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Abstract 

The time integrated CP asymmetry in the decay of a neutral B- 

meson to a CP eigenstate has been claimed to be free of uncer- 

tainties arising from hadronic matrix elements (module the mixing 

parameter AM/l?). That is, it is a direct measure of KM angles. 

We scrutinize this claim, and question its generality. To this end 

we compute the effective hamiltonian for AB = 1, charm and up 

conserving processes, in the leading logarithmic approximation. En- 

hancement of hadronic matrix elements of ‘penguin’ operators could 

easily invalidate the claim. 

(Bastille Day, 1989) 
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1. Introduction A nonvanishing time-integrated asymmetry 

IyBO + f) - IyB” -+ f) 
= = l?(BO -+ f) + rp + f) 

indicates a violation of CP invariance. If the final state f is a CP eigenstate, 

fcp = rtf, the expression for the predicted asymmetry takes on a. very simple 

form[l]: 
AM/r 

a = 1 + (AM/l?)l I* zpf ( 1 
(2) 

Here q and p are standard notation[2] for the B” and B” components, respec- 

tively, of the mostly CP even physical state Br. (q/p = (l-E)/(~+E)). The mass 

difference per width AM/r indicates B”-B” mixing, and has been measured[3] 

in two different experiments to be N 65%. More interesting is the remaining 

factor 

(3) 

It has been pointed out[l] that of may be independent of hadronic matrix ele- 

ments. If this is the case then of is given simply in terms of fundamental mixing 

angles! It is the purpose of this letter to study just under what conditions this 

conclusion is valid. 

.Z. CPT. The implications from the CPT theorem are straightforward. For 

the sake of generality we consider momentarily the case where f is not necessarily 

a CP eigenstate, f # f “. It is convenient to define 

Then, if If) is an eigenstate of the S motriz, one has 

(f(‘HIP) = exp(-2i6f) (fcp’l 71 IB°CPT)* , (5) 

where 61 is the f-phase shift. It follows that 

Pf = i$. 

For self-conjugate final states one has in addition pf = l/pf, and therefore 

lpfl = 1. These results do not hold for a final state which is not a strong 
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interactions eigenstate, as can be seen by expanding such state in terms of 

strong eigenstates’. 

In deriving eq (2) it is generally assumed that both jp/ql = 1 and lpfl = 1. 

More generally, for self-conjugate final states 

a = Cl+ +(AMlr)*)(l - IPI’) + ~(AMP)*(ld If - If) + AMlrW;p - ;P*) 

(1 + iWflW)(l + IPI’) + ~WfPNlp12 l;l’ + 1:12) + AMIrW;p +$I’ 

The real part of c is of the order[4] of Al?/r N lo-’ while the imaginary part 

could be much larger. Therefore it is appropriate to use [p/q1 x 1. Then (7) 

reduces to 
a = Cl- IPI’) + 2AMlr I* (;P) 

(1 + IPI’W + (AM/V? 
(8) 

We see that if Ipl f 1 one may be in large error if using eq (2). 

3. CP. An alternative approach is to exploit the CP invariance of strong 

and electromagnetic interactions. If the AB = *l hamiltonian 

71 = ~A.%’ + xAB=‘t 
(9) 

satisfies 

(CP)7-IAB=‘(CP)t = exp(-ia)7iAB=lt (10) 

then 

pf = f =xdia), (11) 

for f cp = +f. Note that f need not be a strong interaction eigenstate. If 

condition (10) holds, then pf is computable in terms of parameters of the weak 

hamiltonian only. 

4. Standard Model Predictions. In this section we consider condition (10) in 

the context of the standard model of electroweak interactions. The interaction 

lagrangean is 

IExcept, of course, if all the phase shifts for these states happen to coincide 
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where V is a 3 x 3 unitary matrix that arises because the quark fields must be 

redefined to diagonalize their mass matrices. V can be written in terms of four 

angles &, &, & and 6 

i 

Cl -3103 -31% 

v = .Qca ClC& - SlSJe is ClC@Q $ slc3ei6 

1 

(13) 
SlBl ClS~CQ + c1sgei6 ClSlSJ - c.Jc3e i6 

Here s; e sin Bi and c; c cos 0;. Experimental information on nuclear /3 decay, 

semileptonic hyperon decay and B-meson decay implies that the angles &,& 

and & are small. 

Obviously there are many different AE = 1 terms with different complex 

coefficients. Condition (10) is not satisfied, unless only terms with no relative 

phase in their coefficient contribute to the matrix element for B + f. In practice 

we need only consider this matrix element to leading order in Fermi’s constant, 

GF, and to all orders in strong interactions. We should really be asking whether 

(10) holds for I-&, the low energy effective weak hamiltonian to order GF. 

Moreover we are only concerned here with CP self-conjugate final states, so we 

should focus on the AB = 1, AC = AU = 0 part of the hamiltonian. 

The calculation of ‘H,R is straightforward. We account for anomalous de- 

pendence on heavy masses in the leading logarithmic approximation using stan- 

dard methods[5]. We will integrate out the W boson and top quark simulta- 

neously. To the extent that the masses of these particles differ by a factor of 

order 1, this is the only consistent way to compute in leading-logs. Tree level 

matching at the scale p x Mw gives 

Fl es = %.&,Z,, ~~bVPP’(6L=r~Lqt”)(~~~r~P~p) (14) 

Here cr and p are color indices, and L(R) stands for left-(right-) handed fields. 

The cases q’ = d or s can be treated separately. We will do explicitly the former, 

and the result for the latter can be read off from this. For scales p < Mw the 

hamiltonian is of the form 

THH,ff = s T Ci(P)Oi (15) 

3 



where 

o* = (L7%d%7,cw) (1’5) 

a = (6La7pdLB)(1LB7r%a) (17) 

03 = (bLa7~dLp)[(~LPYrULP) + ... + (bL@,arp~LO)l (18) 

01 = (~L~.r’dL~p)[(aLLIT~~L~) + . . + (aL,r,bLd (19) 

OS = (6La711dL~)[(aRp7(ltlR~) + “. + (hfP7!hP)I (20) 

OS = (6~,7’d~.p)[(ORP7~URa) + . . + (h?P7pbto)l (21) 

07 = (L7%p)(%s71mB) (22) 

OS = @La7QLp)(~Ls7M1LLo) (23) 

OS = em&,u~“dtm)Fw (24) 

010 = gm&&‘YT~;3d~a)G;w (25) 

Here F, and GEY are the electromagnetic and strong interaction field strength 

tensors, respectively, and e and g are the corresponding coupling constants. 

We will neglect the effect of OS and 010, the former because its effects are 

suppressed by e2/gZ, and the latter because its anomalous dimension[6] makes 

its coefficient small for p << Mw. The functional dependence of the coefficients 

ci is determined from 

P$G(P) = --C7zcj(PL) (33) 
j 

and the boundary condition eq (14). For the anomalous dimensions matrix 7 
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with 12 active quark flavors we obtain, to one loop order, 

(-1 3 0 0 0 0 

3 -1 -l/9 113 -l/9 113 
0 0 -11/g 11/3 -219 213 

g* 0 0 3 - n/9 -1 + n/3 -n/9 n/3 
7=8?rz 0 0 0 0 1 -3 

0 0 -n/9 n/3 -n/9 -8 + n/3 
0 0 0 0 0 0 

\o 0 -l/9 113 -l/9 113 

With 

& = vc;vcd = slag + SlS*e 46 

(u = v;vLi = -9183 

6 = -(& + 1.) z -s,sze-i6 

0 

0 

0 

0 

0 

0 

-1 

3 

O\ 

0 

0 

0 

. 0 

0 

3 

-1) 
(27) 

(28) 

(29) 

(30) 

the result at p = mb is (nilw = 85GeV, rnb = 5GeV, A$GD = 0.153GeV) 

neff = 4% -{[.(-0.2601 + l.llO1) 
(31) 

440.0120s - 0.02604 + 0.0080s - 0.0330s) + t,(-0.260, + l.llOs)}. 

5. Discussion The effective hamiltonian (31) does not satisfy (10). But it 

is probably an excellent approximation to neglect the effects of Or and 0s when 

the final state is, say, Dt D- or D'L%. Then, to the extent that we are willing to 

neglect the effect of penguins, the phase a in eq (11) is twice the phase oft.. The 

problem is that we don’t know how large the matrix elements of the ‘penguin’ 

operators 03-0s might be. In particular, Os, with the largest coefficient, has 

a different chiral structure. An enhancement in the matrix element of 0s by 

a factor of 3 could lead p to differ from one by lo%, and a 20% error in the 

estimate of the asymmetry would ensue (c$, eq (8)). More precisely, defining 

(for f = DD) 

w = 0.030 (f KJeIB”) 
(f 101 - 0.240~~P) ' (32) 
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one obtains 

Pf x 6 
t: ( 

I+2iwImG 
t. 1 

= L 
( 

1+2iw .w3% 

t: ) 1.96 + L?#\* . 

(33) 

If /WI - 10% then jpl can differ from 1 by as little as 1% or as much as 20% 

according to whether w is mostly real or mostly pure imaginary. 

The calculation of the effective hamiltonian in (31) is done in a consistent 

expansion (i.e., the leading-log approximation), up to our neglect of the opera- 

tors 0s and 01s. Unfortunately, for a heavy top quark the next to leading-logs 

can be just as important. There is a 1 loop matching contribution to ci(JJw), 

for i = 3,..., 6. It arises from graphs with an internal top quark (e.g., a top 

penguin graph) and is easily estimated to be - O.Ol&. This is of the same or- 

der of magnitude as the result in eq (31). Th ere ore, f a reliable estimate really 

requires inclusion of the sub-leading logarithms’. 

While w could be measured in numerical simulations of lattice QCD, and 

the sub-leading-logs could be computed, one can alternatively assume these cor- 

rections are small. The hypothesis could be tested experimentally by comparing 

asymmetries in different processes (e.g., when the final states are DOD”, D+D- 

and n=rrs) 

6.Conclusions. We have argued that, generally, the CP asymmetry in neu- 

tral B-meson decays to CP eigenstates cannot be obtained without knowledge of 

certain hadronic matrix elements. Nevertheless, if matrix elements of penguin 

operators are not enhanced, the asymmetry is given to good approximation 

in terms of KM angles only. This is a “catch 22” situation: we do not need 

to know the hadronic matrix elements, but only provided that we know that 

some of them are not much larger than others! The situation could be improved 

‘Simply running down these coefficients obtained by 1 loop matching using the 1 loop 

anomalous dimension (27) is inconsistent. The procedure would yield a scheme dependent 

result. The situation is analogous to that described in ref. [7]. There, the electromagnetic 

penguin contribution to b - se+e- from a heavy top in the loop is sub-leading, but still nu- 

merically important. The scheme dependence of the incomplete sub-leading-log approximation 

was discussed in some detail in ref. [7]. 
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(worsen) if the next to leading-log corrections decrease (increase) the coefficients 

of the penguin operators in the effective hamiltonian. 
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