E and B and for the DFLMz5 
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sets corresponding to A4 = 160, 260, and 360 MeV. The variation in the cross 

section increases with the center of mass energy; at the SSC energy the ratio of 

the extreme values for the cross section is 1.8 (1.4 if the HMRS set E distributions 

are disregarded). The HMRS set B distributions will be used for the remainder 

of this section since they fit the present data the best. Note that the HMRS 
- 

distributions are defined in the universal (MS) scheme whereas the DFLM dis- 

tributions are defined in the physical (DIS) SC h eme. The factorization defining 

parameter XFC in Eqs. (19) and (24) should thus be XFC = 0 (1) for the HMRS 

(DFLM) distributions. 

One of the motivations for performing NLL calculations is that the results 

often show a less dramatic dependence on the renormalization and factorization 

scale than the LL result. This is true for the present calculation. The scale 

dependence of the total cross section is illustrated in Fig. 4 where the total cross 

section for W+Z production is plotted verses the scale Q. The scale Q~ has been 

used for both the renormalization and factorization scales. Parts a), b), and c) 

of Fig. 4 are for the Tevatron, LHC, and SSC, respectively. The NLL result at 

the Tevatron shows only a slight decrease in scale dependence, while the NLL 

results at the LHC and SSC show a significant decrease in scale dependence. The 

qualitative differences between the results at the Tevatron and SSC are due to 

the differences between pp verses pp scattering and the ranges of the z-values. 

At the Tevatron, W+Z production in pp collisions is dominated by valence quark 

interactions. The valence quark distributions decrease with Q2 for the r-values 

probed at the Tevatron. On the other hand, at the LHC and SSC, sea quark 

interactions dominate in the pp process and smaller z-values are probed. The 

sea quark distributions increase with Q2 for the z-values probed by the LHC and 
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SSC. Thus the cross section decreases with Q2 at the Tevatron but increases with 

Q2 at the SSC. At the LHC the NLL cross section is nearly independent of Q2 

because the increasing parton distributions are compensated by the decreasing 

of a,. 

The NLL and LL total cross sections for pp -+ W*Z are plotted in Fig. 5 

as functions of the center of mass energy. The order aa corrections are positive 

and enhance the lowest order cross section by 30-70% over the range of center 

of mass energies shown in the figure. Also shown in Fig. 5 is the LL result 

with a multiplicative soft-gluon K-factor. The soft-glum K-factor is a scheme 
- 

dependent approximation for the order a, corrections. In the MS scheme, whichis 

used for the figures in this paper, the soft-glum K-factor is K = l+ %a, (Ref. 6); 
- 

in the DIS scheme the a. term is twice the size as in the MS scheme. Figure 5 

shows that the soft-glum K-factor underestimates the order a, corrections; the 

underestimation gets worse as the center of mass energy increases. The soft-gluon 

K-factor is a better estimate in the DIS scheme because it is twice as large, but 

it still underestimates the complete NLL cross section. Note also that the K- 

factor simply enhances the LL cross section uniformly over the entire range of 

center of mass energies, whereas the complete order a, corrections increase with 

the center of mass energy. The short-comings of the soft-gluon K-factor are 

linked to the fact that it only approximates the order a, qij corrections in the 

limit of soft virtual and real glum emissions. The presence of large order a, 

qg initiated processes (see next paragraph) invalidates the use of the soft-glum 

K-factor. A comparison with the complete order a, qq corrections shows that it 
- 

also underestimates them by 50% (25%) in the MS (DIS) scheme. At the SSC 

center of mass energy, the order a. corrections enhance the lowest order cross 



section for W*Z production by a factor of 1.7. For comparison, the order a, 

corrections yield enhancement factors of 1.5 for W-W+ production9 and 1.3 

for 22 production.8 In contrast, the soft-gluon K-factor is the same in sll three 
- 

cases6 and yields an enhancement factor of approximately 1.13 (1.26) in the MS 

(DIS) scheme. 

To understand why the order Q. corrections differ for the cases of 22, 

W-W+, and W*Z production, Fig. 6 shows the NLL total cross section for 

W*Z production decomposed into the LL contribution and the order a, contri- 

butions from 49 and 99 initial states. The order u, corrections from qq initial 

states are approximately 35% as large as the LL cross section for the entire range 

of center of mass energies shown in the figure, however, the corrections from QCJ 

initial states increase from -1% to 35% as large as the LL cross section as the 

center of mass energy increases. Similar figures for hadronic ZZ and W-W+ 

production show that the order a, qq corrections arc similar in all three cases, 

but that the order a, 49 corrections increase as one goes from 22 to W-W+ to 

W*Z. A similar behavior is observed in the tree-level VV + 1 jet cross section 

(VV = ZZ, W-W+, W’Z); the ~IJ initial state component of the cross section 

increases as one goes from ZZ to W-W+ to WiZ. The fraction of cross section 

with both weak bosom in the same hemisphere also increases in the same order. 

The processes with non-abelian graphs (W-W+ and W*Z) are enhanced when 

both weak bosom are in the same hemisphere. This configuration minimizes the 

invariant mass of the weak boson pair which in turn puts the propagator closer 

to its on-shell value. This enhancement is most pronounced for the W*Z case; 

the W-W+ case suffers from destructive interference between the virtual photon 

and virtual Z-boson graphs. Thus the W-W+ case is intermediate between the 
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ZZ and W*Z case. The enhancement is also more pronounced in the qg channel 

than in the qq channel. The increase in the size of the order a, corrections is due 

to the increasing importance of the qg initial state contribution. 

To facilitate future comparisons with the present calculation, Fig. 7 shows 

the order o, finite virtual correction from Eq. (15). This correction is positive 

and about an order of magnitude smaller than the LL cross section. 

One of the major advantages of using Monte Carlo methods for NLL cal- 

culations is that one can calculate any number of differential distributions si- 

multaneously by simply histogramming the quantity of interest. Figures 8, 9, 

and 10 show the differential distributions for the WZ pair invariant mass Mwz, 

the Z-boson transverse momentum pT(Z), and the Z-boson rapidity in the lab- 

oratory frame y(Z), respectively, for pp -+ W+Z at the LHC and SSC center 

of mass energies. No cuts have been applied to these figures. Because of the 

mass difference between the Z- and W-bosom, the y(W) distribution is slightly 

broader than the y(Z) distribution and the pT( W) distribution is slightly higher 

(lower) at small (large) values of transverse momentum than the pT(Z) distri- 

bution. These figures show that the order a. corrections are larger at large pT, 

1 arge Mwz, and small y values. Th us in general, the order a, corrections do 

not simply change the overall normalizations, but instead they also change the 

shapes of kinematic distributions. These shape changes are due to the presence 

of three-body final states in the order a. cross section. Two-body phase space is 

a highly constrained configuration, whereas three-body phase space allows many 

new configurations, for example, both the W- and Z-boson can be in the same 

hemisphere. A comparison between the two-body tree-level process pp + WZ 

and the three-body tree-level process pp -+ WZ + 1 jet, shows that the pT(Z) 
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spectrum is harder in the latter process. Examination of the two- and three-body 

contributions to the NLL pT(Z) distribution indeed shows that the high-pT(Z) 

tail is dominated by the three-body contribution. By contrast, the soft-gluon 

K-factor simply scales up the lowest order cross section and predicts no shape 

change in the kinematic distributions. The K-factor’s lack of shape change is 

understandable since the soft-gluon limit is a two-body final state whereas thrcc- 

body final states are needed to produce a change in shape. 

5. SUMMARY 

A complete next-to-leading-logarithm calculation of pk’ + W*Z has been 

presented. The calculation was done using a combination of analytic and Monte 

Carlo integration methods which make it easy to calculate a variety of obscrvablcs 

and to impose experimental cuts. The order cz, corrections enhance the lowest 

order cross section by 30-70%. The size of the NLL corrections depends on the 

observable and on the kinematic range. The NLL results axe less dependent on the 

scale choice than the LL result, especially at supercollider energies. These results 

are qualitatively similar to the results for hadronic ZZ and W-W+ production, 

however, the processes pp + ZZ, W-W+, and WfZ have progressively larger 

order (1. corrections. 
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APPENDIX : LOOP INTEGRALS 

The loop integrals from the virtual graphs of Fig. 2 can be reduced to a set of 

twelve integrals which were given in Rcfs. 8 and 9 for the case of equal mass weak 

bosons. For the present case of unequal mass weak bosom, four of the integrals 

must be generalized and arc given in this appendix. The notation here is the 

same as in Ref. 8. 

Three of the integrals (Is, 16, and 17) are inkared and ultraviolet finite and 

can be evaluated in 4 dimensions, however, the fourth integral (II) is singu- 

lar and must be regularized. Dimensional regularization was used to regularize 

this integral, with the number of space-time dimensions set to N = 4 - 2~. In 

all cases the integrals were evaluated using the Fcynman paramctcrization tech- 

nique. Integrals 1: and 1: are only needed for the cases in which the indices 

are contracted with pl,pl, and pl,, respectively. The integrals arc written with 

a common factor 

4n ( > f r(l- e) 1 

F= J l?(l-2c)(4*)2’ 

The singular integral is 

N 

‘I= I (it~,“N k’(k+pl)++;~-p#(k-p2)~ 

-2&(&u) I 1 
t-42) 
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where 

BI(t,u) = Liz( 

- Lid Ls _ M.C$g _ t] ) + Lia(B -Y&g (-43) 

- ; log( [S _ M;I;lw;; _ t] )a + a log( S --;$ )2 

+ l%( M! - t) log( M!, u, - f log( wvf~)log(!!$ - slog’ 

and Liz(z) is the dilogarithm function 

1 
Liz(Z) = - J log(1 - t*,; = 2 c . 

Cl k=l lea 
(-44) 

The three finite integrals arc 

I 
N 

Pl,Pl,I~ = Pl,Pl” 
k”k” 

~ (ix; (k +pl)a(k +PI -ps)‘(k -pa)’ 
(-45) 

.Fa (M~-t)aJo+2(M~-t)J,+Ja =7,- 
4 [ 9 8 I? 

J dNk kfi 
P& = Pl, - (2x)N (k +pl)a(k +pl -p~)~(k -pa)a 

(-46) 

F Wi%-4Jo+J1 =i- 
[ 2 d 11 

N 

I7 E J (t~)f’f (k + p,)a(k + p:- ps)a(k -pa)’ = 
+o, (-47) 
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C-48) 

where the Ji arc dimensionless functions defined by 

1 

Jo z ; dz , 

0 

J1 c - l-49) 

(AlO) 

with 

A = -(z -z-)(2-z+), t-411) 

M& + CM; - M&l BE-.-- “9 s s 

c = log(z) + log( 1 - 2) - log(B) ) (-413) 

l-412) 

M,$ Mirfrx --- lM$M; f 
s 8 ly-77 ’ )I (A14) 

Here X is the two-body phase space function defined in Eq. (11). The Ji integrals 

can be evaluated by partial fractioning the denominators and integrating tcrm- 

by-term. The resulting integrals can be found in the table of integrals by Devote 

and Duke 26 and are expressed in terms of logarithm and dilogarithm functions. 

This process is easily done with the aid of a computer algebra program, however, 

the resulting expressions for Ji arc too lengthy to reproduce here. 
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Table 1. Predicted cross sections (in pb) for W+Z production with no cuts at 

various colliders and for different sets of parton distribution functions. 

collider 6 PY HMRSE HMRSB DFLM160 DFLM260 DFLM360 

Tevatron 1.8 LL 1.09 1.01 0.941 0.868 0.806 

Tevatron 1.8 NLL 1.42 1.33 1.29 1.21 1.14 

LHC 16. LL 14.4 16.8 17.0 18.2 19.0 
I 

LHC 16. NLL 21.8 25.6 27.0 29.2 30.6 

ssc 40. LL 33.9 43.1 43.7 51.2 58.1 

ssc 40. NLL 55.9 71.3 74.5 87.8 99.6 
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FIGURE CAPTIONS 

1. Feynman diagrams for the Born subprocess ql& + WZ. The straight, 

wavy, and curly lines denote quarks, electroweak bosons, and gluons, 

respectively. 

2. Feynmm diagrams for the virtual subprocess ql@ -+ WZ. Not shown 

are the diagrams obtained by interchanging the W and Z. 

3. Feynman diagrams for the real emission subprocess ql@ -+ WZg. Not 

shown are the diagrams obtained by interchanging the W and Z. 

4. Total cross section for W+Z production as a function of the scale Q. 

The solid curve is the NLL result and the dashed curve is the LL result. 

Parts a), b), and c) are for the Tevatron, LHC, and SSC center of mass 

energies, respectively. 

5. Total cross section for pp -+ WZ +X as a function of the center of mass 

energy. Part a) is for pp -+ W+Z + X and part b) is for pp + W-Z + X. 

The solid line is the NLL result, the long dashed line is the LL result, and 

the short dashed line is the LL calculation with the soft-gluon K-factor 

K=l+*(r. 9 8 

6. Decomposition of the total cross section for pp -+ W*Z + X as a func- 

tion of the center of mass energy. The NLL cross section (solid line) is 

decomposed into the LL contribution (long dashed line), the order a. qq 

initial state contribution (dotted line), and the order a, qg initial state 

contribution (short dashed line). Part a) is for pp --) W+Z + X and part 

b) is for pp ---f W-Z + X. 

7. The order a, finite virtual contribution to the NLL total cross section 

for pp + W*Z + X as a function of the center of mass energy. 

8. Invariant mass distribution of the WZ pair. The solid curve is the NLL 

result and the dashed curve is the LL result. Parts a) and b) are for the 

LHC and SSC center of mass energies, respectively. 
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9. Transverse momentum distribution of the Z-boson. The labeling con- 

ventions are the same as Fig. 8. 

10. Rapidity distribution of the Z-boson. The labeling conventions are the 

same as Fig. 8. 
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