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Abstract 

In this paper we attempt to develop an analytic description of a phase 
transition which leads to the formation of topological defects. In detail we 
consider the effect of ‘Nielsen-Olesen’ string like solutions cm the phase tran- 
sition. The statistical properties of such strings are derived. Neglecting 
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interactions our results are in agreement with those of Mitchell and Turok 
[l]. We however, also show how the results are modified by including self- 
interactions. We discover the temperature at which strings are formed and 
show how the Ginzburg length arises in our description. 
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1 Introduction 

It has previously been demonstrated by Weinberg and others [2], that at 
sufficiently high temperatures, the full gauge symmetry of a spontaneously 
broken simple gauge group which could describe the interactions of particles 
can be restored. The big bang model of the universe suggests that it was once 
very hot and dense. At these high temperatures we would therefore expect 
the full symmetry to be manifest. As the universe expanded and cooled 
it would undergo a series of phase transitions during which this symmetry 
would be broken. At this time topological defects may be formed [3], such 
as strings. These strings have been suggested as providing the seed mass 
about which galaxies and clusters of galaxies might form (see Viienkin [6] 
and references there in). 

Up to now calculations to investigate the nature of these phase transitions 
have been based on the mean field approach. In this paper we investigate 
how the presence of topological defects affects the phase transition. We also 
investigate the affect of finite temperature on the profile of a cosmic string, 
and derive the flat space equilibrium distribution of strings. Our results are 
in good agreement with theoretical calculations baaed on a rather different 
approach [l], and on computer simulations [7,17]. 

The paper is divided into five parts. In Section 2 we consider the simplest 
theory that undergoes a phase transition, that of a real scalar field theory. 
At the phase transition domain walls can form. We discuss qualitatively 
how we expect their formation to effect the phase transition. In Section 3 
we derive the partition function describing the equilibrium properties of a 
U(1) gauge theory. We consider the effects of string formation on the phase 
transition in Section 4, and show that the dominant contribution to the 
partition function at temperatures well below the critical temperature comes 
from the constant field configuration (i.e the mean field approximation is good 
in this regime). However, as the temperature is increased, the high density 
of states (entropy) available for the topological defects balances the energy 
required to form them, and they then make the dominant contribution to the 
partition function. In this section we also derive the statistical properties of 
strings and the effect of temperature on the width and energy per unit length 
of a string. The final section is devoted to a summary and discussion of our 
results and their cosmological significance. 
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2 The partition function for a real scalar 
field theory 

We shall start our discussion of phase transitions by considering the simplest 
theory that would possess one; that of a real scalar field theory with Lagrange 
density 

L I ;(3,#)(3%$) + ;m:@’ - id4 (;I 
On taking rnj > 0, L: possess a double well potential which breaks the 4 + 
-qS symmetry of the theory. 

The partition function of this theory in thermal equilibrium at tempera- 
ture T has the path integral representation in terms of Euclidean fields 

where [IO] 

I,(l#J) = /,” dr/ d’r[-;(a,$q(P4) - +#J’ + ;q (3) 

The sum over configurations of ~$(r,z) is restricted to fields periodic in T 
with period p and we shall take the signature of our Euclidean space to be 
-4. 

The standard approach to evaluating this partition function is to adopt 
the mean field approximation. One restricts the path integral to periodic 
configurations whose Euclidean space-time average is specified in advance to 

d’zr$(r,z) = ij 

say (where v is the spatial volume of the system).The resulting expression 

[41: 

z(?4 = / ‘DW? - & LB& / d32~(r,E))leZP(--IB[~1) (5) 

has the following interpretation. Let us couple the field 4(r,+) to a constant 
source j. The effect of this source is to enable the thermal average < ++J > to 

3 



take any value we wish (almost), (< 6 > will be constant by virtue of the 
translational invariance of j for large v). If we now write 2 as 

Z(3) = ,-b.W) 
P-5) 

then V(q) is the Helmholtz energy density (effective potential) of the system 
when j is chosen so that < 4 >= 3. 

With V(3) satisfying 
av 
s=O 

(‘1 

in the absence of external sources, the thermal average < $ > for the orig- 
inal system is the value of 3 for which V is minimized. In principle it is 
straight forward to compute < 4 > by performing a saddle point expansion 
for Z(J) [5]. This is equivalent to performing a loop expansion for V(J), the 
generating function for zero momentum Green functions. The existence of a 
phase transition is already present at the one-loop level and we shall restrict 
ourselves to this alone. 

The calculation is so well known, we shall only quote the result that, at 
large T, V(q) takes the form: 

V(3) = -+(I - ;,k + $g + . . . 5 
where 

T,’ - 24;: 
(9) 

and one loop renormalisation has been implemented. Higher order terms are 
suppressed either by a factor $ - 6 , (near T,) or by a factor of X [2]. 

There is a possible problem in that V of (8) is not concave, as the free 
energy must be [5]. We can ignore this since our interpretation of V in the 
remainder of this section will be rather different from that above. However, 
taking (8) at face value, we see that, as T increases from zero to I’,, so < I$ >, 
satisfvinn 

< q5 >z= cyi(l- 5) 
decreases smoothly to zero, implying a second order phase transition. 
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Convexity apart, the picture implied by the effective potential is that the 
thermal average decreases uniformly across all of space. This is very unlikely 
to be true. The classical equation of motion derived from (l), 

permits static domain wall solutions of the form 

&lu(~rY,“) = Wnh($) (121 

[II], [where we have taken a wall in the x-y plane as an example]. The 
field 4 flips value across this wall from -7 to q, where 7’ = y. A much 
more likely scenario for the phase transition is that, as the temperature is 
increased, more and more domain wall area will be formed until the whole 
of space is f&d, at which point the symmetric phase < 4 >= 0 is achieved. 
That is, the effective potential description corresponds to the averaging of 
a much more complicated structure. Until we are very close to the phase 
transition, however, we would expect the effective potential averaging to be 
reliable since the domains will be large (see later). 

To evaluate the effect of this domain wall formation on the temperature 
and nature of the phase transition some care has to be taken. The thickness 
of a domain wall at zero temperature is C = O(mi’) and its surface tension 
o = O($). Calculations that rely on holding these ftxed at finite temper- 
ature [12] will give the wrong answer. The long range correlations that are 
associated with a phase transition arise because the effective scalar mass 
m,,f = (g ],,z)t vanishes at T = I’.. The effect of non-zero temperature 
(to O(A)) on a domain wall will be to replace ms in C and o by m,tl. In this 
way the surface tension of a single domain wall vanishes at 2’ = Z’., enabling 
the creation of domain walls at no energetic cost. 

There are two ways of seeing this from the functional representation of 
2. One of the methods is outlined below, the other in Appendix A. 

Since &(r,g) is periodic in r it permits the Taylor expansion: 

d(r,z) = ~4n(z)e~, 9% = 44 (13) 

in terms of a denumerable set of three-dimensional fields. The action 1, of 
(3) then takes the form 

M41 = PG[{4dl (14) 
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where 70 can be decomposed into the contributions from q5s and q&(n # 0) 
[termed $1 as 

~j38[do,4Il = &[~ol+ &WI+ ~r[do,yl (15) 

&M = j+(yA# -+&:+&I 06) 

&WI= ~o~obAl= ~o~~3+QWw4J 

44 +(~nm4 (17) 

Wh4'1 = ; 2 /~3~~~~~4~~~ . *+q+v+.=o 
(ezcfuding 4:) 

= ; go / h&Y,~r. +termd containing n # 2 I$’ 08) 

s From (17) we see that the masses of the &(n # 0) modes are large at high 
temperatures. We refer to +s,# as light and heavy modes respectively. Z 
now becomes : 

2 m ‘D4e-‘b = 
/ I 

?>,$o~~‘e-m~d’l 

= ~~,e-Bwwol++ol) 
/ 

on integrating out the heavy modes, where 

(19) 

(20) 

e-P-I&l c( 
I 

Z)~e-““[~‘l-Ba,[k,9~l 
(21) 

The ‘effective’ potential u(&] for the three-dimensional field & contains tem- 
perature dependent parameters. Most importantly, at high temperatures 
and to first order in A, v[&] is the spatial integral of a local density. This 
can be seen by expanding (21) to first order in A: 

,-P+ol o( 
/ 

V~‘e-~Ro~~‘l( 1 - /~HI[&, 4’1) 

sto O(X) there extra terms will not contribute to 2 
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(22) 

= 1 -P / d3rq&)~ + . . . (23) 

where we have dropped terms down by at least a factor of g or X. After 
performing the zero temperature renormalisation of the mass, we have [2]: 

(24) 

XT’ 2TZ 

--==““F 24 c 
(35) 

Exponentiating (23) gives 

v(&] = / d’ziAm’&(g) + O(g, X) 

DiagrammaticaLly the light-mode mass increment Am’ has the represen- 
tation shown in Figure 1, where the solid line denotes 40, the light mode, 
and the dashed line +‘, the heavy modes. 

Inserting the first term of v(&] in (26) gives Z as 

the vacuum functional for the three-dimensional field with ‘action’ 

~[d~ol = / d34$@o)a - im:(l - $)q$, + $$] 
c 

Equivalently in terms of the one-loop effective potential V(4) of (8) 

~[401 = jd34&bd2 + v(h)] 

Thus, as well as its definition for constant 4, V(4) plays the role of an ‘effec- 
tive’ potential for the non constant three-dimensional light mode &(g). From 
this viewpoint, it is the vanishing of the scalar mass in the effective three- 
dimensional theory that triggers the long range correlations characterking a 
phase transition. 
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Now let us consider the nature of the phase transition. The dominant 
contributions to the partition function (27), will come from solutions to the 
semi-classical equation 

sl 
- = 0. 
640 

As well as the constant solution 4’ = F[l - $1, there are domain wall 
solutions of the form (12), in which me has been replaced by the effective 
scalar mass m(T), where m*(T) = mi(l - g). Away from the critical < 
temperature the solution 4 = conatanl, being the minimum energy solution, 
makes the dominant contribution to the partition function and the mean field 
approach is a good approximation. As we approach the critical temperature 
however, the energy required to produce a section of domain wall becomes 
smaller and smaller. Eventually because of the large number of different 
configurations of domain walls of a given size it may be possible for their 
entropy to counterbalance the Boltzmann coefficient and they may come 
to dominate the partition function. They may then drive the system into 
undergoing a phase transition at a temperature slightly less than T,. 

We shall not bother to evaluate the effect of domain walls on the phase 
transition in any more detail. The reason for this is that theories that pro- 
duce domain walls at a phase transition in the early universe can be ruled 
out as inconsistent with present day observations [ll]. For example they 
would produce large anisotropies in the microwave background. Instead we 
will perform our analysis for a more complicated, but cosmologically more 
interesting theory, that which would lead to the formation of cosmic strings. 

3 The Partition Function for a U(1) Scalar 
Gauge Theory 

The simplest theory to possess vortex solutions is scalar QED, with Lagrange 
density: 

13 = -~F-F- + i j (a, t ieA,)d Ia I+; 14 jz-$~d 14 (31) 
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where 4 is a complex scalar field. The partition function for this theory takes 
the form: 

2 a / Z)~~~~A(detM)erp(-lg[~, A]) 

where detM describes the gauge fixing, and 

(32) 

43M,‘4 = - I I ‘dr 
0 

d3G[d, A] 

with &E the Euclidean form of the Lagrangian (31). 
As in Section 2, the thermodynamic free energy for < 4 >= 3, V(4) is 

obtained by fixing the spatial average of 1 I$(+) 1 to 3 in (32). V(4) is neces- 
sarily a gauge-variant quantity, since it is the generator of zero momentum 
1PI Green functions. However physical conclusions drawn from it should be 
gauge invariant It is most convenient to calculate V(4) in the covariant 
gauge, for which, at high temperatures and to 0(X, eZ), [2], 

V(4) = -+4 I4 I2 (l- g, + ; 14 I’ 
e . 

Tz, which now includes gauge fixed loops, takes the form 2’: = 4. To 
&++ 

evaluate the partition function we shall adopt the same procedure as in Sec- 
tion 2. An alternative approach is outlined in Appendix A. We first decom- 
pose the scalar 4 and vector A, fields into light (I#J,,, A,,,) and heavy (Q, Ah) 
modes. As before we can write Z as: 

2 a I Wov&ezp( -Pl[&, &I) (35) 

where 
=p( -Pr[h, A]) = / v~‘vA’(detM)ezp(-I[~, A]) (36) 

Obtaining the mass corrections by keeping terms quadratic in &, and A,,,, 
is less simple than for the pure scalar case of the previous section. As in 
Section 2, the heavy modes give rise to a temperature-dependent mass term, 
F 1 rj Is, for th e scalar field. The contributions to A$ are shown diagram- 
matically in Figure 2. The effect of this term is to replace rni in the Euclidean 
time-independent effective action obtained from (31) by mi(l - $), just as 
in (28). 

c 
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Eowever there is a novelty here in that the heavy scalar modes also induce 
a vector mass yA,A@ in the tadpole appr :rmation, (Figure 3). This 
induced mass is of order &fs. Unfortunately, the tadpole diagram does not 
describe the total effects of the temperature-dependent self mass to our order 
of approximation. Non-local contributions like the photon self-energy have to 
be included as they also give terms O(e?f’s) for large T. All the relevant one- 
loop diagrams which contribute to O(e’Ts) are shown in Figure 4. Further 
problems arise because the heat bath gives a preferential inertial frame which 
leads to temporal and spatial components of A,, being decoupled, giving rise 
to two independent self-mass terms II,(k), IIT for momentum k 1131. The 
same preferential reference frame makes the II’s non-analytic in ko, The 
result is that depending on how one takes the zero momentum limit in the 
inverse fourier transforms of the mass, different masses are obtained [13]. 
Only the tadpole term, with no momentum dependence is immune from this 
uncertainty. Yet another complication arises because (unlike the mean field 
calculations) the background fields are not constant. This means that the 
self energy diagrams of Figure 4 have to be evaluated with non-zero external 
momenta. The effect of these difficulties is to make it hard to explicitly 
evaluate the gauge mass, even to O(esTs). 

There is no easy resolution to these problems in the context of the approx- 
imation we are making here. The simplest approach is to restrict ourselves 
to the regime, X > es, in which the gauge field contributions cannot be large 
s . Terms of order esTs are then constrained by esns(esmi/A) and the vector 
mass is approximately unchanged. At the same time the vector loop gives a 
small contribution to the effective scalar mass. The effect is to replace 1 of 

(36) by 
7 = - 

I 
d3+C(4a(~),Ao,(r)) 

where t is derived from (31) by: 
i) going Euclidean 

(37) 

ii) removing Euclidean time dependence 
iii) deleting the massive modes 
iv) replacing rni by nf,(l - 5) 
v) implementing gauge fixing. 

SThe qualitative details of our later discussions pre not changed by introducing a gauge 
msss anyway 
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Thus we finally obtain: 

where 

Z = I Wa~Aa,eq~( -Pf[ho, Ao,]) 

I[&,Ao~] = J d’E(~F~jF~ - :(&&)(a’&) 

-;A&&J; - $;a;&] - $n;(l - ;) 1 q& 1’ 
e 

-ie’ 1 40 (* AoiAi + i / 40 I’ +$GG)‘I 

(38) 

in the covariant gauge for example and the term $(&A;) describes our gauge 
ftxing. 

4 The Statistical Properties of Strings around 
the Phase Transition 

We now wish to evaluate the partition function (38) in further detail. To do 
this we will apply the saddle point method. The dominant contributions to 
the integral will come from the field configurations that satisfy the stationary 
equations: 

;I+, ..U.IA*=A:.III. = 0 

-&~,.u.,lc~A~.,. = 0 Ir 
that is, from the field configurations that satisfy the equations of motion: 

@Fji = iie(fl8,4 - ~ajv) - e’Aj 1 4 1’ 

(& + ieA;)s4 = -mi(l - $)4 + $ I 4 1s I$ 
c 

(40) 

(41) 

The contribution of any solution of these equations to the partition function 
can be found by substitution into (38). Th e solution d=const, A=O, being the 
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solution of minimum energy, gives the maximum contribution. Away from 
the critical temperature the partition function will be well approximated by 
this term alone. However as we approach T,, taking into account only the 
contribution of the absolute maximum is no longer a good approximation. We 
now have to find all the maxima of the functional and sum their contributions. 
This becomes necessary because, although the secondary m&ma will be 
individually weighed heavily against the constant field contribution, their 
sum, because of the large number of different non-constant configurations, 
will be larger. 

In principle in evaluating the partition function (38) we should consider 
the contributions of all the different types of solutions to equations (40,41). 
We will not do this, but instead will only consider the string like solutions. We 
do this because, here we only wish to consider the effect of the topologically 
stable defects on the phase transition ‘. Equations (40,41) contain string-like 
solutions at temperatures T < ‘7,. The simplest string solution is an infinitely 
straight static one running along the z-axis, say. This can be expressed as 
114): 

4 =I 4(r) I eie (421 
rhk 

A=--- r I A(r) I (43) 

where k is a unit vector in the z-direction. Imposing the gauge conditions 
(Ao,o(x) = 0, v.A,,(x) = O), and substituting (42,431 into (40,41) we obtain: -- 

-;$(r-$ l&o I)+[(+ I Ao I)‘-m:(++; 160 1’1 140 /=o (44) 

- $(i$(r / Ao I)) - e; 140 1’ f / Ao t 2 t % /‘= 0 (45) 

Before continuing with the evaluation of the partition function we till 
first discuss the form of the thermal string solutions and how they vary with 
temperature. The solutions to (44,45) are shown schematically in Figure 5. 
At large distances from the string 

Lim,,, I d(r) I- II 

‘The distribution of non-topologically stable field configurations we believe is not cot 
mologically interesting. They would rapidly disappear as the universe expanded and 
cooled. Only the trapped singularities would remain for a cormologicslly interesting time. 

12 



where nr = 2 and m:(T) = mi(l - $). At the core / 4 1 vanishes. The e 
thickness of the core is determined by m; ‘, the Compton wavelength of the 
Higgs particle. The magnetic field is restricted to the core, the skin depth 
being determined by r-n;‘, the inverse of the vector mass m,, 

7% = e7j = +t.. 

The energy per unit length of the vortex has two separate components, that 
due to the scalar field, 

fl’r = O(rlV)) 

and that due to the vector field, 

V” = O( e2T’ q) = 0(mYl 

with a comparable coefficient. Note that if we had found an additional & 
mass term of the form, &s = aeaT’, it’s effect would be to replace o, of 

(46) by 

The effect of increasing the temperature is firstly to cause cr, and o, to 
decrease to zero ( at T = T.), thus reducing the energy per unit length of 
the string. (This wouid be true even if we had found the &s correction.) 
Secondly it makes the strings become wider as T. is approached. 

We now return to evaluating the contribution to the partition function 
(38) due to strings. We can write it as 

2 = 1 =P( -PL[L AI) (48) 

where we have restricted the sum to field configurations satisfying (40,41) 
which are nodal lines. Equation (44,45) gives the field configurations for an 
infinite string; string solutions which are not straight, but curved so smoothly 
that any segment of length of order the width will also be straight, are, to 
a very good approximation also solutions of the equations (40,41), whose 
energy per unit length is approximately the same as the infinitely straight 
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string. Next we note that since, in this paper, we are interested in the ef- 
fect of the topologically stable strings on the phase transition, the strings 
must be either in loops or infinite in length ( in the absence of monopoles). 
To proceed further in evaluating the partition function it will be necessary 
to neglect the interaction energy of the strings when they are more than a 
distance I (l=width of string) apart, and to include it as an infinite rep& 
sive/attractive force when strings are within a distance 1 &. We do this by 
restricting our strings to be non-self-intersecting. Placing the strings in the 
volume V on a cubic lattice (for convenience only) of spacing I, we can write: 

2 = C W(n)erp( --@In) 
n 

(491 

where W(n) denotes the number of different configurations of a string of 
length nl with the above properties and (I = uU fo. the total energy per unit 
length. 

Let us first consider the contribution of loops. At high string segment 
density, non-self-intersecting random walks will be approximated by Brown- 
ian walks [IS]. The case of non-self intersecting walks at very low densities 
has been studied by polymer physicists (see 1191 for example). If P(t) denotes 
the fraction of walks of length nl, which start and end at the same point, it 
follows from these studies that: 

P(Tt) = cn-9 q = ; at high density 

7 
= - 

4 
at low den&y 

where C is a normalization factor. This results in the number of distinct 
configurations of a single loop of size ni being: 

q(n) = a = 5 on a cubic lattice (50) 

The extra divisor of 271 in (50) arises from the fact that an n-step loop is 
both non-orientatable and has n possible starting points. The contribution 

‘This is effectively what occurs in the numerical simulatioaa. When two atriaga come 
within a distance 1 of each other, they intercommute. We are redly xcplacing an exponea- 
tid lorce of repulsion by a step function type force which acts over a distance 1 
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of single loops to the partition function Z is thus, kom (49) and (SO): 

21 = ;q g- n-9-‘erp(-pm.,,) 
“Cl 

where 

and 

(52) 

The n steps need not constitute a single loop but two or more loops. Because 
of the lack of interaction energy the partition function for a ‘gas’ of loops is: 

z,, 
1 1 

= 1+ 2, + -2; t -2: t . . . 
Z! 3! 

= ezp(Z1) 

(54) 

From these weights we can calculate the average length of string in loops. 

~1OC.P. = igo y5z,, 
= ZJ 

Similarly the mean number of loops of size nl is: 

R(d) = ;~O-lezp(-pnlo.jj) (56) 

Note that this is in agreement with the numerical simulations of [7]. It 
also agrees with the statistical properties of strings derived using a rather 
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different approach by Mitchell and Turok [ 1) ‘f 1 we neglect string interactions 
completely. At high temperatures for which oejf z 0, R appears to be a 
scale invariant distribution while at lower temperatures loops of large length 

are exponentially suppressed. 
Now let us consider the contribution of ‘infinite’ strings to the partition 

function s. Since for large n: 

,n _ n--9--lan z an 
(57) 

we can write it as: 

z, = j..n& -q gj*e-Q-~ ; 

cv = &c e+p[ ~e+du*ff] 

We can immediately see that when crajf >> 0, these strings make a negligible 
contribution. As oefj tends to zero however, the contribution of the infinite 
strings will be more and more important. We can evaluate the ratio of string 
length in loops to the total string length produced at their formation by 
noting that at this temperature ~~1, = 0. We then obtain (using equations 
(54),(55) and similar equations for the infinite strings) 

& 
Lrol 

- 10% (59) 

This result is however, sensitive to the lattice type the strings are laid on. 
In general though, we still expect most of the string length to be inhfinite 
strings at this temperature. 

‘?Je note that Z, and Zt, both diverge at temperatures greater than 
T,, (the temperature at which u.jj = 0). Above this temperature there are 
large fluctuations in the .$ field and it is no longer appropriate to describe the 
field in terms of string-like configurations. Thus we can think of T., as the 
temperature at which our strings are formed. This temperature is (neglecting 
the In a): 

T,, z u(T)Z(T) r +a-’ (60) 

‘By infinite we mean strings which arc a.~ large 8~ the box in which our calculations 
are being performed 

16 



for some -r w O(l), and m = min(m,,m,) ( in our case x >> er, m = m,). 
Since the right hand side of (60) vanishes at T = T,, it follows that: 

Tat < Tc (61) 

as it must be. The difference between T,, and T, is small. Explicitly, 

1 - g = O(X), m = m, (62) 
c 

or 
1 - 2 = O(e2), m=Tll, 

c 
(63) 

In each case we have ignored terms O( 5) in the coefficients on the right hand 
side, but even if e* = X say, those coefficients only change by a factor of order 
unity. As we have so many uncertain coefficients it is not useful to be more 
specific. 

At this temperature most of the string length is in infinite strings and 
equation (49) implies that the loops have a scale invariant distribution. This 
is in complete agreement with the numerical simulations of Vile&n and 
Vachaspati [17]. We can also calculate the width of the strings at forma- 
tion (this will be of the same order as their mean separation). By direct 
substitution: 

m,(T,t) = O(v’%n,(T = 0)), m = m,, 

m.(T,c) = O(em.(T = a)), m=?Tt,, 

and 

my(T,t) = O(&n.(T = 0)), m= m,, 

m.(T.t) = O(em.(T = O)), m=m,, 

That is, the network of strings at the phase transition has the separation of 
the centres of the flux tubes scaled up by a factor O(h), (recall er < A), 
compared to the closest packing of cold strings. The factor O(-&) can be 
obtained by other considerations [3], and this reinforces our belief in the 
chain of approximations given above. 
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At temperatures less than T,, it is thermodynamically less favourable to 
have infinite strings and more favourable to have small loops. 

From a cosmological point of view a more interesting question to address 
would be what happens as the universe cools through T,,. Our calculations 
were for flat space but seem to suggest that, when the expanding universe 
was very hot, we would be unable to recognize any string configurations. As 
we go through T,, strings would be formed. Initially most of the string length 
would be in infinite strings, but as the universe cooled those strings would 
grind themselves up as fast as possible into the smallest loops they could 
make. Eventually the strings would no longer be in thermal equilibrium as 
they would not be able to chop themselves up. fast enough, but still as much 
length as possible would go into the smallest possible loops. This picture, if 
true, makes the string domination scenario of Kibble (151 and Bennett [IS] 

seem unlikely. This picture also seems to be confirmed by the simulations of 
Albrecht and Turok [8] and those of Bennett and Bouchett 19). 

5 Discussion 

Investigating the effects of finite temperature corrections to field theories is 
an extremely useful method for determining the properties and distribution 
of topological defects in the early universe. 

In this paper we have studied the effect of temperature on Nielsen-Olesen 
type vortices. We found that the strings developed an effective temperature 
dependent tension, uejj(/3), and a temperature dependent width. We then 
went on to evaluate the contribution of these string solutions to the partition 
function of a scalar gauge theory. We discovered that the partition function 
diverged at a temperature we called T,,. At this temperature the heat ca- 
pacity also diverges and there are therefore large fluctuations in the energy. 
As has been emphasized recently by Mitchell and Turok [l] our description 
then breaks down. We conjecture however that the critical exponent for the 
heat capacity is small r. It follows that fluctuations are small until we are at 
temperatures very close to T,,. It is for this reason that we believe that our 
results for the distribution of strings are accurate. 

‘This is to be contrasted with their results which do not take into account the variation 
in the width of the string wish temperature. 
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Above T,t we believe it is no longer appropriate to describe the field in 
terms of string like configurations and therefore interpret T,r as the string 
formation temperature (note also T,t = O(TG;-~)). From the partition 
function for the vortex solutions we evaluated the equilibrium distribution of 
strings. We discovered that as we approach T ,t, most of the string length goes 
into infinite strings (occupying about 90 % of the total string length), and 
that we had a scale invariant distribution of loops, both with approximately 
Brownian trajectories [david]. This is under the assumption that interac- 
tions between different string segments are neglected. The result agrees with 
Mitchell and Turok [l], who used a phase space calculation to evaluate the 
string network configuration, and with computer simulations [7,17]. Under 
the same assumption we obtain the result that at low temperatures most 
of the string length is in loops and that there are exponentially few large 
loops, again in agreement with the simulations and [l]. One improvement 
that our technique allows over the results of [I] is that we can incorporate 
some of the string interactions . We do this by making our strings non-self- 
intersecting. In fact, at high densities this improvement is irrelevant because 
non-self-intersecting walks are well approximated by Brownian walks [la]. 
The reason is that the excluded volume to the walk becomes approximately 
homogeneous at high densities, so to a good approximation, there is an equal 
probability of strings going in any direction, or being Brow&n. However, 
at low densities the two types of walks are different. Non-seif-intersecting 
walks have been investigated in polymer physics (see Wiegel [19] and refer- 
ences therein) and at low densities they find that q in equation(54) is i, for 
example. It would be interesting to know if the computer simulations of [7] 
see this difference. 

If we allow for the possibility of having open strings as well as closed, 
then we can estimate their distribution. We then obtain that the number 
of string configurations is maximized by having an exponentially suppressed 
distribution of open strings, (i.e the longest ones are suppressed). In a GUT 
model where the monopole mass is of the same order as the string tension, 
this would be a good estimate for the distribution of monopoles connected 
by strings in the early universe. The result agrees well with the numerical 
simulations of such a phase transition [20]. It is also worth noting that the 
temperature of the open strings is higher than that of the closed string. 

The values of m. and m. which are obtained at T,, are very important 
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in determining the relevant length scales at the phase transition. We have 
demonstrated that both masses become scaled up by a factor O(d) over 
the zero temperature result. This means that the network of strings at the 
phase transition has the separation of the centres of the flux tubes scaled 
up by a factor of O(h). This is just the Ginsburg length scale, that was 
used by Kibble [3], in determining the initial length scale for the distribution 
of the Higgs fields at the phase transition. It is very encouraging that we 
also obtain this result and believe it adds support to Kibble’s mechanism 
describing the phase transition. 

We would like to make one comment about the imaginary time formalism. 
At high temperatures we were lead to investigate T - independent solutions 
for the fields. This was a because, at high temperatures the width of the 
string t > p, so to a good approximation the variation of the fields over 
the interval /3 can be taken to be sero. At lower temperatures negelecting 
the temperature r dependence of the solutions is nolonger justifiable. It is 
unclear what the interpretation of the r dependent solutions would be in 
terms of the real time t, because we can not perform a Wick rotation to 
reobtain the real time in the theory. 

The results we have obtained have applications outside of cosmic strings 
and the early universe. Pate1 has used some of the formalism of section 4 in 
investigating confinement in QCD (211. Similar methods have also been used 
to investigate the lambda transition in liquid He’ [22] and [19] (for further 
references see [19]). 

Finally we feel it is worth pointing out that this analysis is for local 
strings rather than global strings. It is the former type which we expect to 
be important in galaxy forming scenarios, so it is important that features 
like scaling at high temperatures and exponential suppression of large loops 
at low temperatures were obtained. The calculations presented in this paper 
were in flat space. The next step is to allow for a curved spacetime in the 
action, and to see how this affects the distribution of the strings. This work 
is currently in progress. 

We thank T.Evans, MHindmarsh, T.W.B.Kibble, N.Turok, R.Pisarski, 
and D.Mitchel.I for useful discussions. This work was supported in part by 
the DOE and NASA at Fermilab. One of us (DH) acknowledges financial 
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support of the SERC and would like to thank R.Kolb and the astrophysics 
group at Fermilab for their kind hospitality while some of this work was 
performed. 

Appendix A 

Here we present an alternative derivation of the partition functions of Sec- 
tions 2 and 3. We start by deriving that for the scalar field theory of Section 
1. 

As in Section 1 we start from the path integral representation of the 
partition function: 

Z = I ~&44(4)1 

This time we split 10 into two parts, Z,, the finite temperature renormalized 
action and Z-, the part containing the counterterms. To O(X) for example: 

Ln = I J o8 dr d”z[+,&’ + $z’(Z’)~’ - $P] 

8 
Z COWL= J I 0 

dr d+# 

We now evaluate the partition function by expanding I about a field con- 
figuration 4s that satisfies the equation of motion derived from I,,. We 
obtain: 

I = I[&] + f < ~9193 %.a + . . . . . . . 
+ < +&.l + Ah&n + 4$-/T >I 

where 

9=4-h 
41 = 44 

and < . . >r,..N means integrate over dJz,dr~....d%NdrN. This expansion 
is then substituted into the partition function. The resulting functional is 
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evaluated by introducing a current j coupled to the field q. To O(X) one 
obtains: 

2 a e~~(~~40l)=d< ~di&k + +%% h) 

where 

&a = -/&,;+~;;;‘;m3 
n 8 

is the finite temperature propagator. Now m in this equation was chosen to 
be the finite temperature mass and so: 

AX X 
- = -;Dll 
2 

Thus we obtain the contribution of one saddle point to the partition function 
aJ: 

This is the contribution of one saddle point. If we make a ‘dilute gas’ ap- 
proximation we obtain: 

2 = A c ==P(L[4ol) 
h 

where A is a normalisation constant and the sum is over all field contlgura- 
tions satisfying the equation of motion derived from I,,. At high tempera- 
tures it is a good approximation to neglect the r variation of our solutions. 
This is because the solutions have to be periodic in p and at high tempera- 
tures p will be much smaller than the spatial width of the solution@. Thus 
we have reobtained the result of section 2. 

It is straight forward to apply this same scheme to evaluating the partition 
for scalar QED and reobtain the results of section 3. 

ewe thank N.Turok for pointing this out to us 
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Figure Captions 

(1) Diagrammatic representation of the lowest order mass correction. (Here 
dashed lines denote the heavy modes and the solid lines the light modes) 

(2) Feynman graphs for the tadpole corrections to the scalar mass. (Here 
again dashed lines denote the heavy modes, solid lines the light mode and 
wavy lines refer to heavy gauge field modes) 

(3) Feynman graph for the tadpole correction to the gauge field mass. 
(4) The remaining Feynman graphs of O(ea). 
(5) An example of the field configurations for a vortex solution at tem- 

perature T. 

( = o(m;‘) x = 0(m;‘) 
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