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ABSTRACT: We investigate the hadron mass spectrum in lattice QCD with 

two flavors of dynamical quarks. We use 6’ x 24, S3 x 24 and 10’ x 24 lattices 

with S/g2 adjusted so that the thermal crossover temperature is 1/4a or 1/6a. At 

these values of 6/g2 flavor symmetry is not restored and the familiar problem of 

the nucleon to rho mass ratio is not fixed by the dynamical fermions. For compar- 

ison and checking we measure the spectrum in the quenched approximation using 

analogous couplings and identical methods. The effects of the finite spatial size are 

investigated and found to be small. We discuss our fitting procedures and our con- 

trol of systematic errors in some detail. We combine our mass measurements with 

previous calculations to estimate the temperature for the transition to a chorally 

symmetric phase of QCD in physical units. 



I. INTRODUCTION 

The advent of stochastic simulation techniques’ in lattice gauge theory has raised 

the tantalizing prospect of computing the masses of the hadrons2 from first principles. 

Eventually coupling constants, 3 wave functions4 and weak decay amplitudes5 as well as 

masses should be calculable. In practice, these computations’ are proving to be more 

difficult than early optimistic estimates suggested. Nevertheless, a numerical computation 

of the hadron spectrum would be a dramatic test of QCD and might well lead to a better 

understanding of QCD at low energies. 

We have performed a moderately large simulation of lattice QCD with two flavors of 

dynamical quarks using the Kogut-Susskind formulation of lattice fermions with lattices as 

large as lo3 x 24. Our simulation uses quark masses of 0.1,0.05 and 0.025, which are larger 

than the real world u and d quark masses. Although we are not in the continuum limit, as 

evidenced by the fact that flavor symmetry’ is not restored, it is still interesting to compare 

our results with quenched approximation calculations. We also did a small spectrum 

calculation without dynamical fermions on the same size lattice and at the corresponding 

value of 6/9’ to compare with the dynamical fermion calculation. Of course, much larger 

quenched spectrum calculations have been done, * but it is interesting to compare to a 

similar quenched calculation using exactly the same fitting procedures and to test our 

procedures by comparing our pure gauge QCD results to other quenched approximation 

results. Further, using our mass estimates to set the mass scale allows us to estimate the 

temperature of c&al symmetry restoration in MeV. ’ This last number is interesting for 

the physics of the early universe and for relativistic heavy ion collisions. 

In principle, the only inputs to a lattice calculation are the quark mass and the strong 

coupling constant. In practice, there are a number of other parameters which must be 

set and extrapolations must be made in the mass and coupling to approach the physical 
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limit. The reliability of any simulation can only be judged with detailed knowledge of how 

these parameters are set and how the extrapolation is done. Thus, before we discuss the 

physical interpretation of our results, we give a thorough discussion of how we attempted 

to control systematic biases arising from our choice of parameters. Section II of this paper 

presents basic notation, a discussion of the propagators we measure and how they are fit to 

determine particle masses. In Sec. III, we discuss the parameters of the simulation and our 

attempts to control systematic errors. Section IV contains our discussion of the particle 

masses given the caveats of Sec. III. Section V is devoted to our estimate of the crossover 

temperature for the transition to a &rally symmetric phase of QCD. Finally, Sec. VI 

contains our conclusions. 



II. NOTATION AND PROPAGATOR FITTING 

We use two flavors of dynamical staggered quarks in our simulation, using the version 

of the hybrid molecular dynamics method” described in our earlier work.ll This method 

allows us to vary the number of quark flavors while keeping the systematic errors due to 

the finite size At of the molecular dynamics steps of order (At)‘. We generate gauge field 

configurations with probability 

P(V) = $detM)Nt/4exp(-.Sg), 

where 5, is the Wilson action for the gauge fields and M is the Kogut-Susskind hopping 

matrix describing four flavors of quarks. 

a,v = 2mb+ p., [Ua,r6.,w - d-&&,,+,] I (2) 

where z and y denote lattice sites and we have suppressed the color indices. The use of 

a fractional power of the determinant, which is common practice,ll weights each internal 

fermion loop by a factor of Nf/4 as is appropriate for Nf flavors. However, the hadronic 

correlation functions that we measure still have four flavors of valence quarks. Thus, if we 

had flavor symmetry we would expect that symmetry to be SU(4) rather than SU(2). Since 

the quark loops are weighted for Nf flavors, we obtain hadron masses corresponding to 

that number. Once the gauge configuration is generated the method of measuring hadron 

propagators is independent of the number of flavors or the quark mass used in generating 

the configuration. 

Our hadron propagator measurements are completely conventionaLl After calculat- 

ing the inverse of the hopping matrix in Eq. (Z), we construct zero-momentum hadron 

propagators as follows: local meson propagators as a function of time axe given by 

PM(~) = CCW1~(23M-l(~,O,i;z;t,j)M-l(~,t,j;~,O,i), (3) 
2’ ij 

5 



where i and j are color indices, (0; 0 ) is the source point, (z?, t ) is the sink point and W, is 

a weighting factor which picks out a meson state with particular symmetry properties. In 

this context “local” means created by a quark-antiquark operator on a single lattice site. 

For completeness we tabulate the weighting factors in Table 1. Each propagator contains 

particles of both parities, and the particle interpretation for each propagator is also listed 

in Table 1. It is convenient to refer to the channels as pseudoscalar (PS), vector-tensor 

(VT), pseudovector (PV), and scalar (S). l4 The easiest channels to measure for the r and 

p mesons are PS and VT, respectively. Because particles of both parities appear in each 

propagator, we also find the x and p mesons in S and PV, respectively. We will use the 

notation x2 and p2 to refer to properties of the x and p measured in these channels. 

The most general function we use to fit the propagators includes terms for the two 

lowest states of each parity. The terms below that oscillate in t correspond to opposite 

parity particles. For the zero momentum meson propagators we use 

PM(~) =Ae-& f Ae-m(T-t) 

+ (-l)tje-hf + (-l)t&-w-t) 

+ Ale4f + A*e-m’(T-t) (4) 

+ (-,)~~*e-*‘f + (-l)t~e-fi’(T-l), 

where a tilde indicates opposite parity and a star indicates an excited state, T is the 

length of the lattice in the time direction and t is the distance from the source (Euclidean 

time). The nucleon propagator is similar, but takes into account the antiperiodic boundary 

conditions in Euclidean time and the fact that the particles whose propagators alternate 

in the forward direction do not alternate in the backward direction: 

PB(f) =Aeemt - (-l)tAe-m(T-f) 

+ (-l)lie-fif _ &-w--t) 

+ A*e-m’t - (-l)‘A*e-m’(T-t) 

+ (-l)t~*e-+Pt _ ijte-fi’(T-t). 
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In most of the fits we did not use all of the parameters in Eqs. (4) or (5). We have used 

fits containing from one to four particles, or two to eight parameters. 

The fitting is performed using a least squares procedure that takes into account the 

fact that the propagator values at different distances from the source are correlated. We 

will present our fitting method in some detail. The logic is standard and has been used 

before in lattice gauge calculations, l5 but we wish to be clear about our methods and, 

hopefully, useful to others who may wish to do these studies. 

Before confronting the correlations of propagator averages at different distances, we 

must deal with correlations of measurements in simulation time. Let zk be the K’th 

measurement of a quantity. Successive measurements are not statistically independent, 

and their autocorrelation is measured by the fractional autocorrelation at simulation time 

separation j: 

(6) 

In order to reduce the effect of the autocorrelations it is customary to “block”, or average 

several successive measurements, and treat the block averages as independent. If Yk is the 

average over the k’th block, then the variance of the block averages is 

(y,2)-(yk)2= w;+ 1+2yc; , [ 1 i=l 
(7) 

where Nt, is the number of measurements in each block. Ideally Nb should be large enough 

to saturate the quantity in square brackets in Eq. (7). It is notoriously difficult to mea- 

sure the Cj directly. If the autocorrelation is measured in an uncorrelated sequence of 

M numbers, the result will fluctuate by l/m, making correlations smaller than this un- 

observable. In general, we expect the autocorrelation to be a sum of exponentials with 

varying amplitudes. It is easy to see that a slow decay with small amplitude can escape 

detection in measuring the Cj. Thus the block sizes Nb should be made large. However, in 

the following analysis it is important to have a reasonable number of blocks, so we have not 

7 



made Nb as large as we would like. In a more extensive simulation it would be desirable to 

increase Nb. We will present empirical results for the autocorrelation of our measurements 

later. 

In our analysis for all propagators except the K (PS) we average five successive prop- 

agator measurements taken over ten simulation time units to obtain each block average. 

For the r in our weaker coupling runs (a??,~ = l/6) we block together ten successive mea- 

surements, or twenty time units, which results in an increase of about 15% in the apparent 

statistical errors in the z mass as compared with blocking five measurements. Further 

increasing the block size to twenty increases the errors on the pion mass by another lo%, 

but leaves us with uncomfortably few blocks. For the pions in our stronger coupling runs 

(aTc = l/4) and for the other propagators, which have much larger fluctuations, we see 

no effect from increasing the block size from five to ten. For most of our runs we have 500 

propagators and the number of blocks, N, is equal to 50 for the x (PS) and to 100 for the 

other particles. (See Table 2 for a summary.) 

After blocking we have N blocks of propagator measurements, with the blocks now 

assumed to be independent. We denote the k th block at distance i by Yki, the average 

over these N blocks by F;, and the true value or average over an infinite number of mea- 

surements by 7;. We assume that the measured values of F; have a Gaussian probability 

distribution P({F’)) about the true value. 

P({F}) = Z-lexp -i(Fi -T~)(C-l)ij(Fj -7j) , 
{ > 

where Cij is the covariance matrix of the Pi, and 

(8) 

(A naive fitting method amounts to setting the off diagonal elements of Cij to zero. We find 

relative correlations as large as 0.997 among pion propagator measurements at adjacent 
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distances, and 0.989 among measurements four time slices apart.) Notice that it is the 

average Yi rather than the individual blocks of propagators Yki which is assumed to have 

a Gaussian distribution. As we shall see later, the distributions of the Yki are far from 

Gaussian. The covariance matrix is estimated from the measurements: 

(10) 

The matrix Cij is a positive definite quadratic form. If we have a theory for y (e.g., that 

the zero spatial momentum propagator fits to a sum of exponentials), then we assume 

Fi = ~ii(Xl,. . . , A,) (11) 

and we want to choose the parameters X, to give the best fit. We will denote the parameters 

determined in our experiment as 1, and the parameters one would obtain from an infinitely 

long run as ?a,. The best fit is defined by maximizing the probability of getting the 

experimental result Yi, i.e., by minimizing 

x2 = (Ff - fi(X))(C-l)ij(Fj - fj(J;)) 

with respect to the xa;,. So, to Snd the best fit we solve 

g=o 
a& 

= ~afi(x)cz?(f(q _ F.) 
(13) 

OXa ” ’ 3 ’ 

This minimization condition gives different values for the parameters as well as different 

errors on the parameters than a fit which ignores the correlations. As an amusing note, 

it is possible (and in fact happens in some of our pion fits) that the best fit of the form 

A(e-mt + e m(T-t)) falls below the average propagator at every distance. 

We use a modified Newton’s method to perform the minimization, so we also compute 

the Hessian 

(14) 



These same quantities allow us to estimate the error in the X,. The & are implicitly 

functions of the Fi, so it is meaningful to define 

L&b = ((%a - s;,& - !b)) , (15) 

where the average is over our assumed probability distribution for the Yi. Expanding the 

xa about re to lowest order gives 

- 
s;,, - ;ia = $(& -‘k) 

k 
(16) 

giving us 

A,=+ J[dF]exp{ -~(~i - Fi)(c-‘)ij(Fj -Fj)} (Fk -Fk)$%(F[ -Fl) 

-b = +k$. 
k 1 

07) 
We can determine the axG;,/avi from implicit differentiation of the minimization condition, 

Eq. (13), with respect to Fi 

Using the definition of the Hessian and solving for aIb/LVi we get 

and this gives us 

1 afi Aob = 4H,$ %C.. eH$. 
c ‘3 axd 

Note that if the fit is a good one, (fj - ~j) is small and 

A, zz 2H-’ lab’ (21) 

the usual approximation. Since we have all the terms available, we use the full expression 

in Eq. (20). 
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From the definition of A in Eq. (15), the probability distribution for finding a set of 

parameters & is 

exp 

Thus the contour lines of the quadratic form in the exponent of Eq. (22) define the allowed 

range of the parameters. Here we will quote one standard deviation errors, or the range of 

parameters over which 

(& - %)A;‘& - ?(,;b) < 1. (23) 

Within the accuracy of our quadratic approximation this is equivalent to asking how much 

the parameters can be varied without raising x 2 by more than one unit from its minimum 

value. * 

If we are interested in the allowed range, or probability distribution, of a subset of 

the parameters examination of Eq. (15) reveals that we should use the submatrix of A 

corresponding to the parameters of interest. For example, if we are interested in two 

masses, parameters 1 and 3, then we find their allowed range (the other parameters being 

allowed to vary freely) from the quadratic form 

(Al-r;1 A,-&$ ii-2 I ( > 
where 

A13 = (ii; 2;;). 
As a trivial special case, if we are interested in one parameter its statistical error is given by 

the square root of the corresponding diagonal element of A. The off diagonal elements of A 

are the correlations among the parameters -if parameter a increases by t then parameter 

* There is an amusing analogy with the Monte Carlo renormalization group here. Consider 
the yi in Eq. (9) to be the original variables of a system with a quadratic Hamiltonian 
$C-’ and the parameters xa as the variables of a “blocked” system with renormalized 

Hamiltonian +A-‘. 
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II will increase by A&. Since A is positive definite the resealed parameter correlations 

&2&Tb 
(26) 

are all less than one in magnitude. It is generally necessary to take these parameter 

correlations into account when computing the error on a function of several parameters. 

For example, the difference of two masses, parameters 1 and 2, is 

X1 - X2 zk Al1 + 42 - 2A12. (27) 

Sometimes we are interested in the ratio of masses obtained in two different propagators 

but from the same data set, notably in computing the N/p mass ratio. In this case the 

strictly correct thing to do is to simultaneously fit the p and N propagators, keeping track 

of the correlations among all the parameters. We then include the parameter correlations 

in the error estimate, using 

where parameters 1 and 2 are the two masses. Notice that the values for the masses in 

such a combined fit will differ slightly from the masses obtained in separate fits to the 

nucleon and p propagators due to the effect of the correlations between elements of the 

two propagators. The nucleon to p mass ratios for the aTc = l/6 runs are computed in this 

way. We found however, that the correlations among parameters in different propagators, 

such as the nucleon and p masses, are generally fairly small For example, in the six runs 

with ~2’~ = l/6 the resealed parameter correlations, Eq. (26), of the p and N masses in a 

combined fit using the distance ranges discussed in Sec. IV range from -0.174 (amn = 0.05, 

S/s2 = 5.47, IO3 x 24) to f0.173 (umq = 0.025, S/g2 = 5.4375, S3 x 24). Of the six 

aTc = l/6 runs the largest effect is in the run with am* = 0.025 on the lo3 x 24 lattice, 

where the combined fit produces a ratio of 1.70(19) while naively combining the results 

from separate fits produced 1.64(21). Given the smallness of these correlations we do not 
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include them in other mass ratios, notably in the rr to p mass ratios where the errors in 

the x mass are small enough to be negligible anyway. 

With the correlations properly accounted for, x2 has its usual interpretation as an 

indicator of the goodness of the fit, i.e., we expect x2 to be about one per degree of 

freedom. We will generally give the goodness of fit as a “confidence level,” which is the 

probability that a run with the errors we have estimated and a fitting function which is 

correct would produce a x2 larger than the one we find. Having a built-in indicator of the 

goodness of fit is as important a benefit of including the correlations as having improved 

parameter estimates and reliable statistical error estimates. 

As an example of the effects of including the correlations among different distances 

consider fits to the pion propagator containing one particle - a single hyperbolic cosine - 

with amg = 0.025, S/s2 = 5.4375 on a 10’ x 24 lattice. If we fit to the distance range from 

two to the center of the lattice without considering correlations we find n, = 0.4541(27), 

with x2 = 4.7 for 9 degrees of freedom - apparently a very good fit. However, when we 

include the correlations in a fit to this same distance range we find mT = 0.4577(S) with 

x2 = 126.2 for 9 degrees of freedom, showing that this was really a very bad fit. For a 

minimum distanke of seven, which we will actually use, the naive fit gives m, = 0.4482(54) 

with x2 = 0.03 for 4 degrees of freedom, while the correct fit is 0.4490(14) with x2 = 2.77 

for 4 degrees of freedom. 

Since the propagators at different distances have positive correlations, meaning they 

tend to move up or down together, the statistical errors on the masses are usually less than 

would be obtained in a naive fitting, as in the above example. 

The quadratic approximation for x2 about its minimum may not be good over the 

one standard deviation range of the parameters, especially in cases where the fractional 

error is large. To explore this question we make plots of x2 as a function of one of the 
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parameters, allowing the other parameters to adjust themselves to minimize x2. In Fig. 1 

we show such a plot for a two parameter (one particle) fit to the pion propagator of 

amll = 0.025, 6/s2 = 5.4375 on a lo3 x 24 lattice, using distances from 8 to 12. In this 

case, the quadratic approximation is good and the result given by our fitting program, 

0.4480 jr 0.0017, needs no modification. In contrast, a fit to the same propagator with four 

parameters over distances from 4 to 12 produces the second curve in Fig. 1, where the 

parabola is visibly distorted. Here we should probably quote m, = 0.4478’~:~~:~ rather 

than the m, = 0.4478 f 0.0025 as given by the curvature at the minimum. In most of our 

fits the quadratic approximation is quite good, and we generally use errors estimated in 

this way. This particular problem will diminish with larger scale simulations, since as the 

error bars become smaller the higher derivatives of x2 with respect to the parameters will 

be less important over the range of the error bar. 
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III. CONTROL OF SYSTEMATIC ERRORS 

We are now ready to discuss the parameters in our simulation and how we have at- 

tempted to control the systematic errors. These parameters fall into two categories, those 

that are present in any QCD simulation and those that are specific to a particular nu- 

merical technique. The former group consists of the quark mass, gauge coupling, spatial 

and temporal lattice sizes, and the number of (uncorrelated) configurations in the sample. 

In the latter group, we have the stopping criterion for the iterative technique used to in- 

vert the fermion matrix and the finite step size used to integrate the molecular dynamics 

equations of motion. 

A. Bare Couplings and Lattice size 

The bare quark mass and gauge coupling are the most prominent parameters of any 

simulation. Among the hadrons, the pion is most sensitive to the quark bare mass because 

as an approximate Goldstone boson its mass is going to zero as the bare quark mass goes 

to zero. In principle, the quark mass should be adjusted so that the mass ratio of the x 

and some other hadron such as the p has its measured value. In practice, simulations have 

not been done with sufficiently small quark mass to achieve this and an extrapolation is 

done from larger values. Our hadron masses are initally given in lattice spacing units for 

fixed bare coupling and quark mass. 

It is well known that for a theory with a dimensionless coupling constant such as QCD, 

picking the coupling is equivalent to picking the lattice spacing. In QCD the physical limit 

(zero lattice spacing) is the weak coupling limit. Any convincing spectrum calculation 

must demonstrate appropriate sealing behavior as the lattice spacing is reduced. Pure 

gauge QCD spectrum calculations on large lattices are reaching this point,* but we make 
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no attempt to do this here. Since the bare couplings determine the physical lattice spacing 

the lattice size and couplings must be discussed together. The physical limit of any lattice 

calculation is the infinite volume and zero lattice spacing limit; however, there are practical 

limits of available computer time which constrain any simulation. It is essential to pick a 

box large enough to avoid finite size effects, but small enough that the simulation can be 

carried out in a reasonable length of time. 

There has been some work attempting to measure the size of hadrons in a simulation.4 

This would provide a self-consistent way to demonstrate that one’s spatial box is large 

enough if there were a known quantitative connection between the particle mass and the 

wave function at the edge of the box. That not being the case, we use the more straight- 

forward technique of carrying out each simulation with two different spatial sizes and 

comparing the results. This will be discussed in Sec. IV. 

The temporal size of the lattice must also be chosen carefully. Each hadronic source 

also couples to excited states. If the lattice is too short in the time direction, then even 

at the maximum distance from the source the propagator will not be falling exponentially 

with a mass characteristic of the lowest mass particle in the given channel. In principle, 

we could sort this out with a many parameter fit, but in practice our fitting is much 

more credible if the lowest mass particle dominates the propagator over at least part of the 

distance range included in the fit. The effective mass plot is a simple way of demonstrating 

whether a lattice is long enough in the time direction. The effective mass as a function 

of the distance from the source is defined by using the propagator at two distances and 

assuming that only a single particle is present in the channel. For mesons, the equation 

P(i + 6) = e 
-m(t+6) + ,-m(T-t-a) 

P(f) e-w + p4T-t) (29) 

is solved for the effective mass mt. For the pion we may set 6 = 1 because the opposite 

parity terms in Eq. (4) are absent. For the rho we take S = 2 so that the neglected opposite 
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parity terms will not be alternating in sign. For the nucleon we also take 6 = 2 and the sign 

in front of the second term in both the numerator and denominator of Eq. (29) changes. 

Before examining plots of the effective masses, we present our choices for the couplings 

and lattice size. 

We have run our simulations with six values for the pair of bare couplings amp and 

6/g 2. In pure gauge theory spectrum calculations a fixed coupling value is used with 

several quark masses. However, in a calculation with dynamical fermions, the renormalised 

coupling depends upon both the bare coupling and the quark mass. This being the case, we 

vary both p = S/s2 and m simultaneously to try to hold a physical length scale fixed. The 

physical length scale comes from our study of QCD at high temperatures.l’ There is a rapid 

crossover for both the Polyakov loop and (&) as the coupling is varied, corresponding 

to a restoration of chirsl symmetry as the temperature is raised.17 We choose to regard 

the cbirsl restoration temperature as the constant physical quantity. Of course, this is an 

approximation since the chiral restoration temperature almost certainly depends on the 

quark masses. 

In our earlier study, we measured 6/g2 at the crossover for several quark masses with 

four lattice spacings in the Euclidean time direction. Thus, we have measured the values of 

S/g2 for which aTc = l/4, where Tc is the crossover temperature. (Even for quark masses 

where there appears to be no real high temperature phase transition the crossover to high 

temperature behavior is sufficiently fast to define a crossover 6/s2.) We have also made 

rough measurements of the crossover values of 6/g2 on lo3 x 6 and 12’ x 6 lattices, or 

aTc = l/6. Within the accuracy of these measurements, S/g,” for Nt = 6 can be found by 

adding 0.15 to 6/$ for Nt = 4. (For the pure gauge theory the difference is 0.185(25).) 

For S/g2 such that aTc = l/4 we choose quark masses of O.!, 0.05 and 0.025 on 

63 x 24 and S3 x 24 lattices. Since l/aTc = 4 these lattices are clearly large enough 

to prevent “deconfinement” in the spatial directions. ‘* We ran two spatial sizes for each 
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coupling to study finite size effects. For each coupling and lattice size we ran for 1000 

molecular dynamics time units, refreshing the momenta after each time unit. (We refer to 

the molecular dynamics integration from one refreshing to the next as a “trajectory.“) For 

arap = 0.1 and 0.05 we used a time step At of 0.04, so each run involved 25,000 updating6 

of the lattice. For amp = 0.025 we used At = 0.02, so we have 50,000 steps in each run. 

Before each run we made 100 warmup trajectories of one time unit each. For amq = 0.1 we 

began with (in ordered lattice and for other quark masses we began with an equilibrated 

lattice at the next higher quark mass. On the S3 x 24 lattices we measured propagators 

every two time units, giving 500 propagators, while for the 6’ x 24 runs we made fewer 

measurements. In each propagator computation we used only a single source point, but 

computed three propagators - one for a source of each color. 

For aTc = l/6 we also ran at amp = 0.1, 0.05 and 0.025 but using lattice sizes of 

S3 x 24 and 10’ x 24. Again, in each case we ran 1000 time units. In all these runs we 

measured a propagator every two time units. 

We also ran quenched simulations on lo3 x 24 lattices for arap = 0.05 and 0.025 at 

S/g2 = 5.865, the pure gauge deconfinement coupling for Nt = 6. This is analogous to 

our weaker coupling for the full QCD simulations. However, it is not necessarily true that 

the pure gauge deconfinement temperature is the same as the full QCD chiral restoration 

temperature. lg Indeed, the only case in which it makes sense to quote results in MeV is 

full QCD with the correct quark masses. As we shall see in Sec. V, if the pure gauge theory 

deconfinement temperature and full QCD chiral restoration temperature are assumed to 

be the same, meaning that our physical lattice spacing is the same in our quenched and 

weaker coupling full QCD simulations, the pure gauge QCD hadrons are lighter than the 

full QCD hadrons. Conversely, if the p or nucleon masses are taken to be the same in pure 

gauge QCD as in full QCD, the transition temperature is higher in pure gauge QCD than 

in full QCD. Table 2 summarizes the parameters of the various runs. 
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The data sets we present in greatest detail are the ones corresponding to the lo3 x 24 

lattice with the weaker couplings (corresponding to aTc = l/6) and masses of amp = 0.10 

and 0.025. These data sets are most interesting because they are closest to the continuum 

limit. The heavier mass indicates how well one can do while the lighter one shows how 

difficult it can be to fit the propagators. For comparison we will also show graphs from 

the quenched calculation with amp = 0.025. 

With these details in mind we are ready to show effective mass plots for the r, p and 

nucleon at the two mass values. In Fig. 2 a,b we show the effective x mass. For amp = 0.10 

we see a flat region starting at distance 6 and continuing to 11. For amq = 0.025, the flat 

region begins at distance 5 or 6 and continues all the way across the lattice. In Fig. 3 a,b 

we see that the situation for the p is not nearly so nice. With amq = 0.10 we find a fairly 

flat region from 4 to 9. However, for amg = 0.025, there are such large statistical errors on 

the p propagator that we cannot plot points at a distance greater than 8, and it is clear 

that there is no region we could call a plateau. Let us emphasize that with the number 

of samples we have we cannot measure the p propagator accurately halfway across this 

lattice, so there is nothing to indicate that a longer lattice would be an improvement. 

The effective mass plot for the nucleon shown in Fig. 4 shows an interesting pattern. 

Recall that for the nucleon we also use 6 = 2. Therefore, each value plotted depends on 

only even or only odd distances. We see that for amp = 0.10 the even distance values are 

very stable. The odd distance values are larger and fall smoothly to meet the even distance 

values almost half way across the lattice. This behavior can be interpreted as destructive 

interference of the N’ and N on the even sites. For amq = 0.025, the nucleon propagator 

is negative at distance 10 and 11 so we cannot plot points at distance eight or greater; 

however, a pattern similar to that at amq = 0.10 is observed. 
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B. Number of Independent Configurations 

Now we return to the issue of the number of independent configurations in the simu- 

lation. In order to investigate this issue we plot time histories of propagator elements and 

effective masses, and we also calculate autocorrelation functions. The time histories allow 

us to judge whether there are long time fluctuations in the propagators. 

In Fig. 5 we show the time history of the = propagator at distances 4 and 8 from the 

source for amp = 0.025 on the lo3 x 24 lattice. We note that there are some large non- 

Gaussian fluctuations, and that there are short time correlations on the order of several 

trajectories. If there are long time correlations, they apparently are on a scale much longer 

than 1000 trajectories. In Fig. 6a we show the autocorrelation of the K propagator at 

distance 4 from the source. The plotting symbol is about as large as the error would be 

if the data were uncorrelated. We remind the reader that in these runs we averaged ten 

successive ?r propagators before beginning the analysis of Sec. II. 

In Fig. 7 we show the time history of the p propagator at distances 4 and 8 for the 

same run, and in Fig. 8 the nucleon propagator. (Note that the nucleon propagator at 

even distances is small because of cancellation between baryons of opposite parity, so the 

spikes are exaggerated here.) The autocorrelation of the p and nucleon propagators are 

almost always less than 0.15 at all nonzero times and all distances. Most of the exceptions 

are at short distances from the source. 

We are interested in the propagator elements as a means to calculate the mass of the 

hadrons, and it is possible that correlations are more easily seen in the masses than in 

the raw propagator elements. We may use the effective mass to calculate a particle mass 

from the propagator on a single configuration. It is interesting to plot a time history of the 

effective mass. In Fig. 9 we we use Eq. (20) with b = 2 and plot the effective mass using the 

z propagator at distances 7 and 9 from the source. This is the distance range that is most 
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important in our determination of the mass in Sec. IV. The fluctuations in effective mass 

grow as we move farther from the source. Fig. 6b shows the autocorrelation of this effective 

mass for this run. The autocorrelation of the effective mass is larger than the autocorrela- 

tion of the propagator itself at this distance - at a distance from the source of eight lattice 

spacings the autocorrelation of pion propagator measurements separated by two simulation 

time units is unmeasureable. The fluctuations of the p propagator are much larger than 

for the x and the effective mass time history can only be plotted for short distances from 

the source, since for large distances the propagators do not consistently decrease in size 

as the distance increases. It is possible to block a certain number of propagators together, 

which improves the situation, but not sufficiently to warrant including a plot. 

Yet another way to analyze the autocorrelation is to Fourier transform the time history, 

or compute the power spectrum. In Fig. 10 we show the square root of the power spectrum 

for the r effective mass for amq = 0.1 and 0.025, using distances 7 and 8. The horizontal 

line on each graph shows the median value of this quantity for a Gaussian random variable 

(no autocorrelation) which would give the same statistical error on the effective mass as 

we obtain from blocking the time history into blocks of 20 measurements. The suppression 

of the power spectrum below this line at high frequencies reflects the autocorrelation in 

the data. Note that the frequency above which fluctuations are suppressed is about the 

same for both masses (w x 0.3) but the low frequency noise is larger for the smaller 

quark mass. Again, in our analysis we average the propagators from five or ten successive 

measurements, or ten or twenty simulation time units, before beginning our fitting so that 

we are working with approximately independent measurements. 

Low mass quenched calculations with Wilson fermions have exhibited a phenomenon 

called “exceptional configurations. ‘QO In these configurations the ?r propagator is excep- 

tionally large, and other propagators are often large as well. This is reminiscent of the 

spikes seen in the time histories of our propagators, such as those in Figs. 5, 7 and 8. 
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In Fig. lla, we show a histogram of the x propagator at a distance 10 from the source 

for our lightest mass and largest lattice. We see that this distribution is non-Gaussian, 

as was apparent from Fig. 5. Since the x propagator is the sum over all spatial sites of 

the absolute square of the quark propagator, it is not surprising that its distribution is 

not Gaussian. We see that the distribution has its peak in the bin which ends at 0.009, 

and that there are 13 of 500 configurations between 2 and 3 times the peak value and 1 

configuration above 3 times the peak value. 

This is to be compared with the quenched Wilson fermion simulationzO in which there 

were 28 configurations with 3 source points, and forward and backward propagation were 

both included. In that case, 9 of 148 propagators were between 2 and 4 times the peak 

value and 7 were above 4 times the peak value. From this point of view, there appears to 

be a difference between our calculation and the quenched Wilson case. 

A second way of searching for exceptional configurations is based upon summing the 

x propagator over all distances from the source. 2o A histogram of this quantity is shown 

in Fig. lib. We see that the distribution peaks around 3.6, but we probably would not ~ 

consider configurations unusual until they exceed at least twice that value. Nine of 500 

configurations exceed 7.2 and 2 of them are greater than 10.8. From this perspective, 

exceptional configurations are not all that less frequent in the present case than in the 

quenched calculation where 1 of 28 configurations exceeded twice the peak value. There, 

two configurations were between 1.5 and 2 times the peak value and a third configuration 

was at 3.6 times the peak value. 

In summary, in this respect we do not see a dramatic difference between this dynamical 

Kogut-Susskind fermion calculation and the quenched Wilson case. However, a systematic 

exploration would really require a careful study as a function of quark mass and greater 

statistics since we are interested in the tail of a rapidly fslling distribution. Certainly the 

question of whether there is a disease of either the quenched approximation or Wilson 
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fermion formulation which is cured by using either dynamical or Kogut-Susskind fermions 

is an interesting one which deserves further study. 

C. Conjugate Gradient Residual 

Because we use an iterative technique to calculate the quark propagator, we must adopt 

a stopping criterion and (hopefully) h s ow that it is sufficiently stringent that our results 

are insensitive to it. There are two distinct uses of the fermion inversion program. During 

the molecular dynamics updating, we use the program with a pseudofermion field as a 

source. This source is a Gaussian random vector with norm proportional to the volume. 

To measure the hadron propagators, we use the inversion program with a source which is 

a delta function in space and color. If R is the residual vector, we use m < 0.005 

during the updatings and @ < 5 x 10-s for hadron propagators. In a previous paper,21 

we investigated the dependence of the average plaquette and ($111) on m. We found 

that for amp = 0.10 or 0.05 and similar values of S/g* these quantities would not change at 

smaller values of m. F or amq = 0.025 the plaquette was insensitive to the residual, 

but perceptible effects remained in (&J). W e refer the reader to Ref. 21 Figs. 7 and 

8 for additional details. Since then we have done another check on S3 x 4 lattices in 

which we reduced the residual kom the value 0.005 used here to 0.001. Table 3 shows the 

plaquette and ($4) in these runs. Notice that for this lattice size the higher value of 6/s’ 

in this table, 5.32, is in the chiral symmetric phase, where the fermion matrix is generally 

better conditioned. We also studied in Ref. 21 the effect of the stopping criterion on the 

propagator measurements and on the fitted masses. For ame = 0.025 and 6/g2 = 5.2875 

on the S3 x 24 lattice we made part of the run with 200 conjugate gradient iterations in the 

propagator measurements, which corresponds to a residual of about 2 x 10w3, instead of 

the roughly 340 iterations required to obtain the residual of 5 x lo-‘. We found that the w 
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propagator differed by only about 0.1% in the two parts of the run. Fitting for the rr and p 

masses in the two parts of the run we found that any systematic effect on the rr mass was 

comparable to the statistical error and any effect on the p much smaller than the statistical 

error. Thus, although we have not repeated our entire calculation with a different value 

for the stopping criterion, we feel confident from these studies that no significant error is 

introduced by our choice of residual for the propagator measurements. 

D. Molecular Dynamics Step Size 

The algorithm we use is known to have a systematic bias for finite step size which grows 

as (At)‘, We again refer the reader to our earlier work which studied the dependence of 

the average plaquette and ($4) p u on the step size in the high temperature phase.21 For 

slightly smaller values of S/g’, amp = 0.025, and step size 0.02, the same as used here, we 

found a systematic effect on the plaquette of order 0.01, with smaller effects for the higher 

quark masses. (We normalize the plaquette to 3.0 at 6/g2 = 0.) Also, Table 3 contains 

results for the plaquette with amq = 0.025 with At = 0.0125 as well as the 0.02 used here. 

We have not directly studied the finite step size effects upon the mass measurements. 
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IV. RESULTS OF FITTING THE PROPAGATORS 

Having deilned the propagators and fitting procedure, we now discuss the results. 

With our boundary conditions, meson propagators are symmetric in Euclidean time on 

the average, Baryon propagators are antisymmetric or symmetric in time for even or odd 

distances, respectively, except for distance zero. This symmetry allows us to restrict our 

meson (baryon) propagators to the distance range O-12 (O-11) by averaging the values 

at distance t and 2’ - t with the appropriate sign. The lightest particle in each channel 

determines the large distance fslloff of the propagator. At short distances heavier particles 

make a significant contribution. We attempt to fit the propagators over the distance range 

Bra;,,-12 (or 11, for baryons) with up to four particles contributing. We would like to 

see that our mass estimates eventually become independent of D,;, as we increase it and 

the short distance heavy particle contributions are eliminated. Our minimization program 

based on Newton’s method does not always converge, .* however, for each propagator in 

each run we generally have a large number of fits with various values of Dmin and varying 

numbers of particles. 

After some experimenting we found a graphical presentation of the results to be useful. 

For all our runs we made graphs showing the various fits as a function of Dmin. We will 

present these graphs for only three runs: quark mass am~=O.lO and 0.025 with aTe = l/6, 

and the quenched calculation with amp = 0.025 and aTc = l/6, sll on lo3 x 24 lattices. In 

all of these plots squares denote one particle fits, crosses two particle fits and octagons and 

diamonds three and four particle fits, respectively. The parities of the particles included 

depend on the propagator. For the (PS) p ion the second particle is an excited state with 

* The most common way in which the fit fails to converge is for one mass to become very 
large. The large mass term is essentially a delta function at the shortest distance used 
in the fit. Thus the mass-amplitude pair (two parameters) act to eliminate the shortest 
distance point from the fit, and the two parameters are in fact indeterminate. Of course, 
such a fit is exactly the same as increasing Dmi, by one and using one fewer particle in 
the fitting function. 
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the same parity. In this channel there is no need for an opposite parity particle. In all 

other cases, two particle fits include one particle with each parity. Except for the x2 (S) 

propagator, three particle fits include two particles with the parity of the lowest mass 

particle (not alternating in time) and one particle of opposite parity (alternating). In the 

case of the wz propagator, the second and third particles are e and 8, both alternating 

in time. In those cases where we have four particle fits they include two particles of 

each parity. The one particle nucleon fits include only even distance points or only odd 

distance points. 22 Squares are used for both even distance and odd distance fits, since they 

can be distinguished by the value of Dmin. The quark mass is indicated on each graph, 

where Vny” (“valence” quark) indicates the quenched calculation. In these graphs we 

have marked the fits with reasonable confidence levels by arrows. Except where otherwise 

noted, the arrows mark fits with confidence level greater than 10%. (Of course, many of 

these fits are much better than 10% confidence.) In some cases none of the fits were this 

good, so we have used a lower threshold. (Tlu ‘s is not surprising. We have done fits for 

a total of 104 different averaged propagators. The confidence levels of all the fits to a 

propagator are very highly correlated, so even if we had a perfect fitting function we might 

expect about ten cases with all fits worse than 10% confidence level.) To aid comparisons 

among different graphs, we use the same vertical scales for all graphs for a given particle, 

and whenever reasonable use the same scales for different particles. In particular, all the 

graphs for the al, 211, nucleon, opposite parity nucleon and excited pion use the same 

vertical scale. All graphs for the “2, the 6, the p and the p2 use a scale twice as large. 

Finally, all the x graphs use a scale about 50 times as large. 

We select one of the fits in order to report a mass and error for each particle. For 

a given channel we select a specific value of Dmi, and the number of particles in the fit 

which we will use for the three mass values and both lattice sizes. (We treat the data sets 

for aTc = l/4 and aTe = l/6 separately.) To choose D,in and the number of particles we 
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examine the graphs of all the fits as well as the table of results of all the fits, which contains 

additional information such as the exact confidence levels of all the fits and the amplitudes 

associated with the masses. We look for two things in selecting the fit. First, the fits should 

have good confidence levels, To make this quantitative we compute a combined confidence 

level, which is the probability that the sum of the x 2’s in the set of fits would exceed the 

value in our runs. For a given number of particles in the fit we try to find a value of Dmin 

for which the six fits have a good combined confidence level. Second, in choosing among 

the fits with different numbers of particles we pick the fit which gives smallest error bars, 

if the fits are of comparable quality. Reporting the value and accompanying error from a 

single fit produces an error estimate that is statistical only-it is an estimate of how much 

the parameters in this particular fit would vary if we repeated our run. (All the fits to a 

run are strongly correlated, so it would be misleading to attempt to average different fits.) 

It is more difficult to estimate the systematic error resulting from remaining contributions 

of excited states. We have not developed a quantitative way of estimating this systematic 

effect, but inspection of graphs such as Figs. 12 to 21 can give some idea of the possible 

error. 

In Fig. 12 a-c we show the x mass as a function of Dmin for amq = 0.10 and 0.025 on 

a lo3 x 24 lattice, as well as the quenched result for amq = 0.025. For the six runs with 

dynamical quarks at aTc = l/6, including the runs displayed in Figs. 12 a-b, we find that 

the masses determined in the single particle fits decrease as Dmin is increased for small 

Dmin, but that by Dmin = 6 we are in the asymptotic region. The arrows on the figure 

point to masses for which the fit gives a confidence level greater than 10%. We see that 

to get such a fit we must have Dmin = 6 for emq = 0.10 or Dmin = 5 for amq = 0.025. 

Looking at the effective mass plots in Fig. 2 these values of D,,,;, seem reasonable. We 

tlnd that if we try two particle fits we have reasonable fits in the region Dmin = 2-4. 

These fits agree with the good single particle fits, but their errors are larger. Table 4 
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shows the combined confidence levels of the one particle and two particle pion fits. We 

choose the single particle fits with Dmin = 7, which are shown in Table 5. From similar 

considerations, we also use single particle fits with Dmin = 7 for the aTc = l/4 and for 

the quenched data. We will discuss the dependence of the pion mass on the quark mass 

later. 

In Fig. 13 we show our results for fitting the p propagator. The aTc = l/6 p is much 

harder to fit than the rr. We find few fits to individual runs with confidence level greater 

than 0.50. Indeed for amp = 0.1 on the lo3 x 24 lattice we found only one fit with 

confidence level greater than 0.1, so we have marked fits with confidence level greater than 

0.05 in Fig. 13a. Focusing on the single particle fits first, we see that the masses bounce 

UP and down with Dmin odd tending to be high. This oscillatory behavior occurs because 

there is a significant opposite parity contribution at short distances. Looking at the two 

particle fits we see that the p mass drops as Dmin increases and the tendency to bounce 

up and down is no longer apparent. This monotonic change in the mass as Dmi, increases 

is due to the contribution to the propagator of heavier states with the same parity as the 

p. With three particle fits, the mass does not vary much with D,,,;,,. For the aTc = l/6 

runs, the single particle fits with Dmin = 7, with a combined confidence level of 0.004, 

are comparable to the two particle fits with D,i,, = 4, which have a combined confidence 

level of 0.0061 For Dmin = 8 the single particle fits have a combined confidence level of 

0.002, no better than for D,,,;, = 7. We choose the Dmin = 7 single particle fits because 

examining the complete set of graphs such as Fig. 13 and the corresponding tables suggests 

that the two particle fits have not necessarily leveled out at D,i, = 4. The three particle 

fits have slightly better confidence levels, but there are few enough values of D,irr available 

for them that we are less certain of their convergence. For the quenched runs, the single 

particle fits with D,in = 7 still have very poor confidence levels, but for D,,,i, = 8 the 

fits are good (a combined confidence level for the two fits of 0.61) so we use D,i, = 8. 
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For the aTc = l/4 data, the fits are better and we report p masses from the two particle 

D min = 2 fits, with a combined confidence level of 0.41. These p mass estimates are in 

Table 6. We know of no good reason for the p (VT) propagator to be harder to fit than 

the PV or S propagators. 

For most of the aTe = l/6 runs we measure propagators for additional mesons. The 

Kogut-Susskind fermion formalism breaks the SU(4) x SU(4) symmetry of the four flavor 

continuum theory with terms proportional to the lattice spacing a. The lowest states in the 

S and PV channels, the nz and p2 should be degenerate with the x and p, respectively, in 

the limit a -f 0. In Fig. 14 we show our fits for the x2 mass. The fits are quite good and we 

tabulate the results for the three particle Dmin = 0 fits, which have a combined confidence 

level of 0.80 (0.73 for the two quenched runs), in Table 7. It is immediately apparent that 

the x2 is considerably heavier than the x, so there is substantial flavor symmetry breaking. 

Note that this is much better in the aTc = l/6 quenched calculation, where it is already 

apparent that the x2 is becoming a low mass particle. 

In Fig. 15 we plot our mass fits for the ~2. Again the fits are good, and we choose 

the two particle D,,,i, = 4 fits, which have a combined confidence level of 0.72 for the six 

aTc = l/6 full QCD runs. These fits are in Table 8. We find that the p and p2 masses are 

in rough agreement. Although the two do not always agree within errors, neither one is 

consistently heavier. 

In the S-channel, the CT meson appears as the opposite parity partner of the K. Most 

of our two or three particle fits are good. We show the masses ss a function of Dmim in 

Fig. 16 and tabulate the results of the three particle Dmi, = 0 fits in Table 9. Since this 

is the same fit to the same channel that we selected for the x2, the combined confidence 

levels are the same - 0.80 for the six full QCD runs and 0.73 for the two quenched runs. 

The al is the opposite parity partner of the p2 in the PV channel, and its fits are in 
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Fig. 17. Looking at the plot in Fig. 17b it at first appears that nothing can be said because 

the D,;, = 4 two particle and the four particle fits have a very small mass. However, in 

the four particle fits for amp = 0.025, the amplitudes that go with the low masses plotted 

in Fig. 17b are consistent with zero and the higher al masses are comparable to the al 

masses obtained from three particle fits with the same value of Dmim. Because of this 

we conclude that these fits with very low mass are spurious. The al masses appearing in 

Table 10 come from three particle fits with D,,,;,, = 1 for the full QCD runs ( combined 

confidence level 0.75) and D,;, = 3 for the quenched runs ( combined confidence level 

0.26). 

The bl is the opposite parity partner of the p in the VT channel. Our attempt to 

determine the b1 meson mass is not very successful. The masses displayed in Fig. 18 do 

not allow us to choose an appropriate value for D,i,, or the number of particles and no 

fits are tabulated. However the plot of the quenched data (fig. 18~) is better than that for 

full QCD. 

In fitting the nucleon propagator we use single particle fits to either the even or odd 

distances as well as multiple particle fits to the entire propagator. In Fig. 19a-c we see that 

the fits to odd sites have the nucleon mass dropping steeply as D,,,i, is increased. However, 

for the even sites, the nucleon mass is quite stable. In the two particle fits we again see 

the mass dropping and bouncing as D,,,i, is increased. This is especially pronounced 

for amll = 0.10. We see that the three particle fits remove most of the short distance 

contribution, but there is still an even-odd alternation of the mass. For the aTc = l/6 

full QCD data set we report masses from the single-particle even-sites only Dmin = 4 fits, 

with a combined confidence level of 0.13. The fact that the even-only fits are so stable 

can be interpreted as a cancellation of the effects of the N’ and E on the even sites. This 

cancellation depends upon their masses and amplitudes. In the aTe = l/4 data set we 

see no such effect. There we report masses from the two particle Dm;,, = 4 fits, with a 
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combined confidence level of 0.34. For the quenched runs, the even distance only fits with 

Dmin = 6 had much better confidence levels than Dmi, = 4 (0.59 versus 0.05), SO we use 

D,;, = 6. These masses are in Table 11. For the opposite parity nucleon, including the 

fits in Fig. 20, we do not quote a mass since it is not clear that the fits have converged 

with respect to Dmin. 

For the excited states our mass results are generally poor. The corrections to the 

asymptotic form (one particle with each set of quantum numbers) of the propagators can 

generally be well described by exponentials, as evidenced by the fact that the fits with small 

D,i, containing excited states generally give the same results for the ground state masses 

as do one or two particle fits with large D,,,;,,, as. illustrated in Fig. 12. In general, it is 

not clear if we are seeing an excited state, a fit to a large number of excited states, a single 

particle plus a pion, or lattice artifacts - things that would not scale in the continuum 

limit. Since the pion (PS) propagator is by far the easiest to fit, the most consistent results 

for excited states are obtained there. In Fig. 21 we present the fits for the excited pion, or 

whatever it is, in the two usual runs. 

Often, notably in the case of the aTc = l/6 nucleons, we find that the fitting is made 

difficult by the fact that the amplitude for the low mass state is smail relative to the 

excited state amplitude, and the relative size of the low mass amplitude seems to decrease 

as the quark mass decreases. If we examine the four particle nucleon fits for the lo3 x 24, 

aTc = l/6 lattices we find that for amq = 0.1 the amplitudes and masses in the fit to 

Eq. (5) with Dmin = 2 are 0.0020 and 1.87 for the nucleon and 0.0151 and 2.5 for the 

excited nucleon (same parity). By the time the quark mass was lowered to 0.025 the 

amplitude and mass for the nucleon were 0.0004 and 1.39, while for the excited nucleon 

they were 0.016 and 2.28. The relative size of the corrections to the low mass particle can 

be described by the crossover distance, or the distance at which the contributions of the 

two exponentials are equal. In the case of the two fits above, these distances are about 3.2 
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and 4.1 respectively. The results for our quenched calculations are similar. 

Our pion masses are approximately proportional to m. To make this statement 

quantitative we fit the pion masses to the form 

Amy = Cm + Damp, (30) 

separately for the aTe = l/4 and l/6 runs. For the aTc = l/4 runs we find C = 2.728(9) 

and D = -0.542(31), with x2 of 0.6 for one degree of freedom. The contribution of the 

term linear in the quark mass is small here - even for the largest quark mass of 0.1 the 

linear term in the fit contributes -0.05 to the pion mass versus 0.86 for the square root 

term. For the aTc = l/6 runs we find C = 3.027(13) and D = -1.313(46), with x2 of 5.3 

for one degree of freedom. Here the linear term contributes -0.13 at amq = 0.1, versus 

0.96 for the square root term. The large x 2 indicates that we need more correction terms 

to fit the pion mass over this range of amq for aTc = l/6. This is not surprising, since the 

physical quark masses are larger for these runs since the lattice spacing is smaller. 

If we use these fits to the pion mass together with linear fits to the p and N masses 

as functions of am* we can estimate the values of amp at which m,/mp or mvJmN are 

correct. For aTc = l/4 we find the correct m,/mp at am* = 0.0084(S) and the correct 

m,/mN at arnq = 0.014(l). Similarly, for aTc = l/6 we find omq = 0.0017(4) and 

0.0045(3), respectively. The estimates from the p and N do not agree because the p to N 

mass ratio is not the physical value in our simulations. 

Having estimated the masses we may return to the question of the effects of the spatial 

lattice size. Since we have been careful to always use the same fitting form and range on 

the two lattice sizes, these finite size effects arc somewhat insulated from other systematic 

errors. Examination of Tables 5 through 11 reveals that any differences between the large 

and small lattice are small, though it does appear that masses are more often smaller on 

the larger lattice. The only case where the effect is clear is for the pions, where the masses 
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are quite accurate. Here the average difference in pion mass between the small and large 

lattices (Table 5) is 0.0025(S), where this error can be estimated either from the errors 

on the individual masses or from the variance of the six differences. Given this, we feel 

comfortable that our mass results on the larger lattices have only very small effects from 

the finite spatial size. 

There is one striking difference between our results on the small and large lattices - 

the error bars are generally smaller on the larger lattices. (See Tables 5 - 11.) We do not 

know if this is because more lattice sites are averaged in each time slice of the propagator 

in the larger lattice or because our smaller lattices are occasionally flirting with ordering 

of the Polyakov loops in the spatial directions. Either way, it appears that we produced 

results of equal accuracy on our larger lattices without using more computer time. 

There is one respect in which finite lattice size will eventually make a big difference. 

Many of the particles, such as the p, are unstable against decay into two pions. For the 

p and other spin one mesons these pions would need nonzero spatial momentum, and the 

energy of these two pion states would be dependent on the lattice size. Our lattices are 

not large enough for such p decays to occur. For the rr (O++) channel our Qq source could 

be coupling to a two pion state. Indeed for our lowest quark mass the sigma mass is about 

twice the pion mass. Because we see no dramatic difference in the amplitude or mass 

in this propagator at this lowest mass and because the quenched calculation, where a qq 

source cannot couple to two pions, shows similar results in this propagator we think that 

the correct interpretation of the observed exponential is as a O++ meson. 

Several groups have performed spectrum calculations using full QCD.l’ Two of these 

other calculations use two flavors of Kogut-Susskind fermions, and it is interesting to 

compare our results. Billoire and Marinariz3 reported results for the ?r and p masses from 

a pseudofermion calculation with amq = 0.1 and 0.2 on a 63 x 12 lattice (which was 

doubled in the time direction for the calculation of quark propagators). Their coupling 
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value 6/g2 = 5.4 is close to our stronger coupling of 5.375. To make a direct comparison 

with their results for am* = 0.1 we make a linear interpolation of our mass estimates in 

our smaller lattices between 6/g2 = 5.375 and 5.525 to estimate a mass at S/g2 = 5.4. For 

the pion we find 0.8153(16) while B&ire and Marinari quote 0.819(4). For the p we find 

1.414(16) and Billoire and Marinari find 1.38(l). Thus these results are in quite reasonable 

agreement. 

A second calculation by Fukugita, Ohta, Oyanagi and lJkawaz4 used the Lsngevin 

method on an S3 x 18 lattice with S/g2 = 5.5 and quark masses of 0.2, 0.1 and 0.05. For 

amq = 0.1 this coupling falls near our weaker coupling of 5.525, and we can again make a 

linear interpolation between our two couplings. For amp = 0.05 their coupling is smaller 

than our weaker coupling of 6/g’ = 5.47 so we must make an extrapolation to compare 

masses. For the pion masses at amq = 0.1 and 0.05 Fukugita et al. find 0.8343(44) and 

0.6266(74) respectively. Our interpolated and extrapolated estimates from our S3 x 24 

runs are 0.8277(S) and 0.6182(20), respectively. These values are in reasonable agreement 

considering the possible corrections to our linear interpolation. For the p and nucleon the 

situation is a little more complicated. Fukugita et al. use two particle fits with a minimum 

distance of two. If we interpolate/extrapolate the results of our two particle Dmin = 2 fits 

to S/g2 = 5.5 we find 1.299(5) and 1.172(19) for the p masses at ame = 0.1 and 0.05, while 

Fukugita et al. find 1.299(19) and 1.139(45) for the p masses at these two quark masses. 

Similarly for the nucleon we find 2.141(7) and 1.898(18) while they report 2.119(45) and 

1.949(99). These numbers arc in good agreement. However, from Figs. 15 and 19 it 

is apparent that two particle fits with D,i, = 2 still contain substantial contributions 

from excited states. Moreover, the confidence levels of these fits are very low - for the 

aTc = l/6 lattice the confidence levels of these p and nucleon fits were lo-‘, 0.06, 10e40 

and lOme respectively. Therefore we have chosen other fits as discussed above, and our 

reported results for the p and nucleon masses are somewhat lower than those of Fukugita 
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et al.. If WC interpolate or extrapolate the fits we actually selected on the S3 x 24 lattices 

to S/g* = 5.5 we find masses of 1.261(18) and 1.075(135) for the p at amp = 0.1 and 0.05 

respectively, and masses of 1.934(11) and 1.461(44) for the nucleon. The confidence levels 

for these four fits on the B3 x 24 lattices were 0.01, 0.94, 0.38 and 0.74. If we use our 

lo3 x 24 results to interpolate/extrapolate to 6/g’ = 5.5 the p masses are 1.243(13) and 

0.843(55), while the nucleon masses are 1.919(g) and 1.467(33) for the two quark masses. 
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V. Tc ESTIMATES 

Since our hadron mass estimates were made at a lattice spacing known in units of the 

cl&al symmetry restoration temperature, they can be used to estimate the temperature 

of the symmetry restoration in physical units. This calculation is summarized in Table 12. 

For each quark mass and coupling, we use our estimate of 6/s’ for the cbiral symmetry 

restoration to compute aTe in the spectrum run. The errors on our estimate of aTc are 

obtained from the error on 6/s: and the difference in S/g,2 for Nt = 4 and Nt = 6. We 

then use the mass values in Tables 6 and 11 to estimate Tc in units of MeV, using first 

the p and then the N masses as standards. We also give linear extrapolations of these 

estimates of Tc to the physical quark masses. Of course we do not expect the p and nucleon 

masses to be independent of amq, so this estimate of Tc is really only in units of MeV at 

the extrapolated quark mass. We use this fitting method rather than extrapolating the 

hadron masses because this method makes it straightforward to include the errors on our 

estimate of S/s,2 in the computation. Many quenched spectrum calculations are in the 

literature and the pure gauge theory deconfinement temperature can be estimated from 

any of them and the known results 25 for S/g:. Fig. 22 shows our estimates with dynamical 

fermions together with a number of Tc estimates from quenched ealculations14~26~8 as a 

function of inverse lattice spacing. As usual, the quoted errors are statistical only. The 

full QCD estimates differ slightly from those we reported earlierg~2’ because we have since 

completed our runs on the hadron spectrum and modified our procedures for selecting a 

fit. Also, we have slightly changed our estimates of 6/9,2 for amp = 0.025 based on recent 

high temperature runs at both aTc = l/4 and l/6. 

A lowering of the chirsl restoration temperature by dynamical quarks is intuitively 

reasonable. The breaking of chiral symmetry is associated with a clustering of eigenvalues 

of the fermion hopping matrix around sero. ‘a With the determinant in the probability 
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weighting such configurations are suppressed, and it is harder to break chiral symmetry. 
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VI. CONCLUSIONS 

In this calculation of hadron masses in full QCD we have attempted to carefully control 

systematic errors. By running at two different lattice sizes we have empirically checked 

the effect of the spatial size of the lattice, and by fitting the propagators over many 

distance ranges we have checked the effect of temporal lattice size and excited states in the 

propagators. We emphasize the importance of propagator fitting procedures, and describe 

ours in some detail. 

The familiar problem of the too large nucleon to rho mass ratio is present in our results. 

On our 10J x 24 aTc = l/6 lattices we find N/p mass ratios of 1.53(2), 1.71(9) and 1.70(19) 

for quark masses of 0.1: 0.05 and 0.025 respectively. In these ratios we include correlations 

between the N and VT propagators as described in Sec. II, using the same minimum 

distances for the p and nucleon as in the individual particle mass estimates. It remains 

uncertain whether the solution to this problem is smaller lattice spacing, smaller quark 

mass, simulations on lattice sizes such that the rho really can decay, or some combination 

of these. 

It is apparent from the simple fact that our hadron masses are about one in units 

of o-l that we are nowhere near the continuum limit in this calculation and that it is 

important to move to smaller lattice spacing. Another indication of this is the fact that 

while our n masses are going to zero with amq as expected, our x2 masses are close to the 

other mesons. It is interesting to note that this situation is much better in our quenched 

calculation. This full QCD simulation is approaching but has not reached the point where 

particle decays, or the presence of multiparticle states, must be considered. 

Generally our aTc = l/6 quenched calculation appears to be closer to the continuum 

limit than our aTc = l/6 full QCD calculation, as evidenced by the generally smaller 

hadron mssses and the smaller violations of flavor symmetry in the quenched calculation. 
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If the hadron masses are chosen to define the mass scale in quenched QCD, this leads to the 

conclusion that the temperature of the phase transition in quenched QCD is significantly 

higher than in full QCD. 
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FIGURE CAPTIONS 

1. x2 as a function of pion mass. Curve (a) is a one particle fit to distances 8 to 12, 

with three degrees of freedom. The amplitude is allowed to vary to minimize x2 for each 

mass. Curve (b) is a two particle fit to distances 4 to 12, with 5 degrees of freedom, with 

the other three parameters allowed to vary keely. 

2. Effective pion mass as a function of distance from the source. We show results for 

(a) am* = Oil, a/s2 = 5.525 and (b) amq = 0.025, 6/s’ = 5.4375 on the lo3 x 24 lattice. 

3. Effective rho mass versus distance from the source. We show results from the same 

runs ss Fig. 2. 

4. Effective nucleon mass versus distance from the source for the same two runs as 

Fig. 2. 

5. Simulation time histories of pion propagator. We plot the sum of the propagator 

over a spatial slice at a given distance in Euclidean time from the source point. These 

plots are for am* = 0.025 and distances 4 (a) and 8 (b). 

6. Autocorrelation of the pion propagator at distance 4 (a) and for the pion effective 

mass from distances 7 to 9 (b) for amq = 0.025 and S/g2 = 5.4375 on the lo3 x 24 lattice. 

The symbol size is the statistical error for the autocorrelation on an uncorrelated sequence 

of this length. 

7. Time history of the rho propagator for distances 4 (a) and 8 (b) with amg = 0.025. 

8. Time history of the nucleon propagator for distances 4 (a) and 8 (b) with amq = 

0.025. 

9. Simulation time history of the pion effective mass using distances 7 to 9. We show 

results for am* = 0.025 and S/s2 = 5.4375. 
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10. The power spectrum of the pion effective mass between distances seven and eight 

on the lo3 x 24 lattices for amp = 0.1 (a) and 0.025 (b). The large spike at w = 0 

is suppressed, and the normalization is chosen to be independent of the run length. The 

horizontal lines are the median value of a white noise power spectrum which would give the 

same statistical error for the effective mass as is obtained from blocking the measurements 

into blocks of 20. The highest frequency is w/2 since we measured every two simulation 

time units, and negative frequencies are not shown since they are the same as the positive 

frequencies. 

11. Histogram of the pion propagator summed over the spatial slice at distance ten (a) 

and summed over distances (b). Again, we show results for amq = 0.025 and 6/s2 = 5.4375. 

12. Fits to the x mass on lo3 x 24 lattices. We show fits for (a) amq = 0.1, e/s2 = 5.525, 

(b) amp = 0.025, S/s2 = 5.4375, and (c) a q uenched calculation with amp = 0.025 and 

6/g2 = 5.865. The meaning of the symbols is described in the text. 

13. Fits to the p mass on lo3 x 24 lattices for the same runs as Fig. 12. 

14. Fits to the x2 mass for the same runs as Fig. 12. 

15. Fits to the p2 mass for the same runs as Fig. 12. 

16. Fits to the LT mass for the same runs as Fig. 12. 

17. Fits to the al mass for the same runs as Fig. 12. 

18. Fits to the bl mass for the same runs as Fig. 12. 

19. Fits to the nucleon mass for the same runs as Fig. 12. 

20. Fits to the opposite parity nucleon mass for the same runs as Fig. 12. 

21. Fits to the excited rr mass for the same runs as Fig. 12. 

22. Tc estimates using (a) the p mass and (b) the nucleon mass as a standard for 

the deconfinement (pure gauge) transition and for the chiral symmetry restoration (full 
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QCD) transition. The abscissa corresponds to the number of time slices at Tc. The filled 

circles are our estimates for two flavors of dynamical qumks. For the pure gauge theory 

the crosses are Bowler et =L1418, the open circles Gilchrist et a1.22~26, the diamonds Gupta 

et oL8, the stars Hamber”, and the squares Campostrini et dz6. The fancy plus is our 

quenched calculation. 
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channel 

PS 

VT 

PV 

S 

WM(GY,Z) 

I 

(-1y + (-l)U + (-1) 

(-l)Y+= + (-l)=+” + (-l)=+y 

t-11 s+y+z 

part. interp. 

x 

P 

P2 

"2 

OPP. Parity 

c 

h 

a1 

d 

TABLE 1. The weight vectors used in the construction of local meson propagators and 

the particle interpretation for the corresponding propagator. 
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=*q 6/s’ dt NT 

.l 5.375 .04 1000 

.05 5.32 .04 1000 

.025 5.2875 .02 1000 

.l 5.375 .04 1000 

.05 5.32 .04 1000 

.025 5.2875 .02 1000 

.l 5.525 .04 1000 

.05 5.47 .04 1000 

.025 5.4375 .02 1000 

.l 5.525 .04 1000 

.05 5.47 .04 1000 

.025 5.4375 .02 1000 

.05 5.865 .05 400 

.025 5.865 .05 500 

54 

92 

151 

54 

93 

152 

50 

83 

131 

51 

83 

131 

NP %a 
200 87 

200 160 

250 333 

500 96 

500 175 

500 338 

500 92 

500 167 

500 311 

500 92 

500 166 

500 311 

200 154 

250 283 

TABLE 2. This table summarizes the parameters of the various runs. The first column 

gives the temperature and the lattice size. amp is the mass of the quark, dt is the mi- 

crocanonical time step, NT is the number of trajectories made during the run, uU is the 

number of conjugate gradient iterations required during an updating step, Np is the num- 

ber of propagator measurements made during the run, and nm is the number of conjugate 

gradient iterations required to make a measurement. Each run also included an additional 

100 warmup trajectories. 
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6/g’ 

5.26 

5.32 

Quantity 

Plaq. 

(444 

Plaq. 

At = 0.02, m = 0.005 At = 0.0125 m = 0.001 

1.446(2) 1.454(2) 1.445(2) 

0.383(4) 0.379(3) 0.395(5) 

1.573(2) 1.570(2) 1.575(2) 
I 

(44) 0.125(4) 0.129(3) 0.120(5) 

TABLE 3. Effect of the molecular dynamics step size and conjugate gradient accuracy 

on local quantities. These results are from an 8’ x 4 lattice with amq = 0.025. 
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Particles 1 Dmin 1 Xx2 1 d.o.f. 1 e.l. 1 
aTc = l/4 

1 

1 

1 

4 73.5 42 0.001 

5 63.4 36 0.003 

6 53.1 30 0.004 

1 7 27.9 

1 8 21.5 

aTc = l/6 

1 

1 

1 

1 

1 

4 

5 

6 

7 

8 

12 
--- 

54 

167 

74.0 

39.6 

24.2 

16.6 

42 

36 

30 

24 

18 

24 0.27 

18 0.26 

3x10-20 

9x10-5 

0.11 

0.46 

0.56 

0.66 
__---- 

5x10-9 

1 73.3 48 0.01 

2 48.9 42 0.23 

3 40.3 36 0.29 

4 36.0 30 0.21 

5 27.3 24 0.30 
I 

TABLE. 4: Combined confidence levels for different pion fits. The first column is the 

number of particles in the fit, and the second is the minimum distance included in the 

fit. We give the total x2 and number of degrees of freedom (d.o.f.) for the six runs at 

aTc = l/4 and the six runs at aTc = l/6, as well as the combined confidence level ( c.1.). 

For the aTc = l/6 runs ten measurements over twenty time units were blocked together 

before fitting, while for the aTc = l/4 runs five measurements were blocked. 
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=-I 

0.1 

0.05 

6/g’ small c. 1. large c. 1. 

5.375 0.8120(19) .59 0.8088(7) .23 

5.32 0.5833(17) .67 0.5827(7) .05 

0.025 5.2875 0.4213(20) .14 0.4184(g) .93 

0.1 5.525 0.8315(10) .61 0.8262(S) .82 

0.05 5.47 0.6123(17) .75 0.6099(10) .36 

0.025 5.4375 0.4496(20) .02 0.4490(17) .75 

0.05(V) 5.865 - - 0.5877(27) .0002 

0.025(V) 5.865 - - 0.4263(42) .84 
I 

TABLE 5. Pion mass estimates and their confidence levels. In rdl cases we use single 

particle fits with D,i, = 7. The “V” (“valence”) tag on the quark mass indicates a 

quenched calculation. A U- a indicates that we did not measure this operator during the 

indicated run or that there was no such run. The “small” and “large” columns refer to the 

smaller and larger lattice at each coupling - 63 x 24 and S3 x 24 for the aTC = l/4 runs 

and S3 x 24 and lo3 x 24 for the aTc = l/6 runs. The quoted errors are statistical only. 
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amcl c/g2 small c. 1. large c. 1. 

0.1 5.375 1.451(19) .09 1.408(11) .55 

0.05 5.32 1.315(45) .55 1.406(48) .58 

0.025 5.2875 1.398(160) .56 1.342(46) .33 

0.1 5.525 1.231(22) .Ol 1.210(16) .04 

0.05 5.47 1.130(112) .94 0.937(45) .03 

0.025 5.4375 0.918(286) .ll 0.856(106) .25 

0.05(V) 5.865 - - 0.777(26) .52 

0.025(V) 5.865 - - 0.644(59) .56 

TABLE 6. Rho mass estimates and their confidence levels. For the aZ’= = l/4 runs we use 

two particle fits with D,,,i, = 2 and for the full QCD aTc = l/6 runs we use one particle 

fits with D,i, = 7. For the quenched runs we use one particle fits with Dmin = 8. The 

notation is the same as Table 5. 
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c/s2 smsll c.1. large c.1. 

0.1 5.525 - - 1.139(H) .88 

0.05 5.47 0.904(43) .08 0.940(19) .85 

0.025 5.4375 0.941(89) .75 0.788(33) .72 

0.05(V) 5.865 - - 0.681(H) .64 

0.025(V) 5.865 - - 0.503(15) .63 1 
TABLE 7. “2 mass estimates and their confidence levels. We use three particle fits with 

D,,,i,, = 0, where both of the other particles have opposite parity (u’s). The notation is 

the same as Table 5. 

a*9 e/s2 small e. 1. large c. 1. 

0.1 5.525 - - 1.252(17) .36 

0.05 5.47 0.921(74) .79 1.092(49) .73 

0.025 5.4375 0.841(177) .61 0.787(77) .32 

0.05(V) 5.865 - - 0.831(22) .05 

0.025(V) 5.865 - - 0.762(45) .45 

TABLE 8. p2 mass estimates and their confidence levels. We use two particle fits with 

Dmin = 4. The notation is the same as Table 5. 
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amq e/s2 small c. 1. large c. 1. 

0.1 5.525 - - 1.228(13) .88 

0.05 5.47 1.095(25) .08 1.027(16) .85 

0.025 5.4375 0.942(25) .75 0.906(26) .72 

0.05(V) 5.865 - - 0.883(15) .64 

0.025(V) 5.865 - - 0.804(18) .63 

TABLE 9. Sigma mass estimates and their confidence levels. We use a three particle fit 

with Dmin z 0. (The third particle is an excited v.) The notation is the same as Table 5. 

a9 S/g2 small c. 1. large c. 1. 

0.1 5.525 - - 1.601(21) .44 

0.05 5.47 1.554(40) .63 1.507(23) .75 

0.025 5.4375 1.393(105) .70 1.523(32) .37 

0.05(V) 5.865 - - 1.247(40) .26 

0.025(V) 5.865 - - 0.960(62) .33 

TABLE 10. al mass estimates and their confidence levels. We use & three particle fit with 

Dmin = 1 for the full QCD runs and Dmin = 3 for the quenched runs. Here the third 

particle is an excited ~2. The notation is the same 8s Table 5. 
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-4 

0.1 

0.05 

S/s2 small c. 1. large c. 1. 

5.375 - - 2.273(11) .69 

5.32 2.122(218) .02 2.193(41) .48 

0.025 5.2875 1.808(119) .85 2.368(315) .43 

0.1 5.525 1.866(13) .38 1.848(10) .36 

0.05 5.47 1.583(36) .74 1.588(27) .88 

0.025 5.4375 1.571(176) .45 1.401(57) .002 

0.05(V) 5.865 - - 1.200(24) .76 

0.025(V) 5.865 - - 0.949(40) .32 

TABLE 11. Nucleon mass estimates and their confidence levels. For the aTc = l/4 data 

we me two particle fits with D,i, = 2. For the aTc = l/6 data we use one particle even 

distance only fits with Dmi, = 4 for the full QCD runs and D,i, = 6 for the quenched 

runs. The notation is the same as Table 5. 
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am,2 S/g,2 a% 
aTc = l/4 

0.1 5.375(20) 0.250(10) 137(6) 103(4) 

0.05 5.320(10) 0.250(05) 137(5) 107(3) 

0.025 5.280(10) 0.249(05) 143(6) 99(13) 
----- ____------ ---------- ---- 

O.O084(ex) x2 = .33 (1 dof) 142(6) 

O.O14(ex) x2 = .5 (1 dof) 109( 6) 

aTc = l/6 

0.1 5.525(40) 0.167(22) 106(14) 85(11) 

0.05 5.470(40) 0.167(22) 137(19) 99(13) 

0.025 5.430(30) 0.166(17) 149(24) lll(12) 
_____-------- ______---------- 

O.OOlS(ex) x2 = .008 (1 dof) 164(25) 

O.O044(ex) x2 = .05 (1 dof) 117(14) 

quenched 

0.05 5.865(15) 0.167(05) 166(7) 131(5) 

0.025 5.865(15) 0.167(05) ZOO(19) 165(g) 
______--------- -------------- 

0(=x) (0 dof) 234(39) ZOO(18) 

TABLE 12. Estimation of the chiral symmetry restoration temperature in MeV. The 

columns are the quark mass, the gauge coupling, the crossover temperature in units of 

the lattice spacing, and the critical temperatures estimated using the p and N masses as 

standards. Quark masses tagged with “ex” refer to linear extrapolations of the Tc values. 
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