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Abstract 
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1. Introduction 

In this paper we consider the differential distribution for the one particle inclu- 

sive production of a heavy quark in hadronic collisions including the O(a$) cor- 

rections. This paper is a sequel to ref. [l] in which we discussed the effect of the 

O(a:) corrections on the total cross section. A limited number of phenomenologi- 

cal results on the differential cross section using the O(Q~) calculation have already 

been presented[2]. For a discussion of the influence of radiative corrections on the 

photoproduction of heavy quarks we refer the reader to ref. [3]. 

For a general discussion of the motivation for this work, we refer the reader to 

ref. [I]. A complete description of the calculation including technical details will be 

published elsewhere(41. In this paper, we want to discuss only those aspects of our 

result which are relevant for the one particle inclusive differential cross section. 

The process of one heavy quark inclusive production is depicted in fig. 1. The 

corresponding QCD formula is 

g L ~/k& [ E ~J~.;~(ZAPA,XBPB,~,~,II) 
Sk I 

F?(xA,P) FjB(xB7P) 

(1.1) 
where FiASB are the number densities for the ith parton in the incoming hadrons A 

and B, with momenta PA and PB respectively. The parton short distance section is 

denoted by &. The mass of the produced heavy quark is m and p is the subtraction 

scale for ultraviolet and collinear divergences. Perturbative QCD gives a prescrip- 

tion for calculating & as a power series expansion in a&‘). The corrections to 

eq. 1.1 are suppressed by powers of the heavy quark mass. 

We have obtained an analytic expression for Eb+/d3k up to order CX$ The 

partonic subprocesses which contribute in this order are, 

g+g--+Xx, q+q-8+X, g+q-+Q+x, g+iJ-+Q+x 

g+g-Q+x, !7+q-+B+x, g+q-+Q+x, g+q--‘Q+x. 

(1.2) 

The Process g + 9 + Q + X haa Z&O been c&&ted in ref. 151. ~~~~ that to 
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this order in perturbation theory the cross section for the production of a quark 

differs from the cross section for the production of an antiquark. The existence 

of this effect has been noted elsewhere in the literature[6,7]. This paper gives the 

first complete treatment including both real and virtual diagrams. The numerical 

significance of this effect will be discussed later. The analytic expressions for the 

one particle inclusive differential cross section are too long to be published in a 

journal. They are available as fortran routines the usage of which is described in 

Appendix A. 

In the first four sections of this work, we examine the structure of the differential 

cross section in perturbation theory. In Section II, we give our kinematic definitions 

and illustrate the general structure of the formulae for the leading and next to 

leading order cross section. We also exhibit the structure of the soft singularity, the 

subtraction scale dependence and the l/v singularity which is due to the exchange 

of Coulomb gluons. 

To incorporate the radiative corrections consistently in the calculation of a phys- 

ical cross section, all the component parts of the calculation must be included at 

next to leading order accuracy. One must use a next to leading order determination 

of both the coupling constant and the structure functions. All quantities must be 

consistently defined within the same renormalisation and factorisation scheme. The 

ambiguities in the inclusion of flavour thresholds in the evolution of the running 

coupling and the structure functions must be resolved at next to leading order. In 

view of the large number of subtleties related to the scheme dependence in QCD 

beyond the leading order, we have dedicated two sections to the discussion of these 

issues. In Section III we specify our subtraction scheme. In Section IV we give 

the explicit formula needed to change from one subtraction scheme to another. 

This is necessary, because the parametrisations of the structure functions presently 

available are defined in different schemes. The reader who is interested in using 

the formulae for the radiative corrections, will find all the information needed in 

sections I to IV. 

To assess the reliability of the phenomenological predictions, we must understand 

the sources of theoretical error. Potential sources of error are the lack of precise 

knowledge of Apon and of the structure functions and the effect of corrections of 

yet higher order. Some of these uncertainties are also present in the prediction 
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for the total cross section and have been discussed elsewhere[8]. In the case of the 

differential distribution, we have a new uncertainty when kT is much larger than the 

heavy quark mass, due to the presence of large logarithms of kG/m2. This problem 

is discussed in section V. 

Phenomenological predictions are given in Section VI. The reader who is only 

interested in the phenomenological results can turn directly to section VI. 

2. The structure of short distance cross section 

In fig. 2 we show the diagrams contributing to the lowest order parton differential 

cross section. The lowest order formulae are given by[9], 

d%s cl2 
dyd2kT = ~hlPo)(wN.) 

2Tf 
h$%w) = Dl (z -CA 

P’ T;+T:+p-- 
471% 

&qi ~h’o-‘(?,P)6(+.) 
dyd2kT = a= 99 

q(w) = g (2’: + 2r: + p) 

(2.1) 

where CA and Cj are the Casimir invariants for the adjoint and the fermion repre- 

sentation and DA is the dimension of the adjoint representation. For the particular 

case of colour SU(3) we have, 

C, = 3, C, = ;, Tj = ;, DA = 8. 

The kinematic variables are defined as, 

6 = (PA +PB12 
4m2 

p=y- 

71 = (k*pA)l(m+~d 

-72 = (~.~B)/(~A.PB) 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

(2.7) 
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T. = [(PA + PB - k)* - ml] = 1 -q --Q. 
s 

where pA and pB are the momenta of the incoming partons and Ic is the momentum of 

the detected heavy quark. Observe that the lowest order formulae are proportional 

to S(r,), because, according to eq. 2.8, when the recoiling quark is on shell we have 

r, = 0. The virtual corrections to the lowest order processes are therefore also 

proportional to J(r,). 

Some examples of graphs that contribute to the gluon gluon initiated process in 

order o: are shown in fig. 3. Fig. 3a displays some virtual graphs. Their interference 

with the lowest order graphs contributes in order cri. The squares of the real graphs 

shown in fig. 3b also give contributions of order oi. Observe that in the real graphs 

the variable rI is not constrained to be sero. In the limit T= + 0 the light parton 

in the final state is soft (i.e. it has vanishing energy). 

The tinal result for the partonic cross section has the following form, 

d~~ICT(p~,p~,k,m,P,as) = 
~h%~~p~,k,~,~s) + H!!jl)(p,i,mk,m,p,as) + ~(a;) (2.9) 

@%wdvw) = ~hj;)(~~,p)&r.) (2.10) 

I#(pA,pB k m p as) = I> ,, ,1 q(w) + c$;)(Tl,P))qG) 

+ (h$)( 71,~~) + I$‘(v-2,~)) [$I+ + @(n,w) [9$)]+](2.11) 

The dependence on the scale p is contained in the variable 6. 

I = ~Wlm2) 

The plus distributions are defined in the following way 

Jy dTJ(T,) [;I + = l1 dT. f(+; f(o) 

i1 dT.f(TI) py + = 1* dT*(f(T.) - f(O)$y 

(2.12) 

(2.13) 

(2.14) 
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The singularities at r= = 0 are due to the emission of a real gluon with vanishing 

energy. The plus prescription which regulates the divergences is a consequence of 

the cancellation of divergences due to real and virtual soft gluons. The coefficients of 

[&I+, ( h(f) and Kc+)), could be further divided into terms which vanish as T= = 0 and 

give a regular contribution, plus a remainder which gives a singular contribution. 

This separation is to a certain extent arbitrary. We have chosen not to perform this 

separation, since it does not give any practical advantage, and it complicates the 

notation. 

The formulae for h(O), h(d), Is(+), h(‘) and the corresponding overlined quantities 

are available as fortran routines. The usage of these routines is described in Ap- 

pendix A. 

The p dependence of our result is determined by renormalisation group argu- 

ments, 

(2.15) 

where Pi;(Z) are the AltareLli-Parisi[lO] splitting functions 

P&2) = c,[‘+(y’] 

P.&z) = Tf [z’ + (1 - z)‘] 

Pw(z’ = 2CA (1 4 *)+ + 
[ 

e + ~(1 - z) 1 + kb,S(l - .z) 

1 (2.16) 

and 
fh - = -boa: + . . . , bo = 

11CA - 4TfltU 

8lnp* 12n 
(2.17) 

where ny is the number of flavours excluding the heavy one. Using eqs. 2.10 and 

2.11 we can evaluate gd’ and ?;(+) in terms of the lowest order cross sections and 
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the Altarelli-Parisi functions, 

$yh+(~.) +$j+)(?,w’ ; + [ 1 = 4nboh!;‘(r~,p)b(~.) 

-I 0 
‘~h~~(r,,~)S(l-s,-~)Ph(=~) 

-J 0 ‘~h~~‘(~,~)6(1-~-?)P*,(Zg) (2.18) 

Integrating the delta functions one obtains the formula, 

q(?,P)qrJ + q(?,T*,P) ‘1 [ 1 r= + = 4~4~~~)(~1, PMT.) 

-~h~~(~,,P~l~~~)P~(~)-~h~~~(l-~~,P~l~Tz~)P~j(~) 

(2.19) 

we get, 

~~h,P’ = (2C,4ln(n(l - Tl))y&TI,P) (2.20) 

C’( n,?,P) = 

(2.21) 

$(n,p) = (4n4 +2Ctln(rl(l - 71)) - 3Cr)h$(n,r) 

ig)( 7,wJ’ = 

(2.22) 

(2.23) 

q(wJ) = 0 (2.24) 

Q’C ~l,%P) = 

(2.25) 
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where all expressions in the above equations are regular as r. + 0. 

The terms hg) and h$ contain a l/v singularity coming from the virtual dia- 

gr-, 
GJ1-p (2.26) 

is the velocity of the heavy quarks in the parton CM system, (when r1 = 0). The 

coefficient of the l/u terms depends whether the produced QQ pair is in a colour 

singlet or octet state. We find 

hg(?, PI ,zo $$Ys,,P) (c, - %) (1 - 2(c, :AAT17*)) (2.27) 

h’f?,, P) ‘Is .20 ;h$(s,,p) ((7, - +). 

These singularities are due to the diagrams shown in fig. 4 and are analogous to the 

singularities in electrodynamics responsible for binding in a nonrelativistic Coulomb 

system. Detailed features of our results which depend on the presence of the l/v 

singularity should not be trusted. The hadronic cross section is given by the pertur- 

bative heavy quark cross section after smearing over the final state. For a treatment 

of a similar problem in e+e- annihilation we refer the reader to ref. (111. 

The convolution integral, eq. 1.1 integrates over the l/v singularity and trans- 

forms it into a logarithmic singularity at kT = 0. As we will see in the section on 

phenomenology, the effect of this singularity is too small to be observed. There is 

therefore no necessity to introduce a special smearing procedure. 

3. Renormalisation and factorisation 

When calculating a quantity in next to leading order in QCD, one must make a 

choice of subtraction scheme for both the ultraviolet and the collinear singularities. 

The formulae for the parton cross sections depend on the scheme chosen. Predictions 

for physical quantities are scheme independent. The only effect of a change in the 

renormalisation and factorisation scheme is to distribute the radiative corrections 

differently between the parton cross section, the structure functions and ps. When 

one changes scheme the values of as, 6 and the structure functions are all changed. 
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In a formula for a physical cross section like eq. 1.1 all these changes compensate 

each other to the requisite order. The net change is of yet higher order in or. 

In order to give full meaning to our result, we must therefore specify in which 

subtraction scheme we are working and what are the appropriate definitions of the 

structure functions and of the coupling constant that should be used in conjunction 

with our formulae. In this section we define our subtraction scheme. 

We used a renormalisation scheme for the ultraviolet divergences which is an 

extension of the MS scheme[l2]. The difference with respect to the usual MS 

scheme[I3] can be easily stated for gauge invariant quantity, like a cross section 

for on-shell scattering, since in this case only the charge renormalisation is impor- 

tant. Instead of the charge renormalisation 

a.9 - = pag= 1 - ( ( z ;Tmr- +A ; + O(dj) 0 (3.1) 

1 

7 
= f+ln4T-7E 

(where nc is the number of flavours including the heavy quark) we used 

-a~ = /~==a;’ ; - 

where ny = nt-1 is the number of light flavours. The prescription given in eq. 3.3 is 

obtained when divergences coming from the first nn fermions are subtracted in the 

m scheme, while the divergences coming from the heavy quark loop are subtracted 

at zero external momenta. In this scheme, in the limit of small momenta the heavy 

flavour decouples. The p function is defined as 

@=&&=I =-boa’s+... 
0s hr. ,~ (3.4) 

From eq. 3.3 one gets 
b 
0 

= llC.4 - 4~7~ 
127r (3.5) 

Therefore the corresponding coupling constant depends only on the number of the 

light flavours. 

Consistency of physical predictions uniquely determines the relation between 
(-If) 

(2s and ak”l(+i’. We d enote the number of flavours considered active by a super- 
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script in brackets. From eqs. 3.1 and 3.3, one can see that the two schemes are 

equal at n = m. The appropriate value of cc.s for the two schemes must also be the 

same at p = m, since otherwise physical cross sections would be different in the two 

schemes. The relation between the couplings in the two schemes is, 

This is also the matching condition at flavour thresholds that gives the correct 

relation between or determined with a different number of active flavours in the 

MS scheme. Collinear singularities are also subtracted in the MS scheme. 

In summary the steps performed in the calculation of the short distance cross 

section are as follows, 

1. Calculate the spin averaged (bare) parton cross section +‘- in 4 - 2~ di- 

mensions including real and virtual corrections. When performing the spin 

average, it is important to count the spin degrees of freedom of the gluon as 

2 - 26. The number of spin degrees of freedom for fermions is taken to be 2, 

even in 4 - 2c dimensions. This is consistent with the conventional normal- 

isation of the spinor traces Tr{l} = 4 in the i% scheme. Other choices of 

the form Tr{l) = f(4 - 2~) with f(4) = 4 are possible, but define a different 

renormalisation scheme. Mass counterterms, defined in such a way that the 

pole of the heavy fermion propagator is not displaced by the radiative correc- 

tions, are included at this stage. Self energy insertions on the external lines 

(with the appropriate weight l/2) are also included at this stage, so that ebe 

is the complete cross section for the production of a heavy quark of mass m 

in 4 - 2c dimensions. Such a cross section is finite, because both ultraviolet 

and infrared singularities are regulated in 4 - 2~ dimensions. 

2. Substitute the value of ai- (given in eq. 3.3) in kbue. At this stage, l/Z poles 

associated with ultraviolet divergences drop out. 

3. Factor out the collinear singularities, and obtain the short distance cross sec- 

tion & according to the formula 

E d3+= 
d$ (pi,pj, k c) = (3.7) 
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- 
where in the MS scheme, 

fij(Z,C) = SijS(l - Z) + f$Pij(Z) + O(Q:). 

According to the factorisation theorem[l4], the parton cross section ? implic- 

itly defined by the eq. 3.7 is alsb free of l/Z poles associated with collinear 

singularities and is therefore finite in the limit E + 0. 

The short distance cross section & defined in this way together with structure 

functions with nn active flavours, can be inserted in eq. 1.1 to obtain a physical 

cross section. The heavy flavour does not appear as an active parton in eq. 3.7. In 

complete analogy with the case of QS, the structure functions for a different number 

of light flavours must also match at p = m[lS]. More specifically, if we have rzu 

light flavours and one massive flavour with maSs m, the m structure functions with 

nr = nu + 1 active flavours’, F(v), must satisfy the conditions, 

+f+lyqm*) = *)(z,m’) for j 5 ny, 

&;;yz,m’) = 0. 

(3.9) 

(3.10) 

It should be emphasized that this is a property of the MS subtraction scheme, and 

it is not necessarily true in other schemes. 

We have chosen to present our results in the MS scheme with nu light flavours. 

The heavy flavour does not therefore contribute to the evolution of the coupling 

and the structure functions in our scheme. All of the effects of the heavy flavour 

are therefore contained in the partonic cross section. Although other choices are 

possible, our choice seems to be the most transparent from a physical point of view. 

Note that the mass of the produced heavy flavour sets the scale of the hard process. 

The heavy flavour content of the hadrons at a scale of the order of the heavy 

flavour mass is explicitly a quantity of order as. It is therefore natural to include 

it into the parton cross section 5. We emphasize that the sum over partons in the 

incoming hadrons runs only over the light partons. Flavour excitation diagrams are 

not included. The diagrams which appear to correspond to this process are bona 

fide higher order corrections in this approach[l6]. 
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In practice, the standard parametrlsations of the structure functions are usually 

defined for a number of light flavours which changes at the flavour thresholds. For 

our purposes we would like to have the number of light flavours fixed at the value 

appropriate for the problem we are treating (i.e., 5 for top, 4 for bottom, 3 for 

charm). Fortunately, one can easily prove that, when the structure functions are 

evaluated at a scale ~1 x m we have, 

Fpyz,p) = O(fYs), j =nu+l 

Fp+l’(z,p) = Jp)(Z,jL) + O(c&, j<w,j#s 
F’““+l’(z,P) = Fj:“‘)(Z,c()[l- vln%] +0(&i), j = g 3 (3.11) 

One can therefore use structure functions with the heavy flavour included in the 

evolution provided the subprocesses with incoming heavy quarks are neglected. The 

difference is either of a higher order in QS than we are are working or numerically 

small. 

4. Redefinition of the structure functions. 

In this section we describe the modifications to our formulae needed to change 

the subtraction scheme. Our formulae were derived in the MS subtraction scheme 

described in the previous section. The use of the MS scheme for charge renormal- 

isation is rather widespread. In addition, the modification to our formula with a 

different definition of ~1s are simply obtained. Therefore, we concentrate on the 

modifications one needs to introduce in order to use a different factorisation scheme 

for the structure functions. 

At leading level, the definition of the parton distribution functions is scheme 

independent. This is no longer true at subleading level. The difference between 

structure functions defined in different schemes is of order or. In general, there 

will be a linear relation between parton densities defined in different subtraction 

scheme. Denoting by f’ the parton densities in the new scheme, we have, 

f:(z) = fi(Z)+ $llKij (E)fi(~)$ + O(Q~) 
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ii(z) = f:(z) - 2 /: Kij (9> fi(z)$ + O(G) (4.1) 

where the lable j denotes any type of parton. 

Quantities of physical interest are independent of the scheme which is used. If 

we have a generic partonic cross section u;( x PA), associated with a hard scattering 

initiated by a parton type i carrying a fraction z of the momentum PA of hadron 

A, we must have, 

C/dzfi(l)ui(zP,t) = C/dzf:(+)d(zPA) (4.2) 
i i 

Using the substitution eq. 4.1 we obtain the form of the short distance cross section 

in the new scheme, 

U:(P) = U;(P) - 2 ~~‘a~)(zP)Kji(Z)dz + NNL 
I 

(4.3) 

where NNL stands for next-to-next-to-leading terms. One can easily generahse 

eq. 4.3 to the case of a process initiated by two partons 

~~j(PA>PB) = UijbArPB) - g F jol 4y( ZPA,PB)Kki(Z)dZ 

-~g%P)( PA,ZPB)Ktj(z)dZ + NNL (4.4) 

We now return to the specific case of the differential cross section for heavy quark 

production. From eq. 4.4, eq. 2.1, eq. 2.2 and the definition eq. 2.9 we obtain 

H’~~‘(PA,PBrkrm,~,as) = @,%ea,P&vws) 

-22 ; ~&h/(1 - 71)) @(W’(l - d/3) 

The transformation functions Kij(r) are in general distributions in z. We will limit 

our attention to the following form which occurs in cases of practical interest. 

K<j(z) = K$f’6(1 - Z) + K{;‘(Z) [A]+ + K!!,!‘(Z) [logl(l~z)]+. (4.6) 
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Using the formulae, 

6(a(l-2)) = J$(l-2) 

[&)]+ = : ([&]++ln~~)~(l-~)) 
[ 1°f~!~~;))]+ = i ([logl(~~“)]+ +ln(o) [A]+ + fln’(=)J(l- z)) 

(4.7) 

the transformation functions in eqs. 4.5 can be expressed in terms of the distfibu- 

tions s(T=), [$I+, [VI+, according to the equations 

K<j(Tl/(l- ~1)) = 

(1 -TV) 
I 

(Kit’ - ln(l - sl)Ki$?)(l) + jln’(1 - rl)Kij’(l)) S(T=) 

+ (K!:‘(n/(l - 71)) - 141 - ~)Ki;!)(r~l(l -TV))) [J-l, 

+K$)(s,,(l - 71)) pj;)]+ ] (4.8) 

Kij(Tl/(l-~~)) = 

(1 - TZ){ (Kif”’ - ln(1 - TZ)K~J)(I) + fln*(l - r2)K$‘(l)) S(T,) 

+ (@;‘(~~l(l - 4) - h(l - TZ)K!~)(T~I(~ - ~~2))) [$I+ 

+K$)(r,,(l - Q)) [+I+) (4.9) 

We then obtain 
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h”d’(Tl,p) = h’d’(q,p) 

-; Kg) - ,,“_ ~l)K~:)(l) + f ln’(1 - Tl)Kf,)(l)) h$‘(Tl,p) 

- (Kg - ln(l - ~)Kg)(l) + fln2(l - Q)K#)) h$(w) 

(4.11) 

h'f(?, P) = 

- (K$ -h(l -T,)K$(~) + iln’(l- Q,K$~,) h:)(sp) 

- (K$h(l -~1)K~~‘(l)+lln’(l-7~)K~(l))h~‘(r,,p) 

(4.1 

~‘~)(T,,Tz,P) = hg)(n,n,p) - 

Kc+’ T ## ( z/t I - rl)) - ln(1 - q)K$(~,/(l - ~1))) h:)(w(l - d/d 

2) 

-+ (KL;‘(rJ(l - TV)) - h(l - rz)Kf?(~r/(l - 72))) h$ (1 - %P(l - Tz)/Td 

(4.13) 

~h’g’(yrz,p) = @(vz,P) 

-y (K;;)(T& -TV)) - h(1 - q)K$(~z/(l - 71))) @(W(l - T1)/T2) 

-y (Ki&/(l - rz)) - ln(l - T~)K&/(I - 72))) $‘(I - %P(l - Tz)/Td 

(4.14) 

h’g’(Tl,T2,P) = hp(?,n,P) 

-y (Kg)(~/(i -q)) - ln(l - 71 )K$(rz/(l -TX))) ~$‘(TI,P(~ -d/n) 

-+ @i&/(1 -TV)) -ln(l - ~z)K$&/(l - ~2))) @‘(I - %P(l - T2)/T1) 

(4.15) 

h’fj(r~,w) = h:j(n,n,P) - yK$j(~z/(l - R))~$(TI>P(~ - 71)/d 
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-tiK$;(~J(l - Qh;)(l - TS,P(~ - ~)/TI) 

~‘~~(~I,~,P) = h$)(m,~) - -y-- 1 - TIKifi)(~z/(l - TI))$’ (TI,P(~ - d/72) 

-+K$(T~/(~ - ~+$‘(l - n,p(l - n)/~t) 

h’f;(wrP) = h~)(T~,w) - y-- ’ - T1 K;‘d(~z/(l - ?))h; (n,~(l - ~d/n) 

-+K&J(l - ~))h$)(l - ~,p(l -72)/n) 

(4.16) 

(4.17) 

(4.18) 

We will be particularly interested in the definition of the structure functions 

beyond the leading order as given in ref. (17,181. The relevant transformation 

functions are 

f3 + 22 - (; + $)6(1- z)) (4.19) 

K,(z)=; (r2+(1-z)‘)ln(~)+8z(~-+1 
1 

(4.29) 

K,,(z) = -K,,(z) (4.21) 

K,,(z) = -2nrtKqg(z). (4.22) 

where the transformation functions of the quark densities are defined in such a 

way that the deep inelastic scattering structure function F’2 is free from radiative 

corrections in O(as). The transformation of the gluon density is instead rather 

arbitrary, and its only purpose is to preserve the momentum sum rule to order as. 

The decomposition of eqs. 4.19 according to eq. 4.6 gives 

K+-; ;+; 
( ) 

K:;)(z) = ; (-; - ( 1+z2)In(z)+(l-2)(3+22)) 

(4.23) 

(4.24) 

(4.25) K;?(z) = ;(I+ z’) 
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Kg) = 0 (4.26) 

K$) = (’ ; =) (-(z’ + (1 - z)‘)h(z) + 8r(l - z) - 1) (4.27) 

KC’) = (1 - =) 
w F(2 + (1 - z)2) 

and Ka4 = K,, etc. The transformation functions (4.19) are the appropriate ones 

to be used in conjunction with the structure functions of ref. [22]. 

5. Massless limit of the differential cross section 

The production of a heavy quark with a transverse momentum much larger 

than its mass deserves special attention. We therefore consider a hadroproduction 

experiment performed at fixed rC, and S in the limit in which the msss of the heavy 

quark tends to zero. In this limit we encounter mass singularities, i.e. in the specific 

case of our calculation terms of the order &ln(kr/m). We are interested in the 

zero mass limit for the insight it gives into the structure of these logarithmic terms. 

In practical experimental configurations in which kr is much larger than m they 

may give large corrections. In this section we shall discuss this limit, restricting our 

attention to the example of the 99 + Q + X subprocess. 

We consider the zero mass limit of our formulae when the mass of the quark is 

scaled to zero, p + 0 at fixed s and +. In this limit, we expect terms which are en- 

hanced by a factor of In(p). Singular terms of this sort originate from configurations 

that become collinear divergent as we let m go to zero. These configurations are all 

represented in fig. 5. We will call them flavour excitation, gluon splitting and radi- 

ation from the detected quark. Following the usual Altarelli-Parisi scheme, we can 

immediately write down the singular terms arising from the various contributions 

illustrated in fig. 5. We get, 

d&a--s+x 
v!%i dyd2kT (%‘.,,&‘B,k,m,~,~S) = 

-~ln(p) jd~~;;~;;;~ 
1 

(rPA,Pe,k)P,,(z) + jdrd~~d~~~x(pA,ZPB.k)~*8(e) 

+ j ~~~~(z)d~~~(~~~~)(PA,PBrk/r) 
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+ / ~~~,(z)d~d~~~i~)(PA,PB.kll) + O(Q) 1 
where the notation O(QS) indicates terms that are not enhanced by the logarithmic 

factor In(p). The terms in eq. 5.1 are associated respectively with the two flavour 

excitation graphs, the gluon splitting graph and the contribution of the radiation 

from the detected quark. The inclusive cross sections appearing in eq. 5.1 are 

the cross sections for the production of a massless parton of momentum I by the 

scattering of two massless partons of momenta qA and qB[lg]. 

%w-p+x 
dyd21T 

hw-,+x 
dyd+ 

(qA,qB,z)=+(i+i+Ti)~ s-g 1 1 (P + 2) 
da,,-,+x 

dY& 
(5.2) 

where j = (qni-q~)2,t = (qA-l)‘,ir = (qB-[)‘. Using eqs. 5.1 and 5.2 the structure 

of the logarithms of p predicted using the Altarelli-Parisi arguments is, 

Observe the presence of a term proportional to a(~.) and a term with the singularity 

[&I +, due to the soft radiation from the detected quark. 

From our result we find the following limits, 

aeon = 0 (5.4) 
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hnog;)(I’,P) = 0 
li-~~h~)(~~,n,~) = Cf(ln*(p) - ln(p))h~)(wp) 

lim 1 [ 1 m-0 7, + 
hg)( 71,%P) = -C,(Q(P) f In(P)/2)h~)(?,P)S(7=) 

(5.5) 

(5.6) 

1 
+$I ((p$)~(l+(1-T2)2) ($+c+--)] (5.7) 

where the limit should be understood in a distribution sense because new singular- 

ities arise. For example, we made use of the following limit, 

where the coefficient of the delta function is determined by integration. By com- 

bining appropriately eqs. 5.6 and 5.7 one recovers eq. 5.3. This is a valuable check 

of our calculation. 

If we try to compute the differential cross section for the production of a heavy 

quark with transverse momentum much higher than its mass, the logarithmic terms 

described in this section become large. At some point, one has or in(p) z 1, and 

therefore one must sum all terms of the form a:(asln(p))” in order to get a sensible 

leading order result. If one wants to get a correct next to leading order result, one 

must also include all terms of the form o~(asln(p))“. This can indeed be done. It 

requires the knowledge of the one particle inclusive cross section for light partons 

in next to leading order[20], the fragmentation function for any light parton into a 

heavy quark, and the structure functions for finding a heavy quark in a hadron. Our 

formula, however, does not provide for this resummation. When trying to predict 

heavy quark distributions at high kT using our result, one must therefore be aware 

of this further theoretical uncertainty. 
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6. Phenomenological applications. 

In this section we examine the effect of the radiative corrections on the differen- 

tial distribution for the inclusive production of one heavy quark. We cannot describe 

our results for all energies and processes, but we will try to give an overview of the 

impact of our results for present and future experiments. 

There are various sources of uncertainty one has to examine before making phe- 

nomenological predictions. Firstly, there are uncertainties due to our poor knowl- 

edge of the structure functions and of the coupling constant QS. These uncertainties 

will be treated in a way similar to ref. [S]. W e use three different sets of structure 

functions (DFLM) from Diemoz et 4221, obtained by fitting the same data set 

with three different values of A, = 160, 260, 360 MeV, (As = 101, 173, 250 MeV). 

The values of A in the MS scheme with four or five flavours of effectively massless 

quarks are denoted by A4 and As respectively. The DFLM structure functions re- 

flect the uncertainty in the deep inelastic data, the error in the knowledge of as and 

the correlation between the determination of the gluon distribution function and 

A. We will also present some results obtained using the MRS structure functions 

of Martin et aL[23]. 

Uncalculated effects of even higher order are an another important source of 

uncertainty. A reasonable way to estimate these effects is by variation of the fac- 

torisation and renormalisation scale p. If the whole perturbation expansion for the 

cross section were known, it would be formally independent of the value chosen 

for p. The residual p dependence, present in perturbation theory at any finite or- 

der, is compensated in the complete perturbation series by the higher order terms. 

The residual JL dependence can thus be considered an estimate of the magnitude of 

higher order effects. The scale n should be chosen to be of the same order as the 

large scale Q, which characterises the hard process under consideration. This choice 

avoids the appearance of large logarithms of the form ln(Q/p) in the perturbation 

series. In the differential cross section for heavy quark production we have two 

mass scales, m or kT. we w-ill chose p = po G J(k$ f m*) as our central value. 

The scale choices p = 2~0 and p = &2 will be used to test the sensitivity of the 

result to variations in fi. When kT G n, this choice avoids the appearance of large 

logarithmic terms. When kT >> m the appearance of logarithmic terms cannot be 

avoided because of the presence of two widely different scales. If we maintain the 
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choice p o J(K$ + m’), the structure of thesi logarithmic terms is well known. It 

has been analysed in detail in sec. V. We will therefore be able to give an estimate 

of the size of the logarithmic terma which appear in the order ai. 

A further source of uncertainty is due to the poor knowledge of the mass of the 

heavy quark. Because of the steeply falling parton luminosities changes in mass of 

the heavy quark can lead to significant changes in the cross-section particularly at 

low energy. This effect will be examined from case to case. 

Unless stated otherwise, the differential cross sections we present are the average 

of the quark and antiquark production cross sections. The difference between the 

quark and antiquark production cross sections is small in all cases we have examined. 

The differential distribution in kT will be always given as du jdk$ s nd’u/(rkT. 

6.1. Collider Energies 

We begin by considering top production at collider energies. In fig. 6 we show the 

various contributions to the inclusive differential cross section for the production of 

a 40 GeV top quark at fi = 630 GeV and y = 0. We have used our central values 

of the parameters, AS = 173 MeV and p = ,/(g + m’). At this energy the gluon- 

quark subprocess is negligible and the gg fusion and qij annihilation mechanisms 

give about the same contribution. The rise in the gg contribution and the dip in qij 

contribution, evident at low kT, are effects of the l/v singularity. This was discussed 

in Sec. II. At this energy the two effects tend to cancel in the total. As explained 

in ref. [I] we expect a depletion of the cross section if the qq mechanism dominates 

and an enhancement if the gg mechanism prevails. 

In figs. 7,8, 9 and 10 we present the differential cross sections for top production 

at CERN and FNAL energies. The top quark mass has been taken to be 40 or 

80 GeV. We also show the corresponding lowest order results, evaluated with the 

same value of the parameters. The lowest order results have been multiplied by an 

arbitrary factor which varies from case to case so that one can compare the shapes 

of the two curves directly. These graphs demonstrate that, with the same choice of 

the parameters, the shape of the differential distribution in O(ai) is the same as in 

O(a$). We conclude that the shape of the differential distribution for the production 

of a top quark is unlikely to be modified by higher order corrections in kinematic 
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regions in which the cross section is large. In tables 1, 2, 3, and 4, we also give the 

differential cross section at typical values of kT and y, together with the variations 

in the cross section when As is changed from its central value of 173 MeV to 101 

or 250 MeV and when p is changed f?om its central value ~0 = J(k$ + m:) to 2~s 

or pe/2. The sum in quadrature of the positive (negative) variations is also given. 

The errors on the top cross section are moderate. 

We now turn our attention to bottom production at colliders. We remind the 

reader that the uncertainties in the prediction of the total bottom cross section 

at collider energies are lruge(l,S]. Nevertheless the shape of the O(czz) differential 

distribution is remarkably similar to the lowest order shape. This is illustrated in 

figs. 11 and 12 where we plot the O(oj) diff erential cross section, together with the 

lowest order contribution scaled by an arbitrary factor. 

There is a new uncertainty in the differential cross section when kT >> m, due 

to the presence of large logarithms of k T / m. For top production, this uncertainty is 

irrelevant at present energies since the production rate is negligible at kT >> m,. For 

the production of bottom and charm the large kT region is of great experimental 

importance, so we will try to estimate the effect of the large logarithms. If we 

choose p z J(G + m’), the structure of the logarithmic terms is as explained in 

Sec. V. The sensitivity to the choice of p can be considered as a first estimate of the 

error induced by the presence of the logarithmic terms. To obtain a more reliable 

estimate of their effect we have calculated a limited number of terms of the order 

a:(wln(kT/m))2. The estimate is performed by iteration of the Altarelli-Parisi 

equation. The resultant corrections can be ascribed to the diagrams shown in in 

fig. 13. Their contribution is not very large in the observed kT range and always 

tends to soften the kT spectrum. We have not used this estimate to change our 

central prediction, but instead have included it as a further source of uncertainty. 

It should be pointed out that this is an incomplete treatment of the logarithmic 

terms. In fact, it is possible to sum all terms of the form a~(ush(k~/m))” and 

a~(ash(kT/m))“. This calculation has not yet been performed. 

Values of the differential cross section for bottom production are given in tables 5 

and 6, for some typical values of the rapidity and transverse momentum. Our 

estimates of the theoretical uncertainties are also shown. 

It is interesting to compare our results with the UA1[24] data for the production 
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of bottom. The values quoted by the UAl collaboration are as follows. 

a(@ -+ b + X, kT > 6.0 GeV, IyI < 1.5) = 2.25 f 1.62 pb 

u(@i + b + X, kT > 6.5 GeV, (y\ < 1.5) = 1.2 + .66 pb 

a(@ + b + X, kT > 10 GeV, Iy( < 1.5) = .415 f .199 pb 

a(pj5 -t b + X, kT > 15 GeV, lyl C 1.5) = .21 zb .0945 pb 

u(pj.3 -t b + X, kT > 23 GeV, IyI < 1.5) = .038 zb .0175 gb 

u(@ -* b + X, kT > 32 GeV, Iyl < 1.5) = .0115 f .00552 pb. (6.1) 

The sum of the cross section for the production of a b and the cross section for 

the production of a 6 quark is given by twice the above numbers. In fig. 14 we 

show our central prediction, together with an error band. In table 7, we give our 

prediction of the cross section, together with our estimate of the relevant theoretical 

uncertainties. The agreement is remarkably good at relatively low &, but at high 

kT the data lies above the theoretical result. Due to the large uncertainties in both 

the theoretical prediction and the data, we do not yet consider this discrepancy of 

great importance. We have obtained similar results by using the structure functions 

of ref. 1231. At & = 32 GeV using the scale choice ~1 = ~0 we get, 

MRS set 1, AS = 107 MeV: u(kT > 32 GeV, (y( < 1.5) = .00169 ,ub 

MRS set 2, As = 250 MeV: U(kT > 32 GeV, IyI < 1.5) = .00315 pb 

MFLS set 3, AS = 178 MeV: o(kT > 32 GeV, IyI < 1.5) = .00188 pb. (6.2) 

With MRS set 1 and 3, the predictionlies inside the error band of fig. 14 and table 7. 

With MRS set 2 we get a somewhat higher value, although not high enough to be 

in agreement with the UAl data point. We attribute this difference to the fact that 

the set 2 has a parametrisation of the gluon structure function much harder than 

the other two. This is somewhat in contrast with direct photon data[25]. Fig. 15 

shows our prediction for the analogous quantity at the energy of the Tevatron. 

In figs. 16 and 17 we show the y and kT distribution of charm in proton antiproton 

collisions. The prediction of the charm cross sections at collider energies is controlled 

by the low z region of the gluon distributions. We shall return in the following 
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subsection to the problem of predicting charm cross sections. It should be apparent 

to the reader that figs. 16 and 17 can at best give qualitative information about the 

charm cross-section. 

6.2. Fixed target energies 

The majority of the data on heavy quark production refers to charm quark produc- 

tion at fixed target energies. The analysis of the effect of the radiative corrections in 

charm production is very difficult. Although it is in practice very easy to calculate 

cross sections using some parametrisation of the structure functions, with a given 

choice of the subtraction scale, it is extremely difficult to estimate the reliability of 

the results. The problem originates from the smallness of the charm quark mass. If 

we choose p = J(g + m:)/2 in order to estimate the scale sensitivity of the result, 

at low kT we obtain p = .7 - .8 GeV. Most parametrisations of the structure func- 

tions require p 2 3 GeV. If one tries to evolve the structure functions backwards, 

to reach such a low scale, one encounters instabilities in the evolution equation. 

Nevertheless, it is interesting to examine the qualitative effects of the inclusion of 

the radiative corrections. We make no attempt to give estimates of the theoretical 

errors. We will always use the DFLM structure functions, with A, = 260 MeV, 

/J = 2J(m: + k:) and m. = 1.5 GeV. We stress that in all cases errors will be 

very large, and their estimate very difficult, so that our results will at best have a 

qualitative significance. 

It is interesting to see if the radiative corrections provide for any enhancement 

in the large zg region in proton-proton collisions. In fig. 18 we show the full O(o$) 

differential distribution in zv for three typical values of the centre of mass energy. 

No large enhancement is predicted at large Z-P. This conclusion was already reached 

in ref. (71. In the range 0.1 < zv < 0.6 the zp behaviour is consistent with (1 - zv)” 

for n between 6 and 7.5. In fig. 19, we show the kT distribution for positive zv. 

The experimental results on the zp distribution of charmed hadrons are in con- 

flict. Some ISR experiments[26] report very large cross sections for charmed baryon 

production in the forward direction. On the other hand, fixed target experiments[29] 

and other ISR experiments[27] do not observe such an effect. It is clear that the 

result of fig. 18 cannot justify the results of ref. [26]. 



-24- 

In lowest order QCD, there is no difference between heavy quark and heavy 

antiquark production. When radiative corrections are included, there is a difference, 

which comes from the subprocesses 49 + Q(Q)+X, and qq 4 Q(Q)+X. Examples 

of interference diagrams responsible for the charge asymmetry are shown in fig. 20. 

These effects will be largest in processes which involve predominantly the quark 

or antiquark distributions. It is therefore natural to look for these effects in pion 

induced processes. In fig. 21, we show the Zp distribution of c and E production in 

s-P collisions. The small difference between the c and E distributions comes mostly 

from the qq annihilation subprocess. The effect becomes more pronounced as xv 

grows. For example, at zp = 0.4, 0.6, 0.8 the cross sections for the production 

of a E are larger than the cross sections for the production of a c by factors of 

1.04, 1.1, 1.15 respectively. 

This effect should not be confused with the so called leading particle effect. In 

r-N collisions the leading mesons are D-, Do, which carry an anti-charm and a 

charm quark respectively. The charge asymmetry will manifest itself as a difference 

of the total D-, fl production, minus the D+, De production. 

If the leading particle effect is as large as reported in ref. [28] (with very small 

statistics), this charge asymmetry will be completely washed out. On the other 

hand, if the effect is as reported in ref. 129) then the charge asymmetry may be 

visible in a high statistics experiment. 

The expectations for total bottom production cross section at fixed target en- 

ergies are shown in fig. 22. The corresponding curve for pion induced bottom 

production is shown in fig. 23. Note that at lower energies pion beams are more 

ellicient than proton beams for producing bottom quarks, even when the energy 

degradation inherent in producing a secondary beam is taken into account(301. 

The xv distributions of the produced bottom quarks are shown in fig. 24. We 

predict that & quarks are more copiously produced than b quarks in the large xv 

region. The observability of these effects is a matter of experimental detail. In 

figs. 25 and 26 we show the differential distributions for bottom production in pN 

collisions at fi = 40 GeV and pp collisions at @ = 62 GeV. 
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7. Conclusions 

The calculation of the radiative corrections has allowed us to make more reli- 

able predictions for heavy quark differential distributions in hadronic collisions. In 

general we find that the shapes of the lowest order predictions are not appreciably 

altered by the inclusion of the first radiative correction. 

Our results are most accurate for the case of the top quark. The differential 

distributions of top quarks are well predicted by perturbative QCD. 

Bottom production cross sections are subject to larger theoretical errors. Our 

prediction for bottom production at the CERN collider agrees well with experimen- 

td results, except at the largest values of kT. We have analysed the theoretical 

problems one encounters in heavy quark differential distributions at very high kT. 

In charm hadroproduction, the theoretical errors are even larger and hard to 

estimate. The general effect of our prediction is to increase the value of the cross 

section by a constant factor. We do not see an enhancement of the cross section in 

the large xv region of the magnitude necessary to explain the cross section for A. 

production observed at the ISR. We also show that there is a charge asymmetry for 

charm and bottom production in pion induced co&ions which may be measurable. 
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Figure Captions 

Fig. 1: The QCD picture of the inclusive production of a heavy quark in hadron- 

hadron collisions. 
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Fig. 2: 

Fig. 3: 

Fig. 4: 

Fig. 5: 

Fig. 6: 

Fig. 7: 

Fig. 8: 

Fig. 9: 

Fig. 10: 

Fig. 11: 

The graphs contributing to the lowest order parton cross sections. 

Examples of graphs of contributing in order 0: to the parton cross section. 

Graphs responsible for the l/u singularity. The open circle stands for any 

lowest order graph. 

Graphs containing logarithmic singularities in the limit m * 0. The open 

circle stands for any lowest order graph. 

The contributions of the three parton sub-processes to the differential 

cross section for pji 4 Q+X with mo = 40 GeV and fi = 630 GeV. The 

three contributions are plotted versus kT at zero rapidity. The structure 

functions of DFLM with As = 173 MeV are used. 

Differential cross section for the hadrouic production of a heavy quark 

with a mass of 40 GeV at & = 630GeV. The cross section is plotted 

versus & for different values of the rapidity. The dashed lines represeut 

the lowest order contribution scaled by an arbitrary factor. The structure 

functions of DFLM with As = 173 MeV are used. 

As in fig. 7 but with mq = 80 GeV. 

As in fig. 7 but with mo = 40 GeV and fi = 1.8 TeV. 

As in fig. 7 but with mo = 80 GeV and fi = 1.8 TeV. 

Differential cross section for pi --t Q + X with mo = 5 GeV at fi = 

630 GeV. The cross section is plotted versus kT for different values of 

the rapidity. The dashed lines represent the lowest order contribution 

scaled by an arbitrary factor. The structure functions of DFLM with 

As = 173 MeV are used. 

Fig. 12: As in fig. 11 but with fi = 1.8 TeV. 

Fig. 13: Some diagrams of order ai that give enhanced contributions proportional 

to o$(osin(kT/m))’ at high h. The open circle stands for any lowest 

order graph. 
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Fig. 14: Inclusive cross section for the production of a heavy quark with a msss 

of 4.75 GeV, with kr and rapidity cuts, together with the corresponding 

experimental points from the UAl experiment[24]. 

Fig. 15: Inclusive cross section for the production of a heavy quark with a mass 

of 4.75 GeV, with kT and rapidity cuts at fi = 1.8 TeV. 

Fig. 16: Rapidity distribution of inclusive charm quark production in pp collisions 

at CM energies of 630 and 1800 GeV. The upper curves refer to the higher 

energy. 

Fig. 17: Distribution in kT for inclusive charm quark production in pp collisions at 

CM energies of 630 and 1800 GeV. The upper curves refer to the higher 

energy. 

Fig. 18: Distribution in zr of inclusive charm quark production in proton proton 

collisions at CM energies of 27.4, 38.7, and 62 GeV. The upper curves 

refer to the higher energies. 

Fig. 19: Distribution in kT of inclusive charm quark production in proton proton 

collisions at CM energy of 27.4, 38.7, and 62 GeV, with zr > 0. The 

upper curves refer to the higher energies. 

Fig. 20: Exampies of interference terms that contribute to the charge asymmetry 

in heavy quark and heavy antiquark production. 

Fig. 21: Cross section for the production of c and E in r-p collisions vs. zr. 

Fig. 22: Total cross section for the production of bottom in pN collisions vs. beam 

energy. 

Fig. 23: Total cross section for the production of bottomin vN collisions vs. beam 

energy. 

Fig. 24: Cross section for the production of b and 6 in n-N collisions vs. IF. 

Fig. 25: Cross section for the production of bottom vs. TV in pN collisions at 

fi = 40 GeV and pp collisions at fi = 62 GeV. 

Fig. 26: Cross section for the production of bottom vs. kT in pN collisions at 

d? = 40 GeV and pp collisions at \/s = 62 GeV. 
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APPENDIX A: 

The parton cross sections are available as a set of fortran functions. The routines 

for the gluon gluon subprocess are the following: 

hgY% P) + HQXOGGfTl ,REO) 

$)(w) * H’JEDGG(Ti.FtEO.NL) 

q(w) * H’JBDGG(Tl.RHO) 

hti’( W?,P) + HQHPGG(TX.T1,REO) 

Q)( ~17~2’1PP) * H’JBPGG(TX,Tl,RHO) 

hf;(?,w) + HGHLGG(TX,TI.RHO) (A.11 

in an obvious notation where TI = T~,TX = r, = l- ~1 - ~~,WiO = p and NL = nu. 

Analogous routines are available for the other subprocesses, according to the nota- 

tion convention G for gluon, Q for quark, A for autiquark. In the processes involv- 

ing initial quarks, the charge symmetric and charge antisymmetric contributions 

are given by sepruate routines. Therefore: 

h’d’(w) 99 + HtUi.DQA(Tl.RHO,NL) + ASHDQA,(Tl,RFIO) 

h$‘h,w) --+ H’JHPGA(TX,Tl,RHO) + ASHPQA(TX,Tl,REO) 

(4 
%q (7llP) + HGED’JA(Tl,RHO) - ASBDQA(Tl,RHO) 

(+) %q (?,n, P) + H@IPQA(TX,Tl,RHO) - ASHPQA(TX,Tl,RHO) 

h$)(n, n,p) + HDEPDG(TX,Tl.REO) + ASHPDG(TX.Tl,REO) 

qh, n, P) + HQiPQG(TX.Tl.RHO) - ASHPQG(TX,Tl.F3ID) CA.21 

There are also fortran functions which return the various correction terms which 

are appropriate for use in factorisation schemes other than MS . We have 

h:;)-hz) +CTHDGG(Tl,FtHO,NL) 

h$-) _ h$ -tCTHDqA(Tl,RHO,NL) 

h$)-hg) -) CTiiDQG(Tl,RHO.NL) 
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h$$- hg + CTHPGG(TX,Tl.RBO,NL) 

h$;'-h;t + CTHPQA(TX,Tl,RHO,NL) 

h$+,+)-hi? -CTEPQG(TX.Tl,FUiO,NL). (A.31 

The above functions invoke other functions, which give the values of the function 

K in Sec. IV: 

K$(z,wf) + XKDGG(NL) 

K~:)(z,mf) -+ XKPGG(X,NL) 

K$(wf) + XXLGG(X.NL) 

Kg(z,w) + XXDqQ(NL) 

K;:)(z,mr) + XIWPQ(X,NL) 

q;(wf, + XKLqq(X.NL) 

q~(z,w) + XKDqG(NL) 

Kp(z,nlf) + XKF”JG(X.NL) 

Kg(wf) + XKLPG(X,NL) (A.41 

The above functions are given for the particular definition of the parton densities 

of ref. [17]. They should be appropriately changed in order to use other definitions. 

A full list of the routines is given in Table 8. 



1.1 .14 .028 -.02? -.033 .012 .031 -.043 
1.65 .382 x10-' .102 -.086 -.osa .046 .112 -.131 
2.2 .235 ~10-~ .126 -.0?3 -.053 ~002 ,126 -.OQO 

24 0 .l?? .03 -.032 -.038 .Oll ,032 -.050 
.55 .146 .025 ~027 -.032 ,010 .02? -.042 
1.1 ,758 x10-1 .14.9 -.15 ~181 .068 ,163 -.23S 
1.65 ,181 xlWL .05 -.043 -.04? .020 .054 -.063 
2.2 .??8 x10-3 .455 -.26? -.183 -.032 ,455 -.324 

32 0 304 x10-1 .14 ~164 -.lQQ ,058 ,151 -.258 
.55 ,732 x10-l .118 -.136 -.165 .051 .129 -.214 
1.1 .353 x10-1 .066 -.O? -.085 .032 ,073 -.lll 
1.65 .699 x10-' .198 ~172 -.l?? .063 ,208 -.24? 
2.2 ,158 x10-J .105 -.061 -.04 -.013 .105 -.0?3 

40 0 .432 x10-l .06 ~076 -.096 .029 ,067 -.I23 
.55 .343 x10-1 .05 7061 ~078 .025 ,056 -.OQQ 
1.1 .152x10-' .026 -.03 -.03? .013 .029 -.04? 
1.65 .23? x10-' .06? -.056 -.058 ,014 .069 ~082 
2.2 .145 x10-4 .lll ~061 ~042 -.020 .lll ~074 

4.3 0 .203x10-' .025 -.034 -.045 .014 .029 -.05? 
.55 .156 x10-l .02 -.02? -.036 .Oll ,023 -.045 
1.1 ,631 x10-* .098 -.119 -.15 ,048 ,109 -.192 
1.65 .?35 x10-' .198 -.1?6 -.l? .012 .198 -.245 
2.2 ,174 x10-6 .152 -.085 -.065 -.03? ,152 -.lO? 

Table 1: Differential cross section for top production, with fi = 630 GeV, mt = 

40 GeV, for various values of kT and the rapidity y. Columns 4-7 give the variation 

of the result when one of the parameters /.L, &,, is changed from its central value 

as indicated above the column. Th e appropriate power of ten, shown explicitly 

in column 3, is understood in columns 4-9. The quantity +A (-A) is sum in 

quadrature of all the positive (negative) errors in columns 4-7. 



.a2 .925 x10-3 .12 -.144 -.198 ,024 ,122 -.245 
1.23 .212 x10-3 .037 -.038 -.047 -.003 ,037 -.060 
1.64 .789 x10-5 .261 -.I99 -.203 -.085 ,261 -.284 

4.9 0 ,117 x10-' .014 -.017 -.025 ,004 .014 -.030 
.41 .929 x10-J All -.135 -.196 .024 .113 -.238 
.a2 ,424 x~O-~ .058 -.066 -.092 .004 .058 -.I13 
1.23 .787 x10-4 .143 -.14 ~174 -.031 .I43 -.223 
1.64 .114x10-~ .044 -.03 -.032 -.018 ,044 -.044 

64 0 .507x10-3 .059 -.072 ~106 ,008 ,059 -.128 
.41 .389 x10-1 ,047 -.056 -.082 .004 .047 -.099 
32 ,158 x10-3 .022 -.024 ~034 ~002 ,022 -.042 
1.23 .216 x10-' .041 -.039 -.049 -.015 .041 -.063 
1.64 ,348 x10-' .I53 -.097 -.114 -.089 ,153 -.150 

Table 2: Differential cross section for top production, with & = 630 GeV, m, = 

80 GeV. The meaning of the quoted errors is as in Table 1. 



1 

J 

e 

1 

2 

2.28 .401 ,093 -.08 -.104 .068 .I16 -.131 
3.04 ,257 x10-l .I23 -.081 -.078 ,066 .139 -.I13 

!4 0 .17 x10' .031 5029 -.023 -.002 .031 -.037 
.76 .I43 x10' ,026 -.025 -.021 ,001 ,026 -.033 
1.52 .797 .I57 -.I45 -.153 .044 .163 -.211 
2.28 .22 .052 -.046 -.058 ,038 ,064 ~074 
3.04 .I05 x10-1 .057 -.035 -.029 .021 ,061 -.046 

32 0 .961 .173 -.I66 -.134 -.014 .I73 -.213 
.76 .797 .I46 -.14 -.I22 ,000 .146 -.186 
1.52 .423 .083 -.079 -.064 .024 .086 -.I15 
2.28 ,103 .025 -.022 -.028 .018 .031 -.036 
3.04 .356 x10-l .203 -.12 -.083 ,034 ,206 -.145 

40 0 .506 .092 -.089 -.074 -.008 .092 -.I16 
.76 .414 .076 -.074 -.066 ,000 .076 -.lOO 
1.52 .208 .041 -.039 -.043 .012 .042 -.OJB 
2.28 ,438 x10-l .11 -.099 -.I2 .076 ,134 -.156 
3.04 208 x10-1 .063 -.038 -.024 ,002 .063 -.045 

48 0 .26 .047 ~046 -.04 -.004 .047 -.061 
.76 .209 .038 -.038 -.035 ,000 ,038 -.052 
1.52 .99 x10-1 .192 491 -.212 .060 ,201 -.285 
2.28 .178 x10-1 .045 -.041 -.049 ,030 .054 -.064 
3.04 .254 xIO-~ .164 -.097 -.059 -.Oll ,164 e.114 

60 0 .962x10-' .I79 -.173 -.I61 -.011 .179 -.236 
.76 .757 x10-1 .143 -.138 -.I37 .004 ,143 -.195 
1.52 .327x10-" .066 ~063 -.074 .021 ,069 -.097 
2.28 .433 x10-' ,131 -.I07 -.I18 .064 .I45 -.159 
3.04 ,107 x10-' ,091 -.048 -.028 -.017 ,091 -.055 

Table 3: Differential cross section for top production, with v% = 1800 GeV, mt = 

40 GeV. The meaning of the quoted errors is as in Table 1. 



dF= 
h- 
(GeV) 
1.6 

16 

32 

48 

64 

80 

96 

,800 ( 
Y 

0 
.62 
1.24 
1.87 
2.49 
0 
.62 
1.24 
1.87 
2.49 
0 
.62 
1.24 
1.87 
2.49 - 
0 
.62 
1.24 
1.87 
2.49 

0 
.62 
1.24 
1.87 
2.49 

3-- 
.62 
1.24 
1.87 
2.49 

0 
.62 
1.24 
1.67 
2.49 - 

:e 

r 
L 

v, 7?4 = 80 ( 
do 

GG 

WlGeV2) 
.439 x10-1 
.371 x10-1 
.212x10-' 
.647 x10-l 
,496 x~O-~ 
.386x10-' 
,328 x10-' 
,189 x10-1 
.565x10-' 
.397x10-3 
.276 x10-l 
.234 x10-l 
.13 x10-1 
,365 x10+ 
.212 x10-J 
.167x10-' 
,139 x10-1 
.734x10-* 
.18 x10-1 
.816 x10-' 
.882x10-~ 
.72 x~O-~ 
.358x10-1 
.746 x10-' 
.213 x10-' 
.437x10-1 
.35 x10-1 
.163 x10-' 
.279 x10-3 
.362x10-' 
.212 x10-a 
.I67 x10-' 
.717 x10-3 
,966 x10-' 
.266 x10-* 

Ge'i, Aa =I73 
I 

Ez 
.08 
,066 
.036 
.125 
.207 
.062 
.053 
.031 
.I14 
.168 
.013 
.037 
.022 
.077 
.096 
.028 
,022 
.126 
.042 
.403 
.134 
.I12 
.063 
.19 
.123 
.063 
.052 
.028 
.075 
.244 
.ozs 
,023 
.117 
.271 
.219 - 

[eV, p = j@ = 
A. (MeW 

ET 
-.074 
~063 
-.036 
-.119 
-.I37 
-.062 
-.053 
-.031 
-.105 
-.109 
-.014 
-.037 
-.022 
-.069 
-.059 
-.ozB 
-.022 
-.121 
-.035 
-.238 - 
-.134 
-.lll 
-.058 
-.147 
-.067 
-.ogs 
-.054 
-.027 
-.058 
-.126 
-.032 
-.025 
-.118 
-.209 
-.106 - 

-.075 
-.067 
-.044 
~156 
-.I17 
-.088 
-.059 
7039 
-.136 
-.09 
-.049 
-.043 
~027 
7089 
-.045 
-.03 
-.026 
-.I58 
-.044 
-.173 
~167 
-.142 
7079 
-.181 
-.048 

-.085 
-.071 
-.036 
-.067 
-.089 

-.043 
-.035 
-.161 
-.227 
-.077 

A 
250 - 
,000 
,004 
,010 
,065 
,029 - 
003 
,005 
,009 
,056 
,017 
002 
,004 
,006 
,035 
,001 
.001 
,003 
,037 
,016 
..035 
xi- 
,016 
.019 
,056 
-.018 - 
.008 
,010 
,009 
.016 
-.050 
.oog 
.006 
,037 
,031 
-.058 - 

:I &z T; 
l- +A 

.08 
.067 
.038 
.141 
,209 
.062 
,053 
.033 
,127 
.169 
.044 
.037 
.023 
,085 
.096 
.026 
,022 
.131 
.045 
,403 
.134 
.113 
.065 
,199 
.123 
.064 
,053 
.029 
.076 
,244 
.029 
,024 
.123 
.273 
.219 - 

& 
-A 

.106 
-.092 
~056 
-.I96 
-.181 
xii 
..079 
..050 
..172 
..I41 - 
-.066 
-.057 
-.035 
..112 
-.074 - 
-.040 
-.034 
-.199 
-.056 
-.294 - 
-.214 
-.180 
-.098 
-.233 
-.052 - 
-.108 
-.089 
-.045 
-.089 
-.154 - 
-.053 
-.043 
-.200 
-.308 
-.I31 - 

Table 4: Differential cross section for top production, with v’?? = 1800 GeV, m, = 

80 GeV. The meaning of the quoted errors is as in Table 1. 



h 

(GcV) 
.Ol 

5 

10 

20 

40 

60 

80 

&?= 630GeT 

1 .319 x10-1 
2 ,164 x10-1 
3 .482 x~O-~ 

1 ,203 x10-l 
2 .866 x10-3 
3 ,999 x10-' I-- 0 .503 x10-' 
1 ,350 x10-' 
2 .844x10-' 

I 

4 

~. 
ma=4.75Ge 

P 
Ma/2 %40 
,074 -.041 
.070 -.040 
.054 ~032 
.231 -.143 
.198 -.150 
.ObO -.032 
.056 -.oso 
.043 ~024 
.187 -.114 
.170 -.128 
.028 -.019 
,266 -.171 
.I96 -.122 
.079 -.048 
.056 -.037 
.119 -.078 
.I07 -.069 
.071 -.043 
.218 ~128 
.090 ~048 
.llO -.066 
,090 -.053 
.41r ~242 
.532 -.305 
.228 -.144 
.158 -JO2 
.374 -.255 
.084 -.046 
.179 -.116 
.091 ~060 
.057 -.036 
,050 -.044 
.I60 -.162 
.221 -.166 
.023 -.030 
.023 -.069 

& 
As 1 - 

101 
-.oBB 
..064 
-.048 
-.231 
-.270 
-.053 
-.050 
-.037 
-.186 
~225 
-.024 
-.224 
-.166 
-.075 
~056 
-.075 
-.069 
-.048 
~183 
-.053 
-.043 
~038 
-.223 
-.388 - 
-.090 
-.071 
~242 
-.027 - 
400 
-.057 
-.033 - 
~048 
-.191 
~128 
-.045 
-.114 - 

.73 lv 

.v) 
250 
Ibsl 
.075 
.058 
.327 
.587 
062 
.057 
.044 
.254 
.490 
3% 
.240 
.183 
.I01 
.122 
.087 
.062 
.048 
.240 
JO4 
.020 
.019 
.166 
.499 
.013 
.019 
.162 
.012 
.022 
.019 
.015 
.013 
.061 
-.05: 
XG 
.013 - 

IeV ‘,p=po=. 
T m (Gel’) 
-I- 

I 

L 
4.5 - 
.077 
.071 
,053 
.243 
.303 - 
,060 
.056 
.041 
.192 
.250 
.025 
.223 
,153 
.061 
,050 - 
.061 
.053 
,033 
.102 
.038 
.018 
,015 
,068 
,093 - 
.016 
.Oll 
,026 
.004 
.oos 
.004 
,001 - 
.002 
.005 
0 - 
,001 
-.OOl - 

A 
5 - 
-.056 
~052 
-.037 
-.164 
-.183 
-.045 
-.041 
-.029 
-.I32 
-.I52 - 
-.020 
-.178 
-.119 
-.045 
-.035 - 
-.052 
-.046 
~028 
-.084 
-.029 - 
-.017 
-.014 
-.066 
-.076 
xi6 
-.Oll 
-.024 
-.005 
xii 
-.003 
-.OOl 
-.002 
-.004 
0 - 
-.OOl 
,001 - 

0 
0 
0 
0 
0 - 
0 
0 
0 
0 
0 - 
-.OOl 
-.007 
-.005 
-.002 
-.OOl 
zii 
-.OlO 
-.007 
-.022 
-.002 
-.027 
-.023 
-.123 
-.I54 - 
-.116 
-.087 
-.244 
-.002 - 
-.I34 
-.073 
-.023 
-.054 
-.198 
-.030 - 
-.038 
-.083 - 

.134 

.I25 
,095 
,468 
.690 
.105 
,098 
.074 
.369 
,576 
.046 
.422 
.309 
.I41 
,143 
.149 
.135 
,091 
.339 
.I43 
.113 
,093 
,454 
,735 
.229 
,159 
,408 
,085 
xi- 
.093 
.059 
.052 
,171 
,221 
.025 
,026 - 

-A 

-.098 
-.091 
-.069 
-.317 
-.359 - 
-.076 
-.071 
-.053 
-.255 
-.300 - 
-.036 
-.334 
-.238 
-.lOO 
-.075 - 
-.I20 
-.I08 
-.071 
-.240 
-.077 
-.085 
-.071 
-.358 
-.522 - 
-.206 
-.I52 
-.429 
-.053 
-.203 
-.llO 
-.054 
-.085 
-.319 
-.212 
-.066 
-.I57 

Table 5: Differential cross section for bottom production, for various values of kT 

and the rapidity y. Columns 4 through 9 give the variation of the result when 

one of the parameters p, As, or mb, is changed from its central value, as indicated 

above the column. The quantity 6 represents the effect of some terms of the order 

d-(wln(k~lmtJ)2. The quantity +A (-A) is the sum in quadrature of all the 

positive (negative) errors in columns 4 through 10. 
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zs----- 
(pb/TGeV’) 
,554 
,529 
,297 
.115 
,994 x10-2 
.459 
.431 
,241 
.950 x10-1 
,794 x10-z 
,257 
,242 
,120 
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,299 x10-3 
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.923 x10-’ 
,245 x 1O-1 
,280 x10-3 
.957 x 10-1 
.346 x 1O-J 
.288 x10-J 
,315 x10-4 
.410 x10-6 
,600 x~O-~ 
.446 x10-% 
,645 x lo-’ 
,588 x lo-’ 
,355 x10-7 
,669 x lo-” 
.321 x 1O-9 
.123 x 1O-9 

V. 

L 
GF 
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069 
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034 
315 
063 
067 
059 
280 
263 
036 
038 
031 
135 

.lOl 

.021 

.206 
,130 
,042 
.177 
.034 
.315 
,102 
,131 
1.181 
riii 
,119 
,136 
,255 
.261 
,198 
,345 

I 
.250 
,149 
,737 
088 
,028 - 

- 
%a - 
-.039 
-.044 
~048 
-.024 
-.261 - 
-.033 
-.035 
-.037 
-.lSl 
~208 - 
-.028 
~026 
-.019 
-.082 
-.070 

-.01s 
-.143 
-.078 
~024 
-.107 
-.021 
-.194 
-.058 
-.074 
-.474 - 
-.084 
-.072 
-.088 
-.157 
-.164 
-.123 
-.206 - 
-.160 
-.096 
-.330 - 
-.068 
~024 - 

2 
101 
-.215 
-.207 
-.128 
-.057 
~621 
~172 
-.165 
-JO1 
-.463 
-.493 
-.085 
-.081 
-.046 
-.lSl 
449 
-.030 
~281 
-.145 
-.049 
-.166 
-.021 
-.196 
-.076 
~124 
-.360 
-.055 
-.050 
-.lOO 
-.131 

-.098 
-.080 
-.209 
-.117 
-.078 
-.203 
-.073 
-.029 

.153 .078 

.785 .369 
1.229 ,560 
,130 .056 
.I22 .054 
.068 ,030 
.320 .122 
.387 .lll 
.042 .017 
.386 .I54 
,196 .072 
.081 .023 
.401 ,100 
.022 .007 
,199 .067 
.085 ,019 
.201 ,027 
,213 ,350 
.028 ,012 
.026 .OlO 
JO0 .Oll 
,157 .013 
.007 .014 
.014 .OlO 
.182 .009 
.003 ,010 
,012 ,006 
-.183 .006 
.OlO ,003 
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5 - 
-.117 
-.114 
-.072 
-.032 
-.319 - 
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-.OSl 
-.057 
-.258 
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-.132 
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-.012 
-.OlO 
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mr = 4.75 GeV. A. = 173 MeV, fi = p. = ,/ I -2 
‘h’ 
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-.003 
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xii 
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1.718 

.307 
.293 
,182 
.911 
1.375 
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,139 
,081 
,368 
,415 

.049 
,463 
,246 
,094 
,450 
.041 
,379 
,135 
.241 
1.255 
,144 
,122 
,170 
.299 
,261 
.198 
,390 
,250 
,149 
.737 
,089 
,029 

-A 

-.248 
..240 
-.155 
..070 
..745 
ZiG 
..192 
..121 
-.563 
..579 
ZEi 
..096 
..056 
..228 
-.181 
3% 
-.344 
-.17i 
-.051 
-.211 
-.033 
-.301 
-.105 
-.157 
-.77a 
-.127 
-.lll 
-.176 
-.205 
-.276 
-.217 
-.386 
zic 
-.198 
-.387 
-.150 
-.057 - 

Table 6: Differential cross section for bottom production at a centre of mass energy 

of 1800 GeV. The notation is as explained in Table 5. 



Table 7: Cross section for inclusive bottom production, with transverse momentum 

and rapidity cuts. Columns 4 through 9 give the variation of the result when one 

of the parameters p, As, or rnb, is changed from its central value, as indicated 

above the column. The quantity 6 represents the effect of some terms of the order 

d(~S~(kT/%))‘- The quantity +A (-A) is the sum in quadrature of all the 

positive (negative) errors in columns 4 through 10. 
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Table 8: Fortranroutinesfor the various subprocesses. 
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