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ABSTRACT

Parton Distribution Functions consistent with neutrino and muon deep inelastic scattering as
well as Drell-Yan pair production results have been extracted. This analysis incorporates ex-
perimental systematic errors which are the dominant errors in recent deep inelastic scattering
experiments. The dependence of the results on factors such as kinematic cuts in the data, heavy
target corrections, and choice of initial functional form are also explored. The form adopted is
motivated by perturbative QCD and particularly useful in exploring the small-x extrapolation
of the distributions. This is crucial for studying the range of predictions for Collider, HERA,
and SSC/LEC cross sections. Representative distribution function sets are presented in a very
compact parametrized form both in the DIS and MS-bar renormalization schemes.
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1 Introduction

The QCD Parton Model provides a comprehensive framework for describing general high energy
processes in current and planned accelerators and colliders. In this framework, the cross-section
oag-.c for a hadron-hadron collision process A + B — C + X, where C represents a final state of
physical interest, is written as the convolution of a set of universal Parton Distribution Functions
fi(=, Q) and parton-initiated fundamental hard cross- sections ogp.c

The process-independent parton distributions are the key link between the physically measured
cross-sections cap_,c and the basic processes of the theory ¢4 _c. The precise determination of
these functions are of fundamental importance for theinterpretation of experimental results within
the Standard Model and in any search for “new physics”. Several well-known parametrizations (1 of
parton distributions extracted from early experimental data and using leading order QCD formalism
have long been in wide use. Amnalyses based on more current data and incorporating next-to-
leading order QCD evolution of the distribution functions have also recently become available 2, 3],
However, most of these analyses use only limited sets of data, some of which have since been
significantly revised, Most of these analyses do not include experimental systematic errors or
explore the dependence of the results on such factors as kinematic cuts in the analysed data,
heavy target corrections, choice of initial functional forms, etc. Since most modern applications
of the QCD Parton Model either require a high degree of accuracy or involve extrapolation of the
kinematic variables (z, Q) well beyond the measured range, all these factors can significantly affect
the predictions. Thus, it is crucial to incorporate all available experimental information in the
analysis and to adopt a procedure which allows one to systematically map out the range of possible
behavior of the parton distributions within and beyond the current z and @ domain.

A comprehensive review of the current status of DIS experiments and parton distribution anal-
yses including a plan to compile an extensive database and to investigate all the relevant factors
in such analyses was given at the 1988 Snowmass Workshop (4. We report here first results of
this global analysis and present representative parton distribution sets with a range of different
behaviors in a simple and easy-to-use form. Finally, we discuss some of the physical consequences
in current collider processes, as well as projections for HERA and SSC energies. Reports on the
some detailed results, including specific effects of the various factors mentioned above and updates,
will be given in subsequent publications.

2 Parametrization of the Parton Distributions

One of the goals of the present analysis is to adopt natural functional forms for the distributions
which will be appropriate for parton distributions at all Q. The evolved distributions can then
be given in a simple analytic form as is done with the initial distributions; and the parameters of
the distributions become (slowly) varying functions of Q. This will minimize the special role of
the arbitrarily chosen initial point of evolution and, more importantly, help us to visualize (hence
gain some physical insight) on how the parton distributions actually evolve. It is also important to
adopt pararnetrizations which are guaranteed to be positive definite for all values of x (as parton
distribution functions should be) and which vary smoothly over the entire range of z.

Although there is no real theory on the correct functional form of the parton distributions in
the framework of QCD, the above considerations plus the natural occurrance of logarithmic factors
in perturbative quantum field theory lead us to adopt the ansatz:

zf(2,Q) = etozd (1 —- 2)4 I z In4(1 ~ 2) (1)
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Here, for clarity, we have suppressed a parton flavor label. The A-coefficients will be referred
to as “shape parameters” in our data-analysis. In addition to the features mentioned earlier, an
important advantage of this parametrization is that it provides a simple and versatile way to study
the small-z behavior of the parton distributions. By selectively choosing A; and/or A3 as active
parameters, we can use existing data to explore the full range of power- and/or logarithmic-law
small-z extrapolations of the parton distributions from the current range. (Cf. the section on
small-z extrapolation of parton distributions later.)

Existing parton distribution analyses, as a rule, do not discuss the effects of different choices of
the functional forms of the initial distributions or the number of free parameters used tocharacterize
these distributions in the data-fitting. This can be, however, an important issue in this type of
analysis, especially when the data set or the kinematic range used is relatively limited. Physical
parameters such as Aqcp and familiar shape parameters, such as (a,8) in z*(1 ~ z)#, can depend
sensitively on the choice of the functional form if it is not general enough. Conclusions drawn on
these parameters or the assignment of errors to these parameters, without investigating this form
dependence, do not necessarily reflect real physics. Furthermore, a specific set of ad hoc functions
for the initial distributions can become inappropriate when additional data sets from different
processes are included in later analyses. In other words, for a meaningful parton distribution
analysis, the choice of functional forms and parameters must be general, flexible, and responsively
constructed.

We have attempted to address this problem systematically by allowing, in principle, the rather
general multi-parameter functional form, Eq.(1) for all relevant parton flavors, and adopting the
following strategy to adjust the scope of our fitting parameters in the global analysis: at each stage
of the parton distribution analysis, only those parameters in the proposed general parametrization
form are activated for which the data sets considered have discriminatory power. The number of
parameters are increased, when appropriate, as new data sets are added. In this way we maintain
flexibility at each stage, do not lose touch with physics, and ensure that the output from the fitting
program be reasonably unique throughout. The next section describes how this strategy is applied
to the analysis of D.L.S, data. In our work so far, we have found it sufficient to use the functional
form (1) without the factor In(1 — z)44; hence we shall omit it in subsequent discussions. It is
conceivable, however, that such a factor may be required in future analysis of a wider range of
experimental data.

3 Procedure for Analysing Deep Inelastic Scattering Data

The D.I.S. data sets included in this analysis are CDHSW [® neutrino scattering results in con-
junction with EMC 6] and BCDMS [7 muon scattering experiments.! These data sets were used
in various combinations to test both the consistency of the experimental results and the stability
of the fitting results.

The effect of experimental considerations were examined such as the sensitivity of the results
to minimum Q?— and W- cuts on the data selected, the influence of an “EMC effect” correction
when combining results from light and heavy targets, and the inclusion of systematic in additon to
statistical errors. We examined the stability of fitting results as the values of Q3- and W- cuts are
varied; and determined that, without a priori knowledge of higher twist contributions, consistent
results are obtained with Q? > 10GeV? and W > 4GeV. These default cutoff values preserve the

! These data sets are the only high statistics deep inelastic scattering ones with information on systematic errors
available to us.



bulk of the high statistics data and decrease any possible contamination of higher twist effects by
at least a factor of 4 compared to most recent global analyses.

It is, of course, imperative to include the experimental systematic errors, especially when data
from several different high statistics experiments are included. This has not been done system-
atically in previous published parton parametrization analyses. The statistically rigorous way of
combining statistical and systematic errors requires that the fit consist of a “loop” where the exper-
imental central values are shifted by their corresponding systematic errors and then these shifted
values are used in the minimum x? or maximum likelihood part of the fit which takes account of
the statistical error. Considering the large number of data points included in this analysis as well
as the various systematic effects often quoted for each point (e.g. 4 separate systematic errors from
the BCDMS data set), such aprocedure would require a prohibitively large amount of computing
power. For most of our fits, we use the conventional procedure of combining in quadrature the
statistical error with a single combined systematic error. We do investigate how the results change
if systematic errors are left out {as is done by most of the existing PDF fits) on the one hand, or if
the systematic and statistical errors are added linearly on the other. We plan to do a more thorough
error analysis on a smaller set of data in the future to assess the importance and usefulness of any
more rigorous and elaborate procedure.

The influence of theoretical factors on fitting results were also examined. Among these were the
use of 1-loop or 2-loop evolution kernels and the considerations concerning the choice of appropriate
functional forms for the parton distributions as discussed earlier. In practice, we use the following
parametrization of the initial distributions:

z2f%(2,Q) = ez (1 — 2)4 In4¥ (1 + -}:) (2)

where a is the parton-flavor label, and the In z factor of Eq.(1) has been slightly modified to make
it positive definite and to avoid a potential unwanted singular behavior near z = 1. All calculations
reported below use the full 2- loop evolved (8] parton distributions and the appropriate 1-loop Wilson
coefficients [ for the structure functions. The program used for numerical solution of the 2-loop
evolution equation has been used previously to study the small-z hehavior of parton distribution
functions and has provided critical tests of other existing evolution programs {and found to be
accurate). (101

Our procedure consists of the following steps. We begin with the CDHSW neutrino-iron scat-
tering results for zFy which depends only on the sum of all valence quark distributions. We fit data
using an initial flaver- blind valence quark distribution of the form Eq.(1) withthe shape parame-
ters and Aqgp as the fitting parameters. The normalization parameters 4o for the valence quarks
are determined by the quark-number sum rules. Excellent fits are obtained with only three shape
parameters (A4;, Az, A3). We note that zFj3 is particularly suited to determine the parameter 4, for
valence quarks (which controls the small-z behavior of the valence), and the QCD parameter Aqcp.
The resulting value of A, is fixed at this point. Since data on ©F; is not as statistically accurate as
those on F,, we improve the determination of the shape parameters A; and Aj for valence quarks
by including the CDHSW F; data with £ > 0.3 in the fit as well. The small contribution of sea-
quarks and gluons to F; in this region is verified by including a conventional sea/gluon contribution
and noting no significant change in the fit results. We again get excellent fits which yield “better”
values of A3 and Aj for the (flavor-blind) valence quarks?. We now introduce the muon scattering

"For us, beiter fits means fits with lower values of x? per degree of freedom. With the crude procedure of combining
statistical and systematic errors in quadrature or in linear form, the meaning of the absolute value of x*/dof is not
clear. However, its relative value does give a good measure of better or worse fits.
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results. We begin with the BCDMS data on hydrogen and deuterium keeping the z > 0.3 cut.
Since u-quarks and d-quarks contribute unequally to the muon structure functions, distinct shape
parameters A;"d and Ag‘d are introduced and determined at this stage. In these fits, we introduce
an additional parameter—an overall relative normalization factor between the two experimental
data sets—to be determined by the fit. We now perform the previous step again using CDHSW
data along with EMC (in place of BCDMS). Finally, both EMC and BCDMS data are combined
with the neutrino scattering data to determine whether a reasonable combined fit can be obtained.
With these better-determined A',"d and A;’d parameters, we go back to determine improved values
of theA;-parameter for the valence quarks and Aqcp. We then constrain this set of valence quark
shape parameters within limited range (3s.d.) in the next step of analysis.

The next step is to determine the sea and gluon parameters by dropping the = cut in fitting
the combined neutrino and muon data. In this exercise, we again use COHSW data with BCDMS
alone, then with EMC alone and finally with both data sets together. An important new feature
of our fits compared to those in the literature, made possible by the use of the parametric form
(1) for the parton distributions, is that we selectively use the parameters 4; and A3 for the gluon
and sea-quarks as fitting parameters, thus letting data determine these parameters (either singly
or both) which control behavior of the parton distributions when extrapolated to very small values
of z.

Even with the results of the very high statistics deep inelastic scattering experiments currently
available?, the individual parton distributions cannot be fully differentiated since the data is not
directly sensitive to the gluon and the individual sea distributions. For most of cur analysis, we
take the Aj-parameter for the gluon to be one unit less than that of the sea quarks (reflecting the
conventional wisdom that the gluons are the source of the sea quarks hence must have a harder z
distribution). We begin with SU(3) symmetric sea quark distributions and obtained excellent fits.
We also tried SU(2)-symmetric sea together with a strange quark content of the order indicated by
D.LS. dimuon data [11], and unrestricted sea and gluon distributions. Neither the added parameters
nor the added input improve the quality of the (already satisfactory) fit; they only make the fitting
parameters under-determined. Clearly, additional data from other processes are needed to effect
further flavor differentiction among the gluon and sea-quark distributions.

As the last step of this analysis of D.LS, data, we fine- tune all the active parameters—valence,
sea and gluon—in a final multi-parameter *best fit” to the full data set chosen for that fit. The
fits obtained in this way tend to have rather hard gluon distributions, characterized by AS of the
order 3.5 to 4.5. But, as is generally known, D.LS. data alone do not provide stringent constraints
on the shape of the gluon distribution.

4 Inclusion of Lepton-pair Production Data in the Analysis

The remaining freedom in the shape parameters of the sea quarks and the gluon can be further
constrained with the aid of other physical processes, notably the hadro-production of real or virtual
vector bosons - 7, W, and Z. Among these, the best candidate is lepton-pair production via the
virtual 7 (the Drell-Yan process) where the theory is relatively clean [12] and where high-statistics
experimental data exist. For this first phase of our study, we only include results of the Fermilab
E288 (131 and E605(14] experiments of scattering of proton on nuclear target for which information

3We also included the heavy target data of EMC and BCDMS. However, the larger systematic errors of these data
sets led to relatively small impact on the overall results.



on point-to-point systematic errors have been obtained from the authors.* Other experiments
with pion, kaon (as well as proton) beams do exist. However, we are interested only in parton
distributions of the nucleon for the moment; and the lack of critical comparitive studies of existing
experiments in lepton- pair production makes combining data from different sources difficult.

We fit to the complete sets of published data on do/dQ*dy from E288 and E605 using the NLO
formulas of [12]. (Note that the MRS group [?l only uses the Q2-distribution.) We find that the
inclusion of Drell-Yan data has an important impact on the global analysis. This is because the
Drell-Yan cross-section in proton-nucleon scattering is particularly sensitive to the product of the
© and ¥ distributions. Since certain linearcombinations of the u- and %-quark distributions are
relatively well-determined in D.1.S., the additional handle on the product is very useful in helping
to differentiate the sea-quark (u) from the valence quark distribution. In addition, as we are
performing a next-to-leading order analysis, the gluon distribution comes in here in a direct way.

Because the strange and charm quarks make only a very small contribution to the cross-section,
they are not well constrained. In principle, the Drell-Yan cross-section is sensitive to the normal-
ization of the u- and d- anti-quark distributions; however, the experimental uncertainty on the
relative normalization of the D-Y and D.LS. crass-sections essentially neutralizes this sensitivity.
Hence, we gain only information on the shape of these distributions.

Thus, even with the addition of this new data, we still can not avoid making the simplifying
assumption Aj(sea) = Aj(gluon) + 1. Likewise, in most of our fits we choose the same A; for
the gluon and the sea-quarks; and, unless otherwise stated, assume SU(3) flavor symmetry for
the latter. Improved quality data from direct photon production and W- and Z- production as
well as semi-inclusive deep inelastic scattering, such as charm-production, will eventually furnish
independent information on the gluon and individual sea-quark distributions, and allow the uncon-
strained determination of these distributions. For the D.L.S. and D-Y data used in our analysis,
we consistently get good overall fits with these simplifying assumptions. In comparison to fits to
D.I.S. alone, as described before, these combined fits consistently favor a softer gluon-sea-quark
distribution characterized by A (=43 — 1) of the order 6.5 - 7.5.

It may be tempting to determine the gluon distribution from existing data on direct-photon
production in hadron collisions. We decided not to include this process in cur global analysis at
this stagebecause of the following considerations: (i) current experimental results are rather limited
in accuracy, in statistics, and in z-range coverage compared to D.L.S. and D-Y counterparts; (ii)
the application of next-to-leading order QCD formalism to this process involve uncertainties which
have yet to be clearly understood. However, noting that the often quoted gluon distribution from
direct photon analyses [15] appears to be much harder than that mentioned above, we have studied
fits to the D.LS. and D-Y data with the gluon shape parameter AS decoupled from that of the
sea quarks. In particular, we studied fits with this parameter fixed at 4. The resulting fits to the
D.LS. F, data are comparable to our standard fits, but the y? for the zF3 and D-Y data sets are
increased by 30 - 40% (cf. next section). We will comment more about the issue of hard vs. soft
gluon distribution in the section on comparisons with other parton distribution sets.

5 Results of Global Fits

Because there is a wide range of possibilities on data- selection { Q3-cut, W-cut, ...), error handling,
and choice of shape parameters, it is possible to obtain a large number of good fits to the above

*We thank Chuck Brown and G.M. Lopes for discussions on this point.



mentioned experiments. In the course of this on-going study, we try to understand the systematics
of these fits, and to identify physically relevant but unresolved features of the parton distributions.
A comprehensive discussion of the details of these fits is outside the scope of this paper. We shall
concentrate on: (i) the general features, (ii) a small set of representative results, and (iii) the most
noteworthy consequences.

With our usual choice of Q%-cut (10GeV?), W-cut (4GeV), and error handling (systematic and
statistical added in quadrature), the global fits to the BCDMS H2 & D2, CDHSW, and the E288
& E605, data (referred to henceforth as the “B-fits”) involve 647 data points. The overall x?/dof
for these fits is on the order of 0.8 and evenlydistributed among the data sets® — indicating a
large degree of consistency among these different physical measurements in the QCD framework.
Correspondingly, the global fits to the EMC H2 & D2, CDHSW, and the E288 & E605 data with
the same choice of kinematic cuts and error handling, {referred to henceforth as the E-fits) involve
472 data points; the overall x? per degree of freedom is typically around 0.93. The x? of the
individual data sets varies between 0.65 - 0.85 for all sets except for the EMC D2 data set where it
is around 1.5. Representative of these B and E-fits, Fig.1 shows the BCDMS hydrogen data with
the B1-fit (solid line) as well as the El-fit (dashed line); while Fig.2 shows the EMC hydrogen data
and Fig.3 shows the CHHSW F; data with corresponding curves obtained in the same fits.

Finally, the global fits to ALL the data combined (referred to as the S-fits) involve 828 data
points. The overall x?/dof range is 0.94 - 0.97; the x%/dof for the individual data sets are not as
consistently distributed as for the B and E fits with the x?/dof for the EMC data sets about a
factor of two higher than the rest. To illustrate the quality of these fits, we show one of them (51
- solid line) in the comparison plots Fig.4 (BCDMS - D;), Fig.5 (EMC - D;), and Fig.6 (E605 -
Drell-Yan). In all these plots, the experimental error bars represent the combined statistical and
systematic errors.

Given the well-publicized “disagreement” between the EMC and BCDMS data sets, the conven-
tional wisdom is that it is not possible to obtain any meaningful combined fit to these two recent
muon experiments. In studying this issue we have found it important to consider (i) the explicit in-
clusion of experimental systematic errors, omitted in most comparisons of these experiments, which
considerably narrows the gap between the data points; (ii) anoverall relative constant normalization
between the experiments included in the fitting procedure which helps to bring the data sets in
line for smaller values of z (where experimental errors are small) without introducing too much
disagreement at larger # (where errors are big); and (iii) reasonable Q?-cuts, imposed for the QCD
fits (in order to exclude non-perturbative effects), which also tend to exclude the region of most
severe disagreement between the experiments. The relative normalization factors obtained in these
combined fits agree guite well with those put forth independently by recent critical comparisons
and reviews of these experimentslls]. The quality of this combined fit can be questioned since,
as mention previously, the x? for the EMC data set is relatively high compared to those for the
other data sets. However we refer the reader to Figs.4—6 (especially Fig.5 which yields the highest
x?/dof among all data sets) to assess the quality of the data and the quality of this fit.

8 We have added a 5 - 10% point-to-point systematic error to the published E288 and E605 data points which only
show statistical errors. This estimate is adopted after consultation with members of these experiments (cf. previous
footnote.



6 Comparisons with Existing Parton Distributions

To compare cur global fits to D.I.S. and D-Y data with previously published sets of parton distri-
bution functions, we have to bear in mind that some crucial data sets used in earlier analyses have
been significantly revised (e.g. compare the 1983 CDHS datall7 with the new CDHSW results. [5]);
and that the very high statistics BCDMS muon data are not used by most existing published parton
distribution sets. Thus, such distributions should not be expected to fit current accurate D.I.S.
data to within the experimental errors. Fig.7 illustrates this fact by comparing a representative
group of BCDMS hydrogen data with the structure function F; calculated from the following parton
distributions: our B1 set (dark-solid), EHLQ-1 (dashed), Duke-Owens-1!1] (light-solid), MRSB (2]
(dashdotted), and DFLM-NLLA 3] (dotted). Note that, of the last four sets, only MRSB used the
BCDMS data in their analysis.® This plot illustrates that for QCD parton model studies requiring
accuracy, the earlier well-known parton distribution sets are no longer sufficient. The fact that the
DFLM set was obtained without using the muon data also clearly shows in this plot.

Any direct comparison of distinct sets of parton distributions themselves must take into account
the precise definition of the distribution function adopted as, in next-to-leading order of QCD, these
quantities depend critically on the renormalization scheme used.” Of the two recent published
analyses, the DFLM sets are in the so-called DIS scheme (in which the gluon contribution to the
total inclusive F, structure function is, by definition, absorbed into the quark distributions), whereas
the MRS sets are in the (“universal”) MS scheme. The precise definitions of parton distributions
defined in these two schemes are given in Appendix I. In our analysis, we use the DIS scheme
distributions in the fitting process for the practical reason that the comparison with F, data, which
dominate the fit, is made very simple. The results of these analyses, however, can be presented in
any scheme with the proper transformation applied.

To illustrate the scheme-dependence of NLO parton distributions, we show in Fig.8a a com-
parison of the gluen distribution at @2 = 10GeV? from our B1 fit in the DIS scheme (solid line),
from the same fit in the MS scheme (dashed), and from the MRSB set (dotted) which is in the
MS scheme. This plot illustrates the importance of specifying the scheme in order to make any
meaningful discussion about “soft” or “hard” gluons. The conversion of the gluon distribution from
one scheme to another necessarily turns a “soft” gluon distribution into a harderdistribution, since
the redefinition (in particular, the convolution integral of the quark distribution with a splitting
function) involves re-interpreting the gluons radiating off the (hard) valence quarks. (Cf. Appendix
I for detailed formulas.} Thus, our relatively “soft” gluon distribution in the DIS scheme becomes
much harder after conversion into the MS scheme. The apparent discrepency between our AS(6-—-7)
parameter in the DIS scheme and the corresponding one adopted by MRS (~ 4) disappears after
conversion into the same scheme. In this connection, we note that: it is natural to expect a soft
gluon distribution in the DIS scheme, as the contribution from the gluon to F; is absorbed into that
from the quarks by fiat; whereas in the MS scheme, the gluons radiating off the valence are indeed
counted as gluon partons. In Fig.8b we show the comparison of the corresponding curves for the
u-quark distribution. It is evident that because of the re-interpretation of the partons engendered
by the transformation between the two schemes, the u-quark distribution becomes slightly softer
in the large-z region in the MS scheme. Note that the y-axis in Fig.8b is in linear scale while that
of Fig.8a is in logarithmic scale. We add that the numerical difference between the distributions

*Since the MRS distributions are given in the MS scheme, they are first converted into the DIS scheme before-
substituting into the structure function formula along with the other sets in this comparision.
TFor recent reviews of this renormaliration scheme dependence and related lssues, sce [4] & [18].



in the two renormalization schemes diminishes with increasing Q, becoming insignificant beyond
Q2 = 100GeV? or so.

Because of the significant difference between the same parton distribution presented in the two
distinct schemes in some kinematic regions, users of these distributions must pay close attention
to the scheme in which the distributions are defined and use them accordingly — the distributions
must be used in conjunction with hard matrix elements (Wilson coefficient), and DIS distributions
with DIS matrix elements, ... etc. This important point is often ignored in the literature where
comparisons are frequently made between cross-sections calculated with MRS and DFLM distribu-
tions (one in and the other in DIS scheme) convoluted with the same hard matrix elements. Fig.8
above shows explicitly how misleading such inconsistent use of parton distributions can become.
We shall present our results in both schemes,so that our distributions can be used with hard matrix
elements calculated in either scheme.

7 Behavior of Parton Distributions - Reparametrization

One of the important motivations for adopting the functional form, Eq.(1) is that it is naturally
suited to represent the parton distributions at any value of Q. Thus, although we must resort
to rather involved numerical integration of the evolution equations during the fitting process, it
is possible to re-express all the final parton distributions in this simple functional form. The
QCD-evolution of the distribution functions then manifests itself in Q-dependent A-coefficients.
Because the natual evolution variable is In(ln(Q)), we can expect rather weak Q-dependence of
these coeflicients which are then easily parametrized by simple functions.

At the current level of accuracy, we found it possible to parametrize the parton distribution
functions for all flavors and all Q@ in the same functional form (2) as used for the initial distributions.
In ¥ig.9 we show the Q-dependence of the A-coefficients for the various flavors from one of our
parton distribution sets-—the B1-fit. We see that a substantial number of these coefficients are
almost linear in the natural evolution variable, whereas the rest can easily be represented by
quadratic functions over the Q range from threshold to 10,000 GeV. This plot exhibits clearly the
steady increase in the powers of (1—z) and In(1/z) as well as the decrease of the power of z and the
normalization factor, all manifestations of the well-known softening of the parton distributions with
increasing Q. Given the well behaved functional dependence, we represent our parton distributions
in the form (2), and parametrize the A-coefficients for each parton flavor as:

A(Q) = C§ + CiT(Q) + C3T(Q)* (3)
where 1 = 0 — 3, and

_phnf
T(Q) =14 (4)

The constant coeflicients are determined by an overall fit to the particular parton distribution
function over the range {(107° < 2 < 1,3GeV < @ < 10°GeV). The resulting parametrization
proves to be accurate to within the same degree as the original fit to data, thus it is a faithful
representation of fitting results. This means each set of parton distributions is specified by a
compact table of the C- coefficients. A typical table of such coefficients - that corresponding to
the S fit - is given as Table 1a. In view of the discussion on the scheme dependence of the parton
distributions, we also present the coefficients of the parametrization for the same fit in the MS



scheme in Table 1b.2

Tables of coefficients from fits E, B1, and B2, mentioned in the text, are given in Appendix II
For the readers’ convenience we present in Appendix III two additional fits which can be usefunl
in various applications. The first one is a next-to-leading order fit of the combined data (SN-fit)
which includes a non-SU(8)-symmetric sea (as suggested by some neutrino di-muon studies). The
second one is a leading order fit of the combined data (SL-fit) which should be used in applications
where leading order hard scattering matrix elements are employed.

Although our functional form (2) differs from conventional ones only in the In(1/z) factor, this
differenceis quite significant. In particular, for the initial distributions, the values of A; and A,
should not be compared directly with the corresponding parameters in published parton distribu-
tions sets. The In(1/z) factor has a direct influence on the effective powers of 2 and (1 — 2) in the
small-z and large-z regions respectively. For the purpose of comparison, we include at the end of
each Table a list of “equivalent conventional coefficients” By — Bz which appear in the functional

form?®:

24(2,Q1) = eBo2B(1 - 2)" (1 + Byz) (5)
at Q% = 5.0GeV?.

We have also tried to use the functional form, Eq.(5), to parametrize the parton distribution
functions for all Q with @Q-dependent B-coefficients, as a possible alternative to our approach.
We found, however, it is not possible to fit the gluon and sea-quark distributions to this form
with any reasonable degree of accuracy for @ values beyond about 50 GeV. The contrast with the
parametrization (2) in this regard clearly support our original expectation that the latter is natually
suited to represent the QCD-evolved parton distributions, at least in the perturbative framework.

We summarize the distinctive advantages of the @-dependent parametrization of the parton
distribution functions, Eq.(2), compared to conventional ones based on expansions in terms of
polynomials (such as the above) or other orthogonal functions (such as Chebyshev polynomials,
used by EHLQ): (i) It is compact—the maximum size of the table of C-coefficients isa 3 x 4 x 9
matrix, for the case of 6 quark flavors with no symmetry assumed for the sea. The size is smaller
for less number of active flavors and/or with any asumptions on symmetry of thesea-quarks. (ii)
The parton distributions are always positive definite for all values of (x,Q). (iii) These functions are
smoothly varying in both z and @, thus never lead to pathological behaviors even when they are
used (intentionally or inadvertently) outside the original range—as often happens in applications of
parton distributions to very high energy processes over some part of the phase space integration. (iv)
The functional form is ideally suited to explore the small-z behavior of the parton distributions—
an area of central importance for application of the QCD parton model framework to current and
future high energy processes.

8 Range of Validity of Distributions

Strictly speaking, the distribution functions presented in this paper, as with all other published
distributions, are valid only within the range of variables (z,Q) covered by the data sets used in

3The gluon distribution transformed from the DIS to MS scheme is somewhat more difficult to parametrise in this
compact form for all x., The parametrization is obtained by performing a fit for the region z < 0.35 which contains
most of the gluons. The difference between the extrapolation beyond this tegion according to our functional form
and the perturbative formula lies well within the overall uncertainty of our knowledge of G(x).

*The advantage of this form is that the parameters B, and B; are primarily responsible for the behavior of f(z, Q)
in the regions z ~ 0 and z ~ 1 respectively.
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the global analysis. This means, for the current analysis, approximately, 0.03 < 2z < 0.75 and
5 < Q¥(GeV?) < 250.° However, the most important feature of the QCD parton model is that
it allows us to use the parton distribution functions determined at current energy scales to make
predictions on all hard processes at much higher energies and shorter distances. In particular, QCD
can reliably predict the Q-dependence of these distributions through the renormalization group (or
evolution) equation. Thus, based on perturbative QCD), these distribution functions can be trusted
to very large values of Q provided the evolution is done correctly.

Since we present our results in the form of a parametrization of the evolved distributions, one
should also ask the range of applicability and accuracy of this parametrization. We obtain our
parametrizations by fitting the numerically evolved distributions to the adopted functional form
over the range 5 < Q%(GeV?) < 10® to an accuracy comparable to that of the experimental data
used — 1-2% for the dominant distributions at small and moderate z, increasing to bigger errors
toward the large = region (where experimental errors increase) and for the numerically small sea-
quarks, especially the heavy flavor ones.

A separate question is the applicability of these distributions at smaller Q values, say 1 —
2 GeV. Here, the real issue is the applicability of the QCD parton model itself in a region where its
theoretical basis — the factorization theorem (an asymptotic theorem) — is obviously questionable.
Because this involves physics at the confinement scale, we cannot make any definitive statement
on this issue. Phenomenologically, our parametrization is smooth and well behaved above Q =
2GeV. Our recommendation is that, for these low values of Q, cross-sections calculated with our
distributions should be regarded only as eztrepolated twisi-2 QCD contributions which may or may
not require additional terms due to higher twist (or non-perturbative) contributions before they
can be directly compared to experimentally measured quantities. These additional contributions
have been recently examined phenomenoclogically 19 down to Q% = 0.5GeV? and appear to be
quite small for 0.05 < z < 0.4, becoming more important as z increases to 1.

Likewise, not much is known definitively about extrapolating parton distributions into the
small- and large-x regions. Although there is intense current interest in these issues — particularly,
the small-z behavior, [20] there is still no conclusive theory comparable to that on @-dependence.
Under this circumstance, we take a pure phenomenological approach te this issue and use the
functionalform adopted to ezplore the range of predicted small-z behavior of physically interesting
process (cf. next section). As explained before, our functional form is consistent with known
theoretical understanding (for details, see Ref. [21]) and it is more flexible than that used by other
published parton distribution sets.

9 The Small-z Extrapolation

A strong motivation for undertaking the task of this global fit project is to systematically explore
our lack of knowledge of the parton distributions at low x. Most of published parton distribution
sets use some assumed B, parameters (cf. Eq.(5)) for the gluon and sea-quark distributions at a
given Qp. The small-z behavior of the parton distributions so obtained depend sensitively to the
values of B; and to Qg so chosen, (See below.) Predictions on processes at present {SppS, Tevatron)
and future (HERA, SSC) accelerators often rely on parton distributions at small 2 values much
below those currently measured, hence they depend critically on implicit assumptions made about

12 Although our normal cut is 10 < @*(GeV?) in data- fitting, we have verified that the predictions extrapolated
to 5 < Q*(GeV?®) still fit existing data rather well.
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the functional form of these distributions at an arbitrarily chosen Qg - a fact not always noted by
all users of these distributions.

In this section we explore the small-z behavior of the parton distributions, which are consistent
with current data, in two different ways which distinguish our approach from previous efforts. First,
we leave the parameter 4; (cf. Eq.(1)) for the gluon and sea-quarks as a free parameter in the
data analysis, hence its value (at a fixed value Qq) is determined by the data rather than by an
arbitrary assumption. Since the effective power A; changes rapidly with Q in the relatively low
@ region where evolution starts, any assumption one makes is highly dependent on the choice of
Qo. Our method does not prejudice this choice. Secondly, by introducing a logarithmic factor
(Inz)4 in the functional form, Eq.(1), we allow for the possibility of logarithmicextrapolation to
the small-z region in addition to the traditional power-law extrapolation. This is logical, as the
evolution equation naturally introduces logarithmic dependences of the parton distributions even
if one starts with a pure power-law function.

For a given selection of data sets we routinely perform fits with the A4; factor alone, with the A3
factor alone, and with both as fitting parameters. Since available data in D.I.S. and D-Y processes
involve a limited range in z, we are able to get good fits in all three cases. Within the (z, Q) range
of current experiments the resulting parton distribution sets yield very similar D.1.S. structure
functions and D-Y cross-sections; but they lead to different predictions far away from this range,
especially for very small 2. In this way, we can study the range of small- # behavior of parton
distributions allowed by current data in a systematic and quantitative way.

For illustration, in ¥ig.10a we plot the structure function F and the gluon distribution at
Q% = 10GeV? in the z-range (10-5,10-1). The two representative parton distribution sets “B1”
and “B2” both fit the existing data (z > 0.03) but they have different 4; — A3 exponents which
give rise to quite different predictions in the 2 < 0.03 range. In Fig.10b the same quantities are
plotted at Q% = 10%GeV. As expected, there is a migration of the partons to small z caused by
the Q2 evolution, so that differences are reduced as Q2 increases. In order to explicitly display the
uncertainty on the small-z behavior associated with these two equally acceptable fits, we plot in
Fig.11 the ratios of corresponding F3(z, @) and G(z, Q) obtained from the two fits at three values
of Q over the z range as in the previous figure. We see that parton densities, and physical cross-
sections derived from them, at z = 1075 can differ by factors of 2 — 3 at the highest Q% and by an
order-of- magnitude at more moderate @2, Since the HERA experiments are expected to measure
the structure functions down to z = 10™*, Figs.10 & 11 illustrate how these experiments can
contribute to narrow the uncertainties as they exist now. Before these distributions are measured
at HERA, “predictions” on cross-sections for variousprocesses at SSC and LHC which depend on
parton distributions at small z have to be considered in the context of the uncertainties described
here.

We note that the two fits used above are chosen for illustrative purposes only. They do not
necessarily represent the full range of behavior allowed by current data. Detailed study focusing
on this question will be pursued and reported elsewhere. | 1
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10 W-, Z-, and Lepton-pair Production Cross-sections and Ra-
tios at Collider Energies

The real value of parton distributions lies in its universal applicability to all high energy processes
in the QCD framework. Of immediate interest is the use of parton distributions extracted from
fixed-target D.1.S. and D-Y experiments to “predict” cross-sections of physical processes at current
colliders. Since collider processes usually depend on combinations of parton distributions which are
different from the fixed-target processes, and since the z-values involved may be beyond the original
range, these new cross- sections can also be used to provide important constraints on the z- and
the flavor-dependence of the parton distributions not otherwise available. We illustrate this point
by presenting W-, Z-, and lepton-pair production cross-sections at current collider energies based
on our parton distributions. All results are obtained in next-to-leading order QCD calculation.

Figs.12a shows the differential cross-section in rapidity for W+ production, Fig.12b shows that
for Z production, Fig.12c shows the y-asymmetry in W+ production, and Fig.12d shows the W/Z
cross-section ratio in p — P collision at 1.8GeV. The curves are obtained using the following par-
ton distributions: B1-fit (solid line), B2-fit (dashed), MRSB (dot-dashed) !, and DFLM-NLLA
(dotted). We see that the spread of these curves is not large, except for the W/Z ratio at high
values of y. This is understandable since the cross-section for W- and Z- production involve parton
momentum fractions z well within the range measured by the fixed target D.I.S. and D-Y exper-
iments. This spread is, however, bigger than the anticipated experimental uncertainty on these
quantities in current and near-future runs. Thus, these precise measurements will contribute very
useful independent information on the flavor-differentiation of parton distributions described in
earlier sections.

In Fig.13 we show next-to-leading order calculation of the y-distribution of lepton-pairs (D-
Y) at the Tevatron energy for dimuon mass Q = 20GeV using the same parton distributions as
above. In addition, we have included two additional curves based on the leading order EHLQ set-2
and Duke-Owens set-1 distributions for reference, Here we see a dramatic difference, especially
between the prediction of the B2- fit distributions and the rest at high y values. This sensitivity is
due to the contribution of the small-z parton distributions to the D-Y cross-section — especially
in the forward-backward directions. This striking effect has been known for some time, based
on crude inputs [22), The current calculation, using parton distributions known to be consistent
with all current experiments, underlines the importance of the collider lepton-pair measurements
in probing parton distributions at small-z.
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Tables

Table 1a - Fit S - DIS scheme

A(2,4) = 0.212GeV Q2 = 4GeV?

[ d(val) u(val) | gluon | u{sea) d(sea) s c b t
Ao

Co 1.34 1.62 1.88| -09% -0.99 -0.99 -3.98 -6.28 - 13.08

¢y | -0.57 -0.33| -2.78 | -1.54 -1.54 -1.54 0.72 2.62 8.54

Cq| -0.08 -0.10| 0.13 0.10 .10 0.10 -0.63 -1.18 -2.70
Ay

Co 0.15 0.11] -0.33| -033 -0.33 -0.33 -0.15 -0.18 - 0.40

Ch 0.16 0.14 { 0.10 0.03 0.03 0.03 -0.06 0.02 0.31

C;| -0.02 -0.01| -004| -0.03 -0.03 -0.03 0.00 -0.03 -0.12
Ag

Co 5.30 3.68 7.52 8.53 853 853 T7.46 6.566 15.35

Cy 0.43 053 -1.13 | -1.08 -1.08 -1.08 0.96 1.40 - 11.83

Ch 0.06 0.03 | 0.04 0.39 0.39 039 -0.30 -0.38 4.16
43

Co| -1.96 -1.94| -1.34; -1.55 -1.55 -1.55 0.35 0.65 - 0.43

Ch 1.08 0.87 | 2.92 2,02 2,02 202 089 1.13 3.18

Cy| -0.03 002} -049| -0.39 -0.39 -0.39 -0.04 -0.16 - 0.82

Equivalent ”Conventional Parametrization” Coefficients at Q% = 5.0GeV?
f(=,Q2) = ePoxPi(1 — 2)P2(1 + Byz)

By
B,
B,
Bj

-0.49
0.43
5.36

10.68

-0.31
0.36
3.70

11.82

0.48
-0.15
8.02
8.20

-2,65 -2.65
-0.14 -0.14

9.58 9.58
13.60 13.59

-2.65
-0.14

9.58
13.59

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
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Table 1b - Fit § - MS scheme

A(2,4) = 0.212GeV Q3 = 4GeV?
| d(val) u(val) | gluon | u(sea) d(sea) 8 ¢ b t
Ag
Co 1.75 2.03 1.09] -0.14 -0.14 -0.15 -2.36 -2.19 - 24.77
¢y | <102 -0.78| -2.41 ¢ -1.98 -1.98 -1.98 -1.42 -3.86 - 23.00
Cy 0.05 0.03 | -0.12 0.23 0.23 0.23 0.21 1.57 34.44
A,y
Co 0.11 0.06 | -0.24 -0.49 -0.49 -0.49 -0.49 -1.07 7.52
1 0.26 0.24 0.08 0.02 0.02 0.02 044 1.56 0.48
Cy| -0,06 -0.04| 0,02 -0,02 -0.02 -0.02 -0.22 -0.73 - 6.26
Az
Co 6.20 4.43 597 | 10.24 10.24 10.23 9.00 11.30 - 99.51
¢y | -0.41 -0.18| -0.90 | -1.43 -1.44 -1.44 -0.46 -7.20 - 16.45
Cay 0.29 0.22 | -0.35 0.44 045 045 029 3.8 97.19
Az
Co| -235 -235]| -0.64| -2,57 -2,57 -2.57 -1.T4 -4.85 36.02
Ch 1.68 1.52 2,71 2.32 232 232 3.93 10.51 16.51
Cy | -0.2¢4 -0.19| -0.20| -0.47 -0.47 -0.47 -1.34 -4.36 - 40.40

Equivalent "Conventional Parametrization” Coefficients at Q3 = 5.0GeV?

f(z,Q2) = ePozP(1 — 2)%2(1 + Bse)

0.03
0.53
6.08
7.96

0.23
0.46
4.33
8.93

0.68
-0.14
5.88
0.43

-2,.26  -2.26
-0.10  -0.10
10.12 10.11
11.40 11.39

-2.26
-0.10
10.11
11.39

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

17




Figure Captions

Fig. 1 Results of B1-fit (solid) and E-fit (dashed) compared to BCDMS H2 measurement of F3(z, Q).
Fig. 2 Results of B1-fit (solid) and E-fit {dashed) compared to EMC H2 measurement of F3(z, Q).

Fig. 3 Results of B1-fit (solid) and E-fit (dashed) compared to CDHSW Iron measurement of
Fy(=, Q).

Fig. 4 Results of the S-fit compared to BCDMS D2 measurement of Fa(z, Q).
Fig. 5 Results of the 8-fit compared to EMC D2 measurement of Fy(z, Q).
Fig. 6 Results of the S-fit compared to the E605 Drell-Yan cross section measurement.

Fig. 7 Comparison of the EHLQ, Duke-Owens-2, MRS-B, DFLM, and present parametrizations
of the parton distribution functions to BCDMS H2 measurements of F; at four representative z
values.

Fig. 8 Comparison of zG(z) and zu(z) as fit in the DIS scheme and as converted to the MSbar
scheme.
Fig 9. The shape parameters A4; for the different partons as a function of T(Q).

Fig 10. Predicted values of F;(z) and 2G(z) from fits B1 and B2 at ultra low z for @2 = 10GeV?
and Q% = 10'GeV?

Fig 11. The ratio of predictions (the uncertainty) for F3(z) and zG(z) as a function of z for three
typical values of Q2.

Fig 12. The predictions for W-production, Z production, the W- production asymmetry, and the
W /Z production ratio at the Tevatron Collider using the parton distribution function of MRS-B,
DFLM, and the B1l- and B2- fits from the present analysis.

Fig. 13. Prediction for low mass (Q = 20GeV) Drell-Yan pair production at the Tevatron Collider
for parton distribution functions as in Fig. 12.
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xG(x, Q##2 = 10 GeV#%2)

U(x, Q*%2 = 10 GeV*x2)

Comparison of DIS and MSbar Scheme Predictions
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Appendix I:
Definition of Parton Distributions in the MS and DIS Schemes

We have mentioned in the text that parton distribution functions f°(z,u) are renormalization
scheme dependent beyond the leading order. In applications to various physical processes, the
scheme chosen for the parton distributions must match that for the hard cross-section in the QCD
parton model formula. 18] The same parton distribution in two different schemes differ by a well-
defined expression which is nominally of one order higher in a,(Exceptions to this rule of thumb
do exist, as will be mentioned later.) In this appendix, we define parton distributions used in the
two schemes discussed in the text.

The MS scheme is defined by an “universal” presciption to facilitate perturbative calculations
independent of any physical process. It is used by most theorists in the calculation of hard matrix
elements. The MS parton distributions are guarantteed by their definition to satisfy the momentum
sum rule. In this scheme, the NLO formula for the F, structure function!? of virtual 4 deep inelastic
scattering reads:

F}(z,Q) = f1=® |C{) + o, 5,‘3”3] + fEs @ a, CLM° + 0(a,?) (1)

where C(),i = 0,1 are the standard hard matrix elements in LO and NLO often called the Wilson
coefficients. [ 23] On the right-hand side of this equation a sum over the quark flavor index is
understood.

The “DIS” scheme [24], on the other hand, was defined specifically to make the relation between
the parton distributions and F; as simple as possible. This is obtained from the above equation
by absorbing all the NLO terms into the definition of f}¢:

F7(2,Q) = fi1s® C + 0(a.?) (2)

Thus the difference between the quark distributions in the DIS scheme and the MS scheme is:

FB15(2, Q) — Firz(2,Q) = oy (7 ® CIIMS . 1€ @ C{IMS (3)

No explicit label is given to the parton distributions on the right-hand side since these terms are
of one order higher in a,, thus either scheme will do.

Eqg. (2) does not yet define the gluon distribution in the DIS scheme. It is conventional to require
that the momentum sum rule be preserved in the DIS scheme as well. This requirement fixes the
second moment of the gluon distribution only. To complete the definition of the gluon distribution,
it is convenient to generalize the condition on the second moment to all moments.[® This is the
definition we adopt. We then obtain:

fi5(®:Q) - f51s(2,@) = au(f™ @ C{IM + 19 @ CLS (1)

where g, denotes the singlet quark distribution and, again, the scheme label is dropped on the
right- hand side.

These equations allow us to convert parton distributions from one scheme to the other, Thus,
in principle, one can perform the calculation in either scheme ~ consistently ~ and then convert the

13The precise definition of F3 has evolved with time, causing confusion sometimes. We use the definition of [23]
(cf. also [4])



results to the other scheme if necessary. We followed this procedure in the text of this paper. It is
worth pointing out, however, that caution must be exercised under certain conditions in practical
applications of this formalism, We encountered one such circumstance in Sec. 6 when we compared
the gluon distributions from different parton distribution sets and from the same set in two different
schemes. Fig. 8 showed a significant difference between the same distribution in the two different
schemes at the high end of z. Let us see how this can be understood from Eq. (4). Nominally, both
terms on the right-hand side of the equation are of one higher order in a, then the individual terms
on the lefi-hand side — only the difference between the two is expected to be small. However in
realily, one expects the (valence) quark distribution to be much harder than the gluon distribution.
Thus, at large x, the quark term on the right-hand side can become just as big or even bigger then
the softer of the two gluon distributions on the left-hand side in spite of the extra power of a,.

When this happens, the equality forces the other term on the left-hand side to be relatively hard!
This is precisely what we found in Fig.8.



Appendix II

Following are the parton distribution function sets E, B1, and B2 discussed in the main body of this
report. The parton distributions are given both in the DIS and renormalization schemes. Note that
Fit Bl and B2 are representative of the variation in low-x extrapolation allowed by the currently

available data.

As a reminder, the general expression for each parton flavor is:

2£*(2,Q) = eASz4i(1 - o) WA (14 1)

where the shape parameters are defined as:

A¥(Q) = C} + CIT(Q) + CIT(Q)"

with¢=0- 3, and

IRLY
T(Q)-lni;-%;

Table II1 - Fit E - DIS Scheme
A(2,4) = 0.155GeV Q3 = 4GeV?
| d(val) wu(val) [ gluon [ u(sea) d(sea) 8 ¢ b t
4o
Cy 1.43 1.69 2,11 | -0.84 -0.84 -0.84 -3.87 -6.09 - 12,56
C,| -065 -0.33| -3.01| -165 -1.65 -1.65 0.85 2.81 8.69
Cy | -0.08 -0.11 0.18 0.12 0.12 012 -0.73 -1.34 -293
4,
Co 0.16 011 -0.33| -0.32 -0.32 -0.32 -0.15 -0.17 - 0.38
(& 0.16 0.14( 0.10 0.02 0.02 0.02 -0.07 0.01 0.30
Cy | -002 -0.01| -0.04| -0.03 -0.03 -0.03 0.00 -0.03 -0.12
Aj
Co 6.17 3.69 7.93 3.96 896 896 T7.83 6.75 14.62
Ch 0.43 0.54 | -1.40 | -1.24 -1.24 -1.24 1.00 1.74 - 11.27
Cy 0.06 0.03 0.09 0.45 0.45 0.45 -0.36 -0.56 4.29
Ay
Co| -1.94 -1.99 -151| -L.70 -1.70 -1.70 0.21 0.54 - 0.41
Ch 1.12 090 ] 3.14 2.15 215 215 093 1.15 3.19
Cyp | -0.02 0.02| -0.65] -0.43 -0.43 -0.43 -0.03 -0.16 - 0.87

(1)

(2)

(3)



Table I12 - Fit E - M5 scheme

A(2,4) = 0.155GeV Q3 = 4GeV?

| d(val) u(val) | gluon | u(sea) d(sea) s ¢ b t
Ao

Co 1.79 2.12 1.58 | -0.10 -0.10 -0.11 -2.53 -3.91 - 6.57

¢;| -1.05 -0.85| -2.68| -2.29 -2,29 -2.29 -1.16 -0.19 1.15

Cs 0.03 0.07 | 0.01 0.35 035 035 0.12 -0.24 -0.48
Ay

Co 0.12 0.02] -0.28| -0.43 -0.43 -0.43 -0.35 -0.44 -0.90

Ch 0.24 0.32 0.05 0.09 6.09 0.09 0.26 0.38 0.95

Cy | -0.04 -0.08| 0.00| -0.06 -0.06 -0.06 -0.15 -0.17 -0.33
Az

Ca 7.03 446 | 6.84 | 10.43 10.43 1043 8.67 6.85 7.27

C,| -0.38 -0.28} -0.93 -2.14 -2.14 -2.14 -0.10 2.15 -0.28

Cy 0.27 0.29 | -0.26 0.73 0.73 073 0.27 -0.74 0.28
Aj

Co | -2.29 -2.67{ -1.08 -2.49 -2,49 -248 -1.24 -1.56 - 5.07

< 1.63 1.82 4§ 2.78 2.80 2,80 280 3.26 4.07 9.02

C,| -0.18 -0.33) -0.32| -0.67 -0.67 -0.67 -1.06 -1.24 - 2.75

Table IT3 - Fit B1 - DIS Scheme
A(2,4) = 0.194GeV Q% = 4GeV?

| d(val) u(val) | gluon [ u(sea) d(sea) 8 c b t
Ay

Co 1.30 1.59 1.48 | -1.08 -1.08 -1.08 -4.22 -6.42 - 12.92

¢y | -0.57 -0.34| -249| -1.33 -1.33 -1.33 0.88 2.67 8.33

C; | -0.09 -0.10 0.04 | -0.03 -0.03 -0.03 -0.69 -1.21 - 2.68
Ay

Co .19 014 -0,14| -0.13 -0.13 -0.13 -0.02 -0.09 -0.36

c, 0.15 0.13| -011} -0.21 -0.21 -0.21 -0.17 -0.03 0.32

Cy| -0.02 -0.01 0.03 0.06 0.06 006 0.03 -0.02 -0.13
Ay

Co 5.24 3.65 6.75 8.40 8.39 839 T7.29 647 15.74

ch 0.44 0.53| -0.64| -0.51 -0.50 -0.50 1.08 1.39 - 12.73

Ca 0.05 0.03 | -0.15 0.07 0.07 0.07 -0.39 -0.42 4,51
Az

Co} -1.81 -1.81 | -0.50: -0.88 -0.88 -0.88 0.90 1.03 -0.30

4 1.06 0.86 213 1.18 1.18 1.18 0.50 1.00 3.35

Cy | -0.02 0.02| -0.24| -0.06 -0.05 -0.05 0.08 -0.14 -0.91




Table 114 - Fit B1 - MS scheme

A(2,4) = 0.194GeV Q2 = 4GeV?

[ d(val) u(val) | gluon | u(sea) d(sea) 5 ¢ b t
Ao

Co 1.66 2.00 0.92 | -0.60 -0.60 -0.60 -2.34 -2.95 - 3.88

Cy| -0.94 -0.81| -228| -1..76 -1.76 -1.76 -1.12 -3.21 - 1.59

Ca 0.03 0.05 | -0.07 0.13 0.13 014 0.15 1.38 -0.05
Ay

Co 0.18 0.0¢ | -0.07| -0.13 -0.13 -0.13 -0.19 -0.62 -0.78

C 0.18 024 -0.16 | -0.27 -0.27 -0.27 0.16 0.99 - 0.07

Cy| -0.03 -0.05 0.06 0.09 0.09 0.09 -0.13 -0.51 0.40
Az

Co 6.04 4.40 5.79 9.31 831 931 7.94 997 3.80

Cy| -0.25 -0.20| -0.68| -0.94 -0.94 -0.94 -0.05 -6.33 2.13

Cs 0.23 0.25 | -0.23 0.21 0.21 021 027 3.71 0.96
Az

Co | -2.09 -224| -0.01; -1.18 -1.18 -1.18 -0.46 -3.00 -2.37

Ch 1.42 1.53 1.93 1.31 1.31  1.31 2,93 8.42 0.48

C;| -0.14 -0.23| -0.11| -0.10 -0.10 -0.10 -1.05 -3.61 2,30

Table II5 - Fit B2 - DIS Scheme
A(2,4) = 0.191GeV Q3 = 4GeV?

| d(val) u(val) [ gluon | u(sea) d(sea) 5 c b t
Ao

Co 1.38 1.64 1.52| -0.85 -0.85 -0.85 -3.74 -6.07 - 12.08

Ci| -0.59 -0.33| -2.71| -143 -1.43 -1.43 0.21 2.33 7.31

C; | -0.08 -0.10 0.15| -0.03 -0.03 -0,63 -0.50 -1.15 - 2.35
Ax

Co 0.18 009 | -0.72| -0.82 -0.82 -0.82 -0.58 -0.52 - 0.73

Ch 0.16 0.14 0.45 0.35 0.35 035 024 0.22 0.54

C;| -002 -0.01| -0.15| -0.09 -0.10 -0.10 -0.07 -0.07 - 0.18
Az

Co 5.40 3.74 7.75 9.19 9.19 9.19 9.63 8.33 21.14

1 0.42 054 | -1.56 | -0.92 -0.92 -0.92 -1.13 0.28 - 19.17

Cy 0.06 0.03 0.16 0.12 012 0.12 0.25 -0.28 6.64
A3

Co | -1.91 -2.02| -2.18| -2.76 -2.76 -2.76 -1.09 -0.52 - 1.92

Ch 1.11 0.88 3.76 2.56 256 2,56 210 191 4.59

C; | -0.03 0.02| -0.76 | -0.40 -0.40 -0.40 -0.33 -0.31 -1.25




Table 116 - Fit B2 - MS scheme

A(2,4) = 0.191GeV Q2 = 4GeV?

| d(val) u(val) | gluon | u(sea) d{sea) 8 ¢ b ¢
Ao

Co 177 204 074 -0.43 -0.43 -0.43 -3.07 -444 -7.03

Cy| -098 .075| -2.44| -196 -1.96 -1.96 -1.03 -0.13 1.10

Cs 0.03 0.02 0.07 0.20 0.20 020 0.04 -0.23 -0.41
Ay

Co 0.13 0.03 | -0.59 | -0.86 -0.86 -0.86 -0.66 -0.68 - 1.13

Cy 0.23 0.26 0.42 0.43 0.43 043 045 0.50 1.07

C;| -0.04 -0.05; -0.15| -0.14 -0,14 -0.14 -0.17 -0.18 - 0.35
Az

Co 6.28 4.48 6.31 | 10.16 10.16 10.16 B8.57 6.90 8.56

Cp1| -0.34 -0.15| -1.62| -1.91 -1.81 -191 -0.32 146 - 2.33

Cy 0.26 0.21 0.18 0.53 0.53 053 0.1T -0.53 0.87
Az

Co | -230 -247| -1.37| -3.14 -3.14 -3.14 -1.68 -1.82 - 547

Ch 1.60 1.52 3.56 3.14 3.14 314 3.48 4.11 9.08

Cy| -0.18 -0.19| -0.77| -0.68 -0.68 -0.68 -0.98 -1.16 - 2.66




Appendix III

Table IIT1 (DIS scheme) and III2 ( scheme) represent a next-to- leading order fit (SN-fit) of the
combined data which assumes a non- SU{3)-symmetric sea as suggested by some neutrino di-muon
studies. The ratio of 2s/{u+d) is set at 0.50 for the input distribuitions. Table ITI3 represents a
leading order fit of the combined data (SL-fit) which should be used in applications where leading

order hard scattering matrix elements are employed.

Table ITT1 - Fit SN - Non-Symmetric Sea -DIS
A(2,4) = 0.237GeV Q3 = 4GeV?
| d(val) u(val) | gluon | u(sea) d(sea) 8 c b t
Ap
Cy 1.42 1.68 0.90 | -1.48 -1.48 -2.26 -4.68 -6.83 - 14.41
Cy -0.59 -0.33{ -1.86| -0.89 -0.89 -0.90 0.92 2.68 9.65
Cz| -008 -0.10| -0.09 | -0.12 -0.13 -0.06 -0.62 -1.13 - 2.98
A
Co 0.16 0.08 | -0.17| -0.13 -0.13 -0.15 -0.06 -0.12 - 0.28
Cy 0.17 0.15| -0.10} -0.19 -0.19 -0.10 -0.12 -0.01 0.15
Ca| -0.02 -0.01 0.02 0.04 g.04 0.01 0.01 -0.03 -0.06
Ay
Co 5.40 3.75 5.27 7.83 7.83 7.47 5.55 5.24 11.48
Cy 0.41 0.53 043 | -0.06 -0.05 -0.61 1.16 1,14 - 7.50
Cy 0.06 0.03 | -0.26 0.01 0.00 ¢.28 -0.26 -0.24 2.54
As
Co| -1.99 -2.09| -0.20 -0.38 -0.38 -0.23 1.13 1.19 0.65
Cy 1.12 0.89 1.87 0.68 ¢.68 1.22 0.50 0.93 1.99
Cy -0.03 0.02} -0.14 0.05 0.05 -0.16 0.03 -0.13 -0.43
Table ITI2 - Fit SN - Non-Symmetric Sea -
A(2,4) = 0.237GeV Q32 = 4GeV?
| d(val) u(val) | gluon | u{sea) d(sea) ¢ b t
Ao
Co 1.84 2,08 0.31 -1.13 -1.13 -1.82 -3.69 -5.06 -9.92
1 -097T -0.66| -1.84| -1.28 -1.26 -1.40 -0.47 0.39 4.60
Cy 0.03 -0.02| -0.06 -0.01 -0.01 0,09 -0.10 -0.35 - 1.53
Ay
Co 0.12 0.02 | -0.10 -0.15 -0.15 -6.18 -0.15 -0.25 -0.38
1 0.22 0.19 | -0.10 -0.16 -0.16 -0.06 0.04 0.16 0.24
Ca -0.04 -0.01 0.01 0.03 0.03 -0.01 -0.05 -0.08 - 0.08
4z
Co 6.34 4,53 | 4.18 8.43 8.43 T7.94 5.72 442 -1.27
(o -0.34 -0.04 0.05| -0.39 -0.39 -0.82 0.93 2.38 9.17
Cs 0.25 0.15 ] -0.12 0.05 0.05 030 -0.11 -0.63 - 2.88
As
Co | -2.40 -2351 0.34| -0.64 -0.64 -0.56 0.26 -0.14 - 1.60
Cy 1.53 1.24 1.64 1.01 1.01 1.65 1.85 272 4.40
Cs | -0.16 -0.05| -0.16 | -0.06 -0.06 -0.31 -0.50 -0.75 -1.08




Table III3 - Fit SL - Leading Order

A(1,4) = 0.144GeV Q3 = 4GeV?

| d(val) u(val) | gluon | u(sea) d(sea) 8 ¢ b t
Ao

Co 1.38 1.67 1.52| -0.81 -0.81 -0.81 -3.62 -6.16 - 12.68

¢y -0.62 -0.33| -3.17] -1.13 -1.13 -1.13 0.03 2.37 8.36

C3| -0.10 -0.13 025] -0.26 -0.26 -0.26 -0.48 -1.24 - 2.89
Ay

Co 0.16 0.08 ( -0.25| -0.07 -0.07 -0.07 -0.06 -0.11 -40.35

C4 0.19 0.17¢{ -0,01| -0.46 -0.46 -0.46 -0.21 -0.05 0.28

Cy | -0.02 -0.01 0.00 0.16 0.16 0.16 0.05 -0.02 -0.12
Az

Co 5.40 3.76 7.01 9.19 9.19 9.19 8.3¢ 6.49 14.87

C 0.59 0.70 | -0.90 0.35 0.35 0.35 -0.60 1.28 -12.56

Ca 0.03 0.00| -0.08| -0.49 -0.49 -0.49 0.25 -0.41 4.75
As

Co | -1.97 -2.08]| -0.79 | -0.89 -0.89 -0.89 0.16 0.71 -0.17

951 1.24 0.98 2.90 0.33 033 033 1.26 1.37 3.39

Cy | -0.05 0.02 | -0.54 0.40 0.40 0.40 -0.15 -0.26 - 0.96




