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ABSTRACT 

The renormalized Chern-Simons term at finite density is shown to vanish 

when the renormalized coefficient at zero density takes values $$. We thus 

demonstrate that a system of anyons at zero temperature is a superfluid. This 

result is shown to hold to all orders in perturbation theory by generalizing a 

non-renormalization theorem of the zero density case. Superfluidity (and thus 

superconductivity for charged anyons) is lost at finite temperature. The mass of 

the resulting “pseudo-Goldstone” mode is derived. 
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It was first suggested by Laughlin[“” that anyons”’ (particles with fractional 

statistics in two spatial dimensions) may exhibit superconductivity. In particular, 

the work of Fetter, Haxma and Laughlin: which was expanded upon by Chen, 

Halperin, Wiiczek, and Wittenj’] showed that in the random phase approximation 

a free gas of anyons with statistics parameter y = n(l - k) where N is a large 

integer, has a massless pole in the current-current correlation at zero temperature 

and thus exhibits superfluidity. This then implies that a charged gas of anyons 

would be superconducting at zero temperature. The main limitation of these 

results is that it was not known to what extent the random phase approximation 

is valid and, in particular, whether these results would survive improvements in 

this approximation. It was also not known how nonzero temperature affects the 

results. 

Banks and Lykken’*’ studied a field theoretic realization of an anyonic system 

in which charged fermions in 2$1 dimensions are coupled to ordinary photons 

plus an additional “statistics” gauge field possessing a Chern-Simons (CS) term. 

They argued that superconductivity (at zero temperature) occurs if and only if 

the renormalized CS term vanishes - i.e. if the quantum corrections to the bare 

CS term precisely cancel it. 

In this letter we follow the approach of ref. [I?] and calculate the renormalized 

CS coefficient. The system we analyze is with nonzero anyon density. 

We present the results of a detailed calculation”’ showing that the renormal- 

ized Chern-Simons term at finite density vanishes if and only if the zero density 

renormalized Chern-Simons coefficient 2xb’R/e2 is a positive integer, N. This 

establishes that (even if the density is so high that the system behaves relativis- 

ticslly) this system of anyons is a superfluid at zero temperature. 

We then show that tbis result extends to all orders in perturbation theory 

and thus does not depend on the mean field approximation, nor on the large N 

limit!” We do this by showing that the nonrenormalization theorem of Coleman 

and Hill”’ can be extended to the Chern-Simons theory at finite density. We 
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also show that at any finite temperature the Chern-Simons term does not cancel. 

Superfluidity (and thus superconductivity in the charged anyon gas) is lost at 

finite temperature. We derive an expression for the msss of the resulting “pseudo- 

Goldstone” mode. 

We consider a single two-component massive fermion field coupled to a fic- 

titious (“statistics”) U(1) gauge field A,, which has a Chem-Simons term but 

no Maxwell term.* The relationship of the Chern-Simons Lagrangian to anyons 

has been studied by many author.?-” The Euclidean path integral expression 

for the 2’ = 0 partition function of the Chern-Simons theory at finite chemical 

potential g is given by: 

2 = 
J 

Z)l/P@APezp(-SE) (1) 

with 

SE = d3r J ( $(jJ -m)+ + +I”\A&A~ - &b) (2) 

We shall work throughout with a nonegative chemical potential p. We choose to 

work in Coulomb gauge (&A’ = 0). We proceed by integrating out the Ao field, 

which simply gives the Gauss law constraint S( B - 54’4). This delta function 

now allows us to do the integral over Al and A? by setting 

This leads to the following effective 4-fermi theory: 

JD+ZY$ ezp[- /d3x ($(b -m -pro)@ - $(q5-&)~(4~~,>] (4) 

We use the gamma matrices y1 = LT~, 72 = a~, and ~0 = CQ where Cri are the 

Pauli spin matrices. Notice that the effect of the chemical potential is simply to 

* ID such a pure Chcm-Simons theory, a Maxwell term is, in fact, generated at one loop. 
This implies that the results of otlz calcuktion should hold even if a bare Maxwell term is 
present. We believe that our calculation can be extended to this case. 
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replace & by & - p. We thus define 8” to be equal to 8, unless v = 0 in which 

case&=&-p. 

We begin by studying the fermion propagator S(z, y) for this theory. The bare 

fermion propagator So(r,y) is simply l/(8 - m). When including perturbative 

corrections to this propagator we notice that there are tadpole contributions to S. 

These Lue shown diagramatically in Figure 1. These tadpoles arc nonvanishing 

since < Jo >= po is nonzero when /.J is nonzero. Our first key observation is that 

we can compute the entire contribution of these tadpoles as a function of the 

mean density po. Each tadpole contributes an amount 

to the fermion propagator. This can be written as ieyiA; where 

Notice that A; is precisely the gauge potential one would obtain from a constant 

fictitious magnetic field B = ipo. The full tadpole contribution is found by 

summing the geometric series of Figure 1 which results in the expression 

sT = (S;’ - ie-y’A;)-’ = [r’(i$, - ied,) - m - p-ye]-’ (7) 

where & = 0. Thus the tadpole-corrected propagator ST is the Green’s func- 

tion for a free fermion in a constant magnetic field B = spa and with chemical 

potential j.b. 

The next step is to find the fermion propagator ST under this circumstance. 

We have done this by two methods, using the Euclidean version of Schwinger’s 

proper time method[“’ and by directly solving the Green’s function equation. In 

this letter we concentrate on the latter method. We choose an asymmetric gauge 
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in which 4 = Bz, & = 0, & = 0 which is consistent with Coulomb gauge. To 

find SF we want to invert the operator @ - m where fi, = a,, - ied#. Note that 

P--1-’ = (zJ+m)[(p-m)(jb+m)]-’ = (gJ+m)[~2 --,2 +eo3q-l (*) 

We thus fist invert the operator [fi’ - m2 + eosB] by finding its eigenvalues and 

eigenfunctions. The result is given by 

1 

[aa -m'+eu3B] 

,-iw(t-r’),-iF,(y-s’)~“(= _ $)qn*(zf _ $)}, 

(9) 
where ‘Pn is the nth normalized eigenfunction of the a harmonic oscillator with 

frequency eB and where -I&, and A(,+,) are the eigenvalues given by d,, = 

[(w - ip)2 + 2neB + m2]. 

Now that we have the fermion propagator, we calculate ~0 as a function of ,u 

and E. We will argue below that the lowest order calculation presented here is 

in fact an exact result. 

PO = < ‘d’+(~)$b) > = --Td70.5T(=,~)] 

=-‘“B~j~((y-ip)(~+~)+im(~-~)I 
2* 

=~~[D(&zT7)+o(P-Jzoes+;;I;] (10) 

- ~fi@(l4 -IL) 

where Int stands for the integer part of its argument and p and B are taken to 

be positive. Notice that when w is itself an integer, the value of the density 

pe is ambiguous. Notice also that the density po is nonzero at p = 0. This is due 
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to the spectral asymmetry of our parity non-invariant Hamiltonian and to our 

de&rition of pc as < $t$ >. One thus has to define the physical density 

for p > m > 0. The final result for pps when p > m > 0 is drawn in Fig. 

2. We now see the correspondence of ~,,a to the density of fermions in Landau 

levels. Notice that the Soled Landau levels are described by the horizontal sections 

(constant nss) in Fig 2. These occur when 2apJeB is an integer N. This implies 

that 27rpo/eB = N - 3 (for n > 0). Using the definition of B, i.e. B = gp6, we 

see that a filled Landau level occurs when 8/2cr = N - 3 with a = e2/4r. This 

is precisely the condition that the renormalized Chern-Simons coefficient 8~ at 

zero density is 20 times an integer (see ref.[9] )? Furthermore an unfilled level 

corresponds to the vertical parts of Fig. 2. for which w is an integer. 

We proceed now to evaluate the one-loop contribution to the CS term in the 

effective action, which is given by the parity odd part lTodd(k2 = 0) of the vacuum 

polarization 

&w(k) = n=p”(k2) + ‘rYAICAL&2) 02) 

where lie is symmetric under interchange of /.L and V. Note that gauge invariance 

requires the odd part to have the above form even at finite density where Lorentz 

invariance is lost. The one loop expression for II,, is given by 

qw(+,Y) = -&3 17PST(~,Y)7VST(Y,~l (13) 

To evaluate Ifodd we extract the term in eqn. (13) which is proportional to cijlco. 

The expression for U.&O) using both Schwinger’s method”‘and the method pre- 

* We shall set below that thia is the case for the regularisation scheme which we chose. 
The point is that the zero density one loop corrections to the Chern-Simons coefficient are 
regularimtion dependent as ia shown in ref. [lo]. It is only the renormaliscd 0 which is 
related to the statistics panmeter of the anyonr. 
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sented above is the following: 

*d=e’f!g 
“4 

+ 2ieE (w - G)[(w - iw)2 + m2] 
4X+, 1 04) 

We now compare this expression for &,dd to the previous expression for po. The 

term proportional to m is identical to the similar term in po (divided by t). The 

second term in the integrand can be rewritten as 

2n 
+ $I- - 

(w - i/J) 
2eB [(w - i/~)~ + aW(n)]2 1 (15) 

where M’(n) = m2 + 2enB. The first term of eqn. (15) is identical to the 

remaining term in po. For the second term of eqn. (15) we perform the w 

integration which results in an expression which is proportional to S(c( - M(n)). 

This term vanishes whenever $$ # integer. Therefore for any p such that 

$$ # integer we get the following relation between l&,&O) and pc: 

&dd(k’ = 0) = ff$ = 8 

where we have used the tadpole relation between po and B. We see that the 

one loop correction to the Chem-Simons term precisely cancels the bare Chern- 

Simons term provided w is not an integer. As discussed previously and as 

is seen from Figure 1 this occurs precisely when we have any number N of filled 

Landau levels, in which case $ = N - i (for m > 0). If we now apply the above 

equation and eqn.(lO) to the case p = 0 we see that &d(k’ = 0,~ = 0) = --a. 

This renommlises the zero demity Chern-Simons term from 8 to OR = Of a. Thus 

at uon.zero ,u the condition for having N Slled Landau levels becomes 2 = N. We 

thus conclude that to first order in the tadpole-corrected perturbation calculation 

a CS coefficient whose renormalized value at zero density is $$ is, at any finite 

density, renormalized to zem. Note that this value of OR corresponds precisely to 

anyons with a statistics parameter y = x(1 - $). 



The above result for B,,dd could have been anticipated without an explicit 

calculation once the result for po was calculated. The reason for this is that at 

any order, there is a general relation between those diagrams which contribute to 

&,+d(k = 0) and those which contribute to p. Here II&O) is defined by summing 

one-particle-irreducible diagrams to any order in tadpole-corrected perturbation 

theory. To see this imagine taking 6/6B (for fixed p) of any diagram which 

contributes to p. This has the effect of removing a tadpole insertion and replacing 

it by (l/e)c’j~j&. One easily sees that the resulting diagram is one-particle- 

irreducible (in terms of tadpole-corrected lines) and contributes precisely to the 

odd part of the B(O)/=, i.e. B,dd(O). We obtain the general relation: 

Thus, having calculated pc we can simply differentiate with respect to B at fued 

p. From Figure 2 we see that for fZled Landau levels ps is simply proportional 

to B, and thus B&r(O) is simply equal to epo/B which agrees with our previous 

result. 

We will now show that p, l&,&O), and thus eqn. (16), are unaffected by 

higher order radiative corrections in tadpole-corrected perturbation theory. The 

nonrenormalization theorem can be proven either by a topological argument:” 

or by a direct extension of the Coleman-Hill theoremI’] to the finite density case. 

Briefly stated, (for details, see [7]) the topological argument begins by noting 

that p measures the spectral asymmetry of the ,U and m # 0 Dirac operator in a 

gauge field background. Extending the analysis of Boyauovsky and Blankenbe- 

cler’“’ to finite density, one sees explicitly that, provided w # integer, 5 is 

proportional to the index of the background field Dirac operator. Thus fluctua- 

tions in the gauge field do not affect the value of p. Since we showed above that 

&&j(O) is determined by p to all orders we see that the topological argument 

above covers the nOnrenO~fLkZatiOn Of B,,j,j(O) as Well. 

The nonrenormalization of p and H.,(O) is also seen by extending the argu- 

ments of Coleman and Hill!e’Consider the Euclidean n-photon effective vertex, at 



finite density, given by summing all graphs consisting of a single tadpole-corrected 

fermion loop with TZ external photons attached. We denote this by: 

It?.., c (h . . . kn) 

All diagrams in tadpole-corrected perturbation theory which contribute to p or 

l&&O) can be constructed from the l?“)‘s, by sewing together photon lines. To 

prove our nonrenormalization theorem for p and II,,(O), it s&ices to show that, 

for kl,kz + 0: 

I’!Tf’ (kl . . .) = CJ(k,), n>l 

r!:‘(h,ka,...) =C’(hkz), 
(19) 

n>2 

By gaugeinvariance and the argument of ref. (91, these relations are true provided 

that k -+ 0 is in the region of analyticity of the Fen). 

We prove the nonrenormalization theorem therefore by demonstrating the 

analyticity of the I?(“) as kz --t 0 in the Euclidean region. This is obvious for 

the zero density system, since the physical (Minkowski) threshold for fermion- 

antifermion pairs begins at ka = 477~‘. At finite density, however, one must 

also worry about the production of fermion-hole pairs. In our case, since the 

r(“) are defined in tadpole-corrected perturbation theory, this corresponds to a 

(Minkowski) photon being absorbed by a fermion in a Landau level, causing a 

transition to an unoccupied state. The Landau levels allow continuous values of 

momentum but are discretely spaced in energy, with spacing eB/m. Therefore, 

when we have N completely filled Landau levels, physical singularities are absent 

for (Minkowski) lea < eE/m. Thus as we approach k2 -+ 0 from the Euclidean 

region the rcn) are analytic, and the nonrenormalization theorem holds precisely 

for 9 = Ne2/2x. 

Next we analyze the finite temperature behavior of the anyonic system, 

namely, that of the partition function given in eqn. (2). The evaluation of 

the fermion propagator follows the same lines as for the zero temperature case 

9 



apart from replacing the integral over w with the sum over discrete Matsubara 

frequencies WI = $I + 3). Inserting the resulting propagator into (10) and us- 

ing standard contour integrals”‘to replace the summations we get the following 

expression for the density at finite temperature: 

6% = g{g [tsh[~(p+M(n))l+tshl~(~-~(~))l] +f+7h[;(p+/)]]} (20) 
n=O 

In the limit p --t m this expression reduces to the one given in eqn.(lO). 

We now compute the renormalized CS term at finite temperature. The sim- 

plest way to do this is to use eqn.(l7) which is valid at finite temperature. We see 

immediately that p is no longer proportional to 23 and, in fact 6 is a monotonic 

function of B. Equation (16) is thus never valid, and the renormalized CS term is 

nonzero for any finite temperature. Instead, for fully fJled levels, the renormal- 

ized CS term is given by OR&, T) = -es%. Alternately we could repeat the 

steps that led to eqn.(l4). We now get the same expression with the sum over 

WI replacing integration over w. Recall that the cancellation of the bare and one 

loop CS term was a result of the vanishing of the second term in eqn. (15) for 

the fled Landau levels -i.e., w # integet. At fmite temperature this term 

does not vanish. 

We can now compute the mass of the resulting “pseudo-Goldstone” mode 

which is proportional to the renormalized CS coefficient. Using either of the 

above methods we find 

O&/L, T) = -$$g z 
“=O M(n) 

(21) 

For small temperature and large mass pm >> 1, lp2 - m21 << m2 this reduces 

to 

le~(p,T)l = 2aeBp 2 Ae -PkM(n)l 
“=(J M(n) 

(2-4 

In this limit the only significant terms are those with 2n.s~ N 1~2 - ,21 << 
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m2 so that #R&T) - +?( e+?) ,-P$S + ,-Pff(l-6) 
( > 

where b = w - 

Int( $$). Since the mass of the “pseudo-Goldstone” mode is given by the the 

absolute value of the renormaliaed CS coefficient, this last expression is the mass. 
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FIGURE CAPTIONS 

Figure 1. Tadpole contributions to the fermion propagator. The bold line indi- 

cates tadpole-corrected fermion line. 

Figure 2. The fermion density as a function of the chemical potential p and the 

magnetic field 8. 
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