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Abstract

A consistent approach to the perturbative calculation of scattering am-
plitudes in hot gauge theories is developed. As an example, the damping

rate for a heavy fermion is computed.
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Understanding the collision of heavy nuclei at ultra-relativistic energies requires in-
sight into the properties of QCD at a temperature T, both in and out of equilibrium.!
Attention has focused recently on the properties near equilibrium for “hot” gauge the-
ories: QC D, in its chirally symmetric, deconfined phase, or for @QE D, at temperatures
much greater than the fermion mass. Particularly confusing is the infrared limit: for
instance, on its mass shell the damping rate for the gluon appears to be gauge de-
pendent, and, in certain gauges, of the wrong sign,? neither of which should be true

for the mass shell of a physical excitation.

In this Letter I argue that for quantities like damping rates, in hot gauge theories
an infinite subset of diagrams of higher order in the loop expansion contribute to
the same order in the coupling constant g as the lowest order result. I generalize the
methods of ref. 3 to develop an efficient technique for resumming all effects to leading
order in g. Doing so, I expect that the unphysical properties found previously? reflect

nothing more than incomplete calculations.

The essential step in computing processes that involve soft quanta in hot gauge
theories is the recognition that one must differentiate between effects that are of order

~ gT, and those that are g times terms ~ gT.

To start with, it is necessary to compute the terms ~ gT for every propagator
and vertex. By this I mean: let an external momentum for a given diagram be P*
(P* = (po,$),p = |p|), and analytically continue the diagram from euclidean p, to
real energies, w = ipy. The terms ~ gT' are those such that when the components
of all external momenta are soft, w and p ~ ¢gT, in magnitude the diagram is some

power of gT', with no extra factors of g left over.

The self-energy terms ~ gT have been computed for fermion and gauge fields
by Klimov and Weldon.* These calculations illustrate something generic to all terms
~ gT, including vertex renormalizations:® after the discrete sum over the loop kg is
done, in the remaining integral over spatial k, terms ~ gT only arise from hard k ~ T,
and not from soft £ ~ gT. At hard k, however, loop corrections are never greater
~ g*. Consequently, any term ~ gT is simply computed by using the bare propagators
and vertices to one-loop order; even then, only a small part of the one-loop graph

contributes, when & is hard.

What is difficult to compute are quantities that are g times a power of ~ gT', since

typically they receive contributions from both hard and soft loop momenta. For soft
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momenta, by definition terms ~ gT are as large as the bare propagators and vertices.
Thus when a term ~ gT is inserted into a diagram, such as through a self-energy
or vertex correction, in magnitude the result is as large as the diagram without the
insertion, although according to the loop expansion it is nominally of higher order.
Thus to include all effects of leading order in g, the complete renormalized propagators

and vertices to ~ g7 must be used, sewn together by the Schwinger-Dyson equations.

The necessity of including terms ~ gT for soft quanta was recognized by Kalash-
nikov and Klimov,? by Gross, the author, and Yaffe,! by Heinz, Kajantie, and Toimela,?
and again in ref. 3. Unlike these discussions, where only some terms ~ gT were
considered, I emphasize that the effects of every term ~ gT' — including not only

self-energy but vertex renormalizations — must be incorporated.

This is unlike low temperatures, such as in cold QED, when the fermion mass
m > T. Then any infrared divergence in a diagram is cut off by m, and loop effects
are uniformly small, < g°.

Even for hot theories, the euclidean green’s functions are far simpler than its
scattering amplitudes. For the former, since the momenta py is a multiple of =T,
one isolates the infrared divergences as coming from boson lines with py = 0. For
scattering amplitudes, after analytic continuation the energy ipo = w of either fermion
or boson lines is arbitrary, and the only scale that cuts off infrared divergences in loop

diagrams is radiatively induced, ~ gT', which is small relative to T'.
For the gauge field, to ~ gT the longitudinal and transverse self-energies are*®
2,2

_ 2 ipO . _ 3m DPo pg ipo .
I, = —-3m, (1 - ﬂL(zPo,P)) y Oe = 2;3 (1 - (1 + ?) E'I;L(’PO,P)) v (1)

with L(ipo,p) = log((ipo + p)/(ipo — p)), and my, ~ gT is the gauge field “mass”;
m2 = (N 4 Ny/2)(gT)?/9 for SU(N) with Ny isodoublet fermions.

The self-energies to ~ gT' are independent of gauge for either fermion or gauge
fields.*® This is crucial to the consistency of the present approach, since the renor-
malized propagators to ~ gT' determines the mass shell conditions that enter in going

beyond leading order, to ~ g(gT), etc..

For gauge fields, the form of the renormalized propagator does depend on the
choice of gauge. In Coulomb gauge, ;4° = 0, the renormalized gauge propagator is
Doo = Ay, Doi =0, and Ay; = (6‘j—pipj/p2)A¢ ywith Ay =1/(p? - 1I) , A =
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1/(p +p* — L) .

It would be onerous to compute with the renormalized propagators formed from eq.
(1) in the usual fashion, by performing the discrete sum over po in loop integrals. To be
able to efficiently calculate with these renormalized propagators, I fourier transform
with respect to pg, and work in a coordinate representation for the euclidean time,

7.3%5 This produces a spectral representation for the A’s:

Ap(ryp)=T E e T AL = /:o dw ((1 +n(w))e™  + n(w)e+w) Pre(w,p) ,

(2.2)

n(w) = 1/(ezp(w/T) — 1), and
pra(w, p) = p (wee(p), p)8(w — wee(p)) + £ (w, p)0(p — w) , (2.b)

6(z) = 0,1 for ¢ <,> 0 The spectral densities ps¢ are determined by the behavior
of Ay for ipg = w +10*: each A has a single pole above the light cone, lying on
the mass shell w = wy(p), with residue pj3’. Due to Landau damping there is a

discontinuinuity below the light cone, for 0 < w < p, which determines p#i*.

The transverse pole represents the usual transverse excitations of a gauge field,
renormalized by temperature to lie above the light cone by ~ my,: as p — 0,
we(p) = my, i = 1/(2my); as p — 00, wi(p) ~ p+3m}/(4p), p;** =~ 1/(2p). The lon-
gitudinal pole behaves like a massive excitation about zero momentum, wy(p) = m,
and pj** =~ (—1/p*)1/(2m,). As a collective mode, the residue of the longitudinal
mode is only significant for soft momenta < my,: for p 3> m,, the longitudinal mass
shell is exponentially close to the light cone, and its residue exponentially small:
wy(p) = p(1 + 2z0), A" =~ (—1/p*)zo(4p/(3m})), with z, = ezp(—2p*/(3m]) — 2).

Previous attention has focused on these quasi-particle excitations in the A’s,? but
the most important contribution to damping rates is from the discontinuities in the
spectral densities. For the damping rate of a heavy fermion, all that is needed is the

limit about zero energy:

. (3)

1\3 miwp - 3 miwp
) g ;iu (w,p) ~ g

“disc
Pf(w,p) = (—— > T e P n
¢ " 0 /)2 (pP+ 3"1’1'?,)2 , w—o 4 (pﬂ + (37rm2w/4) 2)

Since the self-energies to ~ g7 are independent of gauge, to this order the renor-
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malized propagator satisfies properties expected for a physical field. The transverse
spectral density is never negative, p; > 0; from the equal time commutation relations,

it satisfies a sum rule, [;° dw(2w)p:(w,p) = 1, which was checked numerically.5

Unlike the transverse density, the longitudinal density is never positive, p; < 0;
indeed, it is only smooth about zero momentum if one pulls out an overall factor
of 1/p?, as in eq. (3). From the example of the coupling of an (abelian) gauge
field to an external, conserved current,® it can be shown that p;, < 0 ensures that
pe contributes to physical quantities with positive weight; despite the 1/p? in py, its
effects are infrared finite. This happens because while A, couples to the space-like
part of the current, A, couples, essentially, to the time-like part. Also, p, does not
satisfy a sum rule like that for p;.

The treatment of the renormalized fermion propagator to ~ gT is similar. For
massless fermions, Klimov and Weldon* noticed that at positive energy (w > 0), the
renormalized fermion propagator to ~ g7 has not one, but two branches above the
light cone. One branch is standard: it has “mass” ~ gT', a residue that is ~ 1 for all p,
and chirality equal to helicity. The second branch is a collective mode — also above
the light cone by ~ gT, along this branch chirality is equal to minus the helicity,
while its residue decreases exponentially for p > ¢T.

It is direct to treat the case of fermions with non-zero mass, at least if m ~ ¢7'.% To
~ gT, there are still two branches in the fermion propagator, but as m increases from
zero, while the mode that had flipped chirality/helicity at m = 0 becomes lighter, its
residue descreases. By the time that m ~ T, the residue of the collective mode is
< ¢%, and its effects are negligible. For any mass, the spectral density in the fermion
propagator ~ 7? satisfies a sum rule like that for p;.

At temperatures T ~ 100 — 300MeV in the quark-gluon plasma, the up and
down quarks are essentially massless, with the strange quark mass ~ T'. Thus the
propagation of up and down quarks is strongly renormalized over soft momenta, and
exhibits a collective mode with flipped chirality/helicity; for strange quarks, loop

effects are < g?, and the collective mode can be ignored.

The great difficulty in computing in hot gauge theories is the necessity of comput-
ing terms ~ gT for the vertices. The vertex corrections ~ eT' have been computed
for hot QED:® while independent of gauge, when the external legs are soft its form

is involved, and not merely some function of the external momentum times v*.
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There are instances in which vertex and (some) self-energy corrections can be
neglected. For a heavy fermion F of mass M, M > T/g, self-energy and vertex
corrections are < g*T' /M, so that to order ~ gT', they can be dropped; the only effects
of ~ gT that need to be included are for the gauge field. (A similar simplification

occurs for any field with hard momentum.)

To leading order in g2, the imaginary part of F’s self-energy is®
dk F_ F_

/ L S pilw, k)G:(6(EF —EF,—w)+6(EF —EF_, +w)) .

t—t,t

(4)

I assume that F is on its mass shell (p* = (iE“:',ﬁ),EI‘,P = +/p? + M?), and used

Coulomb gauge; Cr is the Casimir, and Gy = 9°+1, Gy = 2(—° + 1) . There are

other terms to ~ g* not indicated in eq. (4), but these do not contribute to egs. (5)

Imzpz— . CrTr /(

— (7); these results are independent of the choice of gauge.®

Start with the case at rest, p = 0. The only way to satisfy momentum conservation
is through the last term in eq. (4), w = Ef — M =~ k?/(2M). For k ~ my, w =
m3/M < k, so only the p%ise’s of eq. (3) enter. Then

3g2C'FT ‘I’I‘L2 g CFT
ImIp ~ (W°—-1 g _+(¥°+1 +.o.; 5.a
Pa (P -) R I 0 T (sa)

an infrared cutoff feyeors was introduced. The first term is due to pdi* and contributes
to wave—function renormalization for F',

3g2CsT m:

ZF ~ 1+ .
p=0 167 M plsoss

(5.b)

There are other, gauge-dependent terms in Zp; this represents the most infrared
singular, imaginary term. Since Zr is not a physical quantity, the presence of pcutosy
is of no concern. For instance, to one-loop order in cold QED, terms ~ ¢®T/ptcutos+
appear in Zp. The higher power of 1/pcutoss in eq. (5.b) arises because, in including
all effects of ~ gT for the gauge field, one is implicitly including a subset of effects to
two-loop, and higher, order: eq. (5.b) is Zp — 1 = ¢*T?/p?,, ;,(T/M).

The second term in eq. (5.a) is due exclusively to p§**c, and alters the mass shell

for F; the pole in the renormalized propagator, —i p + M — X, is no longer at
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Winaes = M, but at 20

. F

Wmass =~ M- 7
p=0 87!'

T. (5.¢)

The sign of Im Wma,, is such that the pole is off the physical sheet, as it should be,
for a causal, stable theory. As only p; contributes to eq. (5.c), that —Im wmg,,, has
positive sign is another example (like that of an external current,® mentioned before)

of why p, is negative.

Consider now p # 0; I assume that p ~ T, so my; € p < M. Both terms in eq.

(4) contribute, w = =+ (E'f - E:'_,,) ~ *pk cos(§)/M. The dominant contribution in

eq. (4) is from the transverse density, when § = 7/2, and w =~ 0, eq. (3):

10T M m
ImSr ~ (1°—1)1=F —lo( 9). 6.
FP~T (‘7 ) ar " g Yoohye ("’)

An infrared divergence appears, which I cutoff at ppny,. Eq. (6.a) contributes to

wave-function renormalization,

2
.g°CrT ( m, )
Zr ~ 1+ lo 6.b

F p~T 47"? g Hphys ’ ( )

and moves the pole for F off the physical sheet, to:

2 2
P . p [(¢°CrT ( my ))
Wmase ~ M+ -——1— lo . 6.c
oA oM ' M ( 81 3 \ tonae (6.)

Despite appearances, Im Ir behaves smoothly about zero momentum. Egs. (6)
cannot be extended from p ~ T to p = 0, since then the approximate form of
w = +pkcos(d)/M no longer holds in eq. (4).

As is common to theories with infrared divergences, pcutofs is a parameter which
drops out of any measurable quantity. In contrast, yisny, contributes to the damping

rate of eq. (6.c), and so is a parameter of physical siginificance.

For non-abelian gauge theories, it is clear what determines py4,,. The logarithmic
divergence in eq. (6) arises from the behavior of pf*¢(w, p) for w < p < my, eq. (3).
In this limit, p%* is so much more singular than p§*® because for w = 0, p — 0,
I, ~ (gT)?, while to ~ gT, II, vanishes. This is special to keeping terms ~ ¢gT —

even for w = 0, there are terms in II; =~ g(gT)p.” These will cutoff the logarithmic



-7- FERMILAB-Pub-88/123-T

divergence in eq. (6), and fix pphys = pog?T, with po ~ 1. Thus for QCD,

log (ﬂmg ) = log (l) + .- )
phys g

For hot QED with scalar matter fields, one similarly expects ppny, ~ €2T'. For hot

QED with only fermion matter fields, presumably to any order in e, II; = p? for
w = 0,p — 0, and it is not apparent what sets the scale for y,,,, — it cannot be
larger than €27, but it could well be smaller.

In hot QED, the damping rates for light and heavy fermions are similar:® at zero
momentum, —Im Wma,, is ~ +e3T, while for p # 0, it is ~ +€*T log(eT'/pphys);
both terms are independent of gauge. A power counting analysis® indicates the same

qualitative behavior for the damping rates in hot QCD.

After this manuscript was completed, G. Baym and C. Pethick informed me that
they and H. Monien have also investigated a resummation of terms ~ ¢g7'.8 Although
they did not resum all terms of ~ gT', they did include the most important — those
for Landau damping. They find that 1/viscosity is ~ g* log(1/g): this ~ log(1/g)
differs from that in the self-energy, eq. (6), as it arises from ~ log(T/(gT)), instead
of the ~ log((gT)/(gT?)) of eq. (7).

I thank D. Boyanovsky and L. McLerran for discussions.
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