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Abstract 

We re-examine the derivation of the effective action for a string and show that 
the curvature term enters with the same sign as the Nambu term. We then analyse 
the equations of motion to show explicitly that strings are rigid. We discuss the 
cosmological implications for the cosmic string scenario of galaxy formation. 
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In this letter we seek to address a misconception that has arisen in recent years 
in the study of cosmic strings. Cosmic strings are topologically stable defects that 
may have been produced during a phase transition in the early universe’. These 
strings play a central role in one scenario of galaxy formation’. To test this scenario 
it is important to understand how a cosmic string network evolves. For this, it is 
necessary to know the effective action for a string, i.e. the action that effectively 
describes the motion of the string. 

The standard approach to deriving this action neglects the finite width of the 
string, the effective action is therefore the action for a two dimensional worldsheet, 
i.e. the Nambu Goto action. How good an approximation to the true effective action 
is this? Most of the time, the neglected terms in the action are small, of order 
the square of the ratio of the string width to its radius of curvature. However, the 
Nambu action predicts structures such as cusps or kinks at which the neglected terms 
are not negligible. These structures are extremely important when considering 
gravitational radiation from strings; indeed linearized calculations predict that a 
large fraction of the energy loss from a loop typically occurs via radiation from such 
structuress. Recent calculations have put very stringent bounds on the cosmic string 
scenario of galaxy formation, based on the amount of gravitational radiation loops 
emit4. In the light of this it is obviously important to examine the effective action 
of the string in more detail in order to ascertain whether cusp or kink formation is 
favoured or suppressed. 

As we shall see, previous articles purporting to do this5 all contained flawed 
arguments concerning the sign of the correction terms. This is critical in deciding 
whether cusp (kink) formation is favoured or suppressed. We shall see that, con- 
trary to previous claims, cosmic strings are rigid and therefore cusp formation is 
suppressed. This turns out to make the bounds on the cosmic string scenario even 
more stringent than those so far suggested. 

The letter is organized into three parts. Firstly we will briefly review the deriva- 
tion of the effective action, we show that it contains only the Nambu and extrinsic 
curvature terms and does not contain the extra ‘twist’ term suggested by Maeda 
and Turoks. We then argue that the stability of the straight static string implies 
that strings are rigid. To confirm this, in the second section we derive the equa- 
tions of motion associated with the action (without resorting to any special gauge) 
and consider the growth of small perturbations to an infinitely long straight string 
trajectory. In the final section we will consider the implications of the rigidity of 
cosmic strings for the string scenario of galaxy formation. 

1 The Effective Action for Cosmic Strings 

To build an effective action, the four-dimensional integral in the field theoretic action 
must be reduced to a two-dimensional worldsheet integral by projecting the structure 
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of the string vortex onto its core. There is a possible difficulty in doing this in that, 
although each field configuration uniquely defines a worldsheet, the converse is not 
true. The different field configurations corresponding to the same worldsheet differ 
by the number of massive excitations of the fields of the vortex. We shall look only 
at the lowest energy solutions and thereby neglect these types of string excitations. 
We will take as our string model the Nielsen-Olesen U(1) vortex6 in flat spacetime. 
It is however interesting to note that most of the qualitative arguments we give are 
independent of the model. 

The Nielsen-Olesen string6 is a vortex solution to the U(1) abelian Higgs model: 

Lc[$, A.] = D.c$+D”~ - $,F”b - +(b+c$ - 7;)’ 

(where D. = V. + ieA. is the usual gauge covariant derivative, and jab the field 
strength associated with A.). In this paper we shall take lower case latin indices 
to run from 0 to 3 and our metric convention is (+, -, -, -). The Nielsen-Olesen 
vortex solution’ takes the form 

40 = vlXo(~)e’B, A. = $(T) - 1)V.B = i(P. - V.0) (2) 

in cylindrical polar coordinates. (In fact the total physical content of this model is 
contained in the fields 141 = ux, and Pa.) 

The method we use in deriving the effective action5Js involves taking a vortex 
field configuration which is a solution to the field equations of motion, integrating 
out over directions orthogonal to the worldsheet, to leave a two-dimensional integral 
over the worldsheet coordinates. In order to do this an Ansatz solution built from 
the Nielsen-Olesen solution is chosen and the action is expanded around this non- 
stationary point: 

s=so+jw=i[(~)064+ (gJ,A.]. 
We then integrate out over the orthogonal directions obtaining a worldsheet inte- 
gral: the effective action. To perform the projection, a worldsheet based coordinate 
system is required. This is readily formed firstly by extending the worldsheet coordi- 
nates m,r to be constant on the orthogonal planes to the worldsheet, then, choosing 
a pair of unit normal fields {n”,m’} to the worldsheet, we define the perpendicu- 

lar Cartesian coordinates <,q by requiring (6): = n’, (6); = ma. We choose the 
Ansatz solution to be the Nielsen-Olesen vortex solution, where T and 8 are now the 
cylindrical polar coordinates associated with t, 7. Since the Ansatz field depends 
only on these perpendicular directions, the calculation of So is purely geometric, 
involving an expansion of the volume element, J-s, around the worldsheet. The 
calculation of the second term, the field theoretic part, in principle involves solving 
for the perturbations around the Ansatz configuration. 
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For the first part, calculating J-s, we simply Taylor expand around the world- 
sheet: 

J-s = J-SIC + f&aJ-slo + v&/ql+ $%&J-slo + +A&& 
+($,&,,J-slo + higher order terms. 

Upon integration, terms linear in ( and 7 disappear, therefore we only require 

Uk/=& and %n%J-slo. To find these, we need the covariant derivatives of 
the normals in terms of worldsheet quantities. These are’: 

V&b = K,ab -,kmb 

Vomb = &b f P&b 

The K;,,b are the extrinsic curvatures. These represent how the worldsheet curves 
in spacetime and are defined in terms of the derivatives’ of the normals: 

K lob = hi,,htjV,nd 

K lab = hi,ht)V,md , 

where h,b = g.b $ n.nb $ m,mb is the first fundamental form, or projection tensor 
onto the worldsheet. 

PC, = mbv,, nb = -n,,va ,Flb 

is the normal fundamental form’ of the worldsheet, and measures the rotation of m” 
and na in the orthogonal planes as one moves around the worldsheet. Note however 
that p,, is a gauge dependent object, depending on the choice of the normal fields. 

With this information, and noting that for a scalar, 8, E &,, the Lie derivative, 
we see that 

&J-s = c7xJ-s 
= +J-s gab-&&b 

= fi g”*‘tr(anb) 

= 63, 

and also 

&,K, = naV,Vbnb = TL’V~V&~ 

= -(v,&)(vanb) 

= -K,.bK,mb 

(4) 

with similar expressions for m’. 
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Thus 

I 
d%,f=$o = -P 

I 
d’eJ-r[l t $ $(K.’ - K,%)l 

r--l 

where P = -J dtdTL(xo, Pab) is the energy density per unit length of the Nielsen- 
Olesen vortex, and 

a#J = - 1 d~d~~2~(xo,Pob) = - / d<dv &(x0, POb) 

is some positive constant of order nr f. However, the Gauss-Codazzi equations? for 

a two-dimensional surface embedded in a flat space imply 2 K,? - Kfeb = ‘R, the 
i=l 

intrinsic curvature of the worldsheet, which by the Gauss-Bonnet theorem’ gives a 
topological invariant upon integration over the two-dimensional worldsheet. Thus 
the geometric contribution to the effective action reduces to 

i.e. the Nambu action. 

s, = -p I d’crJ-r 

The field theoretic contribution to the action arises because the vortex field does 
not satisfy the field equations of motion for a general curved worldsheet. In order 
to calculate the field theoretic contribution we need to find the first order correction 
to the fields from the equations of motion. To simplify the analysis we rescale the 
coordinates by setting 

Then setting 7 = Xo/Zer, the lagrangian and equations of motion in terms of x and 
P, become 

L 
xo?04 = (0.x)’ + P.‘x* - ;Fib - 4(x” - 1)’ 

0’V.x - P.lx + fx(x’ - 1) = 0 

v”F.b+ +x2 = 0. 

(5) 

bet x,Pb be the true solutions to these field equations. The vortex Ansate 
(x0, Pm) satisfies 

-x;-$+3$! + ix&;- 1) = 0 

-p/+tJ+$? = 0 (6) 
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where T = q’m and primes denote different&ion with respect to r. We write 
the true solution as a perturbation of the vortex solution, i.e. 

x = x0+6x 

pb = &b t 64 

From (5,6), after linearizing in the perturbations, one finds the following equations 
of motion 

PooV. - p,“. + f(3Xi - l))&x - 2xoPo,6P” 
= -V”V.xo + P&o - +x0(x; - 1) 

and 

V.SFab + $&TPb + ;x,,P$x = -V.Ftb - I&; 
7 

= -$=$~a~)~Fo”~ (8) 

where ( )1 indicates the first order part of the expression in parentheses. We can 
thus read these off from eqn (4) as 

(obd=& = 6(6,“kx + bbyk,) 

= 6 6: 7(-I;% sin9 t ii, cos 0) + J-r &(I?, cos B + ri, sin 8) (9) 

where Ki = &q,K; are the resealed extrinsic curvatures. 
We now see that the equation for the perturbations contain inhomogeneous terms 

which are proportional to the extrinsic curvatures. Hence we expect the inhomoge- 
neous solutions to be of the form’ 

SPe = T(T)(R~ cos e + I;; sin 0) 

bP, = $(r)(-I;r, costi + ii-, sin8) 

6x = ~(T)(Z?~ cos tJ + I;; sin8), 

where x(7),((~) and $(T) are particular inhomogeneous solutions+. Inserting this 

f~~y~m;tfon back into the action (using (7), (8) and (9) to find (g), and (e), ) 

Sf = -x&r / d’,J_r[Kf + K;] [I dr(v-(x; + + + aP&6)] 

= -70 J d’qGy[y” t K;] 

*We are assuming that the derivatives in the tangential directions on the worldsheet are sup 
pressed by a factor of K relative to those in the normal directions. 

tIncluding non-zero homogeneous solutions corresponds to including massive excitations of the 
string. 
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The most important feature of this correction term is its sign, which can be 
argued on stability grounds. Firstly, the stability* of the Nielsen-Olesen vortex 
solution actually guarantees that the solution X, Pb exists. Secondly, we know that 
because the Nielsen-Olesen vortex is stable* and static, it sits at a local energy 
minimum. What we have here is the peculiarity that the true solution, which is 
neighbouring to the Nielsen-Olesen vortex, actually has higher energy (as measured 
in our coordinate system) than the vortex An&z. The true solution, whilst being 
a stationary point of the action, is not static and therefore does not sit at a local 
energy minimum. In fact, the equations of motion for 6X, 6% (the differences 
between the true and the Ansatz solutions) are the equations for a perturbation 
of the Nielsen-Olesen vortex with a driving term. Thus the perturbed solution 
(i.e. our true solution) has higher energy than the Nielsen-Olesen vortex. Since 
the time derivatives of the fields are small compared to the spatial derivatives, the 
energy is approximately equivalent to minus the action, and thus the sign of the 
correction term, Sf, is negative. Therefore the total action is 

s = s, + Sf 

= -p /d2w’=$ + F(K; + K;)] , 

where s = z is a positive constant. The flaw in the arguments of previous author2 
that lead them to conclude incorrectly that the sign of Sf was positive, was to 
assume that the true solution sat at a local energy minimum. This is only true for 
the case of static solutions, non-static solutions, of which the true solution to the 
equation of motion is an example, sit at saddle points. 

2 The Equation of Motion for, and the Stability 
of, Strings 

Having derived the effective action for the string 

s = -P / @oJ-g [l t E(K; + K;)] (10) 
we shall now determine the equation of motion for the string. To do this we will 
continue to use the Gauss-Codaszi formalism. 

Let Xn(u”) (where uA = {r,~}, uppercase latin indices take the values 0 and 
1) be the coordinates of the string in four-dimensions. The induced metric on the 
two-dimensional worldsheet is given by7 

8X” ax” -- 7AB = aoA &7ab (11) 

f Bogomol’nyi* showed the stability of straight Nielsen-Olesen string to radial perturbations, 
his proof can be easily generalized to show stability to e-dependent perturbations. 
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The two-dimensional Levi-Civita connection7 may then be expressed as: 

r;, zz i7*E (YE&C + 7EC;B - ^IBC,E) 

= 7AEX$X,,BC (12) 

which implies that 

D*DBXa = t3,8,Xa - l?,c,&X” 

= ~“KIAB + ~“KZAB 

and hence 
q XaOXm = -K; - K,” 

We can therefore rewrite the action as 

(13) 

(14) 

S = -pjd%fi [l - c(OXa)*] (15) 

To find the equations of motion, we simply vary the action with respect to 
X”, remembering that raBr and hence Da, depend upon X”. This calculation is 
somewhat tedious and so we have reserved the details for the appendix and only 
quote the result here: 

2&0=X” + Ox” - 2dxb DcXb D’X” + 4eDcnXb D*DCXb DAX” 
+46nxb DaDcX” DADCX” + 2EDCnXb DcXb OX” + +X”)’ OX” = 0 (16) 

The equation of motion for the pure Nambu action (E = 0) can readily be seen 
to be OX” = 0. It is therefore easy to see that if X”(bA) is a Nambu trajectory, and 
contains no singular points*, then it is also a solution of the generalized action. 
Thus the flat worldsheet corresponding to an infinitely long straight string (the 
Nielsen-Olesen vortex) is also a solution of these generalized equations of motion. 
We will now consider the stability of such a worldsheet. 

In order to investigate the stability of an infinitely long straight string we will 
consider perturbing it by a small amount. Such a solution is known to be a stable 
field configuration and ensuring stability when considering our effective action will 
enable us to check the sign of the correction term. We take the unperturbed solution 
to be Xz = (T,~,O,O) and the perturbed solution to be X” = X; + 6X”. Varying 
the equations of motion, noting that OX” = 0, we find 

2eO(&(OX”))[6; - Dcx”Dcxb] + &(Oxa) + 4eDC(s(UXb))DADCXbDAX” 

+4e(6(OXb))DADCXbDADCXn = 0 (17) 

IIf the trajectory does contain singular points in the induced metric, for example points at 
which 7 = 0, then these trajectories must be examined with care as additional derivatives of TAB 
and OXa appear in the full equation of motion 
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Using equation (A.6), we see that 

6(0x”) = -2DCDDx”&sxbDDxb •t 06x’= - DcX”D~X,,~CTX~, 

which is perpendicular to the worldsheet. 
Taking the parallel component of equation (17) to the worldsheet gives 

D..@&DC[6UXb] = 0 

=+ D,x,o[60xb] = D..@&,DA(60Xb)] 

= -DA[DA&&60Xb] 

= --R~DDxb60xb 

= 0. 

Thus the perturbation equations now reduce to 

(2&n + 1)6(0x”) + 466(uxb)D,&&,DADCxD 

= (2E0 + 1)6( oxa) + 4~~;~i,&>+‘jb6( q xb) = 0 (18) 

For the case of a static straight string, we may use the specific form of X” to 
conclude that the perturbation equations to first order in 6X are: 

(2&O + 1)06X” = 0 (19) 

where a = 2,3 are the perpendicular components. 6X0 and 6X’ components can be 
arbitrary functions of v and T because 6(0X0) z 6(0X’) E 0 for arbitrary 6X0 and 
6X’. These variations correspond to reprametrizations of the string coordinates. 

Now let us concentrate on equation (19). If we consider a localized perturbation 
of the string we can fourier decompose 6X” as 

6X” = / dkeik’c+(r, k) 

Doing a frequency analysis of 6k”(r, k) as 6z”(r, k) = S&‘(W, k)e’“‘, we see from 
(19) that 

(--2c(w’ - k’) + l)(w’ - k’)SX*(w, k) = 0. 

Now, since k2 > 0, we see that for E 1 0, u* 2 0, which implies that a rigid 
infinitely long straight string is stable to perturbations. If, however, we had chosen 
L < 0, then there would have been unstable modes for which the perturbations 
grow exponentially. These would be perturbations for which k < -J- 

&I’ 
i.e. for 

which the wavelength of the perturbation is larger than m. However, as /cl is of 

order 71, this would say that any perturbation of wavelength longer than the scaled 
width of the string are be unstable. Since our approximation breaks down at order 
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r:, this would mean that, in the regime in which our approximation are valid, all 
perturbations were unstable - clearly in contradiction with the facts! 

Thus we see that to order E a straight infinitely long string is only stable if 
strings are rigid. One might now worry that higher order terms in the expansion of 
the action with respect to E might change this result, especially since e multiplied 
the highest derivatives in (19). Fortunately this does not turn out to be the case. 
Remembering that the only possible higher order terms in the action are products 
of extrinsic curvatures, it is easy to see that the differential equation satisfied by the 
perturbation will never be of degree higher than four. Thus our conclusion, that 
strings are rigid for small angle bending, holds; going to higher order will not change 
this. 

In fact, we can generalize this argument quite straightforwardly to include non- 
singular Nambu trajectories in the following way. Consider Nj = Kiss K?. Clearly 
this is a symmetric matrix in i, j and so can be diagonalised by suitable choice of 
normals. Now, dropping the i-subscript on KAS for notational convenience, and 
choosing worldsheet coordinates in which KAB is diagonal, we see that 

K; = 0 =+ K&” + K&* = 0 

which further implies 

KABK AB 
= K&-t oo2 + K;g”’ + 2Kor,K&“’ 

= K&s (yoOy** - 27”‘) 

1 0. 

Thus N;j is a positive semi-definite symmetric matrix. Therefore in our perturbation 
equations, Mt = -nyNij7Ljb is a positive semi-definite matrix, since both the normals 
and boXb are spacelike. Therefore, writing the perturbation equations as 

( 6s”U + $6; - 24 cmxb = 0 (20) 

we see that provided the eigenvalues of M; are smaller than e-i, the perturbations 
are stable. Since the eigenvalues of M; are of the order of the square of the extrinsic 
curvatures, and e is of order r:, we see that provided the curvature of the worldsheet 
remains small compared with the radius of the string, the Nambu solutions are 
stable. However, for large curvatures (such as those near a cusp) the dominant term 
is now M;, and we have unstable modes arising. This means that a cusp is not a 
stable structure, and is rounded off at the order of the string width. 

3 Discussion 

Let us now discuss the cosmological consequences of the rigidity of cosmic strings. 
We derived the equation of motion for the rigid string (16) and saw that all Nambu 
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trajectories that do not contain singular points are solutions to the equation of 
motion. However, as the equation of motion for a rigid string is quartic, a far richer 
set of solutions than just the nonsingular Nambu solutions exist. 

For understanding the cosmological evolution of a network of open strings7 it 
might be marginally plausible to neglect these new solutions. After all, the lowest 
energy solutions for a string of fixed length will be straight. For closed strings how- 
ever, periodic boundary conditions prevent the extrinsic curvature from being zero 
everywhere. We therefore expect the Nsmbu trajectories to be modified. Obviously 
the effect of rigidity is going to be greatest when the mean value of If,&?’ is large, 
i.e. for small loops, and we would anticipate that the rigid string trajectories for 
these loops would be significantly different from Nambu trajectories. In fact the 
rigid string equations of motion permit a static circular solution’ of radius of order 
Jr. This particular new, non-Nambu solution, is however cosmologically uninterest- 
ing. This is because it is unstable to radial perturbations’e due to its large extrinsic 
curvature; a fact that can be seen from equation (21). If you believe the simple 
model of string evolution proposed by Albrecht and Turok* you would also expect 
the number of small loops present in the early universe at a given time to be less 
than that predicted neglecting rigidity. 

For large loops on large scale the mean value of K,bKab will be small and therefore 
on large scales the Nambu approximation to the true string trajectories should be 
reasonable. Even for large loops however, there may be regions where the string 
trajectory departs significantly from that predicted by the Nambu approximation. 
For example, if the action for a string trajectory infinitesimally close to a cusp or 
kink is calculated it is found to diverge ‘. This is suggestive that a string strongly 
resist forming cusps, but is not conclusive. Our perturbative analysis supports this 
by showing that a cusp is unstable and indicates that it will typically be rounded 
off on scales of order the string width. 

A powerful test of the cosmic string scenario comes from the quantity of gravita- 
tional radiation produced by strings. The rounding off of cusps may have significant 
effects on the amount of gravitational radiation produced. Calculations of the power, 
P, emitted by cosmic strings predict? 

where G is the gravitational coupling constant and P is a constant that depends on 
the loop trajectories. For loop trajectories with cusps or kinks P is typically of order 
50-150. In 1984, Turok” evaluated the radiation from trajectories without cusps or 
kinks and found a P of order 10. The regularity of the timing of the millisecond 
pulsar’ imposes strong limits on the energy density in gravitational radiation present 
today. The predicted contribution to this energy density produced by strings is 

aA model of monopoles connected by string in which the monopole mass is of the same order 
of magnitude as the string tension would be we approximated by open strings’4 
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proportional to (y). Th e ac f t or of 10 on going from loops without cusps/kinks to 
those with could significantly (although a factor of 10 is probably an over estimate 
of the effect of rigidity) change the bound on Gp, so much so that it becomes to 
small for strings to provide a successful scenario of galaxy formation. 

Further improvements to our calculation would involve including gravity in our 
effective action. This would be a worthwhile exercise as it might enable the effect of 
backreaction on the amount of gravitational radiation emitted by loops to be esti- 
mated. Again it would be expected that the inclusion of this would further suppress 
cusp/kink formation and thereby reduce the rate of emission of gravitational radia- 
tion. This would mean that the energy density in radiation might not be redshifted 
enough to be consistent with the low levels currently observed. It is obviously im- 
portant to assess how great the suppression would be in order to understand whether 
the cosmic string scenario with Gp = 10-s is ruled out. It should be pointed that 
there are effects that could reduce the strength of the bound on G/L, for example if 
the string emits significant amounts of other types of radiation. 

There are perhaps other factors that may, for the present, prevent us from ruling 
out the cosmic string scenario of galaxy formation. The most significant of these 
is the uncertainty in the normalization factor v of the loop distribution function. 
This has been determined from numerical simulations of the evolution of a string 
network by two groups of researchers’Jr and they obtain very different answers. 
This difference is sufficient that one group would rule the string scenario out while 
the other, even with P = 10, would not. Although it merits further work to establish 
the degree of suppression of l? due to rigidity, it is probably more important to first 
understand the discrepancy in the value of v obtained by the two groups. 
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Appendix 

Here we find the equations of motion associated with the action 

s = -p 
/ 

d’aJ-r[l - c( OXa)‘]. (A.11 

In varying the action with respect to X’, we must remember that both the metric, 
TAB, and the connection, Pzn depend on X”. For the metric we have: 

67~~ = JX,5&9~ + X9~SX.,k3 
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= 6X;“,X.;B + x;Asxa,B (A.21 

and for the connection we have: 

sr,C, = $[T”~(TDA.B t YDB.A - TAB,D)] 

= -;~CES.DFh(~D.4,B + -,DB,A - 7AW) 

+%DA,B t 67DB,A - h,,,) 

= -+fEr%qbEsXb,F t 6XfiEXb.Fi t TCD[6x,%~b,D + x,b.&xb,D] 

= xblD.7 CDD~D~SXb $7 CDSXb,DDADBXb (A.3) 

Therefore, varying S with respect to X” gives 

SS = -,u 1 d’oSfi[l - E( OX’)‘] - 2q9( q x,,)S(nxa) 

= p/d%; (fiyABSy,&l - E(oX-)‘I) 

- ~EJ-~~X.~[~~~DADWX’] 

= s&t 6.7, (A.4) 

The first term in this expression gives, upon integration by parts, 

6s, = fi 1 d2ufi6x’DA (DAX.[l - e(OX”)r]) (-4.5) 

The second term contains three pieces from the variation 

S[T*~DADBX~] = -yACyBDS~~~D~D~X” + q SX” - yABSr$BXa,C 

= --2DCDDxa&6xbDDxb f 06x” 

-D&=DC&.U6Xb - &x”DC6xbDxb (A.61 

Substituting from (A.2) and (A.3) and integrating by parts as necessary gives 

6.52 = p I d%J=+X”{4~Dc (UXbDADCXbDAXa) +2&+X,, 

- 2cO (O&,D~xbDcx,) + 2eDc (~&,DCxb~&)}. (A.7) 

Thus, imposing &?r = 0, (A.5) and (A.7) give as the equations of motion for the 
string: 

- DA (DAXa[l - c(UX~)‘]) - 4cDc (nXbDADCXbDAX,) - 2eOaX. 

+ 2~0 (~xb&xbDc&) - 2cDc (~xbDCxb~xa) = 0, C-4.8) 

which, upon expansion of the terms and cancellation, gives 

2t@X” $ Ox” - 2Edxb DcX” D’X” f 4cDcmXb DaDCXb DAX” 
t‘k%fb DADcX~ DADCX” + 2eDcOXb DCXb OX” $ c(OXb)’ OX” = 0 

(A.91 
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