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ABSTRACT 
The relic abundance of a particle species that was once in thermal equiiibrium 

in the expanding Universe depends upon a competition between the annihilation 
rate of the species and the expansion rate of the Universe. Assuming that the 
Universe is radiation dominated at early times the relic abundance is easy to 
compute and well known. At times earlier than about 1 set after the bang there 
is little or no evidence that the Universe ilad to be radiation dominated, although 
that is the simplest-and standard-assumption. Because early-Universe relics 
are of such importance both to particle physics and to cosmology, we consider 
in detail three nonstandard possibilities for the Universe at the time a species’ 
abundance froze in: energy density dominated by shear (i.e., anisotropic ex- 
pansion), energy density dominated by some other nonrelativistic species, and 
energy density dominated by the kinetic energy of the scalar field that sets the 
gravitational constant in a Brans-Dicke-Jordan cosmological model. In the sec- 
ond case the relic abundance is less than the standard value, while in the other 
two cases it can be enhanced by a significant factor. We also mention two other 
more exotic possibilities for enhancing the relic abundance of a species-a larger 
value of Newton’s constant at early times (e.g., as might occur in superstring 
or Kaluza-Klein theories) or a component of the energy density at early times 
with a very stiff equation of state (p > p/3), e.g., a scalar field 4 with potential 
V(4) = ,BI4[” with n > 4. Our results have implications for dark matter searches 
and searches for particle relics in general. 
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I. INTRODUCTION 

The existence of the cosmic microwave background radiation (CMBR) with 

temperature 2.74 K is very strong evidence that the Universe was both radiation- 

dominated [for times earlier than tEQ N 4.4 x 10’0(Rsh2)-“sec] and very hot 

[T - MeV(t/sec)-‘/2] at early times.’ Because the temperatures reached early 

on were so high there is every reason to believe that essentially all the known 

particle species and possibly other species yet to be discovered were present in 

great numbers. If equilibrium thermodynamics were the entire story these facts 

would be of little interest, as today the equilibrium abundance of any massive 

particle species would be exponentially small, proportional to exp( -m/T). How- 

ever, it has long been realized that due to the expansion of the Universe the 

actual abundance of a stable particle species cannot track its equilibrium value 

forever, and depending upon the strength of its interactions, the abundance per 

comoving volume eventually ceases to decrease and freezes in at some constant 

value. “Freeze in” of the particle’s abundance occurs when the annihilation rate 

can no longer keep pace with the expansion rate of the Universe: Roughly, the 

abundance ceases to decrease when the annihilation rate falls below the expan- 

sion rate--when annihilations are said to freeze out? (The reactions that regulate 

the number of a particle species are pair production and annihilation; the pair 

creation rate is related to the annihilation rate by detailed balance, or time- 

reversal invariance.) Moreover, the weak shall dominate-the relic abundance of 

a particle species is inversely proportional to its annihilation cross section. 

Calculating the relic abundance of a particle species that was once in thermal 

equilibrium is a routine chore for the particle cosmologist. The differential equa- 

tion governing the abundance of a species follows from the Boltzmann equation, 

and depends upon two pieces of input physics: the expansion rate as a function 

of temperature and the annihilation rate as a function of temperature.’ Once the 

particle species and its interactions are specified the annihilation rate is precisely 

determined in terms of the number density of the species and the temperature of 
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the Universe. The expansion rate as a function of temperature is another mat- 

ter. In the standard, radiation-dominated FRW cosmology, the expansion rate 

at early times (t 2 tEQ) iS given by 

8TG 

=-Tp= 

4a3g,T4 

45m;, 1 (1) 

where R is the scale factor of the Universe, p is the total energy (for a thermal 

bath of relativistic particles pr = g,~~T~/30), and yi counts the effective number 

of ultra-relativistic degrees of freedom (1 for each relativistic bosonic degree of 

freedom and 7/S for each relativistic fermionic degree of freedom). Having made 

this assumption, the.path to determining the relic abundance-usually expressed 

as the ratio of the number density n of the species to the entropy density s = 

2g,rr2T3/45-is a tried and true one. 

The crucial uncertainty in determining the relic abundance is the assump- 

tion that the Universe is radiation dominated at freeze out. The concordance 

of the predictions of primordial nucleosynthesis with the observed light-element 

abundances provides strong evidence that the Universe was indeed radiation dom- 

inated at an age of about 1 sec.3 However, there is little or no evidence that 

requires the Universe at times earlier than about 1 set to be radiation dominated. 

Moreover, most of the interesting thermal relics would have decoupled at such 

early times. 

Given the importance of relic particles both to cosmology and to particle 

physics-particle relics may provide the bulk of the mass density of the Universe 

thereby explaining the nature of the dark matter: and they might provide the 

first evidence for new physics beyond the standard model of particle physics- 

we decided to study in detail three nonstandard-but plausible-possibilities for 

the expansion rate of the Universe around the time of freeze out. Our first 

example involves the geometry of spacetime: If the expansion of the Universe is 

not isotropic, then the volume-expansion rate at fixed temperature exceeds that 

for the standard case and freeze out occurs at a higher temperature leading to 

a larger relic abundance. Here we explore a particularly simple and interesting 
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example: a Bianchi I model where the effects of the anisotropy on the volume- 

expansion rate can be quantified in terms of an anisotropy-energy density that 

decreases as Re6. For this model (and other similar models) the anisotropy 

simply decays without leaving a trace, and the only lasting effect is to enhance 

the abundance of the thermal relic. 

In the second example we consider, at early times the energy density is dom- 

inated by a massive, nonrelativistic particle species. Again, the expansion rate 

for fixed temperature is increased, leading to an earlier freeze out at a larger relic 

abundance. Of course there is every evidence that the Universe only became 

matter dominated relatively recently and so the nonrelativistic particles would 

eventually have to decay, producing entropy and diluting the relic abundance 

of the relic. As we shall show the net effect is to decrease the relic abundance. 

(We note that this possibility is different from the one involving particle decays 

in which the only effect of the decaying species is to produce entropy, in which 

case the relic abundance is decreased precisely by the amount of the increase in 

entropy! ) 

In the third example we use the Brans-Dicke-Jordan theory of gravity instead 

of general relativity. Here the analog of the Friedmann equation contains a kinetic 

energy term for the Brans-Dicke scalar scalar field which decreases as Rm6 and 

of course increases the expansion rate for fixed temperature. As in the case of 

anisotropic expansion, the only lasting effect is to enhance the abundance of the 

thermal relic. 

The motivation of this work then is to assess the reliability of the standard 

estimate for the relic abundance of a stable particle species that was once in 

thermal equilibrium by considering three nonstandard possibilities for the evo- 

lution of the Universe at early times (t 5 1 set). The outline of our paper is 

as follows: In Section II we briefly review the formalism for calculating the relic 

abundance of a species and the standard result. In the next three Sections we 

consider the nonstandard possibilities mentioned above and how they affect the 

relic abundance of a stable particle species. In the final Section we put our work 

in perspective with some concluding remarks. 
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II. REVIEW OF THE STANDARD RESULT 

To obtain quantitative results for the relic abundance of a stable particle 
- 

species X (and its antiparticle X) one solves the Boltzmann equation that governs 

the number density of the species:” 

$ + 3Hn = -(m)(n2 - ngQ, 

Here n(t) is the number density of species X at time t, ~EQ is the equilibrium 

number density at time t when the temperature of the plasma is T, (cw) is the 

thermally and spin-averaged cross section times relative velocity for XT anni- 

hilation, and H is the Hubble parameter. We assume that there is no particle- 

antiparticle asymmetry so that the number density of antiparticles is also n. (It 

is easy to extend this formalism to apply to the case where there is a particle- 

antiparticle asymmetry; see Griest and Seckel.’ ) Exact solutions of this particular 

example of the Ricatti equation do not exist; however, an approximate [accurate 

to 0(5%)] analytical solution is easily obtained.’ Since we will follow this ap- 

proach in the nonstandard models we will briefly review that solution here. 

In the absence of entropy production the entropy per comoving volume (5’ = 

R3s) is constant, and we use the entropy density 

as a fiducial quantity and rewrite the Boltzmann equation in terms of Y z n/s, 

which corresponds to the number of X particles per comoving volume. [Actually, 

the g* in Eq. (1) is in principle different from that in Eq. (3); however, in practice 

they are very nearly equal at temperatures greater than an MeV. See Ref. (3), 

pp. 65-70.1 Furthermore, since the quantities of interest depend explicitly on 

temperature rather than time, we use the quantity I c m/T, instead of time as 

the dependent variable. Doing so, Eq. (2) becomes 

dY 

x= 
L.c.&2 - YiQ), 

where of course (uu), H, s, and YEQ are all functions of I. (Actually, there is 

another term involving the derivative of g,; 6’8 however, this term is small and 
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to a good approximation we can fix CJ* at its value around freeze out.) Here 

YEQ = ~EQ/S and in the nonrelativistic limit (z >> 3) is given by 

yEQ(") = - 
45 T II2 &3&-z =0,145&3/2e-z, 

0 2n4 8 !?* 9* 
(5) 

In the case of interest, at freeze out Xz particles are moving at nonrelativistic 

velocities and the cross section is proportional to v’” (n = 0 corresponds to s- 

wave annihilation, n = 1 corresponds to p-wave annihilation, etc.) so we can 

write (uv) = COZ-~. Furthermore, .s cc xe3 and H c( xm2, cf. Eq. (l), so the 

Boltzmann equation becomes 

dY 
-= 
dx -&/y’ - y;Q,> (6) 

where we have defined 

As p+ 1 1 H 
= 0.264g:‘*mplmxo0. 

2=1 
(7), 

To solve Eq. (2) we follow Ref. 7 and consider the differential equation for 

A s Y - YEQ, the departure from equilibrium, 

A’ = -..YiQ - -$A(~YEQ+A), (8) 

where the prime denotes d/dx. At early times when the annihilation rate rANN 

is much greater than the expansion rate H (CC < CC~), the X abundance tracks 

its equilibrium value very closely so that A < YEQ and A’ < YiQ, and 

xn+2yl 
AN- EQ 

x(%EQ + A)’ (9) 

At late times (z >> xf), Y tracks YEQ very poorly; therefore A N Y >> YEQ and 

YdQ < A’, so that 

A’ = - (10) 

Upon integrating Eq. (10) from x = rf to z = co, we obtain7 

ym = A, = F,;+l + O(z?), 

where zf is determined from Eq. (9) by A(z,) = CYEQ(X~) and c is a numerical 
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constant of order unity that serves to define the epoch of transition between the 

regimes mentioned above. Solving for rf iteratively, the result is 

xf N In [(2 + c)Xac] - 
( > 

n + i In {ln [(2 + c)xac]} , 

where n = O.l45(g/g,). Note that the final abundances only depends logarthically 

upon the value of c. The best agreement between the analytic result and a 

numerical integration of Eq. (4) obtains for c(c + 2) = n + l.? To obtain the 

present mass density contributed by the relic, Ym is multiplied by the mass of 

the relic and the present entropy density ss = 2970 T& cmv3, where Tz.75 is the 

CMBR temperature in units of~2.75 K. 

III. FREEZE OUT IN A SHEAR-DOMINATED UNIVERSE 

As stated earlier, there is little or no evidence that the Universe before the 

time of big bang nucleosynthesis had to be homogeneous or isotropic, although 

this is the standard assumption and is certainly well motivated. The simplest 

nonstandard cosmological models are homogeneous but anisotropic; these are the 

Bianchi (and Kantowski-Sachs) models which are classified according to the Lie 

algebras of their isometriess The metric of the simplest of these models, the 

Bianchi type I spacetime, is 

ds2 = -dt2 + R;(t)(dx’)’ + R;(t)(dx2)’ + R;(t)(dx3)2, (131 

where the Ri are the scale factors of the three principal axes of the Universe. The 

Einstein equations for this metric lead to the analog of the Friedmann equation 

for the volume expansion rate H of the Universe: 

(14) 

where we assume that the matter content is the usual thermal bath of radiation 



at temperature T and the shear “energy density” is defined to be 

ps = $j [(HI - Hz)’ + (HI - H3)* + (Hz _ H3)2] 

Here V = RlR2R3 is the “volume scale factor,” li = V1i3 is the mean-scale factor, 

and the Hi E (&/R;j (no sum) are the expansion rates of the three principal 

directions. As is manifest from Eq. (15), the shear-ener,v density is proportional 

to the amount of anisotropic expansion. Note that since we are always free to 

relabel our comoving coordinates, differences between the various R;‘s have no 

physical meaning; only differences in the expansion rates are meaningful. From 

Eq. (15) it also follows that /HiI 5 3H ( we use absolute-value signs because 

at very early times, when pr is negligible, the spacetime becomes the Kasner 

spacetime in which one of the spatial dimensions must be contracting). 

In general, the red shift suffered by a particle as the Universe expands will 

be direction dependent. For example, for a particle moving in the z-direction, 

p 0: R;‘. Provided that the interaction rate of the thermal bath of particles is 

much larger than H, particle distributions will remain isotropic and the mean 

momenta will red shift as ii-‘. In this case, the remaining Einstein equations 

become (for i # j): 

$ In IHi - HiI = -3H = -3$lnR), (16) 

which implies that ps c~ Ry.6. Therefore, the shear-energy density falls off faster 

than the radiation-energy density and the anisotropy in a Bianchi I Universe 

simply decays without leaving a 10 trace. 

,For the freeze-out calculation we are interested only in the expansion rate 

H and not the detailed form of the anisotropy as given by the Hi; therefore, we 

use the fact that pS cc k6 and constancy of the entropy per comoving volume 

(g,i?T3 = const) to express the shear-energy density in terms of the plasma 

temperature T. We define the temperature at which pI = ps to be I’,. For 

T >> T, the Universe is shear-dominated, H cc k3 and i? c( t1i3; for T < T, 

the Universe is radiation-dominated, H o( Ri-* and il cx t’/‘. The temperature 
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T, quantifies the size of the anisotropy energy: Smaller values of T, correspond 

to larger anisotropy energy density at fixed temperature. We then write the 

shear-energy density in terms of the radiation-energy density, 

(17) 

where g,” is the value of g* at Te. 

In order to avoid interfering with the successful predictions of big bang nucle- 

osynt.hesis, we must be sure that the shear-energy density is sufficiently small at 

the time of primordial nucleosynthesis. The shear contribution to the energy den- 
11 sity would speed up the expansion rate thereby increasing the 4He production, 

-4ssuming that the only contribution to the energy density comes from radiation, 

concordance of the outcome of nucleosynthesis with the observed abundance of 

4He requ!,.es that g,(T - MeV) < 12.5. l2 To assess the effect of the shear-energy 

density, we write the total energy density as 

2 eff P=$% > 

where 

the primordial nucleosynthesis constraint is then gzff 5 12.5. (In terms of the 

number of light neutrino species, this is equivalent to N, 5 4. Recent SLC 

and LEP results have confumed this constraint, determining that the number 

of neutrino species lighter than about 40 GeV is 3.2 & 0.2.13 ) If the T neutrino 

is light (m+ sfew MeV), we know that gt is at least 10.75. Requiring that 
gzff 5 12.5 then leads to the constraint: T, 2 2.5 MeV. 

At this point, we can see how shear can increase the relic abundance of a parti- 

cle species. In Fig. 1 we plot the expansion rate H in a shear-dominated Universe 

as a function of temperature T. At low temperatures (late times), H N T2, while 

at high temperatures (early times), H - T3. The broken curve shows the ex- 

pansion rate Hstd with no shear. The equilibrium number density ~EQ of X is 
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proportional to T3 at high temperatures (T > m) and falls exponentially at low 

temperatures (T CC m). For the case that the thermally and spin-averaged cross 

section times relative velocity, (uv), for Xf? annihilation is constant, the annihi- 

lation rate, MANN = ~EQ(OU) K ~EQ, is also shown in Fig. 1. Roughly speaking, 

at the freeze-out temperature Tf, defined by I’ANN = H, annihilations freeze out, 

and the number of X’s per comoving volume “freezes in,” at approximately its 

value at T’. If Tf > T,, the expansion rate in the shear-dominated Universe 

is much~ greater than that in the standard radiation-dominated model, and the 

annihilations freeze out earlier when the abundance is greater. Since MANN de- 

creases exponentially around freeze out, the freeze-out temperature for the two 

cases (shear and standard) is nearly the same. Moreover, because TZEQ cc MANN, 

the relic abundance in a shear-dominated model (Z’f > T,) is enhanced roughly 

by a factor H(T,)/H,td(Tf) +., Tf/Te. 

To obtain more quantitative results for the relic abundance, we must solve 

the Boltzmann equation using the expression for H which includes the effects of 

anisotropic shear. In the Appendix we show that the Boltzmann equation used 

in the standard cosmological model, Eq. (2), is also valid in the Bianchi I model 

as well. For an anisotropic-universe model the expansion rate is conveniently 

written as H = H,td(z’ + z~)‘/~/z where H st,j is the standard model expansion 

rate and 

m S* 
0 

112 
x==T, z . 

Doing so, the Boltsmann equation, cf. Eq. (4), becomes 

dY 
z=- .“+l(,;+ x2)1,2(y2 - YZQ), 

The differential equation for A then becomes 

A’ = -YiQ - x 
xn+~(xz + +,2 A c2’EQ + A) 

As before, at early times, 

(21) 

(22) 

AN- 
xn+yx2 + xy/2Y;Q 

x(=EQ + A) ’ (23) 
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and at late times 

A’ = - x 
x”+1(x2 + “;)l,zA2. 

For a model with no shear (xe = 0) we recover the results of the previous 

Section. For a model universe where shear is important at freeze out (ze > rf), 

an exact closed form. solution for Eq. (24) for arbitrary n is not simple to write 

down. However, if xe >> of, a good approximation for Y, may he obtained by 

integrating in the interval rf 5 I 5 5, assuming H = H&x and in the interval 

I, 5 z 5 co assuming H = H&. Doing so we obtain 

(25) 

for n # 0, and 

(26) 

for R = 0. Assuming that freeze out occurs while the Universe is shear dominated 

(of < z,), the equation for x/ is given by 

xf N In [(2 + c)acXr,‘] - 
( > 

n - i In {In [(Z + c)acXr~‘] } (27) 

We see that CC~ decreases roughly by only an additive factor of ln(r,/sf) justifying 

our previous assertion that the freeze-out temperature is nearly the same in a 

shear-dominated or radiation-dominated model. 

Defining an enhancement factor 

tr St l’%, 
0 g: e 

we see that if the particle-antiparticle annihilation is primarily s-wave, the relic 

abundance in a shear-dominated Universe is increased roughly by a factor t/ ln [ 

over that in the standard case. If the annihilation is primarily pwave, which is 

I4 often the case for Majorana particles, the enhancement is roughly 0.5 <. This 

result is particularly interesting for Majorana particles (e.g., Majorana neutrinos, 

photinos, higgsinos, etc.) since an enhancement in the relic abundance due to a 

particle-antiparticle asymmetry is not possible for self-conjugate particles. 
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As an example of current interest, we may apply our results to a Majorana 

neutrino of mass 60 GeV. Since such a neutrino is heavier than half the mass of 

the Z”, the decay 2’ + vv is kinematically forbidden. Thus, such a fourth gen- 

eration neutrino is not exluded by the recent SLC/LEP results. l3 Furthermore, 

since it has only “spin-dependent” couplings to nuclei, its elastic scattering cross 

section is too small for it to he ruled out by the results of germanium ionization 

l5 experiments. Even so, it is not generally considered a candidate for the pri- 

mary component of the dark matter in the galactic halo since its abundance-as 

determined by standard calculations-is small (0, < 1) and cannot be increased 

by introducing a particle-antiparticle asymmetry!6 

In Fig. 2, we show the results of a numerical integration for Y as a function 

of I for the cases of re = 0 (standard model), I, = 1300 (shear-dominated model 

with Z’, N 120 MeV) and re = 13000 (Te N 12 MeV). For all three cases: the 

numerical results agree with the analytic results, Eqs. (25) and (27), to within 

5% [using c(c + 2) = n + 11. In the standard cosmology, the resulting value of 

R,h” is 1.1 x 10-3-too small for heavy neutrinos to be the primary component 

of the galactic halo. We find that for Z’, N 120 MeV the present mass density is 

increased to fiE,h2 2~ 0.021, a value comparable to that known to he contributed 

by the halos of spiral galaxies; and for Z’, N 12 MeV the present mass density is 

O,h" 2: 0.19 which is about right to close the Universe.~ 

From this we conclude that some stable particle species that have not been 

considered dark matter candidates due to their small relic abundances could 

indeed still be dark matter candidates. Only dark matter search experiments, 

such as germanium ionization experiments or future bolometric detectors, can 

definitely rule out a particle species as being the primary component of the 

galactic halo. Moreover, if an “unlikely” particle relic is discovered, cosmologists 

would have to significantly alter their cur&t notions of the first second of the 

Universe’s history. 

Finally, we mention a possibility suggested by Misner and others, the “decay” 
10 of anisotropy into radiation due to dissipative processes. If this occurs, then 

the anisotropy-energy density at freeze out could have been much larger than the 
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upper bound imposed from nucleosynthesis (I’, > 2.5 MeV), provided that the 

dissipation took place before the epoch of nucleosynthesis. Naively one might 

expect that the enhancement of the relic abundance could be arbitrarily large; 

however, this is not correct. The entropy produced by the dissipation of the 

anisotropy will dilute the relic abundance. Ignoring factors of order unity, if the 

anisotropy is dissipated at a temperature I’D, the ratio of entropy per comoving 

volume after dissipation to that before dissipation is (TD/T,)~/~; the relic abun- 

dance is reduced by this factor. The net enhancement over the standard result 

is about 

(29) 

Since T, < TD < Tf, this factor can be greater than one; however, since 

To > (3(MeV), the enhancement can never be as great as the maximum en- 

hancement allowed by our previous analysis where there was no dissipation and 

T, > O(MeV). 

IV. FREEZE OUT IN A MATTER-DOMINATED UNIVERSE 

Next, consider a model where the energy density of the Universe at the freeze 

out of particle species X is dominated by some other massive particle species 0 

which subsequently decays. Before the decay of 0, the Friedmann equation is 

fl2= 8a3g* - (T4 + MT3), 
90m& 

where M is a very large (M > Tf) p ammeter with dimensions of mass: Specifi- 

cally, M = 4mone/3s where mg is the mass and ng is the number density of 0 

particles. Once again, since freeze out occurs roughly when rANN = H and the 

number density is proportional to r.&NN, the relic abundance is apparently en- 

hanced by roughly (M/T,) 112 To he more precise, since A4 >> Tf the expansion 

rate in this model is H = Hstd(kfz/m)‘/2 where &d is the expansion rate in 

the standard cosmology; therefore, the Boltzmann equation for this case is given 
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by Eq. (4) with the substitutions X + X(n~/tif)‘/~ and n + n + l/2. Making 

these substitutions we can “read off” the solution from Eq. (11); the result is 

ym = (n + 3:2)Mz;+3/z 
X772 

+ qr;+“?), 

which agrees with our rough guess of the enhancement factor. 

However, this is not the whole story. The subsequent decays of 0 particles 

occur out of equilibrium and produce a large amount of entropy thereby lessening 

the previous enhancement. In fact the net result is a reduction in the relic abun- 

dance relative to the standard case. To see this, suppose that the temperature 

at which the 0 particles decay is TD (which of course is less than Z’f), then the 

ratio of entropy per comoving volume after decay to that before decay is roughly 

(?~f/Z’o)~/~ (see Ref. (3)); therefore, the final relic abundance is roughly a factor 

T$ 114 
H MT; (32) 

times that in the standard case, given by Eq. (11). Since TD < T,s < M, no 

enhancement in the relic abundance is possible; rather, the relic abundance is 

reduced. We could attempt to circumvent the entropy-production problem by 

supposing that O-particles decay into some non-interacting, inert species that 

does not contribute to the “visible” entropy density. However, in any interesting 

case, the additional relativistic degrees of freedom would exceed those allowed by 

primordial nucleosynthesis. 

V. BRANS-DICKE-JORDAN COSMOLOGY 

There has been renewed~interest interest in alternative theories of gravity, 

particularly those in which the gravitational “constant” varies as it is does in the 

Bran+Dicke-Jordan theory. Much of this interest owes to the advent of extended 

in&tion,‘7 a variant of old inflation in which the “graceful exit” problem is 

solved. Although it now appears that extended inflation in the Brans-Dicke- 

Jordan” theory is. not viable, as the isotropy of the microwave background 
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requires the Bmns-Dicke parameter w to be leas than about 30,” while solar- 

system experiments require that w 2 500,20 variants of the Brans-Dicke-Jordan 

theory may still lead to successful inflationary scenarios? In this section we will 

show that a cosmological model based on the Brans-Dicke-Jordan theory with 

w 2 500 allows for significant enhancement in the abundance of a thermal relic. 

Since many of the scalar-tensor theories currently under consideration resemble 

Brans-Dicke-Jordan theory (with a variable w), we expect that our results may 

generalize to these theories as well. 

The Brans-Dicke-Jordan theory of gravitation” is the scalar-tensor theory 

that can be derived from the action 

s = & pd=? [-m72+Py@ + 16&,,.,] , (33) 

where ‘R is the curvature scalar, and the real scalar field @ has dimensions of 

mass squared and sets the value of the gravitational constant: G = @-I; for 

this reason, @ must necessarily be greater than zero? Since @ is a dynamical 

field, one expects the’ gravitational constant to evolve with time. The quantity 

i*’ is the dimensionless Brans-Dicke parameter; in the limit that w -+ co, the 

scalar-tensor theory reduces to general relativity. While the scalar-tensor theory 

becomes much less attractive for w > 1, it still provides a simple example of the 

kind of different gravitation theory that might arise as the low-energy limit of 

some superstring models.23 

Specializing to the Robertson-Walker line element and for simplicity to a 

spatially-flat model, the equations of motion for the scale factor R(t) and for @ 

are: 

(35) 

(36) 
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(37) 

where as usual p is the energy density (of all the fields other than @) and p the 

isotropic pressure. In going from Eq. (36) to Eq. (37), we have considered only 

the positive root, as we are interested in ezpanding Universe models. 

Note that in Brans-Dicke-Jordan cosmology there are two additional bound- 

ary conditions that must be specified: the values of & and Q at some epoch. 

Since the theory must closely resemble general relativity today, the present value 

of @ must be equal to G-’ (for large w; see Weinberg, Ref. 1s): @c = G-r. 

That effectively specifies one of the boundary conditions. The other, involving 

the value of & at some epoch,-still remains to be specified. 

The Brans-Dicke-Jordan analogue of the Friedmann equation, cf. Eq. (37), 

differs from the usual one in two regards: First, the gravitational constant is 

given by a-‘; second, there is an additional contribution to the energy density 

that involves the kinetic energy of the @ field. It will be useful to consider the 

the ratio of the @-kinetic term to the usual energy density term: 

2w+3 6 
2 

T=- 5% ()I 
Snp 
-= 

(2w + 3)&Z 

3 3@ 327dp ; (38) 

as we shall see the ratio r decreases with time: T 0: Rm2 (when p is radiation 

dominated); and T ,K const/(lnt)2 (when p is matter dominated). Having defined 

T we can rewrite Eq. (37) in a very suggestive form: 

(1 +T)1/2 F (& ) 1 ‘I2 , 

where the upper sign applies for 4 > 0 and lower sign for 6 < 0. In Eq. (39) 

the two modifications to the usual Friedmann equation are manifest: For r # 0 

the presence of the @ field speeds up the expansion rate; and if @ # G-’ the 

expansion rate is also changed. 
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A. Energy density dominated by relativistic particles 

To begin, let us consider the case where the energy density of the Universe 

is dominated by relativistic particles, which is what one expects at very early 

times. In this case, p = p/3, so that 

i(b)= 0 +. &R3 = B; 

;(pR”) = -;$R3 j pR4 = A; 

where .4. and B are numerical constants. (We will neglect the slight variation of 

A that occurs because g* evolves.) In terms of A and B, T is given by 

f = (2w + 3)B2 
32aA+l? 

We see that the & boundary condition can be set by specifying the value of B, 

or equivalently the value of T, at some epoch. During the radiation-dominated 

epoch the value of @ does not change very much, so that T c( R-‘; stated another 

way, the additional energy density associated with the, @ field red shifts as RT6. 

It is simple to integrate the equations ofmotion, Eqs. (35) and (37), to obtain 

@ as a function of R:24 

where the upper sign applies if B > 0 and the lower sign if B < 0, and the 

constant of integration C manifests the freedom one has to specify the value of 

+ at some epoch. At early times, corresponding to small R and large T, 

@ + c (,@iFx. 

while at late times, corresponding to large R and small T, 

a + C(1 - 2Jq*-. 

Since w >> 1, at early times when v >> 1, the value of @ &wly increases for B > 0 

(decreases for B < 0); once T N 1, the value of @ asymptotes to the value Q = C 
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(regardless of the sign of B). When T < l-dynamics co&oiled by the energy 

density in radiation-@ N C, and r cc R-‘. And of course, the scale factor of 

the Universe grows as t ‘1’ In this regime the expansion of the Universe behaves 

as is if there is an additional form of energy density that decreases as R-“-just 

like shear. 

In order that the successful predictions of primordial nucleosynthesis not be 

upset, r must be less than about 0.2 when t - 1 set and T - 1 LM~V;‘~ this 

constrains the initial value of @. (Moreover, we must also insure that the value 

of @ does not differ from its present value by more tha,n about 20%; as we shall 

see below, this only requires that w 2 50.) The constraint is 

62 
-7 -3” 5 0.2 ( 12 2w > %w - 

(42) 

B. &-dominated expansion dynamics 

Since T evolves as Re2, at early times the dynamics of the expansion will 

necessarily be dominated by the @ field. For r >> 1, the equation for the expansion 

rate of the Universe becomes, 

Hy=f[(%#2f +;, 

where /3 E [,,/m 7 1]/2 > 0, and the upper sign applies if & > 0, 

while the lower sign applies if 4 < 0. Assuming that the energy density of the 

Universe is still dominated by relativistic particles, this equation is supplemented 

by & = B/R3. 

These equations are straightforward to solve: 

R’X +*fl R m @iB*l) @ K pl/(JP*l). 

c( R-67210 T m R-21’/8, 

expected to be large (greater than about IO), it follows that 

R-6, T 0: R-2, and Q increases slowly with time for & > 0 
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(decreases for CJ < 0). That is, during the @-dominated phase the Universe 
behaves like a FRW model whose expansion dynamics are controlled by a form 

of energy density that decreases as R-‘-just as in a shear-dominated model. 

C. Energy density dominated by nonrelativistic matter 

At an age of about ~EQ N 4 x 10” set and temperature of about TEQ N 10 
eV, the Universe becomes matter dominated. Based upon the nucleosynthesis 

bound, we can infer that ~EQ N 10-l”r~~~ 5 10-l’ and 

@~Q=+f2(&)“~‘50] =k’ ‘@E;-c’+l 

To a very good approximation, the Universe will behave as an ordinary matter- 

dominated FRW model and R/REQ = (t/t~~) 2/3 During the matter-dominated 
epoch pR3 = const, and it is convenient to express the value of that constant as 

p,g~R$~. Thus, the evolution of @ is given by 

-$&R3) = APES&Q: 

4@EQtEQ 1 1 4 @EQ 1 - 
3~2~ + 3) p 

’ --. 
32w + 3 t’ 

a(t) = @EQ + 
@EQ 

3(2w + 3) 
ln(t/tEQ) + &EQtEQ - 3(;I$ (1 - 9) . (46) 

From Eq. (46) we can find the value of Q at the present epoch (t = to cz 107tEQ): 

@o = @EQ + 3(2W4+ 3) bdtOltEQ) - 11 + &EQtEQ; 

from our constraint to &EQ it is simple to show that the term involving &EQ is 

negliglible: &EQtEQ 5 10-4@~~/2(2w + 3)‘/‘. In order that @s not differ from 

+EQ by more than about 20%, w must be greater than about 50, which is not as 

stringent a bound as that provided by the solar system experiments. Finally, it is 

simple to see from Eq. (45) that in the matter-dominated epoch r cc const/(ln t)2, 

while + grows logarithmically with time. 
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To summarize, primordial nucleosynthesis constrains r to be less than about 

0.2 at the epoch of nucleosynthesis and w to be greater than about 50. The 

constraint to P provides information about the the initial value of a. At very 

early times the dynamics of the Universe are necessarily controlled by @ since 

T cc R-*. The transition to &dominated expansion dynamics will occur at 

a temperature of about Ta N r,zi MeV, which could be as low as 3 MeV. 

During the phase when 6 controls the dynamics of the expansion, the Universe 

behaves like an ordinary FRW model whose energy density is dominated by a 

form of energy that decreases as Rm6: R o( t’i3. This has implications for the 

relic abundance of a thermal relic that freezes out at a temperature greater than 

about 3 MeV, which will address below, as well as for coherent axion production 

and for baryogenesis, which we will address 25 elsewhere. 

The analysis of the “freeze in” of the relic abundance of a stable particle 

species that freezes out at a temperature Tf > T+ is identical to that in the 

previously discussed shear-dominated model: That is, the relic abundance is 

increased, relative to the standard case, by a factor of [/In< for s-wave, or 0.5( 

for p-wave, where 

E = (~*ls~Y2~; 
where y$ is the value of CJ+ when T = 1. We should point out that for the 

simplest Brans-Dicke-Jordan extended-inflationary model, the Universe enters 

the radiation-dominated epoch directly at the end of inflation bypassing a &- 

dominated epoch so no enhancement in the abundance of a thermal relic can 

occur. 24 However, the details of extended itiation are far from being com- 

pletely understood-including whether or not inflation took place-and so a 

&-dominated epoch is an interesting cosmological possibility. 

As is clear from this Section and the previous two, what is required to enhance 

the relic abundance of a particle species is that the Universe at early times be 

dominated by a form of energy density that decreases faster than Re4. In this 

case, this component of the energy density can dominate the energy density 

at freeze out and then conveniently disappear before primordial nucleosynthesis 

without leaving a trace. Shear in a Bianchi I model and the kinetic energy of 
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the Bran+Dicle field provide two examples where the additional energy density 

is proportional to Rm6. 

There are more. The energy density of any fluid for which the pressure 

exceeds the energy density divided by 3 will decrease faster than Rm4. The 

extreme case is p = p, which used to be discussed as an equation of state for 

the Universe at very early times.26 A homogeneous scalar field with Lagrangian 

density 

fz = (%4)2/2 - PI4I”, 

behaves like a perfect fluid with equation of state p = (n - 2)p/(n + 2) as it 

oscillates about the minimum of its potential (141 = 0). In so doing the associated 

energy density p o( R-6”/(n+2).27 For n > 4, the energy density of such a field 

decreases faster than Re4. For p = 0 or n + co, 4 is a massless, free scalar field 

and p cc Re6. (An interesting example of a massless scalar field is a Goldstone 

mode. Consider a complex scalar field 4 = $exp(i8) with a “Mexican-hat” 

potential, where $ and Q are real scalar fields. Suppose that the magnitude of 3 

is fIxed by spontaneous symmetry breaking; the phase B is a massless Goldstone 

mode, which can spin around the brim of the hat. In fact, this is precisely what 

occurs in a recently suggested scenario for baryogenesis? ) 

Along similar lines as the Brans-Dicke-Jordan theory is the possibility that 

the gravitational constant varies because it is related to the size of some extra, 

compactified dimensions. In many Kaluza-Klein and superstring theories the 

gravitational constant G varies as G = G to~ay(L/Lt,+)D where L is the scale 

factor of D compactified dimensions?’ If one assumes that all 3 + D spatial 

dimensions were of comparable magnitude at early times, it suggests that early on 

the gravitational constant was larger than it is today. The strongest constraint to 
30 the variation of G is that imposed by primordial nucleosynthesis, which implies 

that by the epoch of nucleosynthesis the value of G differed from that today by 

less than about 20%. However, there are no stringent constraints to the value of 

G at earlier times. If it were very different than its present value--and larger- 

then the expansion could have been faster than in the standard cosmology. Since 

Ym cc rn;; K G’12, cj. Eqs. (7) and (ll), we would expect the relic abundance 
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to be increased. 

VI. CONCLUDING REMARKS 

While much of the activity in cosmology these days involves the study of 

the earliest moments of the Universe, we have precious few probes of those early 

times. A class of potential probes are thermal particle relics-stable particle 

species that were once in thermal equilibrium. Already such relics have received 

a great deal of attention, particularly as candidates for the dark matter. Ther- 

mal relic dark matter candidates include heavy neutrinos, neutralinos, and light 

neutrinos to mention three of the most interesting possibilities. It goes with- 

out saying that the discovery of such a relic would be of enormous importance 

to cosmology; in addition, the discovery of any of the aforementioned particle 

species would be of equal importance to particle physics, providing evidence for 

new physics beyond the standard model of particle physics. 

The calculation of the relic abundance of a particle species has become a very 

routine task for the particle cosmologist. In this paper we have addressed the 

crucial and untested assumption in the calculation: the temperature dependence 

of the expansion rate of the Universe. In nonstandard cosmological models where 

the energy density of the early Universe is dominated by nonrelativistic matter, 

anisotropy, or the kinetic energy of a scalar field, the relic abundance can be 

significantly different. In the case of the energy density being dominated by non- 

relativistic matter the relic abundance is ultimately smaller than in the standard 

case, due to the entropy produced by the eventual decays of the nonrelativistic 

particles. In the case of a Universe that is shear-dominated, or @-dominated, 

early on, the relic abundance can be greatly enhanced owing to the fact that 

the expansion rate for a given temperature is larger, which leads to a freeze out 

at a higher temperature and a larger abundance. We remind the reader that in 

spite of the fact that the standard, radiation-dominated FRW model is very well 

motivated, there is no direct evidence that excludes the possibilities that we have 

discussed here. (We do mention that the levels of shear that are interesting for 
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31 our purposes are definitely incompatiable with the inflationary Universe. ) 

The fact that the relic abundance of a particle species can be greater than 

the canonical abundance is of no small interest to those involved in dark mat- 

ter searches. It is well known that the results of the standard relic abun- 

dance calculation can be decreased by phenomena-such as inflation, an elec- 

troweak or quark/hadron phase transition, or out-of-equilibrium decay of a mas- 

sive particle-that produce a significant amount of entropy after freeze out. If 

the canonical calculation indicates that the relic abundance is too small for the 

species to be the primary component of the galactic halo, any of these entropy- 

producing processes only make the conclusion that much stronger. However, if 

freeze out occurs in a shear-dominated or &-dominated epoch, the relic abun- 

dance is enhanced. Thus, some particle species that are not interesting dark 

matter candidates according to the standard calculations may indeed be inter- 

esting dark matter candidates. Perhaps one should take the empirical view that 

a particle dark-matter candidate should only be ruled out by null results in dark- 

matter searches or accelerator searches. Our work also implies that the rates for 

indirect signatures, such as high-energy neutrinos from particle dark matter anni- 

hilations in the Sun or Earth, or positron-line or y-ray line radiation from particle 

dark matter annihilation in the halo, could be significanty larger than expected. 

Finally, the discovery of one of these Qnlikely” particle relics in the galactic halo 

would force us to reconsider our current view of a radiation-dominated Universe 

at times earlier than about 1 set, 
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APPENDIX 

Here we show that the Boltzmann equation, cj. Eq. (2), used to describe the 

evolution of the number density of a species in the FRW model is also valid for 

the Bisnchi I model considered in this paper. To do so we follow the discussion 

in Ref. (3). 

The evolution of a particle’s phase-space distribution f($‘,zfi) is governed 

by the Boltzmann equation, which can be written as 

Qfl = WI? (45) 

where C is the collision operator and t is the Liouville operator and is given by 

a a 
i = pa= - r;yppp~--, 

aPa 

where I?& are the usual Christoffel symbols. For the Bianchi models, the phase- 

space density is spatially homogeneous so f is a function of time t = z” but not 

space, A crucial assumption is that scattering interactions are occuring rapidly 

enough so that the particle species remains in kinetic equilibrium. Provided 

that this is the case, the phase-space density f is isotropic and only depends 

on the magnitude of the momentum, or equivalently the energy E. With this 

assumption, for the Bianchi I metric, cj. Eq. (13), the Boltzmann equation 

becomes 

Qf(E,J)] = E$$ - [R&(p’)’ + R2&(P2)2 f R&P3Y] g. (50) 

Since the number density of the species is 

n(t) = & d3pf(E>t)> 
J 

the equation for the evolution of the number density is obtained by multiplying 

Eq. (45) by gd3p/(27r)E and integrating. The first term on the left-hand side 

becomes dn/dt, and the right-hand side becomes the right-hand side of Eq. (2). 
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To obtain the remaining term we note that the local three-momentum squared 

is iFi2 = g;jp’$ (i.e., the physical components of the momenta are p, = Rpl, 

etc.), so the second term on the right-hand side is 

&/ g [HIP: + Hzp; + -%p:] 2 

=$+(Hi+Hz+Hs)/- gp:G 
= -- ; &(Hl+ Hz + H3) / glp12$ 

(52) 

= (HI + Hz + H3)n = 3Hn, 

where we used the isotropy of f in the first two steps and integrated by parts in 

the third step. In doing so, we recover Eq. (2). Thus, although the form of the 

Liouville operator in the Bianchi I model differs from that in the FRW model, the 

Boltzmann equation for the evolution of the number density of a particle species 

is the same. 

The crucial assumption made above is that the particle species is in kinetic 

equilibrium. Earlier than the time of freeze out annihilations are occurring 

rapidly (I‘ANN > H), and they serve to maintain both kinetic and chemical 

equilibrium. In addition, if the species (X) annihilates into relativistic particles, 

then by crossing symmetry XX’s can elastically scatter with particles in the 

thermal bath with a similar cross section. The relativistic particles in the ther- 

mal bath are always more abundant than X’s-especially when I > 1 so that 

YEQ < l-and so these elastic scattering processes will serve to keep XX’s in 

kinetic equilibrium even after chemical equilibrium ceases to be maintained (i.e., 

after freeze out). 
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FIGURE CAPTIONS 

1. Plot of the Hubble parameter in a shear-dominated Universe (H) and in the 

standard model (HStd) as a function of temperature T. Also plotted is the 

annihilation rate PANN of a particle species of mass m. The annihilation 

rate becomes equal to the expansion rate at a temperature Tf. 

2. Plot of the abundance Y of a Majorana neutrino of mass m = 60 GeV as 

a function of z = m/T in a radiation-dominated Universe (ze = 0), and in 

shear-dominated models with ze = 1300 and 5, = 13000. 
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