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Abstract

I study the problem of the dynamical stability of the equilibrium solutions for the
bosonic stellar configurations in the framework of general relativity. Following the method
developed by Chandrasekhar(1], I find a variational principle for determining the eigenfre-
quencies of the oscillations. Using the variational principle, one can find an upper bound for
the central densities where dynamical instability occurs. For the non—interacting massive
complex scalar fields the equilibrium configurations are dynamically unstable for central

- densities bigger than p = 1.04 X 10%m? g/cm3 (m is the boson mass in grams) whereas
for the quartic self-interacting case the bound is given by p = 0.53 X 109%8m3? g/cm?3 (for a

value of the quartic coupling constant: A = 3.8 x 1013m3),
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I. INTRODUCTION

In an early work, Ruffini and Bonazzola[2] found spherically symmetric gravitational equi-
librium configurations in asymptotically flat space-times for non-interacting massive complex
fields by solving the coupled system of Einstein-Klein-Gordon equations. They used the sim-
plifying assumptions that the radial scalar field solution is nodeless and that the configuration
is at zero temperature. For the boson stars, like for their fermionic counterparts, there is also
a critical mass and a critical particle number above which mass gravitational collapse occurs.

These quantities are respectively given by Mg = 0.633M3,,. ., /m and N, = 0.853M3, . /m3.

The extension to the self-interacting case, for a potential V(I¢l) = 1M¢l* (A > 0), has
been considered in the work of Colpi, Shapiro and Wasserman(3]. The consequence of switching
on a quartic self-interaction between the scalar particles is to increase the above limits on the
critical mass and particle number. As it was already shown in Ref. [2], it is not consistent
with the Klein-Gordon equation to describe the spherically symmetric boson condensate as a
perfect fluid with a given equation of state. As a consequence, we cannot apply to the boson
stars the theorem on stability of a fluid star which is based upon the assumption of a perfect
fluid behaviour. Nevertheless, if we plot the mass for the equilibrium configurations against
central density for these stars, we find, except for the scales, a behaviour remarkably similar
to those of neutron—étars: the mass quickly raises to a maximum (for p = pepi), drops a little,
oscillates and approaches an asymptotic value at large central densities, the same happening
for the particle number. These similarities lead naturally to the conjecture[4] ;hat the stability
behaviour is similar to the fermionic case, namely that the boundary between stable and unstable

configurations being given by p = pei:.

Here we study the problem of the dynamical stability of the bosonic equilibrium configurations

in the framework of general relativity[5]. We discuss both the case of a non-interacting massive



complex scalar field, as well as the case with a quartic self-interacting potential. However, the
analytic part of our results can immediately be extended to any interacting potential for complex
scalar fields. We analyze the time evolution of infinitesimal radial oscillations, which conserve the
total number of particles, starting from the system described by the scalar wave equation coupled
to the Einstein’s field equations. We follow closely the method developed by Chandrasekhar[1];
the main mddiﬁca.tion being that we cannot use the energy-momentum tensor of a perfect fluid,
but instead we use the energy-momentum tensor of a quartic self-interacting massive complex
field (the non-interacting case being given by setting A = 0). We find an eigenvalue equation
which determines the normal modes of the radial oscillations, and as in the perfect fluid case we
find a variational principle for determining the eigenfrequencies of the oscillations. This allows
then to ﬁnd‘ numerically, using suitable trial functions, upper bounds to the central density, of
the equilibrium configurations, from which on dynamical instability will occur.

II. EQUILIBRIUM CONFIGURATIONS

The many particle system is described by a second—quantized complex scalar field coupled to

gravity. The action for this system is given by
_ R g .. m? g A 4
S = /d‘z\/—_g [Eﬂ_—a + T ;“¢;u - —2—|¢l Z|¢l (1)

This action is invariant under a global U(1) phase transformation, ¢ — €, which implies the
conservation of its generator @, the number of particles minus the number of antiparticles. The

corresponding energy-momentum tensor is
m 1 Bo . - 1 m Ao 1» 3 2 x 4
Tf = 39" (80w + $08)) — 360 |9 Endio + mI8 + Sl (2)

For our considerations it is more convenient to write the complex scalar field as ¢ = (¢, +

i¢a)e~*t where ¢, and ¢, are two real fields, which are functions of r and ¢ alone since we consider



only spherically symmetric equilibrium configurations. In fact, we expect them to correspond to

solutions with minimal energy. We express the metric in Schwarzschild coordinates
ds? = e*dt* — e*dr? — 1? (d6? + sin? 0dg?) (3)
where v and A are functions of r and ¢ only (9% = —e™ and g™ = e~*). For r — 00, we require

e’(") 5 1 as well as e*™t) — 1,

At the equilibrium configuration, the functions v, A are time independent. In order to recover
the solutions found in Refs. [2] and (3], we set ¢3 = 0 at the equilibrium as well as ¢,(r,t) = ¢o(r).
In this way, we have only particles and the charge is then the total number of particles No. We

will denote all the equilibrium quantities by a subscript o.

We are left with two Einstein equations

(re"\°)' =1-—4xGr? [(m2 +ew? + :2\-453) o2+ e"A"qS:] (4)
et 1 -A -w,,2 2:\2 z.—,\:’
T%:ﬁ(l—e °)+41rG e w’ —m —-5950) ¢0+e °¢o] (5)

and the scalar wave equation

1" 2 ”(’)_A:) ’ A 2 - 2, 142
o + ;+ 2 ¢0—e°(m —eMw +'\¢o)¢0=0 (6)

The total particle number is given by

No = 47w /o " dr 13 gRet/100a-m) (7)

For the numerical integration of the set of equations (4), (5) and (6), it is convenient to
introduce the new variables z = mr, s = (47G)'/3¢,, with the factor w?/m? being absorbed into
the definition of the metric function e*®. Note that the coupling constant } is also replaced by

iM?

A = Meuga



The appropriate initial conditions and boundary conditions are: ¢(0) = const,
a'(0) = 0,e*(?) = 1, ew() = :—’, (since we absorbed w?/m? in €*). One finds then the solution
of the system of equations, which constitute an eigenvalue problem for (%) and () with the

constraint that o(z) has no nodes.

III. EIGENVALUE EQUATION AND VARIATIONAL PRINCIPLE

We consider now the situation where the equilibrium configuration is perturbed in a way such
that the spherical symmetry is still preserved. These pertﬁrbations will give rise to motions in

the radial direction.

The equations governing the small ferturbations are obtained by expanding all functions
to first order and then by linearizing the equations. We obtain the following linearized set of

equations for the perturbed quantities

(rem63)' = ~8rGr[Zoverudh + 262 (44)’

= €™ (uPbods + whols) — m*gubes — X366 — e dies] (®)
;“A" (6" — VisA) = ";w\ + 81rG[ - %5ue"’"w2¢?, - %&\e-*o(qsg)’
+ 7 (w gobb1 + whobda) — m?dobi — Ag3Ey + €7 ¢36¢'1] (9)
and
84 = 87Gr ($)6¢1 + weoddy — wthS) (10)

The linearized equations for §¢; and ¢, are

2 y—-X

P |
67 + (; +— ) by + 54’3 (6" - 6X')
+ Sher [w’e""’q&o —mlgy — §\¢3] + et (w’e""’ - m? — 3:\¢3) LY




- er—Vo¢ow26u — er—VO6$1 + 2eA0_ww6¢22 = 0 (11)

and

- <
o8 + (2+85%) 64 00 (e - mt - 38) 88,
1

M "ED, + = er Wy [¢o (51‘/ - 61\) - 46(;;31] =0 . (12)

It might seem that we have a set of five equations (8), (9), (10), (11) and (12) for four unknown
functions (§v,6X,8¢1,8¢2). It turns out, in fact, that these equations are not all independent,
for instance, one can show that eq. (12) is a consequence of the other equations[5]. The basic
system of four equations can be reduced to a system of two coupled equations involving only the

real components of the perturbation of the scalar field.

We notice that eq. (10) integrates directly in time if we write §¢; as

5¢3(1‘,t) = ¢°(1')g('r, t) (13)

we get

5\ = 87Gr (¢{,5¢1 + w¢?,y') . (14)

By suitably combining the above equations, we get the two final equations, where we write

fa(r,t) = g'(r,t) and fi(r,t) = 6¢s(r,¢).

- f,( o)+ 2+ ;‘:’)—e*o-wf,
Ak —N) 2 (- ) é
+ f[ — At +2¢: (¢:)

+ (_QL) (( vy — Ap) +42° ) +anGrutggele™ ("‘;_'\H%)]

do
—_ f{%eko—ww + fl [%¢8wea\o—w _ 81FG1‘8A° (m2¢0 + :\¢g) welo—w .
+ 47Groy (u{, -+ %) we*"""’] =0 . (15)
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and

2 1 _ <
ot A(24500-0) + e (<dute - m? - 334))
- 2
— 167GreM g, (m?go + Ag) + 47Gr (¢ (u:, Y ;) ]
- 2
— e+ fzoga + filtnGréy (v - X+ 2) wdh
+ 8xGre (—m’qﬂo - :\ng) wl + dwe}

+ 4¢"Tw+(ug—,\g)w¢o] —0. (16)

We expect the radial perturbations not to change the total particle number N,. We, therefore,
set §No = 0. It turns out that this leads to boundary conditions for f;[5]. For r — oo we require
g3 fa — 0, and for r — 0 we have r?f; — 0.

To further deal with the partial differential equations (15) and (16) we suppose that fi(r,t)
and f;(r,t) have a time dependence of the form e**. Inserting this into the equations leads to
an eigenvalue problem with eigenvalue ¢ and corresponding eigenfunctions f;(r) and fi(r). The
appropriate boundary conditions are: » — oo fi — 0,73¢3f; — 0;7 — 0 f; = const,r?f, — 0.
The operator associated with the eigenvalue problem is real and symmetric, thus the eigenvalues

o? are real. Dynamical instability will occur whenever ¢ < 0. One can find the following

variational principle (G; = r2el/2(0=%) G = r3¢2e3/Hv—20))

%1 aae °rl 1 1 1
0'2/0 58('\° “) (Gaf? + sz:) dr = /0 [§G1f{2 + §G1f1201("') + §G2f£2 + Eszz?Cz("')

+ 12l (2600G) + Fuf,GiCs(r) | dr (1)
with

Ci(r) = e [ (3w’e""° +m?+ 3;\¢;‘;) + 16w Gerorg) (m’qbo + :\¢g)

— 47Gr(4))° (u{, -+ %) ] (18)



2N — ) =2 ()
Ca(r) = [—————r +77 . ¢0+2(¢0)

f (X — %) ; %) [(V:) - )+ 4:':] — 4rGruwl gieto— (V{) -+ %—) ] (19)

- 2
Cs(r) = —2¢jw + 8xGre* (m?go + Ag3) wel — 4nGr) (Vc') — A+ ;) wép (20)

A sufficient condition for dynamical instability to occur is that the right hand side of eq. (17)
vanishes (or becomes negative) for some chosen pair of trial functions fi, f3, which satisfy the

appropriate boundary conditions.

We tried for both cases we considered, namely A = 0 and A = 30, with different pairs of trial
functions. In the case A = 0, an upper bound for the occurrence of dynamical instability is given
by o(0) = 6.535 corresponding to a central density p = 1.04 x 1093 g/em® (m is the boson
mass in grams). (For comparison: The central density of the critical mass is 0(0) = 0.271 and the
point from which on the binding energy becomes positive corresponds to o(0) = 0.540.) In the
interacting case with A = 30(A = AMB,,,/4™m?, X = 3.8 x 10'*m?) the upper bound is given
by o(0) = 0.285, corresponding to a central density p = 0.53 x 10°*m? g/em3. ((0) = 0.158 for

the critical mass, and ¢(0) = 0.312 for the point from which on the binding energy is positive.)

In both cases, the bounds are above th'e critical density corresponding to the maximum mass,
but below the point from whiqh on the binding energy becomes positivé. A weak point of the
variational method is that we cannot easily estimate how far our bounds are from the actual
values. Our results can thus not be conclusive about the conjecture whether the border between
stability and instability is given by the central density corresponding to the maximum mass,

although they are not very far from it.
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