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Abstract

Critical scaling laws are studied in quenched quantum
clectrodynamics with induced four fermion interactions that drive
the theory to criticality.  The critical exponents are calculated in the
quenched, planar model and the physical picture extracted is
consistent with recent results from lattice simulations. Near
criticality, a composite scalar state plays an essential role in the
effective dynamics.
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Quantum eclecirodynamics has often been used as a convenient
laboratory for the study of various properties of quantum ficld theory. It
serves as a model for more complex gauge theories with slowly running
coupling constants. Recently there has been considerable interest in the
nonperturbative phase structure of gauge theories and the dynamicat
nature of spontaneous symmetry breaking which may have implications
from models of electrowecak symmetry breaking to new states of matter in
quantum clectrodynamics. Anomalous scaling behavior provides a direct
indication of the nontrivial nawre of the continvum quantum field theory.

In describing the critical behavior associated with a spontaneous
syminetry breaking, it is useful and conventionial to introduce various
critical exponents''! which characterize the transition betweea different
phases possessing distinct symmetry properties. One such exponent
relates the symmetry breaking order parameter to an  externally
controlled explicit symmetry breaking variable which can be ccupled to it
in the underlying theory. For example, in the case of dynamical chiral
symmeltry breaking, a useful order parameter is the vacunm condensate,

C¥¥)>, while a soft explicit chiral symmeiry breaking is provided by the
fermion mass term, }JOW‘P. The critical exponent. §.r. is then introduced

via the critical scaling law,

P¥oeritical ® pott/ser) v

where the g dependence is computed at the critical point.

Since dynamical symmectry breaking is an inherently non-perturbative



phenomenon, the techniques available for its study are very limited.  Ome
such approach which offers a great deal of promise involves lattice
computer simulations'2! Although present technology allows for only a
limited number of results to be reliably exiracted, one such quantity is the
critical exponent. §.r. This follows since <'¥¥> can be measured as a
function of the gavge coupling comstant in both the absence and presence
of the explicit symmetry breaking parameter, i, When g is set 1o zero,
a nomtriviat vatue for (P ¥> is found for the gauge couplings in 2 range
larger than a critical coupling. At the critical coupling, the order
parameter, < ¥ ¥, s expected to vanish without symmetry breaking.
When 1o is turned on, {¥ %> will be nontrivial at the critical coupling and
its value there allows for the extraction of the critical exponent, Scr.

This critical expenent can be analytically calculated in various field
theoretic models.  In the case of QCD, the critical coupling vanishes so tha
the critical theory is a free field theory for which 6. = 1.  On the other
hand, for the case of mean field theory, the critical exponent is given by
Ser = 3. Another model which exhibits dynamical chiral symmetry
breaking and provides a useful laboratory for the study of certain features
of gauge field theory is ladder QED'3+"'.  We will consider a mode! which

includes chirally invariant four fermion interactions as they can play an

important role in the critical behavior' 5!,

The model is described by the Lagrangian,

L= W{ 1D - pg 1o + (6y/2) [ (F¥)2 + (F1yg¥)2 | )

and corresponds to a gauged Nambu-Jona-Lasinic {NJL) model. Treating
the gauge interaction in the quenched, planar (ladder) approximation, the
model was shown o exhibit a line of critical points separating the chirally
broken phase from the symmetric one. The phase diagram in the two
coupling constant space is displayed in Figure 1.

In the ladder model, the critical line may be computed'5! and is given

by
G - {ocfore) = (1+/T-odoee )2 . (3
where G = Gg-(A2/m?) (xe/o) with A being an uliraviolet momentem

cutoff and the gange coupling constant is in the range, 0 < oc < ote = /3.

The point, «=0, corresponds to the ordinary NJL model'?".  In the space
above the critical line, the chiral symmetry is dynamicaily broken. When

o« > oxc, the gauge interaction alone is sufficient to trigger the symmetry
breaking. while for § < o < o. an additional attractive (G > 1) four

fermion interaction is required for the phase transition to occur.

For this range of o« values, the fermion condensate takes the form'S!

PP = (A/412)- ALy oo (1= 1 /2}-(AeS/Eg)™ (@

+ (1+1/w)-(Aed/Tgr ) +



where © = /1-o/x¢ and £y = L(0) is the dynamically generated fermion

mass scale. A = Alx) and § = §(o) are parameters of the fermion self-
energy function, I{p}. which is the solution of thc Schwinger-Dyson
cquations of the quenched, planar theory with fixed coupling constant, o.

E(p) has the asymptotic expansion (p- o)

zlp) =+ A(Zy2/p)(1/2w) (peb/Togl - (peb/Ly) w1+ - (5)

In addition, the full fermion bare mass parameter is obtained as

Mg = Hp = Go(?‘!’) (8)

(B/4)(L¢?/A)] (1+1/w)-(AeS/T)® + (1-1/w)-(Aef/Ly)o |

The fermion mass scale, Ly, is determined from the gap equation

Ho A = (1/4}AEe? - [(1-6)/w +(1+G}-(Aeb/Eg)e )

+ 1-(1-G) o +(1+G)-{(Aeb/Tg)"w )

which follows from combining Eq.(4) and Eq.{6). Along the critical line
defined by Eq.(3), the coefficient of the first term on the right hand side

precisely vanishes so that the pg dependence of Lg is given by Ly ~

Ha L2+ 0] Substituting into the expression for thé “fermion condensate,

then gives the critical scaling relation

<¢‘+’>critical o p0(2~w)/(2*u) (8)

from which we extract the critical exponent,

Ber = £2+w)/(2-0) = (2+ /1odoc M2~ /T odexe ) (9)

For o = 0. this gives the ordinary NJL model and the mean field value of
ber = 3. whileas ox ~ o = /3, wefind Scp ~ 1.

Now consider fixing the four fermion coupling 10 be some particular
value in the range G > 1 while varying < over the entire range 0 < o < o,
For this value of G, o will approach its critical value, ™ = 4-G/(1+G)2,
where the critical line is encountered. Here the critical exponent will be
given by §cr = (3:G+1)/(G+3).  On the other hand, away from the critical
line, the gap equation is dominated by the first term on the RHS of Eq.({7).
The jg dependence of (¥ %) is obtained by combining Eq.(4) and Eq.(T)
yielding (¥¥)> = Ho far from the critical coupling. Thus if the yg

dependence of <¥ ¥> over the entire range O < o< < o is parameterized as

CF¥D> = (A ppl/8) + C ) with A and C being pg independent functions of
oc, then the exponent & exhibits a sharply peaked behavior attaining its
maximom at criticality'®'.  The form of 1/5 as a function of o for fixed G
(= 7.873) is sketched in Fig.(2). The points represent the calculation in
ladder QED wsing Eq.(4) and Eq.(7).  The critical coupling is extracted as,

x*/oce = 0.40, and corresponds 1o §op T 2.27. Although this



parameterization produces the correct behavior both at the critical point
and far from criticality, it fails 1o properly describe the approach to the

critical point.  Thus, while Fig.(2) can be used 1o extract the values of oc”

and 6cr. the pasticular shape of the curve is not an appropriate fit to the .

near critical behavior.  Alternatively, we can fit the py dependence of

CP¥> as P> = A-pytt/8) 1o extract a dilferent value for 5. With this
definition, we plot, in Fig.(3), the exponent |/§ as a function of P = 1/47x
for two distinct values of the explicit bare mass parameter, Jg. The
arrow indicates the position of the critical coupling as determined from
Fig.(2). Points to the teft of the arrow correspond to the chirally breken
phase. The vanishing of the exponent 1/8 in this phase teflects the
piesence of a non-trivial chiral condensate independent of pgy.  On the
other hand, in the symmetric phase to the right of the arrow, a
nonvanishing value for (¥ ¥)> is produced only if pg i nonzero. Once
again, this fitting fails to accurately model the form of ¢ ¥ ¥ except at
criticality and far from the critical point. A more accurate procedure to
parameterize the order parameter dependence on py near the eritical
peoint follows from the form of the effective potential which we shal?
obtain subsequently.

In the comparable lattice simulations'?', one typically starts with pure
quenched QED without explicit four-fermion interactions and measures
<¥¥> as a function of the lattice value of o. _. However, it should be
expected that a certain amount of four-fermion interaction will be induced

as an artifact of the lattice.  The amount of induced coupling depends on

the particular lattice regularization employed. Thus the pure lallice QED
probes z specific trajeclory in the larger space of coupling constants that
included the four-fermion interactions. The flow in coupling constant
space will not be the simple G = 0 or G = fixed behavior we have just

considered in the ladder QED model.  Nonctheless, a particular amount of

four-fermion coupling will be induced as a Function of oclattice 50 that a

typical flow might have the behavior shown in Fig{4). Such a flow will
take the theory to the critical line for a certzin value of .  The particular
value of = depends on the induced four-fermion couplings and therefore
the specific laitice regularization. The sharply peaked behavior of the
exponent, §, as a function of oc is expecled in the quenched, planar QED
due to the anomalouy dimensions which control the approach to the critical
line.  This behavior should also be reflected in the lattice simulations if
the critical coupling seen there is related to the presence of the critical line
in a larger space of couplings than explicitly probed by the simulation.

Indeed, the latest simulations of Ref(9) seem 1o indicate a value of 6o =
2.2 which is less than the mean field value, 8:.r = 3 and would correspond

to calculations in the ladder theory with o = =" = 0.9 .

To provide a ficld theoretic description of the critical behavior, one
must include alt physically relevant degrees of freedom. In quenched,
planar QED, a composite scalar degree of freedom plays a special role in the
critical behavior. As the four-fermion coupling gets tuned to near the
critical line, the scatar must be considered an independent, propagating
degree of freedom with a mass of order the fermion mass scale, £,. The

interactions of this scalar degree of freedom become relevant near
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obtained directly'"?' using the methods of Ref.(12) where the
tenormalization constant of the bare mass, |15, was calculated along the
critical line.

Using the effective potential, the origin of the fine tuning of the four-
fermion coupling becomes apparent. Unless G, is tuned to be near the
critical line, the quadratically divergent mass term will dominate the
potential and the chiral ficlds will not propagate. When tuned to the
critical line, this mass term precisely vanishes and the minimum of the

potential gives
Eolcritlcal = l(l—(.J)e"’"/\("“)/5\11/(2'”)-}10‘/(2""} {19)

To secure the critical exponent, 8-r, we use Eq.(6) and Eq.(19) with Eq.(13}

to give the critical scaling law

VYD |eritical = (A1) g (20)

- R/ (oxe /o) (1/ ) (1~ S AU 0) /R [4/(250) Ly (20 (24c0)

which implies the form for 8cr given in Eq.(9), Scr - = (2+0)}/(2-w) =
(2+./1-ct/oe W{(2-/T-otfoe ).

In addition to the critical exponent, 6. the cffective potential can

also be used to extract other critical exponents for the ladder theory.
These cxponents are defined to quantify the approach to criticality of the

order parameter, the vacuum potemtial, and the scalar mass.  That is, they

are designed lo measure the dependence of these quantities on AG =
G-(x/e) - (1+w)? which corresponds to the deviation from criticality. In

particular, the ctitical exponents <. 8. ¥. v are defined as

V{€o>.0) =+ (AGY™.  pg=0 (21
P> < (AG)E gm0 (22)
WolF¥> =~ (AG)¥.  pg0 (23)
mo = (AG) ., g0 (24)

where we have used o instead of o to avoid confusion with the gauge
coupling constani,

From an examination of the gap equation, or cquivalently by
minimizing the effective potential with respect to myg. it follows that near

the critical line the dynamically generated fermion mass scale has the

dependence
Lo = (AG)20, =0 (25)
el @ = (AG)E, g0 (28)

Combining this behavior with the known L, dependence of my as given by

Eq.{6) yields
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mg -+ (AGYZ-w¥W20 -0 (27)

Mo = (AG)H pgs0 (28}

The cxponents § and ¥ can be obtained directly using Eq.(13),

B = (2-w)2w = (2 - S1odoe 2./ 1-odoc {29)
¥ o= | (30}

Next we use Eq.(17) in the chiral limit (y4=0) to find the scaling behavior

of the full cffective potential, V{(mg,0) ~ {mg)9/(2-9) which in wm gives

the exponent .
o = 2-(@-1)/w = 2 /Tofoc - 1)/ /1-odoc (31)

Finally the exponent v is secured by noting that in the scaling region

Mg = L9 ~ (AG)(1/20) (32)
sa that
P 2w = 1/2./ oo (33)

Combining the expressions for the various critical exponents, it follows

that usual scaling relations,

14
2.B+H:2—&
2B5-0:=2-& (34)
¥ (2.1
49 =2 - x

are indeed satisfied.
The effective potential computed in Eq.(16) can provide a way 1o
properly paramelerize the approach to the critical point. Vacuum

propertics arc obtained by minimizing this potential which yields,

Ho/Gp = | 1/Gg - (AZ/TD)-(1+w) 2 Imy + (1/472)-A2-(exe /o) (35)

{(1/)-[(R/4)-(1+1/0) e S AC I 4/(2-0) . (1 )(2+0)/(2-0)

with mg related 1o <F¥D via Eq.(13). Guided by this form obtained in the
explicit ladder calculation, it follows that an accurate parameterization of

the data for quenched QED should take the form,

Po= A (VWD +B - (Fyds (36)

where A, B and 6 are nonuniversal functions of the coupling constants to
be fitted. The narmal fitting procedure would require that Eq.(36) be
numerically inverted to express <¥¥> as a function of the parameters A,
B. § and jtg.  We note that larger values of g, andfor larger values of the

condensate, may require higher order terms of the effective potential' ' 0!
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to get an accurate description of the dependence of (¥ ¥> on g and o

We have seen that the four-fermion interactions play an important
role in determining the scaling bebavior of guenched, planar QED.  This is
particularly trme at weak pauge coupling where the amount of four-
fermion interaction affects the critical value of o at the phase transition,
the critical line, and therefore the value of the critical indices. However,
this sensitivity seems surprising as the four-fermion operators  would
normally be considered as irrelevant interactions since their effective
physical dimension is preater than four. Normally, it should be possible
to absorb the cffects of the all irrelevant interactions by suitable
modifications of the coupling strengths of the relevant interactions!'3!.
This "theotem” would seem to be violated by the observed critical scaling
behavior.

A related aspect of the scaling behavior is the fine tuning which is
neccessary to approach the critical limit. Away from the critical line, the
four-fermi interactions are, indeed, irrelevant at  their effects are
suppressed by powers of the cutoff, It is only when the couplings are
tuned very close to the critical line that the continuum scaling behavior is
seen. The physical picture in the critical region reguires that new
composite deprees of freedom be introduced and it is the relevant
interactions of these composite degrees of freedom which determine the
critical behavior. In the case of quenched QED, the fine tuning is expected
to produce scalar and psevdoscalar degrees of.'freedom with chiral
invariant interactions as seen by the effective potential of Eq.(16). We
now see that the "theorem” on relevant interactions is not violated but we

must include the possibility of generating composite degrees of freedom,

16

(o .10, ete), and their relevant interactions in addition to the dynamics
associated with the fermions and gauge interactions.

The above physical picture is needed to understand the structure of
the quenched theory where the critical line is presumed to exist with
induced four-fermion interactions being present even in the pure gauge
theory. In the full unquenched QED, the running of the gauge coupling
constant will modify the scaling structure and it is likely that the critical
line will disappear being replaced by ecither a true ultraviolet fixed point
or triviality. Even in this case, it may be necessary to introduce the
composite degrees of freedom and their effective interactions to properly
understand the physics near the continuum limit! 19,157,

We have shown that irrelevant interactions may play a crucial role in
undersianding the dynamical structure of gauge theories. These results
may have important implications for the proper interpretation of lattice
field theory simulations where irrelevant interactions are expected to be
generated by the regularization procedure. In the gquenched version of
lattice QED, only the gauge coupling appears as an explicit parameter.
However, one should view the simulations as corresponding to theories
defined in a large space of possible induced interactions and their
couplings. By varying the explicit gauge coupling, the simulation follows a
specific trajectory in the space of induced couplings. In most cases, thess
induced couplings have little effect on the infrared dynamics of the theory.
However, in the quenched theory, we have secep that these small induced
couplings, (Go = O(1/A7?)). can play a crucial role in determining the
critical couplings and the scaling behavior at the critical point. In

interpreting lattice field theory simulations, one must (ry (o determine
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whether the induced interactions can play a significant role in the critical,
or near critical behavior seen in the simulations,

We have made an explicit study of the scaling behavior of quenched,
planar (ladder) QED. We have shown that small four-fermion interactions
can strongly affect the critical behavior of the theory.  We have made an

explicit calcutation of the critical indices along the critical line for 0 < o« <
¢c. To compare with specific lawice simulations, one must be sure to

identify the theories at the appropriale value of the gauge cbupling
constant defined in each theory. The critical indices reflect the anomalous
dimensions of the theory and the full set of critical indices should agree if
a proper identification is made for the gauge coupling constant.  To aid in

this comparison, we plot in Fig.(5) the critical exponent, Ecr. 23 given in
Eq.(9) as a function of the gauge coupling constant, o/occ, defined in

quenched, planar QED.

The physics near the critical line should be understood in terms of the
dynamics of composite degrees of freedom, {G.7), which become active
through the fine-tuning required to approach the critical line. The
formally irrelevant four-fermion inleractions are replaced by relevant
interactions of the composite degrees of freedom. These results have
been obtained for ladder QED and are consistent with the lauice
simuolations for quenched QED.  The nature of the critical line could change
in the unquenched version of the theory due to the additional running of
the gauge coupling constant. Nevertheless, the role of the dynamics of
the composite states and formally immelevant interactions near the critical

point may be a more general feature of quantum field theory and

important in the interpretation of lattice field theory simulations.
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