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Abstract

The large-distance behaviour of dilaton couplings is studied within the frame-
work of four-dimensional heterotic superstring theories. String loop correc-
tions violate universality of dilaton and graviton couplings, increasing dilaton
couplings at large distances. This implies a serious problem for string theories,

unless a non-zero dilaton mass is generated.
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The presence of dilatons — massless, totally gauge-neutral scalars — seems to be in-
evitable in string theories. One generally expects that dilatons interact with matter no
stronger than gravity, i.e. with couplings of order O(x = /47Gy); the number of dila-
tons, as well as detailed forms of their couplings, depend on particular models under

consideration.

The physical existence of dilatons is very much constrained by the results of experi-
ments designed to study deviations from Einstein’s theory of general relativity. Typically,
such experiments provide various bounds on the dilaton couplings, depending on the dila-

ton mass.!

The determination of the dilaton mass presents a very difficult problem, related to
ultra-violet string physics, supersymmetry breaking etc. On the other hand, as argued in
this letter, some general aspects of dilaton interactions, like their large-distance behaviour,
do not depend on the ultra-violet physics and can be studied by using an effective field
theory approximation. To be specific, we consider here only the minimal case of one
dilaton field, within the framework of so-called four-dimensional heterotic superstring

theories [2], however our analysis.could be readily extended to more complicated dilaton

systems.

In four-dimensional heterotic superstring theories, the dilaton field ¢ (more precisely,
its exponential) belongs to the chiral supermultiplet S, whose interactions with matter
and gauge fields are completely determined by the Kahler potential J = —log(S+5)+...
[3]. Let (4,%) and (B,§) denote two chiral matter superfields of mass m < 1/, in the
representations r and 7 of some generic gauge group, respectively.? The interaction

Lagrangian for this dilaton - gauge - matter system is given by [3]:
Lin = —kd[mpé+mpf+2m’A'A + 2m*BBY)
—i\/igmﬁ[A*T(“)d))\(“) — BT(G)EX(G) _ X(a).‘/',T(a)A + A(a)ET(a)Bt]

1
~g’k$[AIT A~ BTWB'T + wpFOFO™ + O(x?), (1)

where g denotes the gauge coupling constant and T'®) the gauge group generators in the

representation r. In eq.(1) we used the notation of ref.[5].

The dilaton interactions of eq.(1) exhibit the property that one would generally expect

1See e.g. ref.[1].
*Such small masses can be generated in some phenomenologically interesting superstring models by a

string analogue of the Higgs mechanism [4].
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for any massless neutral scalar: at the classical level, the zero-momentum coupling to
a particle on its mass-shell is proportional to its rest mass. Since the dilaton under
consideration originated from string theory, it is not surprising that its coupling constant
is equal to the graviton coupling constant x. Such a “strongly” coupled massless dilaton
would lead to unacceptable deviations from Einstein’s theory of general relativity; for
instance, non-relativistic measurements of the gravitational constant would yield a result
twice as large as the observation of light deflection from the sun. In the case of such a
strong coupling, laboratory, geophysical and astronomical data exclude a dilaton mass

lower than 10~* eV [6]. Could radiative corrections change this conclusion?

Instead of using the fully-fledged string apparatus in the calculation of radiative cor-
rections to the dilaton couplings, we shall first follow the effective field theory approach
of ref.[7], to estimate the size of string-loop effects; to be specific, we discuss the one-loop

effects, however our arguments apply to an arbitrary number of loops as well.

In order to determine the one-loop dilaton couplings to the order O(k), we evaluate
the kinetic energy corrections and the one-particle irreducible dilaton vertices. The ki-
netic energy corrections should be absorbed into rescalings of fields and masses, so that
the one-loop effective Lagrangian, expressed in terms of these rescaled fields, acquires
the canonical form of the kinetic energy terms. Finally, the dilaton vertices should be

expressed in terms of these rescaled fields and masses.

Since dimension d operators in the Lagrangian are weighted by the factor k%%, which
is of the order of the respective power of the ultra-violet string momentum cut-off 1/a’ =
9%/2k?, only the loops of light (i.e. of masses m < 1/k) string excitations may give
rise to large corrections, by yielding logarithms which become singular in the infra-red
limit of vanishing masses or momenta. Moreover, a simple power-counting argument
shows that the loops involving gravitational interactions are free of infra-red singularities
to the order O(x).> The only terms that require special attention are the matter mass
terms with “unnaturally” small m < 1/k, however in the supersymmetric theory under
consideration their smallness is protected to all orders by chiral symmetries that are
restored in the limit of m — 0; some logarithmic corrections are expected, though. We
thus conclude that only the loops involving light particles and gauge interactions may
give rise to non-trivial radiative corrections, provided that some infra-red singularities are
present. This justifies the use of quantum field theory, instead of a fully-fledged string

apparatus, in the calculation of these large contributions.

3Soft graviton singularities [8] are absent to this order.
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As far as the technical aspect of this calculation is concerned, the simplest way to
extract the leading logarithms from the Feynman diagrams is to use dimensional regu-
larisation of ultra-violet divergences, by continuing momentum integrals to D = 4 — 2¢
dimensions.* We subtract the ultra-violet e! poles, and take the limit € — 0. At this
point, the scale u of the leading logarithmic terms, of order g2 log(%)?/16x* ~ O(1),
should be identified with the string ultra-violet cut-off: u ~ 1/k. One important com-
ment is in order here. Radiative corrections induce some interactions which are absent
at the tree-level, for instance ¢3,A!'0#A etc. These terms, as well as corrections to the
terms already present in eq.(1), are individually gauge-dependent, however as expected,
this gauge-dependence cancels out in on-mass-shell amplitudes, i.e. after using equations
of motion.

As already mentioned in the introduction, we are mainly interested in the large dis-
tance behaviour of the dilaton couplings, therefore we restrict our attention to dilaton
couplings at zero momentum transfer. We obtain the following form of the effective

on-mass-shell scattering Lagrangian, quadratic in the matter fields:
Lopese = —Krd[mapt + mepf + 2m2A'A 4+ 2m2BBY] + O(x?), (2)

where now all matter fields correspond to rescaled canonical fields, with canonical kinetic

terms and inertial mass:

2
m}z—loop — m[l _ 9—8(;# log(nzmz)] . (3)

In eq.(3), C(r) denotes the quadratic Casimir operator for the representation r. The

factor K of eq.(2), which parametrises deviations of the dilaton coupling from the graviton

coupling constant, is given by:
c

Kl—loo? =1_ 9 47r(27‘) log(nsz) . (4)

In order to extend our result, eqs.(2)-(4), beyond the one-loop level, and to perform

summation of the leading logarithmic terms, it is convenient to make use of the sigma-

model approach to string theory. Let G,, and ¢ denote the background metric and the

background dilaton field, respectively, of the non-linear string sigma-model. A generic

string h-loop contribution to the effective Lagrangian is of the form [9]:

aIAEeﬂ' = /_C:r 662(h—1)$92h—2z(0h) , (5)

*No divergences other than logarithmic are encountered in the two- and three-point Green’s functions

under consideration; these are exactly the infra-red singular logarithms we want to extract.
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where O is an operator without the constant ¢ mode. In four dimensions, the sigma-
model metric and dilaton are related to the physical metric G, and dilaton ¢ (of the

S-matrix approach) [9] by the following equations:

étw = G#uezmb ) ¢ = K’d’ T (6)

For an operator O of conformal weight w, we obtain the following coupling of the zero-

momentum physical dilaton:
aIAEeﬁ' — m Oe2(1+w)n¢g2h—zzgl)62hn¢ . (7)

Note that the h-loop dilaton coupling to the operator O is completely determined by the
h-loop contribution Zg') to the operator O.

Since the four-dimensional string theory under consideration is supersymmetric, the
higher-loop corrections to the factor K, eq.(2), can be determined by studying the dilaton

coupling to the scalar field A. The effective Lagrangian for this dilaton - scalar system

is given by:

alceﬁ'(A’¢) — ——('LA"B“A[Z g2h—2zlgh)62hn¢] N mzAJ‘Aez'“’”[Z gzh—zZr(:)ezhmﬁ]

h=0 h=0

= QAN ALY g2 - mP AN Al 220

h=0 h=0

~ 26p{ B, AT A[S” hg™2ZM] 4 m2 AL A[Y (h + 1)g*P 22 }

h=0 h=0

+ O(x?). (8)

We now perform the rescaling of the scalar field A, to bring its kinetic energy to the
canonical form. In terms of this rescaled field, the Lagrangian of eq.(8) is given by:

LA, $) = —3.4'9"4 -mlAlA

0 a
- 2k¢{ G”Ata“A (gzéﬁlog Z) + m,z!AtA(l + gz—a?log Za)}, (9)

where the inertial mass is given by:

Zm
my = mzz—k ) (10)
Z=Y 9"z , Z.=Y gzl (11)

h=0 h=0
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After using the equations of motion for the scalar field A, we obtain the following result

for the factor K, defined in eq.(2):

8 .
K =1+¢ 39 2log(—) 1+g’;9?logmi- (12)

The leading logarithmic terms in the mass rescaling factor Z,,Z, ', eq.(10), can be
summed up to all orders in the gauge coupling constant by using the standard renormal-

isation group techniques. From the one-loop result of eq.(3), we obtain:

2(.2y74C(-)/Bo
Zm _ [9 (m )] ’ (13)

Ze | ¢
where the running coupling constant is defined by the usual leading logarithmic relation:

1 1

By substituting eq.(13) into eq.(12), we obtain the following result for the factor K in
the leading logarithmic approximation:

g*(m3)C(r)

a7 log(k*m?). (15)

Kllog =1—

Thus in the leading logarithmic approximation, the inclusion of higher-loop effects amounts
to the replacement of the coupling constant g in the one-loop result of eq.(4) by the run-
ning coupling constant corresponding to the energy scale set by the rest mass of particles
interacting with the dilaton. Note that the dilaton coupling is always larger than the
graviton coupling constant, for any gauge group or representation r.

There is another way of deriving eq.(12), which sheds some light on the dilaton in-

teractions in confining theories, for instance on the dilaton - nucleon interactions. Eq.(5)

shows that to all orders in the string loop expansion parameter g (gauge coupling con-

stant):

‘Ceﬂ(ﬁz» éw) = ‘Ceﬁ(ﬁz’ + log g, éﬂl’) = ['eﬂ-(’“ﬁv Guvezmﬁ) ) (16)
so that: 5 3
—LF = 247 —_rF,
0¢ 7 8g? (17
The coupling of the zero-momentum physical dilaton ¢ is given by:
0 —L(p=0) = 25(-G"* —— 2i)£°ﬁ(¢ =0) (18)
a¢ (?G"” 0g? '
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For a canonically normalised field A, the most general quadratic form consistent with

general covariance, is given by:
Lauear(¢ =0,G, 4) = —v _G(G“uauAtavA + m:AiA) . (19)

After applying eq.(18) and using the equations of motion, we obtain:

. B2
f (¢,4) = —2n(m;+gzé§25)¢A*A = ——21@(1+gz-—(-9——logmf!)m:¢AfA, (20)

L 3g?

quadr
in agreement with the result of eq.(12) for the factor K. The same result can be derived
explicitly for fermions, without using supersymmetry. Of course, in a supersymmetric

theory the factor K is equal for fermions and bosons of equal masses.

It is clear from our derivation that eq.(20) follows from: i) general covariance and ii)
particular dependence of the effective action on the background dilaton field: £f($) =
L(¢ +log g). It is generally expected that non-perturbative effects do not spoil general
covariance. Also, it seems reasonable to assume that low-energy phenomena do not affect
the Planck-scale relation between the coupling constant and the dilaton background. In
other words, we expect that, even in a confining theory like QCD, the dilaton couples to
the rest mass mp of composite particles, e.g. nucleons, with the factor K given in eq.(12).
In a confining theory, the typical particle mass is of order of the strong interaction scale

A ~ 1 exp(—8n?/Bog?) [7], therefore we expect:

16#2

g > 1 | (21)

K =~ 1+

Similar considerations can be repeated for the graviton couplings, with the conclusions
that: i) the graviton coupling x remains unaffected by radiative corrections, ii) the inertial
mass mp is equal to the gravitational mass, i.e. the mass that couples to spin-two
gravitons. The equivalence principle is not violated in the graviton sector, as expected

from general covariance.

We conclude that the universality of dilaton and graviton couplings does not hold
beyond the tree-level; as seen from eqs.(15) and (21), at low energies the dilatons couple
stronger than the gravitons. The effective non-relativistic coupling, induced by the super-
position of one-dilaton and one-graviton exchanges is equal to (1 + K)«. In the presence
of dilaton interactions, the equivalence principle is violated: non-relativistic matter in-

teracts with couplings different from massless gauge bosons that couple to gravitons only,
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with coupling equal to k. Moreover, since the dilaton coupling contains the factor K,

eq.(12), which depends on the rest mass, even the weak equivalence principle is violated.

In summary, we studied radiative effects in dilaton interactions with the conclusions
that at large distances dilatons couple stronger than gravifons, and violate the equivalence
principle. We confirm that without addressing the dilaton mass generation problem, it is
not possible to avoid serious phenomenological problems in string theories with massless

dilatons.

We acknowledge useful discussions with A. De Rujula, J. Ellis and S. Ferrara.
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