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Crilical scaling laws arc studied in quenched quantum 
electrodynamics wi,h induced four fcrmion in,errc,ions ,ha, drive 
,he ,hcory 10 crilicaliry. The crilical exponents are crlculr,ed in ,he 
quenched. planar model and the physical piclurc extracted is 
consistent with rccen, rouhs from ln,,icc simulations. Nc*r 
cri,icali,y. P composite scalar s,a,e plays an essemial role in the 
cffeclivc dynamics. 

Quantum clcctrodynamics has offen been used as a convenien, 

laboratory for the s,udy of various properlies of quantum field ,hcary.. I, 

serves as a model for more complex gauge rheorics with slowly running 

coupling cons,ams. Recently ,hcrc has been considerable inleresl in ,he 

nonpcr,urbr,ive phase s,ruc,ure of gauge rheories and the dynamical 

na,ure of spomaneous symmetry breaking which may have implicalions 

from models of elcc,rowcak symmetry breaking IO new s,a,es of matter in 

quamum electrodynamics. Anomalous scaling behavior provides a direct 

indicalion of the nontrivial nature of the continuum quan,um field theory. 

In describing the crilical behavior arrociarcd wi,h a spontaneous 

symmetry breaking. it is useful and conven,ionial ,o in,roducc various 

critical crponcn,s” which charac,erize ,hc ,ransi,ion bewcen differen, 

phases possessing distinc, symmetry properties. One such exponent 

relates ,he symmetry breaking order parameter 10 an cilcrnally 

con,rollcd explicit symmcoy breaking variable which can be coupled ,o i, 

in ,hc underlying Ihcary. For example. in ,he case of dynamical chiral 

rymmc,ry breaking. a useful order parameter is ,hc vacuum condensate. 

<T 4’). while a soft explici, chiral symme,ry breaking is provided by ,he 

fecrmion mass term. po3*. The critical crponen,. Scr is ,hen inlroduced 

via rbc critical scaling law. 

- 
<+ U>,,~ill,,I = ld”6d (I) 

where ,he p. dependence is computed a, the crilical pain,. 

Since dynamical symmclry breaking is an inhercnlly non-pcrturbative 
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phenomenon. the techniques available for its study arc very limited. 0°C 

such approach which offers a great deal of promise involves lauicc 

computer simulalions’Z’. Although present technology allows for only a 

limited number of results lo be reliably extracted. one such quantity is the 

critical exponent. 6cr. This follows since <F Y) can be measured as a 

function of the gauge coupling constant in both the absence and presence 

of the explicit symmc#ry breaking panmcsr. {I,, When p. is SCI to zero. 

a nontrivial value for <y ‘4) is found for the gauge couplings in a range 

larger than a critical coupling. At the critical coupling. the order 

parallwer. <-v *>, is expected to vanish without symmetry breaking. 

When p. is turned on. <TU> will be nontrivial at the critical coupling and 

its value there allows for the crbaction of the critical exponent. gcr 

This critical cx.poncnl can be analytically calculated in various field 

theoretic models. In the case of QCO. the critical coupling vanishes so that 

the critical theory is a free field theory for which gcr = I. On the other 

hand. for the case of mean field theory. the cridcal exponent is given by 

6cr = 3, Another model which exhibits dynamical chiral symmetry 

breaking and provides a useful laboratory far the study of certain features 

of gauge field theory is ladder QED”.“. We will consider a model which 

includes chirally invariant four fermion interactions as they can play so 

important role in the critical behavior’5’, 

The model is described by the Lagrangian. ,~. 

and corresponds to a gauged Nambo-Jona~Lasinio (NIL) model. Treating 

the gauge inaracrion in the quenched. planar (ladder) approximation. the 

model was shown to exhibit a line of critical points separating the chirally 

broken phase from the symmetric one. The phase diagram in the two 

coupling COOSLBIII space is displayed in Figure I. 

In the ladder model. the critical line may he computed’b’ and is given 

by 

G (c4c.J = Cl+- I2 (3) 

where G = Go-(A2/n2).(ac/a) with A being an ultraviolet momentum 

cutoff and the gage coupling constant is in the range. 0 c O( e ac = n/3. 

The point. rr=O. corresponds to the ordinary NIL model”‘. In the space 

above the crilical line. the chiral symmetry is dynamically broken. When 

a > at, the gauge interaction alone is sufficient to trigger the symmetry 

breaking. while for 0 < D( < cxc, an additional attractive (0 > I) four 

fermion interaction is required In the phase transition to occur. 

For this rnnge of c~ values. the fermion condensate takes the form’5’ 

<i*> = (~4n2).h~o*.(ou/a).l(l-I/w).(Ae6/Zo)0 (4) 

+ (I’l/w)-(Ae’/L”)-~I + “’ 

1 = T( 1T.D - po 1’9 + (Gd2) 4 CT*)* + (~la,tY 1 (2) 
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where w = .fi-a/eic sod Xo = L(0) is the dynamically generated fcrmion 

m*ss sc*le. A = i(m) and 6 : S(a) arc parameters of the fermion sclf- 

energy function. T(P). which is the solution of the Schwingcr-Dyson 

equations of the quenched. planar theory with fired coupling constant. r~. 

Z(p) has the asymptolic crpsnsion (p- -) 

Z(P) - /1.(CoVp).(l/2w).I (pe’/Lo)W (p&z&o I + “’ (5) 

In addition. the full fermion bare mass parameter is obtained IS 

m. = p. - Go.<F'+'> (6) 

= (&‘4)~(Zo’/A).I (l+l/w)-(Ae6/Z,)o + (l-l/o).(Ae6/&,)-0 I 

The fermion mass SCPIC. Co. is determined from the gap equation 

p0.A = (1/4)X%)2 -( [(I-G)/u +(l+G)I~(~es/~o)~ (7) 

+ I-(I-GVo ‘(l+G)lXAe6/~o)-w 1 

which follows from combining Eq.(4) and Eq.(6). Along the critical line 

defined by Eq.(3). Ihe coefficient of the first term on the right band side 

precisely vanishes so that the p. dependence of Io is given by r0 + 

Jjol/(2’w) Substituting into !he expression for the .fermion condensate, 

then gives the critics1 scaling r&don 

6 

- 
<T*>critica, - pp~)‘Q’~) (8) 

from which we exlrscl the critics1 exponent. 

6cr = (2+0)/(2-o) = (2+- )/(2-m, (9) 

For o( = 0. this gives the ordinary NIL model and lhe mesn field valoc of 

Cc, = 3. whileas _ + o(c = n/3. wefiid 6cr * 1. 

Now consider firing the four fermion coupling 10 be some particular 

value in the range 0 > I while vvying o( over the cntirc range 0 < D: < -c. 

For this value of G. cx will rpproach ils critical value. .x’ = 4.G/(l+G)z. 

where the critical line is encountered. Here the critics1 exponent will be 

given by 6cr = (3.G+l)/(G+3). On the other hand. awsy from the critical 

line. the gap cqurlion is dominrled by the first term on lhe RHS of .Eq.(7). 

The po dependence of <TU> is obtained by combining Eq.(4) and l%+(7) 

yielding <TY.> -F po fu from the critical coupling. Thus if the p. 

dcpcndencc of (7 ‘+‘> over the entire range 0 < _ c ac is paramearired as 

<Tu> - (A. po(“s’ + C ) with A and C being p. independent foncdans of 

=. then the exponent S exhibits a sharply peaked behavior attaining its 

maximom al criticality’s’. The form of l/6 as s fonction of a for fixed G 

(= 7.873) is sketched in Fig.@). The poinu represent the calculation in 

ladder QED using Eq.(4) nod Eq.(7). The crilicsl coupling is erlracled as. 

m’/mc = 0~40. and corresponds to Scr f 2.27, Although this 
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parametcrizalion produces the correct behavior both at rhc critical point 

and far from criricalily. it fails to properly describe Ihe approach to the 

critical point. Thus. while Fig.(Z) can be used 10 extract the valoes of a- 

and Cc,. the particular shape of the curve is not an appropriate fit to the 

near critical behavior. Alternatively. we can fit the p. dependence of 

<T*> 3s CT*> - A. p ol “6’ LO extract a different value for 6 With this 

definition. we plot. in Fig.(3). the exponent l/6 as a function of B = I/4na 

for two distinct values of the explicit bare mass parameter, pa, The 

arrow indicates the position of rhc critical coupling as determined from 

Fig.(Z). Points to the left of the arrow correspond to Ihe chirally broken 

phase. The vanishing of the exponent l/6 in this phase reflects the 

prestnee of a non-trivial chirrl condensate independent of po. On Ihe 

other hand, in the symmetric phase to the right of the arrow. a 

nonvanishing value for <? * > is produced only if pa is nonzero. ODCC 

again. this fitting fails to accurately model the form of (3 Y ) except II 

criticality and far from rhc critical point. A more accurate procedure to 

paramctcrizc the order parameter dependence on po near the critical 

poinl follows from the form of the effective polcnlial which we shall 

obtain subsequently. 

In the comparable Iawicc simulations’91. one typically starts with pure 

quenched QED without explicit four-fermion inlerwlions and measures 

<T 9 > as a function of the lattice value of a. .: Ilowcvcr. it should be 

expected that a certain amo~nl of four-fermion intcraclion will be induced 

8s an artifact of the lattice. The amoonl of induced coupling depends on 

the particular lallicc rcgulariration employed. Thus the pore lauicc QED 

probes a specific trajeclory in the larger spree of coopting consmnts lhrc 

included the four-fcrmion interactions. The flow in coupling consmm 

space will not be the simple 0 = 0 or C = fired behavior WC have just 

considered in Ihe ladder QED model. Nonetheless. a particular amount of 

four-fcrmion coupling will be induced as a function of alattice so that a 

typical flow might have the behavior shown in Fig.(d). Such a flow will 

take the theory lo the critical line for a certain value of a The particular 

vsluc of o( depends on the induced four-fermion couplings and therefore 

the specific lattice rcgulnrizrtion. The sharply peaked behavior of the 

exponent. 6. as a function of a is expected in the quenched. planar QED 

due to the anomaloos dimensions which control the approach to the criticsI 

line. This behavior should also be reflected in the lattice simulations if 

the critical coupling seen there is related lo the presence of the critical line 

in a larger space of couplings than explicitly probed by the simulation. 

Indeed, the law.1 simulations of Ref.(9) seem 10 indicate P value of 6,, z 

2.2 which is less than the mean field value. 6cr = 3 and would correspond 

lo calculalions in the ladder theory with a = %” = 0.4. we. 

To provide a field theoretic description of the critical behavior. one 

most include elf phy&ally relevant degrees of freedom. In quenched. 

planar QED. a composite scalar degree of freedom plays a special role in the 

critical behavior. As the foucfermion coupling gets tuned IO near the 

critical line. the se&r must be considered an independent. propagating 

degree of freedom with I mass of order the fcrmion mass scale. Z,,. The 

interactions of this scalar degree of freedom become relevant near 
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obtained directly” ” using the methods of Rcf.(lZ) where Ibe 

rcnormalizalion constant of the bare mars, ,1o. was calculated along the 

critical line. 

Using the effective polenlial, Ihe origin of the fine mning of the foor- 

fermion coupling becomes apparenr. Unless 0. is tuned 10 be near the 

critical line, the quadratically divergem mass term will dominate the 

potemial and the chiral fields will not propagate. When toned to ,he 

critical line. this mass term precisely vanishes and the minimum of Ibe 

polential gives 

r,I,,,,,ca, = [(I-w)ew-6A(I*o)/~J1/(2*O).po1/(2’0) (19) 

To secwe the crirical exponent, Gcr. WC use Eq.(6) and Eq.(l9) with Eq.(!3) 

to give the critical scaling few 

OF*> JcrIt,c., = (A~/4nwl/w) ‘JIO (20) 

- (~/4n~).(~/a).(l/o).l(l-0)~w~6/\~1’wl/~)4/~2’w~ .p,pwM2*0) 

which implies the form for 6,, given in Eq.(9). 6cr = = (2+0)/(2-w) : 

c2+- vtz-JiG& ). 

In addition to the critical erponem. S CT, the .pffecrive potential can 

also be used to erlracl other critical exponcnrr for the ladder theory. 

These erponents are defined to quantify Ihe approach to criticality of Ihe 

order parameter, the vacuum potemial. and the scalar mass. That is. they 

arc designed lo meitsere the dependence of there qoanritics on AG = 

G-(a/a<) (I*w)’ which corresponds to the dcviarion ham criticality. In 

particular. the critical erponems a. 8. 8, v are defined as 

v(<o>.o) + (AGPG PO’0 (21) 

<T+> - (AGP, po=o (22) 

J,,<T+> - (AG)-‘. IJo-0 (23) 

ma - (AG)* lb-0 (24) 

where we have used G instead of a to avoid confusion with the gauge 

coupling coonant. 

From an examination of the gap equation, or equivalently by 

minimizing the effective potential with respect to mo. it follows that near 

the critical line the dynamically generated fermion mass scale has the 

dependence 

Gl - (AG)~/*O, IJO=0 (25) 

Jpp~,(2-~) - (AG)-1. PO’0 (26) 

Combining this behavior with the known 20 dependence of m,, as given by 

Eq.(6) yields 
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“a + (AG)(Z-~/ZW, PO’0 

JP& - (a~)-!. po-0 

The exponcncr 8 snd 8’ can be obtained directly using Eq.(l3), 

(27) 

(28) 

8 = (2.0)/2w = (2 -m )/2W 

v =, 

(29) 

(30) 

Next we use Eq.(17) in the chirel limit (po=O) to find the scrling behavior 

of the full effective poantisl. V(mo.0) - (mo)4/(2-0) which in tom gives 

the exponent &. 

a = 2-(0-1)/o = 2.(S - 1,/m (31) 

Finally the erponcnt Y is secured by noting that in the scaling region 

“0 = & _ (~~)(1/20) 

so that 

Y = 1/2w = l/2- 

(32) 

(33) 

Combining the expressions for the various criticsl..exponents, il follows 

that usual rc&ng reletions. 

2.f3+a72.; 

2.8.6 v = 2 ; 

T = v.(2-q) 

4-v i 2 ,G 

14 

(34) 

are indeed satisfied. 

The effective potential compmed in Eq.(l6) can provide e way LO 

properly parameterire the *pprorch to the critical point. Vacuum 

properties are obtsined by minimizing this potcnliel which yields, 

pa/Go = I I/Go - (A2/nz)~(l+o)-* I.mo + (l/4nZ)~.i&&) (35) 

.(]/~).[(~4).(,+~/~)po.‘~(-l’w)]’4/(2-0) (“o)woM2-o) 

with mo related to <T ‘+‘> via Eq.(l3). Guided by this form obteincd in Ihe 

explicit ladder calculation. it follows Ihat an eccor~te parsmcariz~tion of 

the data for quenched QED should tske the form. 

JIo = A. tT’t’> + 6. <?+‘>s (36) 

where A. 0 and 6 arc nonunivcrs~l functions of the coupling coest~ms to 

be fitted. The normal fitting procedure would require that Eq.(36) be 

numerically inverted to express <TO> as a function of the parameters A. 

6. 6 and pa, We note that larger values of po,, and/or larger values of the 

condensate. may require higher order germs of the effective potemial’ ’ e’ 
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to get an accurate description of the dependence of (T 4’) on p. and .X 

We have seen that the four-fermion imeractions play an imporrnm 

role in determining Ibe scaling hebavior of quenched. planer QED. This is 

particularly true at weak gauge coupling where the amoont of foor- 

fermion interaction affects rhc critical valee of 01 at the phase transition, 

the critical line. and therefore the value of the critical indices. However, 

this sensilivily seems surprising as the four-fcrmion operators would 

normally be considered as irrelevant interactions since their effective 

physical dimension is grealer than four. Normally. iI should be possible 

10 absorb the effects of the all irrelevanl interactions by suitable 

modifications of the coupling strengths of the relcvanl inarsctians’ ’ ‘1. 

This “theorem” would seem to be violated by the observed critical scaling 

behavior. 

A related aspect of the scaling behavior is the fine toning which is 

neccessary to approach the critical limit. Away from the critical line. the 

four-fermi interactions arc. indeed. irrelevant as their effects are 

suppressed hy powers of Ihe cutoff. It is only when the couplings are 

tuned very close to the critical line that the continuum scaling behavior is 

seen. The physical picture in the crilical region requires that new 

composite degrees of freedom he inlroduced and it is the relev~nl 

imcractions of these composite degrees of freedom which determine the 

critical behavior. In the case of quenched QED, the fine tuning is expected 

to produce scalar and pseudoscalar degrees o!, freedom with chirrl 

invariant inlcraclions as seen by the effective polenlial of Eq.(l6). We 

now see that the “theorem” on relevam interactions is not violated but we 

must include the porribility of generating composite degrees of freedom. 

(a .TI. elc). and their relevanl interactions in addition to the dynamics 

associated with the fermions and gauge imcractions. 

The above physical picture is needed to understand the s~uctore of 

the quenched theory where the critical line is presumed lo exist with 

induced four-fcrmion interactions being prcsem even in the pure gauge 

theory. In the full unquenched QED. the running of the gauge coupling 

coostaot will modify the scaling structure and it is likely that the critical 

line will disappear being replaced by either a true ultraviolet fixed poim 

or triviality. Even in this ease. it may be necessary to introduce the 

composite degrees of freedom and their effective internclions to properly 

ondcrsland the physics near Ihe cominuum limit’ ’ q 8 ’ 5’. 

We have shown that irrelevant interactions may play a crucial role in 

understanding the dynamical shoetore of gauge theories. These results 

may have important implications for the proper imerpremtion of lattice 

field theory simulations where ineleven interactions are expected to be 

generated by the regulrrizslion procedure. In the quenched version of 

lattice QED. only lhc gauge coupling appears as ao explicit parameter. 

However, one should view the simulations as corresponding to theories 

defined in a large space of possible induced imeractions and their 

couplings. By varying the explicit gauge coupling, the simulation follows a 

specifm trajectory in the space of induced couplings. In most cases, these 

induced couplings have little effect on the infrared dynamics of the theory. 

However. in the quenched theory. we have seen that these small induced 

couplings. (Go - 0( l/AZ)). can play a crucial role in determining the 

critical couplings and the scaling behavior at the critical point. In 

interpreting lattice field theory simulations. one must #ry to determine 
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whether ,hc induced inleractions cao play a significan, role in ,hc crilical. 

or near critical behavior seen in ,hc simulations. 

We have made ao cxplici, s,ody of the scaling behavior of quenched. 

planar (ladder) QED. We have shown lha, small four-fermion intcraclions 

can strongly affec, the critical behavior of ,hc theory. We have made an 

cxplici, calcolaion of the critical indices along the critical line for 0 < c1 < 

MC. To compare with specific lauicc simulalions. one mm, be sore Lo 

identify the theories a, ,hc approprir,c value of ,hc gauge coupling 

constant defined in each ,heory. The critical indices rcflec, ,hc anomalous 

dimensions of ,he theory and the full SC, of critical indices should agree if 

a proper identification is made for the gauge coupling coos,ao,. To rid in 

,his comparison. we plot in Fig.(S) the cridcsl erponcn,, 6cr. as given in 

Eq.(9) as a fonaion of ,he gauge coupling cons,an,, ~/MC. defined in 

quenched. planar QED. 

The physics near the critical line should be understood in rcrms of the 

dynamics of composilc degrees of freedom. (a .n). which become ac,ive 

lhrough the fine-toning required to approach ,he crilical line. The 

formally irrelevant four-fermion intcrsc,ions are replaced by relevan, 

interactions of the composite degrees of freedom. These results have 

been obtained for ladder QED and arc consislen, with the lalrice 

simo,a,ions for quenched QED. The na,o,e of ,he cridcal line could change 

in ,hc unqucnchcd version of ,hc theory due ,o the additions, running of 

,he gauge coupling conslao,. Nevcrthclcss. ,hc role of the dynamics of 

the composile s,a,es and formally irrelcvmt in,erac,ions near the crilical 

point may be a more general featorc of quantum field theory and 

importan, in the imerprelalion of laltice field lheory simulations. 
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